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ABSTRACT

A number of algorithms have been proposed for processing distributed join queries in recent
years. In contrast to the large amount of work that has been done on algorithms, relatively little
work has been done on the performance of distributed join methods. This paper presents some €x-
perimental results on the performance of distributed join algorithms in a local network. Eight dif-
ferent join methods have been implemented in an experimental distributed system. the Crystal multi-
computer, and tested for join queries with a variety of relation sizes. join selectivities. and join
column value distributions. The results obtained indicate that pipelined join methods outperform
sequential methods over a wide range of join queries. It was also found that the communications
costs in a local network environment are not a dominant factor with respect to performance, and that
shipping a whole relation from one site to another is not an unreasonable decison as long as it is
done in the framework of pipelined algorithms. Two pipelined variants of a centralized nested loop
join algorithm (with an index) were found to perform well for many of the queries tested.

1. INTRODUCTION

In relational database systems, queries are typically posed in a high-level, nonprocedural query
language based on the relational calculus such as QUEL or SQL [Ullm82]. It is the task of the query optim-
izer to decompose the query into primitive relational operations such as selection, projection and join. The
join operator has attracted a great deal of research interest since the cost of available join methods tend to vary
widely with the characteristics of the data and the available access paths [Blas76. Seli79, DeWi82a, Brabg4,
DeWi85]. The join operation and join orders have also been the primary focus of many query optimization
algorithms for centralized database syétems [Wong76. Seli79]. The distribution of data in distributed data-
base systems further increases the complexity and tradeoffs associated with the join operation. A great deal of
research worlg has gone into the problem of developing distributed query processing algorithms, particularly

into finding good methods for performing distributed joins. A new operation, the semijoin. was introduced as
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a way of minimizing the communications cost for performing distributed joins, and a number of researchers
have addressed the problem of finding optimal semijoin sequences for various classes of queries [Bern81,
Bern8la]. A related method, known as "fetch the inner tuple as needed”, is among the algorithms used for

processing distributed joins in System R [Seli80, Lohm84].

Along with the development of new join algorithms has come research on the performance of the vari-
ous algorithms. Four methods for processing a general select-project-join query in a centralized database
system were investigated analytically and their performance was compared in [Blas76]. They found that, in
most cases. either the nested loop algorithm or the sort-merge algorithm offered the best (or close to the best)
performance. Other researchers have also analyzed alternative centralized join algorithms [Nieb76, Yao78,
Yao79, Brab84]. There have also been a few studies of distributed query processing performance issues.
Epstein and Stonebraker tested 14 versions the of Distributed INGRES query processing algorithms [Epst80].
Their results indicated that exhaustive search performs consistently better than limited search, that dynamic
optimization is beneficial. and that using a "worst case” estimate for intermediate relation sizes is overly pes-
simistic. Some simulation results on the performance of different join strategies for a distributed database
system based on a star computer network were presented in [Kers82], and the effects of join selectivity and
communications speed on the optimal algorithm choice were investigated in this context. Some results on
query processing in a locally distributed system were reported in [Page83], where query processing costs for

the INGRES database system were analyzed in the context of the LOCUS distributed operating system.

Compared to the number of distributed query processing algorithm papers in the literature. relatively
few papers have addressed the performance of distributed join algorithms. This is one of the major motiva-
tions which lead us to perform this study. We have implemented eight different distributed two-way join
methods in an experimental locally distributed computer system at the University of Wisconsin. The join
methods examined in our study include methods based on both traditional joins and semijoins using several
different access methods and data transfer strategies. The work reported here differs from most of the work
mentioned above in the sense that it is an empirical study — we present measurements of actual response

times, disk activity, and message transfers for the join algorithms that we consider.



The organization of the remainder of the paper is as follows. The eight different join algorithms that
we studied are described in section 2. Section 3 provides an overview of our experimental environment. Our
experiments are described and the results are presented in Section 4. Section 5 summarizes what we have

learned from this study and its influence on what we plan to do in the future.

2. DISTRIBUTED JOIN METHODS

Given an equi-join query Ro[A=B]R; in a distributed database system, where R, and R reside at (dif-
ferent) sites S, and Sp, respectively, there are a number of distributed join methods available for processing
it. Considering all of the possible combinations of access paths, local processing algorithms, execution para-
digms. etc.. would lead to a prohibitively large search space for an empirical investigation. Thus, to reduce
the number of experiments necessary we categorize distributed join methods along three dimensions and con-

sider the following options in each:

(1) General approach — "traditional” join methods versus semijoin.

