NETWORK OPTIMIZATION
by
R. R. Meyer

Computer Sciences Technical Report #595

May 1985



NETWORK OPTIMIZATION*
R. R. Meyer

Computer Sciences Department and Mathematics Research Center
The University of Wisconsin-Madison
Madison, Wisconsin, USA 53706

ABSTRACT

Network optimization not only has a long and distinguished history within the field
of mathematical programming, but also continues to be one of the principal ongoing areas
of research in optimization . This is due in part to the abundance of network applications,
and in part to the fortuitous confluence of mathematical theory and computer science
research that makes possible the optimization of linear network problems involving millions
of variables, while simultaneously posing the challenge of adapting these techniques to
nonlinear networks with thousands of variables. This paper endeavors to survey recent
theoretical and computational developments in deterministic network optimization, with

emphasis on convex as opposed to nonconvex or combinatorial problems.

Research supported in part by NSF grant MCS8200632 and ARO contract DA AG29-80-C-0041 . This
paper was presented at the NATO Advanced Study Institute on Computational Mathematical Program-

ming, Bad Windsheim, West Germany, 1984, and will appear in the proceedings of that conference.



1. Introduction

The earliest work in what may be regarded as modern network optimization coincides
with the first modern paper in mathematical programming, namely that of [Kantorovich
1939] dealing with railway networks. It is worthwhile noting that both Kantorovich and
Koopmans, who also did early work on the transportation problem |[Koopmans 1949,
received the Nobel Prize in 1975 in recognition of their contributions in the area of methods

for the allocation of resources.

Other notable early achievements include Hitchcock’s work on transportation [Hitch-
cock 1941] and the implementation of the stepping stone method on the National Bureau
of Standards Eastern Automatic Computer in 1952, perhaps the earliest example of “pro-
duction” grade mathematical programming software. After the initial dominance of primal
simplex method approaches to linear network optimization, work by Ford and Fulkerson
|Ford and Fulkerson 1962] led to the popularity of primal-dual methods during the 1960’s.
The computational pendulum drifted back to primal simplex methods again in the 1970’s
as a result of the development and exploitation of suitable computer science data structures
by Johnson, Glover, Karney, Klingman, and others ([Johnson 1966], |Glover, Karney, and
Klingman 1974}). At present the primal simplex method (specialized to take advantage of
the tree structure of the basis) remains the method of choice for the general linear minimum
cost network flow problem, although very promising results (particularly for transporta-
tion and assignment problems) have recently been reported in [Bertsekas and Tseng 1983]

with a method based on some concepts from monotropic programming [Rockafellar 1984].

In section 2 of this paper we discuss some of the key concepts that have been used
to develop efficient specializations of the primal simplex method to linear network opti-
mization problems. The so-called network simplex method based on these techniques has
been used to solve problems of up to 65,000,000 variables and 50,000 constraints |Barr and
Turner 81]. These problems are perhaps the largest optimization problems ever solved.
Multicommodity network techniques are described in section 3, along with extensions
to networks with side constraints and variables, and so-called generalized networks, also
known as networks with gains and losses. Finally section 4 surveys algorithms for networks
with nonlinear convex objective functions, and notes the interrelationship between the use
of network algorithms for computer network design and the use of local area computer
networks (including the Crystal multicomputer at the Computer Sciences Department of
the University of Wisconsin-Madison) to solve network optimization problems via parallel

algorithms.



2. Linear Single-Commodity Network Optimization

The problem class to be considered in this section is

min ¢X
s.t. Ax=D> (NET)
I<x<u
T

where x is the n-vector (ziy,...,zn)" in which z, represents the flow on arc i; ¢ is the
vector of objective function coefficients (the juxtaposition of two vectors will be used to
denote their inner product, so that cx = Zle ¢,x;); 1 is a vector of lower bounds; u is a
vector of upper bounds; A is the so-called node-arc incidence matriz of a directed graph or
digraph with m nodes and n arcs, where if the kth arc goes from node 7 to node j (this arc
will be denoted as (7, 7)) ), then kth column of A hasa +1 in row 7 and a —1 in row j (note
that some authors use the opposite sign convention for these entries) and 0’s elsewhere in
the column; and b is the right-hand side (RHS) vector. When it is necessary to refer to
the variable associated with an arc (i, j), this variable will be denoted as z,;, and a similar
convention will be used for cost coefficients. Each node is assumed to have at least one
incident arc (i.e., an arc with that node as origin or destination) and each arc is assumed
to have distinct origin and destination nodes (i.e., no self-loops are allowed). (Note that
since (1,1,...1)4 = 0, a necessary condition for the feasibility of the system Az = b is
that Z:’f__l b; = 0. Without loss of generality we assume that this condition is satisfied
as it is easily checked at input time.) Although for the sake of simplicity in presenting
the key ideas of the network simplex method we massume that all variables have upper
and lower bounds, the algorithm below may be augmented in a straightforward manner
to handle unbounded variables and to detect unbounded problems. Also, for notational
convenience we will assume that the lower bound has been translated to 0. With the sign
convention on the entries of A, it is easily seen that a given row, say row z, of the product
Az corresponds to the sum of the flow variables for the arcs leaving node 2 minus the sum
of the flow variables for the arcs entering node 7. This quantity is often call the divergence
of row 7, and may be thought of as the net amount of flow leaving node ¢ (if the node is a
conservation node or a supply node) or the negative of the net amount remaining at node ¢
if the node is a demand node. Thus, the three fundamental types of constraints occurring
in the system Az = b are supply, demand, and conservation of flow constraints. Many
other types of constraints can be converted to this network format, including supply and

demand inequalities, bounds on the amount flowing through a node, bounds on the total

3



amount flowing out of a subset of nodes, etc. In cases in which the transformation to the
standard network format is not obvious, there exist algorithms which determine if classes
of linear transformation can be used to convert the problem to that format [Bixby 81].

