PERFORMANCE EVALUATION OF A PIPELINED VLSI ARCHITECTURE
USING THE GRAPH MODEL OF BEHAVIOR (GMB)

by
J. T. Hsieh

A. R. Pleszkun
M. K. Vernon

Computer Sciences Technical Report #589

March 1985

Performance Evaluation of a Pipelined VLSI Architecture
Using the Graph Model of Behavior (GMB)*

J. T. Hsieh
A. R. Pleszkun
M. K. Vernon

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

Abstract

The PIPE project is a research project, at the University of Wisconsin-Madison, investigating
high performance computer architectures appropriate for implementation with VLSI technology. The
performance of the PIPE architecture has been evaluated previously using a detailed simulator writ-
ten in Pascal. In this paper, we report the results of a simpler and more flexible approach. We have
used a hardware description language, or more specifically a system modeling language known as the
Graph Model of Behavior (GMB), to represent the PIPE architecture. A GMB simulator is used to
derive performance estimates from the model. including queue length distributions, memory utiliza-
tions, and instruction issue rates. We have also represented "important” characteristics of program
behavior probabilistically, rather than running actual benchmarks on our system model. Part of our
study involved determining which program characteristics have a significant impact on performance
and must be captured in the model. The probabilistic description necessarily omits specific program
behavior which can affect system performance. However, our results show that the model is surpris-
ingly accurate over a wide variety of program characteristics and system parameters. The probabilis-
-tic program representation also allows us to vary key program characteristics independently, provid-
ing performance new results that can be used to guide efforts to develop efficient compilers for PIPE.
Based on the results of our experimental study, we conjecture that this simpler and more comprehen-
sive approach is generally viable for initial studies of the performance characteristics of system archi-

tectures.

1. Introduction

The PIPE project is a research project, at the University of Wisconsin-Madison, investigating
high performance computer architectures appropriate for implementation with VLSI technology.
Principal features of the PIPE architecture include: (1) it is pipelined and supports programming
constructs for efficient use of the pipeline. (2) it makes extensive use of architectural queues, (3) it is
capable of a decoupled mode of data access/instruction execution, and (4) it has an instruction cache.
The features of this architecture have been evaluated previously using a detailed simulator written in
Pascal. The detailed simulator gathers performance statistics as it executes the assembly-language

instructions of a benchmark program. Compiled and hand-coded versions of the first 12 Lawrence

* This research was supported by the National Science Foundation Grants, DCR-8202952 and DCR-8402680.

Livermore Loops [McMa72], as well as two programs that perform repeated procedure calls, were
run on the detailed simulator to evaluate system performance. System parameters were varied exten-
sively to study the effects of cache size, memory speed, queue sizes, and other parameters on the

instruction issue rate. Results of those studies are reported in [HsPG84, SPKG83, YoGo84].

In this paper, we present a different approach to evaluating the PIPE architecture. First, we
have used a hardware description language, or more specifically a system modeling language known
as the Graph Model of Behavior (GMB), to represent the PIPE architecture. A GMB simulator is
used to derive performance estimates from the model. including queue length distributions, memory
utilizations, and instruction issue rates. Second. we have represented "important” characteristics of
the benchmark programs probabilistically, rather than running the actual code on our model. Part of
our study involved determining which program characteristics have a significant impact on perfor-
mance and must be captured in the model. The model is validated by determining the program
characteristics of the Loop benchmarks, and comparing mode] estimates with the detailed simulator

results.

The graph model is simpler to develop and easier to comprehend than the detailed simulator.
One measure of the reduced complexity is the nsize” of the representations. The GMB model con-
tains roughly 200 lines in its textual form, as compared with approximately 2000 lines of Pascal code
for the detailed simulator. The probabilistic description necessarily omits specific program behavior
which can affect system performance. However, our results show that the model is surprisingly
accurate over a wide variety of program characteristics and system parameters. Furthermore, the
probabilistic program representation allows us to vary key program characteristics independently,
providing performance results that are not easily obtained using the detailed simulator. The results
of these new experiments can be used to guide efforts to develop efficient compilers for PIPE. Based
on the results of our experimental study, we conjecture that this simpler and more comprehensive
approach is generally viable for initial studies of the performance characteristics of system architec-

tures.

Section 2 of this paper describes the PIPE architecture in more detail, with an emphasis on the
high-performance features which are evaluated in our study. The GMB models of the PIPE proces-
sor and memory subsystems. including the probabilistic representation of program characteristics.
are described in Section 3. Section 4 reports the results of validating the GMB model, comparing
model estimates with results from the detailed simulator for the benchmark programs. Characteristic
probability distributions of the Loop benchmarks are summarized in that section. Section 5 then
presents the results of our experiments on the effects of various program characteristics on PIPE per-

formance, and Section 6 contains the conclusions of our study.

2. The PIPE Architecture

The PIPE architecture takes advantage of the concepts of decoupled access/execute architec-
tures [CoSt81, Ples82. Smit82] to achieve its performance. In its original design, a PIPE system
uses two processors to operate on a single task. This is the so-called decoupled mode of operation.
One processor performs computations that calculate the addresses of data references and make the
memory requests for the data items. The other processor uses the data operands requested by the
first processor to perform the algorithmic computations of a program. For example, in a program
that multiplies two matrices, the first processor will generate the addresses and requests for the ele-
ments of the matrix, while the second processor actually performs the multiplication. As specified in
the PIPE architecture, the two processors in such a system were designed as be identical. Further-
more, each processor, by itself, can operate as a complete computer. Although the performance of a
single processor will not be as great as that of a pair of processors, the single processor has features
that make it a processor of significant power. 1t is the single-processor mode of operation that is stu-
died in this paper.

The instruction issue and execution phases are pipelined in the PIPE processor. There have
been other proposed single chip pipelined processors (MIPS for one [HIBG82]). However, the
PIPE processor is unique in that interlocks are handled in hardware. The instruction set has been

designed to permit the resolution of pipeline interlocks at the instruction issue stage. This follows the

-3-

philosophy of the CRAY-1 [Russ78] architectures. Such an approach permits the use of relatively

simple hardware that can be implemented with VLSI technology.

Another feature of the PIPE architecture is the use of three architectural queues: a load data
gueue (LDQ). a store data queue (SDQ), and a store address queue (SAQ). All communication with
the memory is performed via these queues and load and store instructions. A load instruction
retrieves an item from memory and places it at the tail of the LDQ. One of the general purpose
registers is designated as the head of the LDQ. When that register is read. the top item is popped off
the queue. A write to that register does not affect the LDQ but instead places a data item at the tail of
the SDQ. A store instruction places a memory address at the tail of the SAQ. The address is paired
with data in the SDQ, in FCFS order, and the data value is then stored in the specified memory loca-

tion.

Architectural queues aré necessary for proper decoupled operation when two processors are
operating together. These queues also turn out to be useful in the context of a single chip computer.
Data is efficiently referenced through the use of the architectural queues. A similar effect could be
achieved by a large number of registers, however this can have a profound effect on the efficiency of
instruction set coding and on the ease of generating code. Using the SDQ. a finite number of store
instructions can be issued at a faster rate than data can be written in memory. Using the LDQ, load
instructions can be issued several instructions before the data operands are used, such that the over-
head of going to memory can be hidden by other operations. The number of instructions between a

load instruction and the instruction which uses the data is called the "load distance”.

The use of queues to buffer data items can be appreciated by considering programs that mani-
pulate vectors or arrays. Such programs are typically composed of loops that access each element of
an array during each pass through the loop. By using techniques such as software pipelining,
requests for data items can be scheduled in such a way that the LDQ is always kept filled. In this
case, the processor never has to wait on a memory request. The importance of the architectural

queues can be appreciated if one considers the delays involved in sending a data item off-chip, the

limited processor memory bandwidth in a VLSI environment, and the urgency of a memory request

in a conventional architecture.

It is well known that due to the relatively heavy load of an output pin, sending a data item off-
chip requires a relatively long period of time. In conventional machines, caches are included to
minimize the latency associated with a memory request. For a single chip processor, a general pur-
pose cache is not a particularly attractive alternative due to bandwidth limitations and the difficulty of
placing a sufficiently large cache on the same chip with the processor. In the PIPE processor, we
have placed an instruction cache on the chip. The architectural queues provide buffer space for data.

In contrast to a general purpose cache, a relatively small instruction cache offers a high hit rate.

A final feature of the PIPE architecture, related to efficient operation of the cache and the pipe-
line, is the prepare-to-branch instruction. This instruction could also be called a delayed branch.
Branches have a major impact on a pipelined machine. Typically. a branch instruction must pass
through the entire pipeline before the branch target can be determined and start executing. Without
a delayed branch instruction, the target of the branch experiences the complete pipeline latency, plus
a higher probability of delay due to instruction cache miss. A delayed branch has been proposed
several times recently [HIBGS2. Radi82]. In these versions, the delayed branch instruction executes
one instruction following the branch before the change in control flow occurs. In the PIPE architec-
ture, we have generalized this. After a prepare-to-branch instruction, between zero and seven
instructions may be placed. The number, or count, of such instructions is specified by a field in the
prepare-to-branch instruction. These instructions are executed regardless of the branch outcome.
The increase in the number of instructions after the prepare-to-branch was motivated by a desire to

always have an instruction available at the issue stage.