(2) Execution paradigm — sequential versus pipelined execution for the pair of sites involved.
(3) Local join processing — sort-merge versus nested loop (with an index).

In the remainder this section we elaborate on each of these dimensions, and we then present descrip-
tions of our implementations of eight join algorithms that are produced by combining options from these

dimensions.

2.1. Join Versus Semijoin

The semijoin operator was introduced as a primitive for processing distributed queries with less data
transfer than traditional join methods [Bern79a. Bern79b, Bern81, Bern8la]. Using the semijoin method,
only the join column values of one relation and the matching tuples of the second relation need to be
transferred between the two sites. If intersite data transfer is expensive, the join field width is relatively small
compared to the width of an entire tuple, and there are not many matching tuples. the use of semijoins can
result in a significant savings. In local area networks. however. the data transfer rate between two sites is

much higher — on the same order of magnitude as that between memory and a local disk. It is questionable
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whether or not semijoins will be beneficial in such an environment, as using them requires multiple scans of

one of the source relations, and therefore more disk accesses.

2.2. Sequential Versus Pipelined Processing

When an operation at a site requests remote data, as in a distributed join, a choice exists — the two
sites can work in either a sequential fashion or in a pipelined fashion. If the sites work sequentially, the site
receiving data will not begin its processing until all of the required data has arrived. In the pipelined case.
processing will begin at the receiving site as soon as the first tuple or packet of data has arrived. One advan-
tage of the pipelined approach is its parallelism — the two sites work in parallel, so the elapsed time for the
query will be reduced in proportion to the amount of overlapped processing. Second, and perhaps more
important, is the fact that the receiving site doesn’t actually store the incoming data in a temporary relation,

thus saving the time required to store and then re-retrieve the data received from the remote site.

2.3. Sort-Merge Versus Nested Loop Join

Since any distributed join involves local processing, the join algorithm and associated access methods
are still important factors in a distributed database system. For centralized joins, it was found in [Blas76]
that, except for very small relations, the nested loop join or sort-merge join methods were always optimal or
near optimal. We thus chose these two local join methods to implement for our distributed join experiments.
For the nested loop join method, we assume the availability of a B+ tree index on the join column of the
inner relation, as would likely be the case in System R* [Seli80. Lohm84].! If the inner relation is shipped
to the outer relation’s site. a secondary B+ tree index (i.e., non-clustered) is constructed for the inner rela-
tion at the outer site because the WiSS system [Chou83] does not support clustered indexes on non-unique
(i.e.. non-key) attributes. In addition. it is not always reasonable to assume that the join column will have a

clustered index available.

! The cost of a nested loop join without an index for relatons of reasonable size is prohibitive [Bitt83], so we do not consider this
possibility



2.4. Join Algorithm Details

As described earlier, we have implemented eight join algorithms for our study. The algorithms, classi-
fied according to the three dimensions presented above, are SISM. SINL, PISM, PINL, SSSM, SSNL,
PPSM. and PPNL. For the first letter. "S" stands for sequential and "P" stands for pipelined. The second
letter, "J" or "S”, is used to represent "traditional join” versus semijoin. The last two letters indicate either
sort-merge ("SM") or nested loop ("NL") join. In the remainder of this section we describe each of these

methods in turn. In our tests, site S, initiates the join query and is both the join site and the result site.

2.4.1. SJSM and SJNL

The sequential join methods SISM and SINL are the simplest of the distributed join methods. The
remote relation Rp is shipped to join site S, as a whole. The two relations are then joined at site S, using
either the sort-merge method (SJSM) or the nested loop method (SINL). Figure 2.1 illustrates the details of
the two methods. For SISM, the two relations are each sorted at their local sites to increase parallelism. For

SINL. a B+ tree index is built on the join column of the received relation Ry’ at site S, as discussed above.
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Figure 2.1: Sequential Join Methods. Figure 2.2: Pipelined Join Methods.



2.4.2. PJSM and PJNL

Like SISM and SINL, the PISM and PJNL algorithms transfer the whole relation Rp from site Sp to
site S,. The difference is that Rp is not stored as a temporary relation at site S,. Instead, tuples of Ry are
joined with R, tuples on the fly as they arrive, as shown in Figure 2.2 (with the sorting steps only being
present in the sort merge case). Using the PISM method, both relations are sorted first. Then, upon receiv-
ing tuples from relation Rp, scan Cursors on R, are incremented to find matching tuples. Matches are
merged with the incoming tuples of R, and written to the result relation. The scan cursor is then reset to the
its last starting point in R, and the process is repeated for the next group (packet) of Ry tuples. In the PINL
case, since no temporary relation Ry’ is stored at site S,. the local relation R, alwavs serves as the inner rela-
tion and the remote relation R, serves as the outer relation. Both PISM and PINL can be viewed as distri-

buted executions of centralized join algorithms.