Finally, the corresponding digraph is assumed to be connected, so that between every
pair of nodes (1, j) there exists a path of ordered nodes and arcs such that node ¢ is the
initial node of the path, 7 is the last node of the path, and if ¢, and 2,4, are consecutive
nodes in the path, then the £¢" arc in the path is either (1,,2441) or (1¢41,%¢)- (Thus,
the orientation of the arcs in the path is arbitrary.) (If the digraph is not connected, it is
easily seen that the problem (NET) may be decomposed into a set of separate optimization
problems, each of which corresponds to a maximal connected component of the digraph).

It should be noted that in the (NET) problem format, the columns of the matrix
A correspond to arcs of the network whereas the rows of A correspond to nodes. In
stating optimality conditions, we will associate dual variables with the rows of A, so from
a network viewpoint, these dual variables are associated with the corresponding nodes,
while the primal variables are associated with the arcs.

Computationally it has been found efficient [Grigoriadis 82| to start the network sim-
plex method with an all artificial basic feasible solution (BFS). Given a problem in the
form (NET), the network structure may be maintained in spite of the addition of a full
set of artificial variables by the following procedure: (1) to add the artificial variable ,;,
add to the matrix 4 the ¢** unit vector if b, > 0, and the negative of the i** unit vector
otherwise; (2) form the negative of the sum of the rows of this augmented matrix, and then
add the resulting row as an additional row of constraint coefficients with corresponding
RHS value b1 = — EZ:] b, = 0. It is easily seen that this additional row introduces a
second non-zero of opposite sign in every artificial column, while adding only an additional
zero to each column corresponding to an original variable. This new row may be thought
of as corresponding to an artificial node m+ 1, to which each original node is connected by
an arc of the appropriate direction. Computational experience |Grigoriadis 82| indicates
that the best approach for handling the artificials is a gradual-penalty method in which a
relatively small penalty coefficient (of the order of the objective function coefficient largest
in optimal value) is first used for the artificials, followed by an increase in the penalty each
time the optimal solution contains artificials at positive levels. If positive values of artifi-
cials persist even after the penalty has reached a sufficiently high level, then the original
problem is declared infeasible. (It may be shown that the problem (NET) has the nice
property that the penalty coefficient does not have to be raised above mC'/2, where C' is

maxXi<;<n |¢i|, assuming this is positive.)



A property of the node-arc incidence matrix A that results to a minor technical diffi-
culty is the linear dependence of the rows of A. Since each column of A contains exactly
two non-zeros, one +1 and one —1, it follows that the sum of the rows is the 0 vector. In
order to be able to deal with basis matrices in a notationally simple manner, we will as-
sume A has been augmented not only by the additional row and columns discussed above,
but also by the column consisting of the (m - 1)st unit vector (0,0....,0,1)7, and that the
corresponding variable, Z,,,;, has been assigned lower and upper bounds of 0 and a 0 cost
coefficient. Clearly, this does not affect the solution of the original problem (NET) in any
way, but it does result in a constraint coefficient matrix of fall rank (see, e.g., [Kennington
and Helgason 80]. From a graphical standpoint, .. is considered to be the flow on a
so-called root arc that originates at node m + 1, but has no terminating node. (Node m+1
is thus termed the root node or simply the root). Without loss of generality we will assume
that the problem (NET) also contains the variable z,.,,; and its corresponding data as
described above. ( This variable actually plays no role in computation, since its value is
always 0.) Since the root arc is included in every basis, the dual variables 7 associated
with a basis B by the equation 7B = c¢p have the property that 7,,4; = 0. Moreover,

since every other column has one +1 and one —1, these equations have the form
Ty — T; = Cy (PI)

for every other basic arc. The simple form of these equations helps to make the update
of the dual variables after a pivot relatively easy, as we will see below. Because the initial
basic arcs all begin or end at node m + 1, the initial 7’s (other than 7,,41) are simply
+ K, where K is the penalty cost associated with the artificial arcs.

Another key mathematical property of the problem (NET) that leads to enormous
computational speedups in the application of the primal simplex method is the fact that
there is a one-to-one correspondence between the (m + 1) x (m + 1) basis matrices of A
and the rooted spanning trees of the corresponding network, where a rooted spanning tree
is a connected subgraph that contains the root arc and all of the nodes of the original
graph, but no cycles, a cycle being a non-trivial path whose origin and terminal nodes
coincide ( for a proof of this correspondence see, e.g., [Kennington and Helgason 80]). (An
intuitive justification of this correspondence may be obtained by noting that connectedness
is related to the ezistence of basic solutions for arbitrary RHS’s - in particular for those
RHS’s corresponding to the selection of any given node as the sole supply node and any
other node as the sole demand node, thereby necessitating a path between those nodes to
correspond to the solution flow — whereas acyclicity is related to uniqueness of solutions,

since the presence of a cycle would allow a feasible solution to be transformed into another

5



feasible solution by the superposition of flows on the cycle without any effect on the
divergence equations. More will be said about cycle flows in the discussion of the pivot
operation below). For simplicity, we will simply refer to rooted spanning trees as trees .

The computational utility of trees arises from the fact that the pivot operation of the
network simplex method may be carried out by utilizing data structures (representing the
tree) that make it relatively easy to identify the variable (i.e., arc) that leaves the basis
and to carry out the updating of the primal and dual variables. In fact, it is the simplicity
of the arithmetic of those operations that allows single-commodity network flow problems
to be solved about 100 times faster than general LP’s of the same size.