In summary, the high-performance features of the PIPE architecture include the capability to
operate in a decoupled mode, pipelined instruction issue and execution phases, architectural queues
for off-chip communications with memory, an instruction cache, and a generalized prepare-to-branch

instruction. In addition to the instructions which use the special features described above, the PIPE

architecture has a fairly standard instruction set composed of arithmetic, logical, shift, and move

instructions.

3. The Model

The GMB performance models which represent the behavior of the PIPE processor and
memory subsystems, are shown in Figures 3.1 and 3.2. The two models connect via control and
data arcs at their boundaries. Only the "control graph” and related "data graph” portions of the
models are shown. A third part of the models. the "interpretation”, defines the functional behavior
of nodes in the graphs. Since most of the detailed functionality of the PIPE system is omitted in the
GMB model. the interpretation for the model is very simple. and will be summarized briefly as we

describe the models below. (The complete text of the GMB model appears in Appendix A.)

In Section 3.1 we discuss the dynamic behavior of the models. focussing primarily on the flow
of control in the control graphs. These graphs contain "nodes” which represent processing activity,
and "control arcs” which define the sequencing of node execution events. The control logic at the
inputs and outputs of each node further characterizes the sequencing behavior by defining conditions
before initiating and after terminating the execution of the node (* = "AND", + = "OR", and +,
= "inclusive OR"). A control node is initiated when there are sufficient "tokens” on its input arc to
satisfy its input logic. The control graph model for the PIPE processor (Figure 3.1a), contains ini-
tial tokens on IGenReady(1), Latch]Ready(1). Latch2Ready(1), OutQspace(k), and LDQspace(n). The
dynamic behavior of the control graphs is then characterized by the flow of tokens among the nodes.
One unit of time in the model represents oneé clock lcycle in the PIPE processor. The nodes with a

delay of one time unit have a "1" in the control graph in Figures 3.1a and 3.2a. All other nodes

serve only to synchronize tokens. and thus have a delay of zero.

In Section 3.2 we discuss the parameters which characterize program behavior probabilistically
in the model, and how these parameters are represented in the data graphs. The data graphs consist
of "processors” (i.e. hexagons) which correspond one-to-one with the nodes in the control graph,

"dJatasets” which represent data values, and "data arcs” which define the read/write dataset access

-6-

A40S59904d 3dId 9Y3 40 [9pO 9OUBWAOIASd gWD

ydeay ezeq (q)

tL°g aunbrg

ydeuan ouazuoy (e)

v 8ny,
o

5

T <
<
bingpusg

p(1ese3Iy QMA
o ©
N

forag

uonIpueDg

asocedshq]

SSigeqoe)

ujplog

| Apesy
guae]

| Apesy
1yote]

wa1sAsqng A4owsly ay3 40 |3pOl dduewWMOILdd GWI :¢2°€ a4nb 4

ydeuay e3eq (q)

ydeuay (oaquo) (e)

)
y A
ad4y, upbay > mpeeq
! @
soudshbay pordsby 7
\M:u)u; y1us apuieg DAL - .G_SW
K
- NG
\Aw
bpg N
019K
21015
&
Apesy
I9AT08 . bbay
4
24195
s o
SNOMASL] gujyse] « TNOUIYE]
. ba1 - N— 1 U1
@ ZuyoIe]
201V
JFuo)d
AiowsRg Akl r\
.,
Rt | tépeey
, 3 s[npoR
k
ofpuay
EITR TN F
it = 4 + ampoy
edpead
sInpoyn
su, £ [NPOR
_mmmomw< g mwnwm - it Y
£IowsK bay ampoR 3

capabilities for each node/processor pair. The read-only datasets which are highlighted in the PIPE
model (e.g. CMissP in Figure 3.1b) contain input parameters for a simulation experiment. All other
datasets are used to maintain state information necessary to model particular system behavior, or to
pass such state information between two nodes. For example, BrHist in Figure 3.1a is read and writ-
ten by Latchl. and is used to record information about the branch count for prepare-to-branch
instructions. On the other hand. BrTag is written by Latch1 and read by ALUI, whereby ALU! can
determine if the expression it is currently evaluating is the conditional of a prepare-to-branch instruc-

tion.

The GMB is defined and described more completely in [Estr78, RaVE79, Vern82, and
VAdSES83]. A reader who is not familiar with the GMB notation can follow the discussion below to
gain further understanding of the PIPE architecture and the amount of detail represented in the

model.

3.1. Processor and Memory Subsystems

The control graph model of the PIPE processor (Figure 3.1a) contains a node which sends
requests to the memory subsystem (Sender), and a node which receives data from the memory sub-
system (Receiver). All other nodes represent stages in the instruction fetch (InsirGen, Latchl, Ig),
decode (Laich2, Decode), issue (WaitLDQ, AllocateOulq. Issue). and execute (ALUI, ALU2) pipeline.
As long as there are no cache misses. no branch instructions, and no need for data from memory.
tokens flow along this pipeline, (from InsirGen to CacheReady, Laich] to 1GenReady*lgin, Decoder to
NeedOuig+Issueln), one at each stage in the pipe per clock cycle. The Issue node will be active dur-
ing every time unit under these circumstances, and the measured fraction of time that Issue is busy,
which corresponds to the "instruction issue rate”, will be 1.0.

InstrGen represents a test for whether the next instruction to be issued is in the cache. The unit
delay for this node models the time to copy the instruction from the cache into the instruction queue.
The occurrence of a cache miss is determined probabilistically from specified input parameters, as

described in Section 3.2. In the case of a cache miss, InsirGen will output a token on CacheMiss,

-9.

which will cause Sender to send a “request” token to the memory subsystem. The flow of tokens in

the execution pipeline is temporarily interrupted’ until a token representing the transferred instruc-
tion word from memory arrives on Wordin. 1f the incoming data is a response to a request for the

instruction cache. Receiver places a token on CacheReady. and the execution pipeline resumes opera-
tion.

Laich] models the effects of branch instructions on the execution pipeline. If the current
instruction is a "prepare-to-branch” instruction, then Laich] sets the branch count (dataset BrHist in
Figure 3.1b), and decrements this count during subsequent activations. The prepare-to-branch event
and branch count are again determined probabilistically (see Section 3.2). A prepare-to-branch
instruction continues through the pipeline. When it completes the ALU] stage, a token is output on
BrCondition. indicating that the conditional expression which determines whether the branch will be
taken. has been evaluated. When the branch count is exhausted, Laichl places a token on BrCniEnd
instead of on IGenReady. 1f the branch count is exhausted before the prepare-to-branch completes
the ALU! stage. then the token on BrCniEnd will wait for the token to appear on BrCondition, tem-
porarily interrupting the flow in the execution pipeline. and reducing the instruction issue rate. The

waiting time distribution for tokens on BrCniEnd is a performance measure of interest in the model.

The remaining behavior to be described for the execution pipeline, is the effect of "Load " and
"Store” instructions, and the use of data from memory. The load and store instructions are "recog-
nized” (i.e. determined probabilistically) by Decode. and routed to AllocateOutg. These instructions
will not be issued (i.e. AllocateOuig will not be initiated) until there is space in the "output queue”
for the memory request. The output queuc is not visible to the programmer, but is necessarily lim-
ited in size and can be full if memory accesses are backlogged. ALU2 outputs a token on OourQ for
load or store instructions, and otherwise outputs a token to SINK. Requests generated by load

instructions will cause the memory subsystem model to return a token to LDQ.

IWhen the pipeline is interrupted, Issue will be idle, and its measured utilization will be less than 1.

-10 -

A token which represents an instruction that requires operands from the LDQ is routed by
Decode 1o NeedLDQ. 1If the data (requested by a previous load instruction) has not yet been retrieved

from memory. the token will wait on NeedLDQ. thus reducing the instruction issue rate.

To summarize the processor system model, there are three significant events which can inter-
rupt the steady flow of tokens ("instructions”) through the execution pipeline: (1) instruction cache
misses (CacheMiss), (2) branch count completion (BrCniEnd), and (3) the need for data operands
from memory (NeedLDQ). The control points (i.e. the "+" output logic expressions) for these
events are highlighted in Figure 3.1a. Interruption of the pipeline causes the instruction issue rate to
be less than 1. The Issue node is highlighted in the model because estimation of the fraction of time
it is busy. which can be requested in the GMB Simulator, corresponds to the "instruction issue rate”
system performance measure. Similarly, the waiting time distribution for tokens on highlighted arcs
BrCniEnd and NeedLDQ, and the queue length distribution on the highlighted arc LDQ, are interest-

ing performance measures that the Simulator can provide.

In the memory subsystem model (Figure 3.2), "store data” requests (i.e. tokens) are paired
with "store address” requests (StoreMaich), and these paired requests, as well as all load requests,
are routed to one of four memory modules (probabilistically) by RequestServer. A request token
routed to memory module / will wait on arc Latchin[i} if the requested module is busy, thus blocking
other memory requests which may be pending. MemModules represents all (four) modules in the
memory subsystem. and can be active a total of four times simultaneously. The MemoryAccessTime
(i.e. the delay for the MemModules node), measured in CPU clock cycles, is a parameter of the
model, and is thus represented as a dataset in Figure 3.2b. Upon completion of a memory access
which is a response to an instruction cache request or a load data request, RegResult will output a
token on Returninsir or ReturnData, respectively. Otherwise (store requests), RegResult outputs a

token to SINK.