2.4.3. SSSM and SSNL

SSSM and SSNL are two implementations of the semijoin method. One variation in our implementation

is that the join column R,.A4. which is sent from site S, to site Sp, is not stored on disk at site Sp — the
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Figure 2.3: Sequential Semijoin Methods. Figure 2.4: Pipelined Semijoin Methods.



incoming values are processed on the fly as they arrive. Similarly, the relation Rp’, which is transferred
back to site S, is processed on the fly as it arrives at S, instead of being stored there as a temporary relation.
Although there is therefore some limited pipelining involved in the SSSM and SSNL execution strategies, we
still categorize them as being sequential as compared to the truly pipelined PSSM and PSNL algorithms to be

described next. Figure 2.3 illustrates the details of the SSSM and SSNL methods.

2.4.4. PSSM and PSNL

The pipelined semijoin methods. referred to as “fetch inner tuple as needed” in System R™ [Seli80].
were the most complicated join methods to implement. As shown in Figure 2.4. relation Ry is scanned in a
tuple-by-tuple manner (conceptually), and join column values R;.A are sent to site Sp. Upon receiving the
Ra.A values, site Sp selects the matching tuples from Rp and sends them to S, a null message is sent if
there are no matching tuples. These tuples are then merged with the corresponding tuples of R,. which are
waiting for them (still in main memory). Our implementation actually processes R, tuples in one-page

batches, so one buffer page is allocated for keeping the tuples from Ry.

2.5. Discussion

The eight distributed join methods described in this section represent a range of possible methods. The
sequential join methods, pipelined join methods. and pipelined semijoin methods are all among the methods
used System R™ [Seli80, Lohm84], although our implementation may differ in minor ways. Of these
methods. sequential join methods are attractive for their simplicity and the pipelined methods are attractive
because they allow more concurrency and avoid the cost of storing and retrieving tuples from a temporary
relation. The pipeline methods. of course. require some synchronization of the two processing sites (in the
form of flow control. so the receiving site can indeed avoid having to store incoming tuples). One limitation
of PINL (the pipelined nested loops join method) is that R, must be the inner relation. regardiess of how its
size compares to that of Rp, as the inner relation has to be available for multiple scans. The semijoin
methods are attractive because they reduce communications costs. The main difference between the pipelined

and sequential semijoin methods is related to duplicates — since the pipelined version simply scans R instead



of projecting on R,.a, it will send duplicate join column values if they are present in Ry: however, the
sequential semijoin method requires multiple scans of R,. increasing the local processing cost. Clearly. there

are tradeoffs among all of these algorithms — these are the tradeoffs to be empirically investigated in Section

4.

3. THE EXPERIMENTAL TESTBED

Figure 3.1 depicts the testbed system used for our performance study. A collection of test programs
were written to implement (hard-wired) distributed join queries using the different methods described in sec-
tion 2. These programs access a synthetic database, the Wisconsin database [Bitt83], via WiSS (the Wiscon-
sin Storage System) [Chou83]. The programs run on a pair of node machines from the Crystal multicom-
puter, an experimental distributed computer system [DeWi84]. Monitor programs run on a VAX/Unix host
machine to initiate test program execution and to collect performance statistics after the test programs ter-
minate. For communications between node machines, or between node machines and the host, we used a

Crystal communications package called the Simple Application Package (SAP). In this section we briefly

describe each of these components of the system.
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Figure 3.1: The Testbed for Distributed Join Methods. Figure 3.2: The Architecture of WiSS.



3.1. The Crystal Multicomputer

The Crystal multicomputer [DeWi84] currently consists of 20 DEC VAX 11/750’s interconnected via a
10-Mb/sec Proteon token ring network. The ring network is also connected to several of the Computer Sci-
ence Department’s research VAXes, each of which can serve as a host machine. Crystal multicomputer
users can claim a number of node machines as a partition. The partitions of different users in the system are
logically isolated from each other — each partition is basically a virtual distributed computer system. For our
distributed join algorithm experiments, we used a partition of two node machines with 2 megabytes memory

and 160 megabyte Fujitsu disks to create a distributed database system testbed.