It is important to note that with this approach there are two aspects to the perfor-
mance of the pivot operation: 1) the numerical update, in which changes to the values of
the primal and dual variables are effected, and 2) the data structure update, in which the
tree representation must be changed when the basis changes. As might be expected, there
is an important trade-off between those two updates, since more complex tree representa-
tions reduce the effort required for numerical updates, but are themselves more difficult
to store and update as the tree changes. Indeed, a major share of the research into com-
putational aspects of network optimization has been devoted to the determination of data
structures that reduce the total time for the two portions of the updating process. While
there is no current agreement on optimal data structures, there are some key ingredients
for superior performance , and we will provide a brief overview of these elements .

It is convenient for both notational and algorithmic purposes to assume that the non-
basics £y have value 0. This is clearly the case in the initial iteration with the all-artificial
basis, and at any iteration in which a nonbasic z, reaches upper bound, a “reflection” of
z, is performed by replacing z, by z! = u, — z;. Computationally, this requires only the
reversal of the direction of the arc corresponding to z,, a change in the sign of ¢;, and a
record that this reflection has been made. (Since the RHS b is not actually used in the
algorithm after the initial basis, it need not be modified.) Under the assumption that

zny = 0, a sufficient optimality condition is that
¢y =M+ 7y 20 (OPT)

for each nonbasic arc (i, j). Thus, the so-called “pricing out ” operation for an arc requires
only the subtraction and addition from the cost coefficient of the n’s for the nodes at the
ends of the arc. (Just as with general linear programs, a variety of sophisticated strate-
gies have been used wtih the goal of obtaining “good” entering nonbasics without having

to price out a large number of nonbasics at each iteration. While so-called “candidate

6



list” strategies are effective, a simple “random”™ strategy has also been used successfully
|Grigoriadis 82].)

Let us consider the operations that must be performed to accomplish a pivot in the
network simplex method, given a nonbasic arc entering the current basis at lower bound.
We will assumne that the pivot is non-degenerate. i.e.. that a flow increase is possible in the
entering arc. (Degeneracy is actually fairly common in network optimization, particularly
for special classes of problems such as the assignment problem, and special techniques
have been devised |Barr, et al 77| to reduce the number of degenerate pivots. However, a
discussion of these devices is beyond the scope of this paper. and for the general single-
commodity network problem, the RNET code |Grigoriadis 82] to be discussed below has
been found to be one of the most efficient of currently available network codes, yet contains

no sophisticated anti-degeneracy features.)

The Network Simplex Pivot

(We assume that a BFS and a corresponding set of dual variables are available.)

1. If the optimality conditions (OPT) are satisfied, then quit with an optimal solution;
else select an entering nonbasic arc (r,s) .

2. Increase the flow on arc (r,s) until a) it reaches its bound or b) until one of the
basic arcs is driven to a bound, whichever comes first.

8. In case 2a), the primal variables are changed by appropriate amounts and we return
to step 1, leaving the dual variables and tree unchanged.

4. In case 2b), the primal and dual variables and the tree representation are updated,

then return to step 1 .

In order to determine how the flows in the basic arcs change as the flow in the entering
arc increases, we take advantage of the fact that the addition of an entering arc (r,s) to
the basis tree creates a graph with a unique cycle that consists of the path in the tree
from r to s plus the new arc (r,s) (see Figure 1, where the arc orientation is shown only
for cycle arcs). Since a flow change on the entering arc must yield a unique corresponding
change in the basic flows, we will fully account for all changes in the basics by showing that
appropriate flow changes on (only) the cycle arcs preserve feasibility. The orientation of
the arcs of the cycle is determined by the orientation of the entering nonbasic arc (r, s, so
that the arcs with positive orientation (i.e., in the same direction as (r,s) ) are (r,s), (p,q)
and (t, p), whereas the arcs with negative orientation (i.e., opposite to (r,s)) are (r,g) and
(t,s)). In both the example and the general case it is easily verified that feasibility (w.r.t.

the divergence equations) is maintained if the flows on all positively oriented arcs are

7



increased by a given amount and the flows on all negatively oriented arcs are decreased by
the same amount. Unit flow changes on the cycle of the example are illustrated by Figure
2. Thus, for each unit change in z, .. there is a unit change (of appropriate sign) in each
cycle arc. It is therefore relatively easy to determine which of the cycle arcs will be the first
to hit a bound as they increase or decrease in flow depending on their orientation, since
the simplex ratio test thus reduces to a comparison of distances to bounds. If this arc is
(r,s), then the solution update is fairly trivial since dual variable values remain the same,
and only the flows on the cycle arcs need be modified. Let us assume then, that a basic
arc is the first to reach a bound, so that a full update is required. In the example, suppose
that (p,g) hits its bound first. Again the primal solution update is obtained by modifying
the cycle flows, but now the duals and tree representation must also be updated. From
a visual viewpoint, it is easy to see how to change the tree representation in the example
since it is clear that what is required is the severing and removal of arc (p,q) and the
“rehanging” of the subtree that lies below this arc from node s via the new arc (r,s) (see
Figure 3). Computationally, however, tree updates require a data structure perspective,
and this process has some subtleties that we will consider below. Finally, to accomplish
an update of the dual variables, note from { P1) that the values of the dual variables may
be computed by moving down the tree from node m + 1, where 7,7 = 0. Each tree arc
corresponds to a dual equation, and following the paths down from m + 1 we can obtain
values of successive duals by noting that only two duals are present in each equation and
the one higher in the tree has already been determined. Since the only paths from node
m + 1 that are modified by the basis change are those to the nodes in the subtree below
the leaving arc, the only dual variables that change are those for the nodes of that subtree.
Moreover, in the example, if A is the change in 7,, then all of the other dual variables of
the rehung subtree also change by exactly A since the difference between the dual variables
on opposite nodes of any subtree arc is unchanged (i.e., it remains the cost associated with
the arc). This property holds for the dual update in general, keeping in mind that the

rehung subtree will contain one of the nodes of the entering arc.



m+1

Hm*@-l =0

Figure 1. Tree augmented by entering arc (r,s)



Figure 2. Flow changes on cycle



Figure 3. New basis tree



We will now define some concepts important for the description and update of basis
trees. The unique path from a node 7 to the root node m + 1 is called the backpath from
7. The nodes on the backpath above ¢ are the predecessors of ¢, and any node having 1
as predecessor is a successor of 1. With this terminology, the determination of the cycle
corresponding to an entering nonbasic (r,s) corresponds to generating the predecessors
of both r and s and determining the first common predecessor (in the Figure 1 example,
node p) . Conversely, the dual variables requiring update correspond to one of the nodes
of the entering arc (the one on the rehung subtree ) and its successors in the new tree. In
summary, the primal update may be performed using predecessors, while the dual update
involves successors.