The utilization of node MemModules, and the queue length and waiting time distributions on

arcs Latchinfij, highlighted in the memory subsystem control graphs, are again interesting perfor-

-11 -

mance estimates that can be requested at the start of a model simulation run. This completes a brief

summary of the PIPE system operation as represented in the GMB models.

3.2. Program Characteristics

There are a large number of program characteristics, and a variety of ways in which these pro-
perties might be represented in the model. For example, we might store a benchmark assembly
language program in a dataset, and process each statement at each node in the pipeline in turn, as is
done in the detailed simulator. The reader should note that in this case we would need to add
datasets for program variables and to pass specific instructions between each processor in the pipe-
line. On the other hand, we are only interested in the characteristics which have a primary effect on
system performance (e.g. instruction issue rate). Given such a set of characteristics, we might again
take a specific assembly language program, convert all instructions which do not have these "impor-
tant” properties to "no-op” instructions, and then run the program on the model. This would reduce
the complexity of the Decode and ALU pipeline stages. but would still leave a considerable amount of

detail in the model.

In the interest of creating a significantly simpler and more flexible model, we have pursued a
different approach [Vern82]. Instruction characteristics are determined by specified probability dis-
tributions in our model. Furthermore, the characteristics are determined at the pipeline stages where
the information is pertinent, as explained later in this section. The probability distributions may be
determined by a statistical analysis of program behavior and/or by the desire to see how the system
will perform for particular parameter values. In Section 4 we discuss the results of experiments in
which the probabilities are set according to values determined from statistical analysis of the Loop
benchmarks. Based on our initial validation experiments, the following program characteristics have

an important effect on performance:
(1) The probability that an instruction is in the cache ("cache miss rate”).

(2) The probability that an instruction is a "prepare-to-branch” instruction.

-12-

(3) The branch count distribution (i.e. the distribution of the number of instructions between a
prepare-to-branch instruction and the branch decision point).

(4) The probability that a branch condition evaluates to "true”. (Note: the probability of finding
the branch target in the cache may be different than the probability of finding other instruc-

tions.)

(5) The probability that an instruction is a "load” instruction. Furthermore, this probability is
broken down into two cases, based on whether the immediately preceding instruction is a load
instruction or not.

(6) The probability that an instruction is a "store” instruction.

(7) The load distance distribution (i.e. the number of instructions between a load instruction and
the instruction which uses the data as an operand).

(8) For both load and store instructions. the first-order memory conflict probability (i.e. the proba-
bility that a memory request accesses the same memory module as the previous load or store
instruction).

Initially, branch count distributions and load distance distributions were assumed to be uni-
form, and only the endpoints were specified in the model. Memory module accesses were also
assumed to be uniform. However, comparison of initial GMB performance estimates with detailed
simulator results indicated that distributions that more accurately reflected program behavior were
needed. Similarly, the conditional probabilities of load instructions, which model sequences of load
instructions more accurately, were found to be important during initial validation studies. Con-
versely, the branch outcome probability was not used in our GMB model to determine the probability

of cache miss, since results agree well with the detailed simulator without this factor.

The datasets which store the probability distributions are highlighted in the data graph models
(Figures 3.1(b) and 3.2(b)). For example. the probability that an instruction is a conditional
"prepare-to-branch” instruction, and the branch count probability distribution, are stored in the
dataset BrP. Laich] reads this dataset and uses the values to determine whether the current instruc-
tion is a conditional prepare-to-branch, and to select a branch count. The cache miss probability
(CMissP) is similarly represented and used, as are the load and store instruction probabilities
(MemAccP), load distance distribution (LdDis). branch conditional result probability (BrTakenP), and

first-order memory conflict probability (MemConjF).

-13-

The values of the datasets are set at the start of a simulation run. Upon request, the GMB
Simulator will calculate 1) utilization estimates for any control node, and 2) queue length and waiting
time distributions for any control arc in the model. In the next section we discuss validation of the
GMB model, in which the Livermore Loops were statistically analyzed and used to parameterize the
model. Performance estimates are compared with the measures reported by the detailed simulator.
In section 5. some of the probabilistic program parameters are varied independently, to explore their

impact on performance.

4. Model Validation Experiments

The first 12 Lawrence Livermore Loops, and two additional programs ("Ackerman” and
"sieve"), have been written in Pascal and compiled for the PIPE machine. The Loop benchmarks
have also been hand-coded in PIPE assembly language to optimize for larger branch counts, longer
load distances, and smaller program size. We used the detailed simulator to analyze the dynamic

behavior of these benchmarks, to determine the characteristic parameters needed in the GMB model.

The parameters for the compiled and hand-coded benchmark characteristics are summarized in

Tables 4.1 and 4.2. respectively.2 The details of the branch count and load distance distributions are
not given in the tables due to space constraints. (The detailed distributions are given in Appendix 2.)
The tables show the range of program characteristics which are captured by the benchmarks. For
example, the compiled benchmarks contain between 10% and 33% load instructions, and the mean
Joad distances in the hand-coded benchmarks range from 2.0 to 16.2. The tables also show that
branch counts and load distances ar¢ generally longer in the hand-coded benchmarks. The smaller
program sizes for the hand-coded programs are reflected in the higher probability of conditional
prepare-to-branch instructions (i.e "% branch”). More precisely, the hand-coded programs have

fewer instructions in the loop(s), resulting in a higher ratio of branch to non-branch instructions.

2gecond order memory conflict probabilities are shown in the tables, but were not used in our model. Conditional pro-
babilities for the load instruction are derived from the mean load sequence lengths and the total percentage of Joad instructions.

-14 -

Table 4.1: Characteristics of the Compiled Benchmarks

memory branch load load
program ||% load|% store|% cache % branch conflict count distance || sequence
misses instr 1 2 |range|mean|range|meanjirangemean
LLL1 [22.72|13.64 | 0.12 2.28 [0.3084|0.2321}| 2-3 | 2.0 || 0-2| 1.5} 1-3 | 1.7
LLL2 |28.43| 9.18| 0.21 1.84 l0.5017/0.1318] 0-2 | 1.0} 0-5[1.9 1-3 | 1.5
LLL3 |[16.66] 11.11 | 0.06 5.56 [10.4959/0.0498| 2-3 | 2.0 1-2| 1.3} 1-2 1.5
LLIL4 [27.46|10.00| 0.16 5.02 [0.3401/0.1857|| 0-2 { 1.0} 0-5] 2.5| 1-2 | 1.2
LLL5 ||27.36| 7.37| 0.13 2.11 0.5527(0.1574|| 0-2 | 1.0|| 0-5[3.0} 1-3 | 1.4
LLL6 [|26.73| 7.92 | 0.13 1.98]l0.5761/0.1212]l 02 | 1.0} 0-5]/ 2.8} 1-3 | 1.3
LLL7 {26.88] 14.28 } 0.35 0.85 {l0.1104/0.3564]| 1-2 | 2.0} 0-3| 1.7 | 1-3 | 1.9
LLL8 | 33.16| 2.86 | 1.08 0.32 |l0.1573|0.1668|| 0-3 | 2.8 ||0-11| 6.6 || 1-7 | 2.4
LLL9 |30.76|20.50 | 0.44 0.65 [10.3392/0.1209} 1-2 | 2.0 0-6] 1.9} 1-4]1.5
LLL10 |[17.28 | 12.34 | 0.4] 0.62 [0.229710.2137|| 1-2 [2.0} 29| 3.1} 1-2 | 1.5
LLL11 | 10.00}| 10.00 | 0.06 5.00 [10.3708{0.2475]| 1-1 | 1.0} 1-1| 1.0 {1 2-2 | 2.0
LLL12 {[10.00] 10.00 | 0.06 5.00 [l0.3713/0.0619}| 1-1 | 1.0} 1-1]11.012-2)20
Ackerman|l 18.87 | 18.34 | 2.69 0.0496 10.0767/0.1985}| 0-5 | 1.0 || 0-5| 2.8 || 1-6 | 1.7
sieve [20.86113.44| 0.63 |11.53 [}0.2238[0.2711}| 0-3 1 0.6 j| 0-3| 1.1 1 1-2 1.3
Table 4.2: Characteristics of the Hand-Coded Benchmarks
memory branch load load
program| % load|% store| % cache|% branch conflict count distance sequence