There are several levels of software available on Crystal. We used two of the lowest levels. the Crystal
Nugget and the Simple Applications Package (SAP), to avoid unnecessary overhead. The Nugget is a simple
communications kernel that resides permanently on each node machine, providing low-level message-passing
primitives and ensuring that no messages are sent to nodes outside the user’s partition (i.e., enforcing the
logical isolation of partitions). SAP is a set of subroutines that sit on top of the Nugget, providing buffered
communications using two queues. one for incoming messages and other for outgoing messages. With SAP,
the sender busy-waits until a send buffer is available, fills the buffer with data. indicates its destination, and
then invokes a non-blocking send routine. To receive a message. the receiver busy-waits on a flag that indi-
cates that the input buffer is full. The flag is set when a message is received from the Nugget and reset when
it is consumed by the user’s program. Thus, SAP provides a somewhat higher-level message facility for our

applications.

3.2. The Wisconsin Storage System

The Wisconsin Storage System, or WiSS, is an access-method level data storage system that can run
either on top of Unix or directly on top of a "raw” disk [Chou83]. For our experiments, it was installed on
the Crystal node machines and accessed their disks directly. WiSS manages devices, deals with physical
storage allocation, manages buffer pages, and provides a primitive concurrency control mechanisms. From
the viewpoint of a WiSS user, it serves to provide high performance sequential and indexed access t0 data on

disk. Figure 3.2 illustrates the architecture of the WiSS system. WiSS implements an extent-based file
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system on top of the raw disk. The physical I/O management level is responsible for reading pages from and
writing pages to the disk. The buffer management level maintains a buffer pool of pages; buffer page pools
are associated with each user. When the buffer pool is full, the buffer pool manager makes a replacement
decision using an LRU replacement strategy and some hints from the system about which pages are impor-
tant. These hints give preference to pages such as B-tree root pages and system directory pages. Level 2 of
WiSS is responsible for implementing the record-level storage abstraction. Sequential files, long data items,
and B+ tree indexes (primary or secondary) are provided as structured files at this level. Finally, the highest
level of WiSS implements the access methods of sequential scan. index scan. and long data item scan. This
level also provides the routines for creating and destroying files. indexes and long data items. Some explicit
control over scans, such as the capability to reset a scan Cursor (search pointer), is also provided. Our test

programs interface with WiSS mainly at level 3.

3.3. The Wisconsin Database

The Wisconsin Database was designed for use in systematically benchmarking relational database sys-
tems [Bitt83]. There are four basic relations in the database. referred to as "thoustup”. "twothoustup”,
"fivethoustup” . and “tenthoustup”. These relations contain 1000, 2000, 5000, and 10.000 tuples, respec-
tively. Tuples in all of these relations are 182 bytes long, each consisting of thirteen 2-byte integer attributes

and three 52-byte string atiributes. All of the integer attributes have uniformly distributed values, but the

uniquel | unique2 | two | four | ten thousand | fivethous | odd | even
1347 6709 0 0 0 937 929 1 100
9354 1591 1 I 1 985 1762 3 98
1595 2651 0 2 2 826 1967 5 96
3806 4474 1 3 3 936 2923 7 94
8727 1930 0 0 4 820 3849 9 92
9282 1293 1 1 5 187 1042 11 90
8124 885 0 2 6 198 4737 13 88
3228 9584 1 3 7 734 4082 15 86
3654 2307 0 0 8 184 1621 17 84
3761 2508 1 1 9 445 3231 19 82

Figure 3.3: A Fragment of the "tenthoustup” Relation.
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range of their distributions varies. Figure 3.3 shows a portion of the "tenthoustup” relation to illustrate the
purpose of the different integer attributes. The "uniquel” and "unique2” attributes are both candidate keys,
taking on values from 0 to 9999. The other integer attributes all take on random values chosen in a way indi-
cated by their name — for instance, the "ten” attribute takes on values from 0 to 9 (i.e., 10 distinct values).
The integer attributes in the "thoustup”, "twothoustup”, and "fivethoustup” relations are similar in nature.

The string aftributes were not used in our study, so we will not describe them here.