Although the immediate predecessor of each node (other than the root) is uniquely
determined, a node generally does not have a unique immediate successor and there are
a variety of data structures suitable for representing the full set of successors of a node.
The successor representation most commonly used in network optimization is the preorder
traversal (or, simply, preorder) in which nodes are linearly ordered with the root being
indexed first and the indexing proceeding to the leftmost immediate successor until this is
no longer possible, then backtracking until a node with an unindexed successor is reached so
that the indexing may be continued. The initial tree corresponding to the all-artificial basis
has the nice property that no work is required to compute its corresponding immediate
predecessor function p or the preorder traversal function s, since for ¢ # m+1, p(z) = m+1
and s(1) = ¢ + 1 (for reasons to be noted below, it is useful to have node m + 1 considered
to be the “successor” of the “last” node, which in this case is node m).

Among contemporary network simplex algorithms, usage of only p and s would be
considered to be a “minimal” collection of data structures for tree representation. Besides
p and s, most algorithms use at least one additional node-length array to describe the
tree in order to speed up the tree representation update and the determination of the
intersection node of the backpaths of the nodes of the entering arc. For example, the set
of successors of a node 7 may be generated by iterating the preorder function starting at
7, and simultaneously checking the depth of the generated nodes, where the depth d(z)
of node ¢ is the number of arcs in the backpath, since once a node j with d(7) < d(z) is
produced, the full set of successors of 7 is the set of previously generated nodes. Depth
may also be used in cycle determination, since backtracking may be started from the node
on the entering arc with greater depth and is continued simultaneously on both backpaths
once the other depth is reached. Other additional data structures that have been used
in the network simplex method include number of successors and “depth” with respect to

the preorder index. Of course, all of the tree representation arrays must also be updated

10



each time the basis changes, and the efficiency of a collection of data structures is also
dependent on this factor. The inverse preorder function is used in RNET, for example, to
reduce the cost of the preorder update. A good recent survey of some of the choices used
in this area is given in |Kennington and Helgason 80).

There has been extensive computational testing of network flow codes on a standard-
ized set of 35 medium to large problems produced by the NETGEN test problem generator
described in |Klingman, Napier, and Stutz 74|. These problems have up to 1500 nodes and
5730 arcs. Direct comparison of codes with the same machine and compiler has been infre-
quent, but some idea of the relative performance of contemporary approaches is given by a
survey in | Glover and Klingman 82|, which concluded that the RNET code of |Grigoriadis
82) ran approximately as fast as the ARC-II code of [Barr, Glover, and Klingman 79], and
that these two codes were faster than other publically availables codes. The reported total
time using a CDC 6600 with the MNF Fortran compiler on the full set of problems was
102.85 seconds for RNET and 103.12 records for ARC-I1. The longest solution time for
RNET for an individual problem of this set was 8.11 seconds. Total storage for RNET
is Tm + 4n, as compared to 7Tm + 3n for ARC-II. RNET uses the depth array and an
array corresponding to the inverse of s in addition to predecessor and successor arrays.
The study of [Glover and Klingman 82| also notes the preliminary testing of their new
Code ARCNET, whose performance on the standard test problem set is slightly better
than RNET.

Space does not permit a discussion of methods for important special classes of single-
commodity network flow problems such as shortest path, maximum flow, transportation,
and assignment problems. While it is possible to efficiently solve such problems using
a general network flow code, still faster solutions can generally be obtained by further
exploiting special structure. For example, a primal-dual method of F. Glover, R. Glover,
and Klingman for the assignment problem was found to be nearly an order of magnitude
faster |Glover and Klingman 82] than the network simplex method. Solution time for
their method on a typical 400 node, 3000 arc assignment problem is 0.1 seconds on a dual
Cyber 170/175. |Glover and Klingman 82| is also a good survey of recent research on

special methods for shortest path and max flow problems.

11



3. Network-Related Linear Programs

There are a number of important classes of linear programs that are closely related to
ordinary single-commodity networks. These include multicommodity flows, networks with
additional general side constraints and variables (also known as embedded networks), and
so-called generalized networks. In this section we provide a brief review of procedures for

extending algorithms for ordinary networks to these more general problem classes.

Linear Multicommodity Network Flow

In a wide variety of applications several different commodities simultaneously flow
through a network, and each commodity has its distinct set of supply, demand, and con-
servation constraints. Coupling between commodities occurs typically as a result of the
sharing of arc capacities, and takes the form of “hard” constraints on the total flow of all
commodities through individual arcs or “soft” constraints that impose nonlinear objective
function penalties based on the total flow through arcs. In this section we will give a brief
description of techniques for the case of linear coupling constraints, and then in following
section consider generalizing this model to allow arbitrary additional rows and columns
to be added to the basic network constraint format. Nonlinear networks are discussed in
section 4.

We will assume the problem format

k

st. Axg=by (k=1,...,K)
Y xk<hb (MUL)
k

where A is a node-arc incidence matrix and Xy represents the set of flows corresponding to
commodity k. (The techniques to be considered below may be extended in straightforward
fashion to allow different networks constraints for each commodity as well as more general
coupling constraints between commodities.)