misses instr 1 2 |frange|meanjjrange|mean||range mean

LLL1 [|29.98] 10.00 | 0.20 9.98 [l0.2446|0.0031|| 5-5 | 5.0 5-6| 5.3|| 2-3| 3.0

LLL2 ||24.98| 2.50 | 0.09 14.99 1|0.4502/0.00 || 4-4 | 4.0} 3-4| 3.5|| 2-2| 2.0

LLL3 ||33.30] 0.02] 0.08 16.65 1(0.495310.0005 4-4 | 4.0 || 1-3| 2.0 1-1} 1.0

LLL4 |/27.18| 9.09 | 0.20 9.09 10.4497(0.0818| 4-4 | 4.0 | 2-8| 7.3} 1-3] 3.0

LLL5 {/33.32] 14.28 | 0.14 4.76 10.1979(0.1988| 3-3 | 3.0 || 5-7| 6.0} 7-7| 7.0

LLL6 ([30.42]13.04 | 0.13 4.35 10.3958/0.0009 3-3 | 3.0 || 5-7| 6.0} 7-7 7.0

LLL7 [|29.99| 3.33| 0.33 3.33 1{0.1936(0.0984|| 7-7 | 7.0 ||4-16 [11.7}| 2-9| 8.9

LLLS ||36.04| 7.21 | 1.02 1.26 1|0.3718/0.0945 1-4 | 3.9 ||7-12} 9.1| 6-8 7.5

LLL9 ||38.45| 2.56 | 0.49 2.56 10.444310.2293|| 6-6 | 6.0 |4-11| 8.5] 1-7| 5.0

LLL10{24.37 | 24.37 | 0.41 2.44 10.5401[0.3791| 4-4 | 4.0 [|9-25|16.2}10-10}10.0

LLL11|33.32| 16.66 | 0.07 16.66 [0.00 10.6631| 3-3 | 3.0 || 3-4| 3.5)| 2-2| 2.0

LLL121133.32] 16.66 | 0.07 16.66 10.33160.00071 3-3 | 3.0 3-4| 3.51 2-2| 2.0

4.1. Benchmark Validations

One measure of PIPE system performance is the instruction issue rate. The issue rate indi-

cates how close we have come to our goal of issuing once instruction per clock. An issue rate of less

than one occurs due to memory delays, inter-instruction dependencies, and branches. The issue rate

-15-

can be misleading because it can vary inversely with the efficiency of the code that is executing. For
example, in the extreme case, we can insert "no-op” instructions to fill in for issue delays and bring
the issue rate up to one. However, given a particular benchmark or set of program characteristics,
the issue rate corresponds directly to program execution time. We use the issue rate as our primary

performance measure, but consider the effects of code efficiency when interpreting the results.

Each set of benchmark characteristics (26 in all), were used to parameterize the GMB model
described in section 3. Estimates of instruction issue rate of PIPE produced by the GMB Simulator
for each set of model parameters. are compared with the measured issue rate in the detailed simulator
to determine the accuracy of the probabilistic GMB model. The GMB simulations were run for
3000 clock cycles. Due to the exploratory nature of these experiments. confidence intervals were not
calculated for the performance estimates. It was observed, however, that the estimates were con-
sistent at 1000, 2000, and 3000 clock cycles in each of the runs. The models were run with a
memory access time of 4 clock cycles. and a (very fast) memory access time of 1 clock cycle. The

results of the 52 model validation runs are shown in Figures 4.1 and 4.2.

Although the GMB model omits a considerable amount of detail, we find that the model esti-
mates are in good agreement with the detailed simulations for the majority of the experiments. For
the compiled benchmark characteristics, 75% of the model estimates have relative errors less than
5%. Except for LL9, which has a relative error of 16.2% when the memory access time is 4. the
remaining estimates for the compiled benchmarks have relative errors of less than 10%. The results
are similar for the hand-coded benchmarks. although discrepancies are somewhat larger for the
slower memory speed. Five of these estimates are above 10% relative error. Of these estimates,
three are within 20% relative to the detailed values, and the largest relative error is 27.7% (or abso-
lute error of 12.7%). We conclude that there are specific program dependencies, such as complex
relationships between branch count delays and memory access delays, which occur in some pro-
grams but cannot be represented easily in the probabilistic GMB model. On the other hand, the

GMB is qualitatively correct in all of the benchmarks estimates, and yields good initial quantitative

- 16 -

0 S w o e

o -~ o

[TR == 7 T T

o o~ m %

100 o
90 4
80
70
60
50
40 -
30 4
20 -
10 -

Memory Access Time =]
4

il

100 -
90 -
80
70 4
60
50 4
40 A
30 4
20 4
10

LLL] LLL2 LLL3 LLL4 LLLS LLL6 LLL7

T

LLL8 LLL9 LLL10 LLL11 LLLI12 Ack sieve

Figure 4.1: Validation Results for Compiled Benchmarks

-17-

Memory Access Time = 1

4

100 T
90 detailed GMB

80 - _—

70 J — |

60 - 1 1 mm Jl T—— I
50 ” i |
40 - (
30 4 ‘

£ v v -

o -~ o %

20 4
% 10 - H

[iLi Lil2 LLL3 LLL4 LLL5 LLL6
100 -
90 J —
ol | _
70 4 — 11

0 = v v

60 i I -
0. |

m '“

30 -+ |

o ~ W %

20 Jf

n n

L1LL7 LLL38 LLLYS LLL1O LLL11 1LLL12

Figure 4.2: Validation Results for Hand-Coded Benchmarks

estimates in the vast majority of the cases we examined.

-18 -

4.2. Memory Access Time Experiment

Both the GMB model and the detailed simulator can be used to study the effects of PIPE system
parameters on performance. For example, the effect of memory access time on the issue rate of a
benchmark can be studied. Although the architectural queues in PIPE support code scheduling of
memory requests, memory latency will not be completely eliminated. As the memory access time
becomes large, code scheduling will be less effective. In addition, data accesses compete with
instruction accesses on a cache miss. A longer memory access time will magnify the effects of cache
misses. We ran a second set of validation experiments to compare the performance estimates of the

model and the detailed simulator for various memory access times.

The experiments were run using the compiled version of Lawrence Livermore Loop 1, and the
hand-coded version of Loop 6. These loops were selected because they are somewhat representative
of the the two classes of programs that were used in the model validation experiments. Memory
access times were varied from 1 clock period to 16 clock periods. The numerical results of these
simulations are given in Table 4.3, whereas the results are plotted in Figures 4.3a and b. Again, the
results of the GMB model are in close agreement with the detailed simulator. In Figure 4.3(a) a log
scale is used for the memory access times. The results indicate that the issue rate of the compiled
benchmark is less sensitive to the memory access time than the issue rate of the hand-coded bench-

Table 4.3: Issue Rate vs. Memory Access Time
for Selected Lawrence Livermore Loop Benchmarks

Memory Access Time Loop 1 Loop 6
) (Pascal Compiler) (Hand-Compiled)
(Clock Periods) Detailed | GMB__| Detailed | GMB
1 66.37% | 65.70% | 95.00% | 94.97%
2 58.81% | 58.43% | 87.69% | 89.17%
3 52.32% | 54.30% | 76.04% | 78.67%
4 47.12% | 48.83% | 67.12% | 70.13%
6 39.31% | 40.37% | 53.11% | 58.20%
8 33.21% | 35.46% | 43.12% | 46.55%
12 25.22% | 27.24% | 31.32% | 35.23%
16 20.22% | 21.33% | 24.58% | 25.45%

-19-

1007

107

i
i
]
'
1
+

4
Memory Access Time (clock

OO feonmn-n

. 16
periods)

L0 e e e S A R
S TR S S R R R

1= Dewiled laop 1 f o foo]
4.5 A : : : N S
: :GMB Loopi1 1 7
401 Lo Deailed Lopp 6.4 Lo
: {*—®iGMBLoopi6 | i/ 1./
N A N V. . O A

) SO U R SR S VAN A
BST YT AL vy
' + ' Vs v s

S, A4 decaen N O VA R Y R oo 3
8.0 R % L b
€ R A I O
Ds| AT e
?7-.0' '''' Y Ay v [A B S
T3 i~ ol R s s I
T B e o S et S et S
0.5 T T
OO t t t ¥ + + 4 =
4 g8 10 12 14, 16

Memory Access Time (clock periods)

Figure 4.3: (a) Issue Rate and (b) Issue Delay vs. Memory Access Time
for Selected Lawrence Livermore Loop Benchmarks

mark. When the memory access time has been increased by a factor of 16, the issue rate of the

compiled benchmark has decreased by a factor of 3, whereas the rate for the hand-compiled code

decreases roughly by a factor of 4. The greater sensitivity to memory access time for hand-coded

programs may be explained by the relatively large percentage of the load and store instructions.

Because the code is more efficient, there are fewer instructions that need to be executed for each load

or store. Thus there are fewer instructions to "hide” the effects of memory accesses. Figure 4.3(b)
y g

shows the issue delay, which is the inverse of the issue rate. as a function of the memory access

time, using a linear scale. It is interesting to note that the GMB curves of Figure 4.3(b) suggest that

the issue delay is approximately a linear function of memory access time for access times greater than

6.

-20 -

4.3. Summary

The agreement between GMB model estimates and detailed simulation results for experiments
described in this section is encouraging. We have some confidence that further use of the GMB
model will give an accurate indication of PIPE system performance under a wide variety of model
parameters. In the next section, we report the results of evaluations made by the GMB simulator

which are not easily obtained using the detailed simulator.

5. PIPE Performance Evaluation

The performance results in Figures 4.1 and 4.2 illustrate the increased instruction issue rates
for the hand-coded benchmarks as compared with the compiled benchmarks. An interesting question
is: which of the optimizations in the hand-coded programs have the most impact on instruction issue
rate? A related issue is where should major effort be placed in developing a compiler for the PIPE
architecture. It is difficult to study the effects of program characteristics using the trace-driven simu-
lator, since this would require that the programs driving the simulation have very specific charac-
teristics. The probabilistic nature of the GMB model has enabled us to modify these parameters very

easily. The results for some initial experiments are reported below.