4. EXPERIMENTS AND RESULTS

4.1. Some Considerations

The first problem that arose in designing our tests was the issue of choosing an appropriate set of test
queries. In their classic study of join methods for centralized database systems, Blasgen and Eswaren used a
query that selected a subset of tuples from two relations, joined these together, and finally projected out a
subset of the resulting fields as a general query for their analyses [Blas76]. Our initial inclination was to do
the same for our study of distributed joins. However, since we are more interested in the effects of data dis-
tribution on the various join options, we decided to use the simple two-site join of Figure 4.1 for our test
queries. The sizes of relations Rq and Ry, the size of the result relation R, and the value distributions of the
join attributes are varied in our experiments to observe their respective effects on performance. Using this
simple join query allowed us to limit our experimental search space, and we will see later that it has not really
limited what we have learned from the study — adding the two pre-join selections and a post-join projection
would only increase the fraction of the execution time due to local processing, strengthing the conclusions

that we will present at the end of the paper.

range a is Ra at Sa
range b is Rb at Sb
retrieve into r(a.all,b.all) at Sa
where (a.A = b.B)

Figure 4.1: General Form of the Test Query.
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Our choice of source relations followed the methodology presented in [Bitt83]. There are several con-
siderations here. First. relation sizes should be large enough to be realistic. The basic relations used in our
tests have 1,000 tuples and 10.000 tuples (the "thoustup” and "tenthoustup” relations of the Wisconsin data-
base), occupying about 46 and 456 pages, respectively. Second, random atiribute value distributions are
desirable in order to provide an unbiased treatment of each of the join methods. This was particularly impor-
tant in the sort-merge join case. Third. in order to assure that the results of one query test were not biased
by previous ones, we had to ensure that no test query was likely to find useful pages sitting in the buffer from
its predecessors. We used a technique described in [Bitt83], where two copies of source relations are main-

tained (at each site in our case). and alternate queries use alternate copies of the source relations.

Another important decision for our study was the choice of an appropriate set of performance metrics
and a reasonable measurement approach. For our experiments, the elapsed time of a query was the main
metric measured. This time is defined as the time interval beginning when site S, initiates the query and
ending when the result is completely stored at site Sq. The Crystal Nugget provides a timing procedure that
is accurate to the nearest 10 milliseconds: this procedure was used for our elapsed time measurements. For
each query, we also measured the number of disk accesses performed and the number of messages sent. Our
disk access measurements were taken using a special version of WiSS$ that is instrumented to trace d»isk opera-
tions. For each disk access. the start and completion times of the access are recorded. An analysis of the
trace records from our experiments indicates that the average disk access in our test environment takes about
25.5 milliseconds (for a 4K-byte page). To measure network traffic, we counted messages in our own com-
munications interface routines. To measure the actual message send and receive times. we ran separate tests
to send and receive a large number of single-packet "null” messages between two node machines using the
same communications interface routines used for our test queries. Our results indicate that the average mes-
sage transfer time is about 16.6 milliseconds (for a 2K-byte packet). Finally. while we would also like to
have measured the CPU time used by our test queries. this was not easily done at the level at which our

experiments run (i.e., stand-alone on Crystal nodes).
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4.2. The Experiments and Results

We designed test queries to investigate the effects of a number of different factors on the performance of
the alternative distributed join algorithms. The factors investigated include the sizes of the source relations
and the join selectivity (i.e., the result relation size and the distributions of the join column values). We
describe our experiments and the results that we obtained in this section. First. however, we describe the
results of one of our distributed join executions in great detail in order to illustrate the costs and benefits of

the various approaches and to provide the reader with useful background knowledge for later discussions.

4.2.1. Query Resource Demands: A Detailed Example

The example that we will examine in this section involves a query where both R, and Rp are "thoustup”

relations and the result relation has 100 tuples. Figure 4.2 lists the notation that is used in the discussion.

Figure 4.3 shows the elapsed time for the example query processed using the different join methods.
The elapsed time for site S, is the actual elapsed time, and the elapsed time for site S, shows the portion of
time during which Sp was involved in the query. The general trend is that the pipelined join methods — '
PISM. PSSM. PINL. and PSNL - executed the join more quickly than the sequential methods did. Of the
pipelined methods. the nested loop join method outperformed the sort-merge method for this example. (That
is. PINL did better than PJSM. and PSNL did better than PSSM). This can be explained by taking a look at

the resource demands of the various join methods.

Figure 4.4 shows the number of messages that were required to transfer data between the two sites S,
and S, (measured at site S,), illustrating the communications cost of each of the join methods. For each of
the join methods (SJNL. SISJ. PJSM and PJNL). all of relation Rp is shipped to site S;. and site S, sends no

messages to site Sp. Thus, for these methods, the number of messages received by site S, will be approxi-

mately M&—L. For the sequential semijoin methods (SSNL and SSSM), site S, sends its join column values

to site Sp. and site S, sends back its matching tuples. The number of messages sent and received by site S,

in this case will be HR%-!AH and Js (Ra‘Rﬁ}X [ Re]] , respectively. In our example. since ||Rq.Al| is only

2000 bytes (just exceeding the size of a single message packet with control information), and Ja(Ra.Rb) is
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0.1, the communications cost of the sequential semijoin methods is much lower than that of the other join
methods. However, it is important to realize that the fractional communications cost (i.e.. communications
cost as a portion of the total elapsed time) is not high in any of the join methods. For the non-semijoin

methods, 100 messages were required in all, yielding a total message time of about 1.65 seconds.