Three fundamental approaches have been studied for this problem. These are Dantzig-
Wolfe or price-directive decomposition, resource-directive decomposition, and primal par-
titioning. Dantzig-Wolfe decomposition uses an iterative process in which 1) the individual
commodity constraints Axyx = by, 0 < Xy < uy are approximated by convex combinations
of extreme points, 2) these approximations are substituted in the coupling constraints

S"xk < b to obtain an approximation (the “master” problem) that is then optimized,

12



and 3) new extreme points of the single commodity problems are generated (assuming
the optimality conditions are not satisfied) by optimizing via network techniques separate
single commodity problems whose objective functions are determined by the optimal dual
variables of the master problem. (In essence, this is the standard Dantzig-Wolfe method,
except that network methods are used to obtain efficient solutions of the subproblems).
In resource-directive decomposition, the arc capacities are allocated among the com-
modities, the resulting single commodity subproblems are optimized, and the optimal dual
variables are then used to determine a new allocation of capacities (assuming an opti-
mal solution has not been obtained). |Kennington and Helgason 80| discuss tangential
approximation and subgradient techniques for implementing resource-directive methods.
In primal partitioning, we take advantage of the fact that a basis for the multicom-
modity problem must contain bases for the single commodity problems. For notational
purposes it is convenient to assume that slack variables y are added to the coupling con-
straints. Specifically, if B is a basis for (MUL), it may be partitioned as
- B C
-5 %
where B is a collection of bases for the single commodity problems, and [D E] is the

portion of the basis corresponding to the coupling constraints. It may be verified that

B-'+ B-'cQ~'DB"! -BlCcQ™!
B™'=
—-Q'DB™! Q!

where Q = E — DB™C.
Note that in the limiting case in which all of the slack variables y are in the basis (so
that nondegeneracy would imply that none of the joint capacity constraints were active),

C =0 and E = I, and the expression for B~! reduces to

- B! o0
-1 _
B = {—-DB” ]}

More generally, it may be observed that relative simplicity of B~! depends on the number
of slack variables y in the basis, which in turn determine the complexity of E and the
number of 0 columns of C. Of course, it is not necessary to explicitly compute B~1;
instead we take advantage of the tree structure of the sub-bases of B in the computation
of the solutions of the primal and dual systems of equations associated with B. Details

of the procedure may be found in [Kennington and Helgason 80]. Recent computational

13



experience reported in |[Kennington and Patty 84/ indicates that the efficiency of primal
partitioning is closely related to the number of active generalized upper bounding (GUB)
rows in the optimal solution. In the applications considered in that paper, the number of
active GUB rows was quite small (typically, fewer than 10), and primal partitioning was
found to yield solutions about 6 times faster than linear programming approaches that did

not take advantage of the network structure.

Networks with Side Constraints and Variables

From a theoretical standpoint, a straightforward generalization of multicommodity
networks is the problem in which additional constraints and variables are added to standard
network constraints. Algebraically, the structure of the bases for this class is similar to
that of the multicommodity case, except that the B part of B is generally only a basis of a
submatrix of the network portion. Computational experience with primal partitioning for
this class has been rather limited, but again it is the case that efficiency relative to the plain
simplex method is highly dependent on the significance in the solution of the non-network
portion of the problem. In fact, this problem class reaches to (and sometimes past) the
limit of generalization within which it is still computationally worthwhile to exploit network
substructure. Results reported in [Glover and Klingman 81] showed primal partitioning to
be about 4 times faster than LP on some small problems and about 70 times faster on a

problem with 1000 nodes, 5000 arcs, and 1 non-network row and column.

Generalized Networks

There are a great variety of additional applications that may be modelled by generaliz-
ing the network model to allow two arbitrary non-zero entries per column of the constraint
matrix. (By using scaling, one of these may be assumed to be £1.) This class of problems
is referred to as generalized networks or “networks with gains and losses”, since it can be
thought of as allowing flows to increase or decrease as they traverse arcs. Physically, gains
occur in such applications as financial models, in which interest is added as money flows
from one time period to another, and losses occur in such phenomena as the transport of
electricity and gas.

It may be shown that a basis for a network representation of the problem consists of a
collection of one or more subgraphs, each of which consists of a rooted tree or a subgraph
with exactly one cycle (such subgraphs are sometimes called one-trees). (Unlike ordinary
networks, the presence of a cycle in a generalized network does not imply nonuniqueness of
the solution.) By exploiting this basis structure using data structures that are extensions

of those used for ordinary networks, it is possible to solve generalized networks about 50

14



times faster than by use of standard LP codes. In essence, cycles are dealt with as the
roots of their components, and expressions are easily developed for the computation of
primal and dual variables on the cycles. Details of the extension of the network simplex
method to generalized networks may be found in |Kennington and Helgason 80]. A recent
paper |Grigoriadis and Hsu 83] discusses some network analogs of partial pivoting that are
useful for numerical stability during the pivot process, yet have very little computational

overhead.

4. Nonlinear Networks

Nonlinear network optimization problems are of the form:

min f(x)
st. Ax=b (NLP)
1<x<nu

where f is a nonlinear function on the n-dimensional interval [1,u], and Ax=Db represents a
system of network constraints. Significant applications that give rise to this format include
computer network design [Cantor and Gerla 74], |Gavish and Hantler 82|, [Magnanti and
Wong 84], traffic assignment |Bertsekas and Gafni 82|, [Dafermos 80|, [Dantzig, et al, 79],
[Feijoo and Meyer 84a), |Lawphongpanich and Hearn 83], [Pang and Yu 82|, hydroelectric
power systems |Hanscom, et al, 80|, [Rosenthal 81], |[Escudero 84], telecommunications
networks [McCallum 76|, [Meyer 81], [Monma and Segal 82, and water supply systems
|Beck, et al, 83], [Meyer 82,83]. These types of problems often have thousands of variables
and are thus among the largest nonlinear programming problems that have ever been
solved.