5.1. Typical PIPE Programs

We have two options when studying the impact of a particular program characteristic on system
performance. We can set all other parameters to values which optimize performance (e.g. low
branch probabilities, long load distances), and thus obtain estimates of the impact of the characteris-
tic of interest in a controlled setting. Alternatively, we can set all other parameters according to
some "typical” values, to study the impact of the parameter of interest in a "realistic” environment.
The second environment includes complex interactions between various parameters which are not

well understood. Both types of experiments are equally easy to implement in the model.

For the experiments reported in this section, we used the a roach of defining "typical” pro-
Y P pp g p

gram characteristics. Two typical sets of program characteristics were developed: one for programs

-21-

compiled by the Pascal compiler and another for hand-coded programs. These characteristics were
constructed from an examination of the benchmark program characteristics (Tables 4.1 and 4.2, and

Appendix 2). The features of our typical programs are summarized in Table 5.1.

Table 5.1: "Typical” Program Parameters

memory| branch load load
program || % load | % store | % cache | % branch|| conflict count distance sequence
type misses instr] range | mean | range | mean || range | mean
Pascal
Compiled|| 20.0 | 10.0 1.0 5.0 035 032005211215
Hand-
Compiled|| 30.0 | 12.0 0.5 10.0 035 || 46 | 5.0 57 | 6.0 33|30

The GMB model was run using these parameters. The resulting issue rate for the Pascal compiled
parameters is 52.27%, while the issue rate for the hand-coded parameters is 68.57%. These results

can be used as benchmarks against which further simulations may be compared.

5.2. Cache Hit Rate

The first set of experiments that we performed involved an evaluation of the effectiveness of the
cache. One of the important features of the PIPE implementation is the inclusion of an on-chip
instruction cache. A large instruction cache can minimize one of the impacts of inefficient code gen-
eration by a compiler. The instruction cache must. however. share chip real estate with the proces-
sor. Increasing the cache miss rate parameter in the model. will give an indication of how important
it is to spend time designing a dense cache and/or building an opﬁmizing compiler to produce com-
pact code. If a higher miss rate does not result in a significant reduction in system performance,
then it is not necessary to expend a great amount of effort on these activities. Design time could

perhaps be more effectively spent on other parts of the implementation.

Using parameters for a typical hand-coded program. the cache miss rate was varied between
0% and 20%. The experiment was repeated for memory access times of 4 and 8 clock cycles, to

study the impact of cache miss rate for different memory speeds. The resulting PIPE performance

-22-

estimates are shown in Figure 5.1.

A 0% cache miss rate indicates that the entire program is initially loaded and fits in the instruc-

tion cache. The issue rate for this cache miss rate reflects the blocking that occurs due to memory

access for data items. Our first observation is that increasing cache miss rates to 2%,5%, and 10%,

substantially decreases system performance for both memory speeds. The relative effect of the cache

miss rate is approximately the same for the two memory access times for the parameters examined.

P Y

(3)
i H :
v h '
' ' ‘
+ ' ‘
' ' '
. s '
e drnmmmeaa 4--
‘ ‘ 3
+ s .
+ ' .
H ' i
o %o H
i + .
deedbee o dem
' P +
W ' ‘
e B ;
Boam o oy '
vofm b ’
1 H ‘
[F PTG < W PRI, don
T (7] s
il aQ ['
O (s3] v
2 20 H
'
€ < .
' i '
PR
.“uu.ﬂuf..sn.n.” ||||||||| 4--
] Q . ‘
e B !
' [5) @ il
' '
- i
e i 1
' 3 <
: Q. b
i ['
H ['
) o3 '
1 [
deckonne [S G
B IR
1 i t
. . H
' ' 1
' ' H
' H '
h B ¥
P P dmmn E.
0 i i
v '
. .
s
'
'
|||||||||||||||||| -

<
s
i
1
1
1
[l
1
1
'

Lowanmeakasmmm=

Lecvammabuna-cmubcvrmans

bommmummbarcwmmebovnnain

O

Meummmesbarmomeubmnacnad

B

[SR

100 —p----ee-

i (] d
' i i
' ‘ i
' ' '
‘ s '
. ' .
' 3 '
::::::: e
' ' i
' s '
. ' '
' ‘ '
' h '
H i s
' H 3
------- U e
‘ +
. v
s '
'
'
v
' h
||||||| dmmamamccedanenanan
s 3
' '
' .
B [
. s
' i
' '
....... dommrmmmandmaafaand
3 '
1 H
. '
' '
H .
' s
N |
||||||| O . S —
v '
' ('
. ' .
« p :
‘ ‘ P
' . [
' ' o
||||||| B O T e
3 4 3
4
i '
: . bt
s ¢ I
. s o
h P
' L]
|||||| A T Y A
' ' 7T
' : / '
' ' B .
i ' i
_ I
s ' .
h ['
ccccccc [R P R
B 1) s
H ¥ h
' B '
s P :
. A '
‘] ‘
s S
............ P S LEEEEEEEIR
s 4 s
s L7 ' '
e . '
' ' +
?\ ' .
' .
L ¢ '
el | 1 H
fed [<
=] vy <
- [

%

30 q---e-

20 oo

10 4-

12 14 16 18 20

10
Cache miss probability (%)

Issue Rate vs Cache Miss Rate

for "Typical” Hand-Coded Programs

Figure 5.1:

-23-

5.3. Branch Count

The prepare to branch instruction of the PIPE architecture permits the change of control flow
to be delayed for a variable number of instructions, as specified by the count field in the branch
instruction. As with the inclusion of an instruction cache, there is a trade-off between the perfor-
mance improvement and the amount of effort needed to support this generalized feature. Providing
such a feature makes the implementation somewhat more difficult than that of a conventional
machine. Also. to take advantage of this feature, the compiler must perform more work than it

would for a conventional instruction set.

The impact of varying the branch count is necessarily related to the frequency of branch
instructions in the program. Thus, in addition to the typical compiled and hand-coded sets of pro-
gram characteristics. we have varied the branch count for the typical hand-coded parameters with
branch instruction probability of 20% instead of 10%. A higher branch probability indicates that
there are relatively fewer instructions in the inner loops of programs. This is exactly what can be

achieved with hand-coded programs.

For each experiment. the branch count was fixed at the indicated value. For the typical hand-
coded program characteristics (10% and 20% branch probability), the branch count was varied from
0 to 4. For the compiled set of parameters (5% branch probability) experiments were run for branch
counts of O and 4. Notice that a branch count of 0 is comparable to a branch instruction in a con-
ventional machine. Increasing the branch count beyond four does not result in improved perfor-
mance, primarily because the modeled execution pipeline contains four stages between the time an

instruction is determined to e a branch and the time the branch condition is evaluated. The results of
this study are summarized in Figure 5.2.

There are several interesting conclusions which can be drawn from these results. First, a
longer branch distance does not have a significant impact on the performance of the Pascal compiled
code. This is due to the Jow probability of a branch occurring, and the larger impact of short load

distances. On the other hand, looking at the hand-coded programs, the performance improves with a

-24-

[PRSI pemenn e e R ,
73 R—— R S S - |
! | . - | |
s P : : :
§ 60 T ; I35 S R foimmmenmnaneas :
u Y : : ; 3
S At S S BR— X a
50 Bicemeaieinn bomiemninaee borosmmmmaaea Looiommmamnncees Lo nnee :
r ; ' \ H H
a : : : : ;
1 | 1 1 \ H
T oo oo oo e :
% 10 G—-3 | Hand- commleé 10% Branch lnstru(.nom ‘ :
©-----0 | Hand- compﬂeé 20% Branch)nwucuons : :
20 X— - K i Pascal Compllgr 5% Branch Inwucuons :
Y0 RS S SS— SR S— s
0 f i t t i
0 1 2 3 4 5

Branch count

Figure 5.2: Issue Rate vs. Branch Count
for "Typical” Programs

large branch count. Furthermore, very tight code that has a high frequency of branch instructions

can achieve issue rates equal to programs with lower branch frequencies, if the branch count is

large.

5.4. Load Distance

The final feature that was evaluated with the GMB model was the effect of load distance on per-
formance. The architectural queues found in the PIPE architecture make it easier to effectively per-
form code scheduling to minimize the effective latency of the memory. Code scheduling for load dis-
tance involves maximizing the number of instructions between the instruction that makes a memory

request (i.e. places a data item on the LDQ) and the instruction that uses the data item (removes the

-25-

data item from the LDQ). Code scheduling to maximize load distance demands extra work of the
compiler. How much effort should be expended in writing this portion of the compiler and how
much time the compiler should use to do this scheduling can be evaluated by the effect of load dis-

tance on system performance.

In evaluating the effects of load distance, we have used the typical compiled program parame-
ters. to determine the performance we could expect if this were the only optimization to be imple-
mented in our current compiler. Using the "typical” compiled program characteristics, the load dis-
tance was varied from O to 16. The load distance was assumed to be fixed in each experiment, and
the mean length of a load instruction sequence was assumed to be 1.5. The results of this study are
shown in Figure 5.3. These results indicate that under the given conditions, performance increases
significantly until memory contention becomes a limiting factor. The reader will note that memory
utilization can be calculated in a straightforward way from the percentage of loads, stores and cache
misses. the issue rate, and the memory access time. Thus, the memory utilization curves have the

same shape as the issue rate curves for this experiment.