-14 -



The message cost analysis for the pipelined semijoin methods (PSNL and PSSM) is a bit more compli-
cated for our implementation. First of all, the number of messages for PSNL and PSSM is affected both by
the buffer space size P (in bytes) that is allocated at site S, for holding R, tuples, and also by the message

packet size M, in the following way. To process the whole relation R,, the number of "batches”, where a
batch involves filling the buffer space P with R, tuples and processing these tuples, is given by ﬂ%?—”— The

number of messages needed for sending the join column values from S, to S is the same as for the sequen-
tial semijoin case (ignoring duplicate join column values for now). The minimum of these two values will
therefore be the actual number 6f messages needed. As shown in Figure 4.4. the pipelined semijoin methods
required more messages than the sequential semijoin methods. This is because our implementation allocates
only one buffer page for scanning R,, and only 22 tuples fit in a page: thus, we were limited by the buffer
space factor above. (This may indicate that, since one message packet can hold many join column values, it
may be befter in practice to select the number of R; buffer pages used according to the number of join
column values that fit in one message packet.) Another complication involved in the pipelined semijoin mes-
sage analysis is that the number of messages received by site S, is influenced by the distribution of the join
column values. That is, each message sent to Sp causes at least one return message that contains either
matching tuples or tells S, to read another page; the degree to which a given return message fills its message
packet will depend on the number of matching R, tuples found. For some messages sent by S,. many values
will be returned. but other messages may simply say "no matches” or may contain just a few tuples. This is
in contrast to the sequential semijoin case, which will totally fill all but the last of the messages returned from
Sy 10 Sz. For all of the reasons cited above. then. the number of messages for the PSSM and PSNL algo-
rithms usually exceeds the number for SSSM and SSNL. as is the case in Figure 4.4. (Again. however. we

remind the reader that the message cost is far from being the dominant cost factor here.)

The number of disk accesses for a join method depends on the number of different pages accessed dur-
ing the operation (of course), but it also depends strongly on the available buffer space, on the page replace-
ment policy used by the buffer manager, and on the physical allocation of pages in each relation. For exam-

ple. for the nested loop join method, the number of pages touched will be:



num__pages(outer) + num_tuples(outer) X (depth(inner index) + Jj)
where J; is the join selectivity for the operation. In the worst case, the number of disk accesses will be equal
to the number of pages accessed. This may be overly pessimistic, however, as some of the pages accessed
may already be in the buffers. Figure 4.5 shows the measured number of disk accesses for the example
query, and provides insight into the disk usages of the various join methods. At site Sp, with the exception of
the sequential sort-merge semijoin method (SSSM). all of the sort-merge methods require the same number
of disk accesses — this number is the sum of the accesses required for sorting relation R, and those needed
to scan R, once to send its tuples to S,. For the nested loop join methods, in both the sequential and pipe-
lined join cases (SINL and PINL). just one scan of Ry is required at Sp (to send it to S,). For the nested
loop versions of the semijoin methods (SSNL and PSNL). the number of disk accesses at site Sp depends on
the semijoin selectivity in a manner similar to that described in the equation above. Both of the sequential
semijoin methods (SSNL and SSSM) require somewhat more disk accesses at S, because they have to store
the intermediate semijoin result R,.A[A=B]R, and then retrieve it again to send it back to S,. Similar
trends are observed at site S,. As observed in the measurements at Sp, the sort-merge methods require more
disk accesses than the nested loops methods due to sorting. Among the nested loops methods, the sequential
ones have higher disk costs than the pipelined methods due to the storage and retrieval of the received rela-
tion; this is especially true for the sequential join case (SJNL), which builds an index on the received rela-

tion at S,.

4.2.2. The Effect of Relation Sizes

Two groups of queries. QG1 and QG2. were tested to investigate the behavior of the different join
methods as the relation sizes were varied. QG]1 consists of joins between two relations of the same size; the
result relation in QG1 is the same size as a source relation (making the join selectivity simply the inverse of
the source relation size). QG2 consists of joins between two relations of various differing sizes; the join
selectivity is kept constant in query group QG2 (at a value of 10~ 4). Since the two sites in these queries are
asymmetrical, QG2 is further divided into two subgroups of queries, QG2.a and QG2.b. In QG2.a, the site

having the larger relation was chosen as the join site; in QG2.b, the smaller relation resided at the join site.
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(As before. the result site is taken to be the join site for these tests.) These query groups are listed in Figures

4.6.