In the case in which f is convez and separable, i.e., of the form f(x) = > 7, fi(z:),
piecewise-linear approximation of the objective function has the nice property that the
resulting approximating problems may be solved by linear network codes. [Kamesam and
Meyer 82| showed that piecewise linear approximation of the f, with iterative refinement of
the grid yields a sequence of iterates converging to the optimal solution, and that Lipshitz
continuity of the derivatives of the f; implied a linear convergence rate of o for the objec-
tive function, where « is the factor by which the grid size is multiplied at each iteration.
Thus, for example, with o = 1/4 (a typical value used in computation) the linear rate of
convergence of the objective function will be 1/16, in essence guaranteeing an additional

figure of accurary with each iteration in the neighborhood of the optimal solution. The

15



key issue in this regard is the speed with which the successive linear programs may be
generated and solved. By using an implicit grid approach in which linear approximating
segments are generated only as needed and at most two segments are stored for any variable
at any given time, the efficiency of the problem generation phase is ensured. Major areas in
which further research appears to be needed in the solution phase are the specification of
the initial basis and the pricing out strategy. |Dembo and Klincewicz 81] and [Klincewicz
83] discuss the use of quadratic approximation for separable nonlinear networks.

In the case that the objective function f is convex and non-separable , it was com-
monly held that piecewise-linear approximation was impractical because of the “curse of
dimensionality”, i.e., the need to deal with k™ grid points in order to have a uniform grid
of k points for each variable . The theory and computational results of [Feijoo and Meyer
84a] showed that a convergent and efficient piecewise-linear approximation method could
be achieved in the non-separable case by restricting the computation of approximating
points to a small cluster situated on a set of axes translated to the current iterate. In
essence, this is equivalent to using a locally-determined separable approximation at each
major iteration, so that the techniques for the separable case are applicable. Moreover ,
this type of approximation applied to nonlinear networks has the advantage of preserving
the network structure of the constraints.

Traffic equilibrium problems are an important class of nonlinear multi-commodity
problems, i.e., they involve many different types of “commodities” flowing through the
network, where depending on the application, a “commodity” will be associated with the
traffic flowing out of a “source” node or between a designated origin-destination pair. Such
problems arise in urban and regional transportation planning as well as computer network
traffic models. Enormous problem sizes result from the fact that the number of variables
and constraints is determined by the number of links and nodes multiplied by the number
of commodities. These same features, however, also make these problems ideal candidates
for solution via parallel algorithms, about which more will be said below. There are two
fundamental types of traffic equilibrium problems: symmetric problems in which the con-
gestion on a given link is determined by the total flow summed over all commodities in
that link only, giving rise to a symmetric Jacobian matrix in the corresponding variational
problem, and asymmetric problems in which the congestion on a link depends on the total
flows in several links. It is well known [Steenbrink 74| that the former problem is equiv-
alent to a convex optimization problem under relatively weak assumptions, whereas the
Jatter gives rise to a variational inequality that has a more complex optimization formula-
tion involving a non-differentiable objective function. In this paper we will concentrate on

the former problem, although some of the decomposition ideas considered apply equally

16



well to both problem classes and indeed to large-scale optimization problems that have
non-network constraints. This problem is of the form (NLP), where the objective function
represents total congestion over all of the links of the network, and the constraints represent
the supply, demand, and conservation constraints for each of the individual commodities
flowing through the network. (Alternatively, it is possible to transform the problem into
a separable problem by including constraints that sum the flows on each arc, but this
destroys the network structure of the constraints.) the The number of commodities may
be quite large because, depending on the formulation, there can be a commodity corre-
sponding to each node or to each origin-destination pair. However, in the urban traffic
assignment problem it is typically the case that the only coupling between different com-
modities occurs in the objective function.(For other problems in which there are explicit
joint capacity constraints, Lagrangian and penalty approaches can frequently be exploited
to move these constraints into the objective function.) Because of this coupling property,
the approximation of the objective function by a separable function leads to a decomposi-
tion of the problem into separate optimization problems, one for each commodity. These
single commodity problems may then be optimized in parallel (many other algorithms
for the symmetric and asymmetric problems also contain a phase in which the objective
function is replaced by an approximation that allows decomposition to be used).

For simplicity we will assume that a feasible solution x' (one satisfying all of the
constraints) is available at the start of the sth iteration of the problem (NLP). (At the initial
iteration an arbitrary starting point within [1, u] plays the same role.) To simplify notation
below,consider the shifted function fy:(x):= f(x) — f(x'); it is clear that minimizing [
is equivalent to minimizing f. A piecewise-linear separable approximation f “centered” at
x' is then constructed as follows:

Consider the function

h:R" — R
h(y) = fui(y + ')

which is a translation of f,. to the origin, and let h, be the restriction of h to the axis
y;, that is h;(y;) = h(yje]‘) where e’ is the jth canonical unit vector. For a given
grid size A;, generate a piecewise-linear approximation iL]‘ to h;, with breakpoints at
csm2A = AL0,A0, 200 Defining f;(z;) := h,(z; - :r;-), the resulting piecewise-linear
approximation to fy. is:

Fx) =" Jj(zy)

=1
(Note that the computation of the fy-"s may be carried out in parallel.) The original

17



objective function is then replaced by the approximating function, and the resulting ap-

proximating problem is solved. This problem has the form:

min f(x)
st.Ax=Db (PLP(z))
I<x<u

(Note that the function f depends on the base point x' and consequently varies from
iteration to iteration.)