5.5. Summary

Using "typical” compiled and hand-coded PIPE program characteristics. we have evaluated
system performance by varying program parameters one by one. In particular, we varied three sets
of program characteristics: (1) cache hit rate, (2) branch count, and (3) load distance. Each of these

parameters is an important aspect of the PIPE architecture.

The evaluation of varying cache miss rate indicates the sensitivity of the architecture to memory
access times for even a small miss rate. The branch count studies indicate that if the probability of
branch is low (5%), the prepare-to-branch feature does not significantly improve performance. If
the inner loops of a program can be efficiently compiled. to raise the probability of a branch occur-
ring to 10%. the prepare-to-branch with a branch count of 4 can improve performance. Increasing
the probability of a branch occurrence to 720% increases the advantage provided by a branch count of

4. These results indicate that this feature of the architecture is worthwhile if one is willing to support

-26 -

v v 3 v 1 1 s ' i
: i ‘ ' ' ' ' ' v
' ' B i ” 5 ¢ i s ‘
i H s) h s ' ' 1
s ' : I o i H + '
' ' ' ¢ t 1 H ' '
: i . 1 i ‘ . ' '
s ' 5 h ‘ s . h s
B Y ' ' « 1 i J ‘
ERORRRR S - « RGNS Y A AR it dememmcean I S . fomrmmmmnn =
' . . ' ' i . . \
f i i ' s ' ‘ . ‘
P H ' H i . . H 3
' | ' . I ' ' ' .
‘ J ' ' ' + . v '
4 ' ' 1 T h . ' '
‘ + l i ‘ ' 3 p ‘
B ! S 1 B ettt o T i»r uuuuuuuuu f O —t om Ccanmmae— bomenumnmmn =
1 3 t 3 Y i 4 v H
s f s H ' ' B ' i
' ' H ' ' ' ‘ .
H : ; H 1 : : ! :
s s ' h « .) '
. . i] ; . ' i
' i ‘ ' i . . s ‘
: . H 1 h ' | so<r w
3 . ' ; ...? 3 ' | 5
fmmmemmmamn (VRORPRPRPIPRE | | SO dmmemm———— [N, | IR, bemmmmm—nn [beoppm ommm———— -
; 1 1 1 I ') vTh ot
: ' ' s ' . ' . +
B ‘ ' H . , | v I [T
. ' ' ‘ ' s 5 = '
: : : ‘ Y H : VEOE
+ k3 v ¥ 3 1 [l T Hnl K}
. ' ' H i h ' ;= -
. ' : ' \ b ‘ v '
i o o s _ v : : e wo s
Jomememnem S ST X I decmmmm fee s | [SR Jeemmmmaa L Tt -
s : ' 1 + 4 = : P Q.
: ! : ' H HEAN : H P S
i h . » . ' i 5 R Qo
' v ' . ') H | ' '
: : : : AN : I
N 3 ' i . N ‘ h 1 i
v ‘ H v H Hi >
‘ v s ‘ / ' H v b =
[P SR bomcecusmndeNwnmenmdecmnn e [P W S, [TR o N
. v h h B v + - ¥
‘ . ' ' vt : ' '
s . . s / ' 3 O L
h ‘ . B s ‘ 5 i
: { : ; ; ; b= :
: _ : T : T
‘ ‘ ‘ ' ' ' '
: : : : \ . ‘R o+
\ ' B ‘ 3 ' i
SRR om e ——— UEVEPUURPIPR L UPUNT P SpE R Fomcemnmeafpan e demmmmm e e e g emmmm———- =
. + v ' H ' ' h
. s H ‘ | s ' o
. h ‘ ' i H v ‘
. ' . 5 s ' s '
' ' ‘ H ' ' ‘ :
........ I SUUIUIUITURUE SOIPIUIE SRR - FPIPRNNDIIS PININ RIPI SPMESPERE SRR S P TR
tem y 3 4 4 1 Ty -
' 3 N ' h ¥ b h v '
' ' H s ' ' . h '
+ + 1 B 3 4 " /"‘l t .
H ' . . ' . . . :
h ' 5 v . s NG H .
' s ' : ‘) : B v '
' . . i i . + . ~ ' s
s ' 3 i ' v
' ' ~, '
| T T T T T T L= ™ T
< < (= < (== < < < < =] <
o o)) [+22] r~ O wy <t (a2] o -
—
~— o 3D [+] e

16

14

10

o

Load Distance

Figure 5.3: Issue rate vs. Load Distance

"Typical” Compiled Program

for

the architecture with a compiler that produces efficient code. Load distance was the final parameter

varied. These results indicated that scheduling loads is a significant way to improve the performance

of the architecture.

6. Conclusions

A GMB performance model of the PIPE architecture, including a probabilistic characterization

of program behavior, has been validated by comparison of results with detailed trace-driven

-27 -

simulations. As part of this research, we determined the program characteristics that have a primary
impact on the performance of the PIPE architecture. and have measured these characteristics for
compiled and hand-coded versions of the first 12 Lawrence Livermore Loops. The model has proven
to be accurate in estimating system performance for a wide range of program and system parameters.
We were thus able to use the model to vary program characteristics, such as branch counts and load
distances. independently. to obtain some preliminary estimates of the impact of each of these factors

on system pcrformance.

The experiments to determine the impact of program characteristics are very preliminary and
serve to illustrate the potential utility of the model. In the future we plan to study the effects of pro-
gram characteristics more systematically, as well as in more detail. Additional performance meas-
ures. such as waiting time distributions for NeedLDQ and Latchinfi]. which can be obtained from the
GMB simulator, may be useful in interpreting performance results. We assumed very fast memory
access times in our experiments (1, 4, and 8 clock cycles). We are interested in performing addi-
tional experiments with slower memory access times. We also plan to use the model to study the
performance of PIPE with a longer execution pipeline, and of the decoupled mode of execution. We

expect that model estimates will be useful in guiding future design of PIPE hardware and software.

Acknowledgements

The GMB editor and simulator used in these experiments were designed and implemented by

Jeff Meyer and Jane Kasper-Bagley at the University of Wisconsin-Madison.

References

[CoSt81] E. U. Cohler and J. E. Storer, *‘Functionally Parallel Architecture for Array Processors,”
Computer. Vol. 14, No. 9. pp. 28-36. September 1981.

[Estr78] Estrin, G., “"A Methodology for Design of Digital Systems - Supported by SARA at the Age
of One,”” AFIPS Proceedings of the National Computer Conference, 1978.

[HJBG82] I. Hennesy, N. Jouppi, F. Baskett, T. Gross and J. Gill, ‘*Hardware/Software Tradeoffs
for Increased Performance,”” Symposium on Architectural Support for Programming Languages
and Operating Systems, pp. 2-11, March 1982.

[HsPG84] J. T. Hsieh, A. R. Pleszkun and J. R. Goodman, «performance Evaluation of the PIPE
Computer Architecture.” Technical Report #566, Computer Sciences Department, Univer-
sity of Wisconsin-Madison, November 1984.

.28 -

[McMa72] F. H. McMabon. ““FORTRAN CPU Performance Analysis,”" Lawrence Livermore
Laboratories, Livermore, CA, 1972,

[Ples82] A. R. Pleszkun, ‘‘A Structured Memory Access Architecture,”” Computer Systems Group
Report CSG-10, Coordinated Science Lab., Univ. of Illinois, Urbana, Illinois, October

1982.

[Radi82] G. Radin, ‘‘The 801 Minicomputer,” Symposium on Architectural Suppori for Programming
Languages and Operaling Sysiems, pp. 39-47, March 1982.

[RaVE79] Razouk, R.. M. Vernon. and G. Estrin, ‘“Evaluation Methods in SARA - The Graph
Model Simulator,” /979 Conference on Simulaton, Measuremeni, and Modeling of Computer
Systems, Boulder, Colorado, August 1979.

[Russ78] R. M. Russel. **The CRAY-] Computer System,”” Communications of the ACM, Vol. 21,
No. 1, pp. 63-72. January 1978.

[Smit82] J. E. Smith. ‘‘Decoupled Access/Execute Computer Architectures,’”” Proc. of the Ninth
Annual Symposium on Computer Architecture, pp. 112-1 19, May 1982.

[SPKG83] J. E. Smith. A. R. Pleszkun. R. H. Katz and J. R. Goodman, *‘PIPE: A High Perfor-
mance VLSI Architecture,”” [EEE Workshop on Computer Systems Organization, New Orle-
ans, LA, pp. 131-138. March 1983. Also available as Technical Report #512, Computer
Sciences Department, University of Wisconsin-Madison, September 1983.

[VdSE83] Vernon. M., E. de Sousa e Silva, and G. Estrin, *‘Performance Evaluation of Asynchro-
nous Concurrent Systems: The UCLA Graph Model of Behavior,”’ 9th International Sympo-
sium on Computer Performance Modeling, Measurement, and Evaluation, College Park, Mary-
land, May 25-27, 1983.

[Vern82] Vernon, M., *‘Performance-Oriented Design of Distributed Computer Systems,’’ Techni-
cal Report No. UCLA-CSD-821217, UCLA Computer Science Department, December 1982.