Figure 4.7 shows the clapsed time measured for each of the QG1 queries. For the join of the two
"tenktup” relations. all of the nested loop methods lost to the sort-merge methods even though the sort-merge
methods must sort these large relations. This is because the amount of work saved through sorting signifi-
cantly outweighs the work required to perform the sorts. This is illustrated by Figure 4.10, which shows the
measured elapsed times and disk accesses for sorting the "tenthoustup”, "thoustup” and "hundredtup” rela-
tions, and by the following analysis. Figure 4.10 shows that it takes 64.89 seconds to sort the "tenthoustup”
relation, and that this involves 1911 disk accesses. This constitutes the per-join "overhead” portion of the
sort-merge methods for this case. After sorting. the merge phase accesses each page of each relation just
once. In contrast, for the nested loop join using a nonclustered index, the number of disk accesses is much
larger: this is due to the number of data pages (randomly) accessed. Figure 4.7 shows this clearly. Of the
four nested loop methods. three of them required more than 10.000 disk accesses, which is what was chosen
as an upper limit for the number of disk accesses traced due to space considerations. The one exception was
PSNL (pipelined semijoin-based nested loops). which keeps tuples in memory at site S,. scanning R, only
once. However. this method involved a large number of disk accesses at site S,. where R is searched using
the index to find the matching tuples for the 10,000 join attribute values sent by R,. The elapsed time was
mainly determined by the processing rate at site Sp in this case. which explains its elapsed time as compared

to the sort-merge methods.

QG2
0G2.a 0G2.b
|Ra| |Rp | IR |Ra] |Rb | IR| |Rq] |Rp | [R|
10.000 10.000 | 10,000 10,000 1,000 1,000 1,000 10,000 1,000
1,000 1.000 1,000 10,000 100 100 100 10.000 100
500 500 500 10,000 10 10 10 10.000 10
100 100 100 10.000 1 1 1 10,000 1

Figure 4.6: Sizes of Relations Used in Query Group QG1 and QG2
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Figure 4.7 shows that, as the relation sizes are decreased. the cost of sorting the relations begins to
outweigh the cost of performing an inner relation disk access per outer relation tuple. With smaller relation
sizes, Figure 4.8 shows that the total numbers of disk accesses for the the pipelined nested loop methods

(PINI. and PSNL) are lower than those for the sort-merge methods. Thus, the pipelined nested loop methods
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are the best performers except at the largest relation size tested for QG1.

Figure 4.9 shows the total number of messages involved in executing each of the eight join methods
tested. Only three curves are evident; as in Figure 4.4 in the previous section, all of the join (i.e., non-
semijoin) methods have equal message costs, the two sequential semijoin methods have equal costs. The
highest cost here is for the pipelined semijoin methods, the next highest cost is for the sequential semijoin
methods. and the lowest among the message costs are the non-semijoin methods. This is because, in this
case, the join is a "one-to-one join” — each tuple of R, joins with one and only one tuple of R,. Thus, the
use of semijoins here does not reduce the amount of data ultimately transferred to the join site; rather. it
increases the overall message cost by the amount of data sent to the remote site from the join site initially. In
all cases, given our packet transfer time of 16.6 milliseconds, the overall message time is never more than
about 5-10% of the overall elapsed time. (Also, the effect of the message time will be even less significant for

the pipelined algorithms. as there is processing going on while messages are in transit.)
Figures 4.11 and 4.12 give the measured elapsed times for the queries in query groups QG2.a and

QG2.b. The results clearly illustrate the differences between the various join methods tested. The diversity of
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the results can be explained based on the discussion of the detailed example and analysis given in Section
4.2.1. Tt is evident from the figures that the nested loop join methods are more sensitive to relation size
differences than the sort-merge methods, particularly at the larger relation sizes. This is because the sort-