The problem (PLP(7)) has two key features: 1) because the objective function is now
separable, the problem may be decomposed into K separate optimization problems, where
K is the number of commodities in the original problem; and 2) because of the convexity
and piecewise-linearity of their objective functions, each of these new problems is equivalent
to a linear network optimization problem.

Specifically, assume that x = (X1,...,Xx), where X is the vector of variables corre-
sponding to commodity k, and S} is the correponding set of indices for those variables.
Since there is no coupling between commodities in the constraints, the problem (PLP(z))
may be solved by solving in parallel (via very fast linear network codes) the set of problems:

min Z f i(z5)
JESK

s.t. Agxp = by k=1,...,.K

b < xp < uy

where Ay, by, 1, and uj are for commodity k the corresponding components of A,b,l
and u. (The effect of this approach is therefore similar to Dantzig-Wolfe decomposition,
in that it results in the decoupling of the subproblems; the difference is that the coupling
is removed here from the objective function rather than the constraints. Clearly, the data
communications requirements for most decomposition approaches will be similar.)

Given the set of solutions of these problems %X1,...,%x, if we let X'*! = (X4,...,XK),

the next iterate x**! is obtained by solving the line search problem:
min FxP+ 0%+ - xY))
st 1<x' +0(%T —x') <u
>0

Once the next iterate has been obtained, the procedure is repeated with a reduced grid

size of AV T1 = a)’, where a € (0,1) (a = 0.25 has worked well on our tests). It has been

18



shown that this procedure will yield a sequence of iterates whose objective function values
converge to the optimal value of the original problem (NLP).

Our preliminary computational results |[Feijoo and Meyer 84b] with this approach
have been very promising. The method was implemented on the University of Wisconsin
CRYSTAL multicomputer [DeWitt, et al 84|, a set of VAX 11/750 computers (currently
there are 20) with 2 megabytes of memory each, connected by a 10 megabit/sec Proteon
ProNet token ring and accessed via VAX 11/780 “host” machines. In a typical run, a 12-
commodity, 432-variable traffic assignment problem was solved on a 12-machine partition
of CRYSTAL in 23.5 seconds versus 112 seconds for solution via the sequential version
of the algorithm on a single machine. Six seconds of the CRYSTAL time were used
for communication by the master and an average of 0.3 seconds for communication by
each slave . Similar computational results were obtained for related problems. Thus,
communication between machines represents a relatively small percentage of the total
computing time (summed over all of the machines), and this behavior should scale up
favorably to yield nearly linear speedup for larger problems.

An important computational issue yet to be studied is the degree of optimization
to be carried out in the optimization of the linear subproblems. In order to obtain a
descent direction, these problems do not have to be fully solved, and it appears likely that,
after a certain stage in the optimization, further pivots do not significantly improve the
quality of the search direction. Research on an appropriate stopping rule for the individual
subproblems should lead to significant efficiency gains, and also offers the possibility of
improving the level of synchronization when problems are solved in parallel. Further
study of this approach is needed in order to identify the convergence rate, which should be
dependent on the relative magnitude of the off-diagonal terms of the Hessian matrix, and
to estimate this rate in the case of problem classes such as traffic assignment optimization.

In the case of Crystal , in which the number of processors will be approximately 40,
there will be a shortage of processors in the case of large traffic assignment problems, which
may contain hundreds or thousands of commodities, each of which could be optimized at
a particular iteration on a single processor. It will thus be appropriate to investigate the
relative efficiencies of solving all of the single commodity problems at a given iteration by
distributing them in fixed groups among the available processors versus having a dynamic
allocation mechanism that assigns single commodity problems to newly idle processors
versus solving only a proper subset of the single commodity problems and then doing the
line search restricted to the corresponding subset of variables while the processors begin
work on another subset of the single commodity subproblems. In a sense, this problem

class is ideal for experiments in parallel computing since it involves large-scale problems

19



and allows the testing of a wide variety of strategies for mapping processes to processors.

Other algorithms for convex nonseparable nonlinear networks include the Frank-Wolfe
method |Dantzig, et al 79}, simplicial decomposition (|Lawphongpanich and Hearn 83] and
|Pang and Yu 82]), projection methods |Bersekas and Gafni 82}, and the reduced gradient
method [Beck, et al 83]. All of these techniques exploit in some manner the underlying

network structure.

References

R. S. Barr and J. S. Turner, “Microdata file merging through large-scale network
technology”, Mathematical Programming Study 15 , 1-22 ,1981.

R. Barr, F. Glover and D. Klingman, “A new alternating basis algorithm for semi-
assignment networks”, in Proceedings of the Bicentennial Conference on Mathematical
Programming, NBS, Gaithersburg, Maryland, USA ,1977.

R. Barr, F. Glover and D. Klingman, “Enhancements of spanning tree labelling pro-
cedures for network optimization”, INFOR, 17, 16-34, 1979.

P. Beck, L. Lasdon and M. Engquist, “A reduced gradient algorithm for nonlinear
network problems”, ACM Trans. on Math. Software, 9, 57-70 ,1983..

D. P. Bertsekas and E. M. Gafni, “Projection methods for minimum cost network flow
problems”, Mathematical Programming Study 17, 1-22, 1981.

D. P. Bertsekas and P. Tseng, “Relaxation methods for minimum cost network flow
problems”, MIT Laboratory for Information and Decision Systems Report LIDS-P-1339
,L1983.

R.E.Bixby,“Hidden structure in linear programs”, in Computer- Assisted Analysis and
Model Simplification (H.J. Greenberg and J.S. Maybee , eds.), Academic Press, 1981.

D. G. Cantor and M. Gerla: “Optimal routing in packet switched computer networks”,
IEEFE Transactions on Computing C-23, 1062-1068, 1974.