[YoGo84] H. C. Young and J. R. Goodman, ‘A Simulation Study of Architectural Data Queues and
Prepare-to-branch Instruction,” Proceedings, IEEE International Conference on Computer
Design, pp. 544-549, October 1984.

-29.

Appendix 1: GMB Models of the PIPE Processor and Memory Subsystem

(herald pipe (env t))

H PIPE Processor and Memory System.
H (Control, Data and Interpretation Domains)

; NODE DEFINITIONS .

(def-nodes InstrGen Latchl Ig Latch2 Decode Waitlb@ AllocOut@ Issue
ALULl ALU2 PSender PReceiver BranchDecide MReceiver
StoreMatch RegServer Latch RegResult AllocLDQ MSender)

(def-multiserver (MemModules "infinite) (SINK ‘infinite))

; NODE INPUT and OQUTPUT LOGIC for PIPE PROCESSOR MODEL

(node-io0 InstrGen + IGenReady) (+ (CacheReady) (CacheMiss)))
(node-io Latchil * CacheReady LatchlReady)

(IgIn BrCntEnd) (IqiIn IGenReady)))
BrCntEnd BrConditon) (IGenReady))

+
(node-10 BranchDecide *
* IgIn) (IqOut))
*

{node-io Iq
(node-1o0 Latch2
(node~1io0 Decode

IgOut Latch2Ready) (Decodeln LatchlReady))
Decodeln)

(NeedLDQ) (NeedOUTQ) (Latch2Ready Issueln)))
NeedLD@ IDQ) (+ (Latch2Ready Issueln) (NeedOUT@)))

+

(node-ito WaltlDQ *

* NeedQUTQ Out@space) (Issueln Latch2Ready))
£

z

(node-io AllocOut@
(node-io0 Issue
(node-io0o ALUl

IssuelIn) (IssueOut))
IssueOut)
+ (al2 LD@space BrConditon) (al2 extral BrConditon)
(al2 LD@Rspace extral) (al2 extral extraz)))
: a12) (+ (ToSINK) (0out@)))
(* RegQ@space CacheMiss) (* RegQ@space outQ))

(node-io ALU2 (

(>

(+ (ReqIn extral) (RegIn OutQspace)))
(x

(

(node~1i0 PSender

(node-1io PReceiver
(node-io SINK

WordIn) (+ (CacheReady) (ToSINK) (LDQY)))
+ (* TOSINK) (* extral) (* extra2)) ())

. NODE INPUT and OUTPUT LOGIC for MEMORY SYSTEM MODEL

(node-1i0 MReceiver (* RegqlIn) (+ (Saq) (Sdq) (ReqQ extral) ((Req@ 4))))
(node-io StoreMatch (* Saq Sdq) (Req®@ RegqQ@space))
(node-10 ReqServer (* ReqQ® ServerReady)

(+ (LatchInO0 RegQspace) (LatchInO extral)
(LatchInl Reg@space) (LatchInl extral)
(LatchIn2 Req@space) (LatchlIn2 extral)
(LatchIn® ReqQ@space) (LatchIn3 extral)))
(node~i0 Latch (+ (* LatchInO ModuleReadyO) (* LatchInl ModuleReadyl)
(* LatchIn2 ModuleReady2) (-~ LatchIn3 ModuleReady3))
(MemIn ServerReady))
(node-io MemModules (* MemIn)
(+ (MemOut ModuleReadyO) (MemOut ModuleReadyl)
(MemOQut ModuleReady?2) (MemOut ModuleReady3)))
(node-1i0o ReqResult (* MemOut) (+ (MSenderlIn) (ReturnData) (ToSINK)))
(node-10 AlloclDQ (* ReturnData LD@space) (MSenderlIn))
(node-1i0o MSender (* MSenderIn) (Wordln))

; DATASET and QUEUE DEFINITIONS

(def-datasets CMissP CacheMissCount CacheMissTag BrTakenP BrTakenStatus
BrDist BranchP BrHist MAccP LdHist lds LdDist SendOut@Copy
MaxUnmachedStores SagqLength MemoryConfP
PreviousMemoryReference HemoryAccessTime)

(def-datagqueues BrTag ReleaselD@ SendOutq OutQ@Tag ReqType ReqQType
MemInQ ServiceQ MSender®)

; PROCESSOR READ/WRITE ACCESS SPECIFICATION for PIPE PROCESSOR MODEL

(simple-io InstrGen-proc (CMissP BrTakenStatus CacheMissCount)
(BrTakenStatus CacheMissCount))
(simple-io Latchl-proc (BrbDist BranchP BrHist) (BrHist BrTag))
(simple-io BranchDecide-proc (BrTakenP) (BrTakenStatus))
(simple-io Decode-proc (MAccP LdDist LdHist 1ds)
(LdHist lds SendOutQCopy ReleaselDQ SendoutQ))
(simple-io WaltLDQ-proc (SendOutQCopy) ())
(simple-io ALUl-proc (ReleaselDQ BrTag) ())
(simple-io ALUZ2-proc (SendOutQ) (OutQTag))
(proc-io PSender-proc (PSenderIn (controlled read (CacheMissTag OutQTag) (CacheMiss outQ)))

(ReqType))
(simple-io PReceiver proc (MSender@) ())

. PROCESSOR READ WRITE ACCESS SPECIFICATION for MEMORY SYSTEM MODEL

(simple-io MReceilver proc (ReqType MaxUnmachedStores SagLength)
(ReqQType SagLength))

(simple-io StoreMatch proc () (Req@Type))

(simple-io ReqServer-proc (ReqQType PreviousMemoryReference MemoryConfP)
(MemInQ Service@ PreviousMemoryReference))

(simple-io MemModules-proc (MemIn@ MemoryaccessTime) ())

(simple-io ReqgResult -proc (ServiceQ) (MSenderQ))

(simple-ioc AllocLD@-proc () (MSender@))

(simple-io MSender-proc)y ())

: INTERPRETATION DOMAIN for PIPE PROCESSOR MODEL
(def-function InstrGen-proc (delay 1)
(read-from CMissP) (read-from BrTakenStatus)
(if- (¢« (random) (if BrTakenStatus
(block (write-to BrTakenStatus ())

(car CMissP)) ; branch taken
(cadr CMissP))) ; branch not taken
(block (output to-arc (CacheMiss)) ;instruction cache miss
(write to CacheMissCount (1+ (read-from CacheMissCount))))
(output-to-arc (CacheReady)))) iinstruction cache ready
(def-function Latchl proc (delay 0)
(lset br ()) (read-from BrHist)
(if (<07 BrHist) ; No pbr is pending. May generate one.
(if (<« (random) (read-from BranchP)) ; generate pbr instr.
(block (set BrHist (prand (read-from BrDist))) (set br t))))
(if (>=07 BrHist) ; Is there a pending pbr instruction?

(block ; check and update current branch count
(if (=07 BrHist)

(output-to-arc (BrCntEnd IgIn)) ; branch count exhausted

(output-to-arc (IGenReady IqIn))) ;: not exhausted
(set BrHist (-1+ BrHist)) (write~to BrHist BrHist))
(output-to-arc (IGenReady Igin))) ; No pbr is pending.

(write-to BrTag br))

(def-function Decode-proc (delay 1)
(read-from MAccP) (read-from LdHist) (read-from lds)
; Generate possible memory accesses
(set MAccP (if lds (car MAccP) (cadr MAccP))) ¢ conditonal probability
(lset tag (prand MAccP))
(write-to SendOutQCopy tag) (write-to Sendout@ tag)
(set LdHist (map -1+ LdHist)) ; decrement all entries in the load history
(1f (and (not (null? LdHist)) (<07 (car LdHist)))
(block (set LdHist (cdr LdHist))
(output-to-arc (NeedLDQ)) ; This instr uses LDQ.
(write-to ReleaselDQ t))
(block (write-to ReleaselDQ ())
(if (eq? tag ‘none-tag)
(output-to-arc (Latch2Ready Issueln))
(output-to-arc (NeedOUTQ))))) ; This instr uses Outq.
(if (eq? tag 'load-tag) Generate load distance and insert it into
(block (read-from LdDist) ; the load history
(set LdHist (insert (prand .dDist) LAHist))
(write-to lds t))
(write-to lds ()))
(write-to LdHist LdHist)) ; update load history

(def-function WaitLDQ-proc (delay 0)
(1f (eq? (read-from SendOutQCopy) ’'none-tag)
(output-to-arc (Latch2Ready Issueln))
(output-to-arc (NeedOUTQ})))

(def-function ALUl-proc (delay 1)
(if (read-from BrTag)
(output-to=arc (al2 BrConditon)) : branch condition evaluated
(output-to-arc (al2 extra)))
(1if (read-from ReleaselDQ)
(output-to-arc (LDQspace)) : release LDQ space
(output- to-arc (extral))))

(def-function ALU2-proc (delay 1)
(read-from SendOutq)
(if (eq? SendOut@ 'none-tag)
(output -to-arc (ToSINK))
(block (output to-arc (0OutQ)) (write to OutQTag Send0ut@))))

(def-function PSender-proc (delay 0)
(read-from PSenderlIn) (write-to ReqType PSenderin)
(if (eg? PSenderIn ‘CacheMiss-tag)
(output-to-arc (ReqIn extral))
(output-to-arc (ReqIn OQut@spacel))) : rTelease Out@ space