S. Dafermos, “Traffic equilibrium and variational inequalities”, Transportation Science,
14, 42-54 ,1980.

G. Dantzig, R. Harvey, Z. Lansdowne, D. Robinson, and S. Maier: “Formulating and
solving the network design problem by decomposition”, Transportation Research 13B, 5-17,
1979.

R. Dembo and J. Klincewicz, “A scaled reduced gradient algorithm for network flow
problems with convex separable costs”, Math. Prog. Study 15, 125-147, 1981.

D. DeWitt, R. Finkel and M. Solomon, “The CRYSTAL multicomputer: design and
implementation experience”, Technical Report 553, Computer Sciences Department, The
University of Wisconsin-Madison, September, 1984.

L.F.Escudero,“Using independent superbasic sets on nonlinear replicated networks
with applications”, paper presented at the NATO ASI on Computational Mathematical
Programming , 1984.

B. Feijoo and R. R. Meyer, “Piecewise-linear approximation methods for nonseparable
convex optimization”, University of Wisconsin - Madison Computer Sciences Department
Technical Report 521, 1984a.

20



B. Feijoo and R. R. Meyer, “Optimization on the CRYSTAL multicomputer”, Uni-
versity of Wisconsin-Madison Computer Sciences Department Tech Report 562, 1084b.

L.Ford and D.Fulkerson, Flows in Networks, Princeton University Press, Princeton,
N.J., 1962.

B. Gavish and S. L. Hantler: “An algorithm for optimal route selection in SNA
networks”, Research Report RC 9549, IBM T. J. Watson Research Center, Yorktown
Heights, N. Y., August, 1982.

F.Glover, D. Karney, and D. Klingman, “Implementation and computational com-
parisons of primal, dual, and primal-dual computer codes for minimum cost network flow
problems,” Networks, 4, 191-212, 1974.

F. Glover and D. Klingman, “The simplex SON algorithm for LP /embedded network
problems”, Math. Prog. Study 15, 148-176 ,1981.

F. Glover and D. Klingman, “Recent developments in computer implementation tech-
nology for network flow algorithms”, The University of Texas at Austin, Center for Cy-
bernetic Studies Report CCS 377, 1982.

M. D. Grigoriadis, “Minimum-cost network flows, part I: an implementation of the

network simplex method”, Rutgers University Laboratory for Computer Science Research
Report LCSR-TR-37 ,1982.

M. D. Grigoriadis and T. Hsu, “Numerical methods for basic solutions of general-
ized flow networks”, Rutger University Laboratory for Computer Science Research Report
LCSR-TR-43 ,1983.

M. A. Hanscom, L. Lafond, L. Lasdon and G. Pronovost, “Modeling and resolution of

the medium term energy planning problem for a large hydro-electric system”, Management
Scrence 26, 659-668, 1980.

F.Hitchcock, “The distribution of a product from to several sources to numerous
localities”, Journal of Mathematics and Physics, 20, 224-230 ,1941.

E.L. Johnson, “Networks and basic solutions”, Operations Research, 14, 619-623 ,1966.

P.V.Kamesam and R.R.Meyer, “Multipoint methods for nonlinear networks”, to ap-
pear in Mathematical Programming Studies 22 ,1984.

L.Kantorovich, Mathematical Methods in the Organization and Planning of Produc-
tion, Publication House of the Leningrad State University, 1939. Translated in Manage-
ment Science, 6, 366-422, 1958.

J. L. Kennington and R. V. Helgason, Algorithms for Network Programming, John
Wiley , 1980.

J. L. Kennington and B. W. Patty, “A computational comparison of specialized versus
general codes for multi-commodity network problems”, COAL Newsletter , 8-14, 1984.

J.G. Klincewicz, “A Newton method for convex separable network flow problems”,
Networks, 13, 427-442 ,1983.

D. Klingman, A. Napier and J. Stutz, “NETGEN - A program for generating large-
scale (un)capacitated assignment, transportation, and minimum cost flow network prob-
lems”, Management Science, 20, 814-821 ,1974.

T.C. Koopmans, “Optimum utilization of the transportation system”, Econometrica,
17, 3-4 ,1949.

21



S. Lawphongpanich and D. W. Hearn. “Restricted simplicial decomposition with appli-
cation to the traffic assignment problem”, Research Report 83-8, Department of Industrial
and Systems Engineering, University of Florida. Gainesville, Fl., September, 1983.

T. L. Magnanti and R. T. Wong: “Network design and transportation planning:
models and algorithms”, Transportation Science 18, 1-55, 1984.

C. J. McCallum. “A generalized upper bounding approach to communications network
planning problems”, Transportation Science, 18, 1-55, 1984.

R.R. Meyer.“A Theoretical and computational comparison of ‘equivalent’ mixed-
integer formulations”, Naval Research Logistics Quarterly, 28, 115-131 ,1981.

R.R. Meyer. “Recursive piecewise-linear approximation methods for nonlinear net-
works” . in Fvaluating Mathematical Programming Technigques, Springer-Verlag,1982.

R.R.Meyer, “Computational aspects of two-segment separable programming”, Math-
ematical Programming, 26, 21-39 ,1983.

C. L. Monma and M. Segal, “A primal algorithm for finding minimum-cost flows in
capacitated networks with applications”, The Bell System Technical Journal 61, 949-968,
1982.

J. S. Pang and C. S. Yu, “Linearized simplicial decomposition methods for computing
traffic equilibria on networks”, Technical Report, University of Texas at Dallas, Richardson,
Texas, 1982.

R.T. Rockafellar, Network Flows and Monotropic Programmang, Wiley, 1984.

R. E. Rosenthal, “A nonlinear network flow algorithm for maximization of benefits in
a hydroelectric power system”, Operations Research 29, 763-786, 1981.

P. A. Steenbrink, Optimization of Transport Networks, Wiley, London, 1974.

22