Al-2

(def-function

(read-

(cond

(def-function

PReceiver-proc (delay 0)
from MSender@)
((eq? MSenderQ@ ’'CacheMiss-last) (output-to-arc (CacheReady)))
((eq? MSender@ ’‘load-tag) (output-to-arc (LDQ)))
(else (output-to-arc (ToSINK)))))

BranchDecide-proc (delay 0)

(if (<« (random) (read-from BrTakenP)) (write-to BrTakenStatus t)))

: INTERPRETATION DOMAIN for MEMORY SYSTEM MODEL

(def-function

(read-

(cond

(def-function

(def-function

(read-

(1lset

(cond

MRecelver-proc (delay 0.000000001)
from ReqType)
((eq? ReqType ’'store-tag)
(read-from MaxUnmachedStores) (read-from SaglLength)
(if (or («=07 (+-SagLength MaxUnmachedStores))
(and (¢« (random) 0.5) (« SagLength MaxUnmachedStores)))
(block (output-to-arc (Saq))
(write-to SagLength (1l+ SagLength)))
(block (output to-arc (8dq))
(write-to SagqLength (-1+ SagLength)))))
((eq? ReqType 'load-tag)
(write-to ReqQType ReqType) (output-to-arc (Req@ extral)))
((eq? ReqType ‘'CacheMiss-tag) ; request a whole cache line.
(write-to ReqQType ‘CacheMiss-tag)
(write-to ReqQType ’'CacheMiss-mid)
(write-to ReqQType ’‘CacheMiss-mid)
(write-to ReqQTvpe ‘CacheMiss-last)
(output-to-arc ((Req® 4))))
(else (ERROR "MRecelver-proc gets ReqType=-s-%" ReqType))))

StoreMatch-proc (delay 0) (write-to ReqQ@Type ‘store-tag))

ReqServer-proc (delay 0.9999999989)

from ReqQTIype)

module (case ReqQType
((CacheMiss-tag) O)
((CacheMiss-mid CacheMiss-last) (1+ (read-from PreviousMemoryReference)))
(else (if (¢« (random) (read-from MemoryConfP))

; determine memory module of the request

(read-from PreviousMemoryReference) ; first-order conflict
(mod (+ (read-from PreviousMemoryReference) (funifor-m 1 4))
43))))) ; uniform otherwise

((= module 0) (output-to-arc (LatchIn0)))
((= module 1) (output-to-arc (LatchlInl)))
((= module 2) (output-to-arc (LatchIn2)))
((= module 3) (output-to-arc (LatchIn3)))
(else (ERROR “"module = ~d-%" module)))

(if (and (neqg? ReqQType ’‘CacheMiss-tag) (neq? ReqQType ‘GCacheMiss-mid))

(output-to-arc (Regq@space))
(output-to-arc (extral)))

(write-to PreviousMemoryReference module)
(write-to MemInQ module) (write to ServiceQ ReqQType))

(def-function

(read-
(read-

(cond

(def-function
(read
(cond

(def-function

(def-function
(def-function
(def-function
(def-function
(def-function
(def-function
(def-function

MemModules-proc

from MemoryAccessTime) (delay MemoryAccessTime)

from MemIn@)
((= MemIn®@ O) (output-to-arc (MemOut ModuleReady0)))
((= MemIn@ 1) (output-to-arc (MemOut ModuleReadyl)))
((= MemInQ 2) (output-to-arc (MemOut ModuleReady2)))
((= MemIn@ 3) (output-to-arc (MemOut ModuleReady3)))
(else (ERROR "MemIn@ = -d-%" MemInQ))))

ReqResult-proc (delay 0)

-from ServiceQ)

((eq? Service@ ’'store-tag) (output-to-arc (ToSINK)))

((eq? ServiceQ 'load-tag) (output-to-arc (ReturnData)))

(else (block - (output-to-arc (MSenderiIn)) ; i.e. ReturnInstr
(write=to MSender@ ServiceQ))))) -

AllocLD@-proc (delay 0) (write-to MSenderQ@ ‘load-tag))

Ig-proc (delay 1))
Issue-proc (delay 1))
MSender-proc (delay 1))
Latch2-proc (delay 0))
AllocOut@-proc (delay 0))
SINK-proc (delay 0))
Latch-proc (delay 0))

; UTILITY FUNCTIONS
(define (prand pdist) . Generate random elements from a probability distribution

(let*

((rand (random)) (car:= (lambda (x) (if (>= (car x) rand) (cadr x) ()))))
(any car»= pdist)))

A1-3

Appendix 2: Load Distance and Branch Count Distributions
for the Loop Benchmarks
1.0] 1.0] 1.0
0.8 0.8 0.8
0.6 06 0.6 _1
0.4 04 0.4
0.2 02 Hﬂﬂ 02
1 ﬂ =11
00 4 | 2345678 00 51 2345678 00 512345678
LLLI LLL? © T LLL3
1.0 1.0] 1.0
08 08 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 H 02 » ﬂﬂ 0.2 H
N N 0 i Ol infl
00 4y 2345678 00 51 2345678 00 532345678
LLL4 . LLLS LLL6
1.0] 1.0 1.0
0.8 0.8 0.8
06 | 0.6 0.6
04 0.4 0.4
02 H 0.2 ﬂ 0.2
Ol lm o ﬂnnﬂﬂnn I otinil.
00 4 3 2345678 00 o 2 4 6 8 1012 °% 0123456738
LLLY LLLS LLLY
1.0 1.0 1.0 |
058 08 0.8
0.6 06 0.6
0.4 0.4 0.4
02 0.2 0.2
[}
00 2 10 00 512345678 00 412345678

LLL11

“LLLiz

A2-1

Figure A2.1: Load Distance Distribution for Compiled Benchmarks

1 2

3456 78

“LiL2

1.0 10
08 0.8
0.6] 0.6
04 04
02 0.2
00 61 23456 78 0.0
LiLI
1.0 1.0
08 08
06 i 0.6
04 0.4
0.2 0.2
00, » 4 6 & 10 00
LLL4
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
O"]

I I =

01234567328
LLLS

ﬂﬂ”n

1.0 1.0
08 0.8
06 0.6
04 0.4

0 02 4 6 8 101214 16 18 0 06 7 8 9 1011 1213 14
LLL7 LLLS

02 “ 0.2

0.0

12
L

3456 738
LL11

1.0

0.8

0.6

08

06

04

02

0.0

0.8

0.6

0.4

0.2

0

1

2

3 456 7 %
LLL6

00,

0.8
0.6
0.4

0.2

4

nlnnlla

6 10 12
LLL9

0.0

2

3456 78
LLL12

Figure A2.2: Load Distance Distribution for Hand-coded Benchmarks

A2-2

1.0]] 1.0

0.8 08

0.6 0.6

04 0.4

02 0.2

00 5 | 23 45 67 00 5 1 23 45 67
LLL1 LLL2

1.0 1.0]

0% 0.8

06 0.6
]

04 0.4

0.2 0.2

00 v 1 23 4567 00 51 23 4567
LLL4 LLL5

1.0] 1.0]
] -

0.8 0.8

0.6 0.6

0.4 0.4

02 0.2

e 1

00 4 1 23 45 67 00 4 1 23 4 5 6 7
LLL7 LLLS

10] N 1.0]

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

00 203 4 5 6 7 00 o5 1 23 45 67
LLL10 LLL1I

08

0.6

0.0 01 2 3 45 67

LLL3
1.0

0.8

0.6

0.2

0.0

1.0]

0.8

06

0.4

0.2

0.0 01 2 3 45 67

LLLY
1.0

0.8

0.6

0.4

0.2

0.0

Figure A2.3: Branch Count Distribution for Compiled Benchmarks

A2-3

1.0

0.8

06

0.4

0.0

1.0

0.8

0.6

0.4

08

06

04

08

06

04

0.0

01 2 3 4 5 67
LLL1

01 2 3 45 67
LLL4 _

0 23 4 5 6 7
LLL7 _

01 2 3 45 6 7
LLL10

1.0]

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.0

0123 456
LLL2
0123 456
LLLs

!

0123456
LLLY

01 23456
LLL11

1.0

0.8

0.6

0.4

0.2

0.0

1.0

08

06

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

0.8

06

0.4

0.0

0 23 4 5 6 7
LLL3

0 2 3 4 5 6 7
LLL6

0 2 3 4 5 6 7
LLL9

0 23 4 5 6 7
LLL12

Figure A2.4: Branch Count Distribution for Hand-coded Benchmarks

A2-4

0.7] 0.7]

0.6 _1 0.67

0.57 0.57

0.47 0.4

0.3] 0.3] SIRIR

0.2 0.2]

0.11 H H H H H 0.1°

0"00123_456780'00 2 3 4 5 6 1 8
Compiled Hand-coded
Figure A2.5: Typical Branch Count Distribution

ouﬂ 0.4]

) _ 1]
0.3 0.3
nininll

0.2] 0.2]

0.1] 0.17

. 0.

0.0 0 5 6 17 0 0 1 5 6 7

2 3.4
Compiled

2 3 4
Hand-coded

Figure A2.6: Typical Load Distance Distribution

A2-5