merge methods have a fixed component of their costs due to sorting the "tenthoustup” relation (see Figure
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4.10 for this cost). An extreme case is illustrated in Figure 4.12 for the the pipelined join case (PJSM).
With the smaller relation site as the join site, its cost remains nearly constant over the whole size range inves-
tigated. The main components of the cost of PJSM are sorting Ry, at site Sp and scanning Rp to send it to site
Sa. (These two factors alone account for about 90% of the elapsed time.) The sort merge methods can never
execute faster than the time it takes to sort and scan the larger of its relations. The nested loop join methods
are different, however. When the size of one of the source relations decreases, the number of disk accesses
decreases dramatically for at least one of the nested loops methods in both query groups, as shown in Figures
4.13 and 4.14. This is due to the absence of sorting overhead and the effectiveness of the index for smaller
outer relation sizes. The winner for query group QG2.a is the pipelined join version of nesied loops (PINL).
The winner for query group QG2.b is the pipelined semijoin version of nested loops (PSNL): the sequential
semijoin method ((SSNL) is the next best choice, with nearly identical performance for the smaller relation
sizes. While the message counts are not given here, they represent an insignificant portion of the overall

query processing cost (as in the previous cases examined).

One note here: It seems to us that the queries in QG2 are representative of a class of queries that is
likely to arise in real database systems — that is, queries with a small number of tuples in one relation (the
result of a selection) being joined with tuples from a much larger relation. An important observation from
the tests covered by query groups QG1 and QG2 is that. when one relation is small, the pipelined nested
loops join methods perform much better than their sequential counterparts or any of the sort-merge methods.
When both relations are large, however, as when both were "tenthoustup” relations in our tests, the optimal

methods will be the pipelined sort-merge methods.

4.2.3. The Effects of Join Selectivity

Join selectivity, which is the ratio of the size of the result relation to the product of the sizes of the
source relations (see Figure 4.2), is an influential factor with respect to join algorithm performance. To see
just how various join selectivities affect performance, we ran tests on the eight distributed join methods using
the relation sizes shown in Figure 4.15. Each of the source relations used in this experiment had 1000

tuples, but these were not just "thoustup” relations from the Wisconsin database. Rather, the join selectivity
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was varied to obtain result sizes of 1000 tuples, 100 tuples, 10 tuples. and 1 tuple. Getting a result size of N
tuples was accomplished by selecting R, from the “tenthoustup” relation with "uniquel” values in the range
[4500..5499], selecting N of R,’s tuples from the “tenthoustup” relation randomly in the same range, and

selecting the remainder of Rp’s tuples randomly outside this range.

Figure 4.16 shows the measured elapsed times for the different join methods for the various join selec-
tivities tested. Higher join selectivities (i.e. smaller result relations) mean that fewer tuples will match during
the join, which leads to several cost savings. First, the result relation is smaller, so fewer disk accesses are
needed to write out the result. Second. fewer data pages are accessed for the indexed nested loop join
methods. Third. fewer tuples will be retrieved from the remote site for the semijoin methods, so the com-
munications cost is reduced in their case. The pipelined nested loops join and semijoin methods were the
winners in this experiment, with the semijoin method doing somewhat worse than the join-based method.

Their sort-merge counterparts were the next best in terms of elapsed time here.

4.2.4. The Effects of Duplicate Attribute Values

Another factor which can potentially influence the performance of a join method is the degree of join
column value duplication. In the merge phase of a sort-merge join. duplicate join attribute values will cause
multiple scans of pages of the relation. Perhaps more significant is the effect of duplicates on sequential
versus pipelined semijoin performance. In semijoin methods, site S, sends the join column values of R, to
site Sp, and site Sp uses the values to fetch and return any matching tuples in relation Rp. In the sequential
variant of the semijoin method, duplicate R,.A values are removed, which has two effects. First. less data is

sent — duplicate join column values are avoided in messages from S, to Sp. and (as a result) each matching

IRy IRy | IR
10.000 | 1.000 | 1.000
10.000 100 100
10.000 10 10
10.000 1 1

Figure 4.15 Query Group QG3.
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Ry tuple is sent to S, just once. Second. and related, is the avoidance of multiple disk accesses in Ry, for a
given R,.A value. These two savings reduce both the communications cost and the local processing cost.

We tested a group of queries which join two relations on an attribute with duplicate values in this experiment.

We use the duplication factor D of attribute A of relation R, to quantitatively describe the degree of
duplication. This factor is defined as the ratio of the number of tuples in relation R to the number of distinct
values of attribute A. For example. in the “tenthoustup” relation shown back in Figure 3.3, the duplication
factor of the "hundred” attribute is 100, and that of the "thousand” attribute is 10. Figure 4.17 shows the
effects of duplicates on the sequential and pipeline semijoin methods (SSNL and PSNL). In all tests. both
source relations have 1000 tuples. Join columns in one of the source relations are chosen with D=1. 10.
100. respectively. It can be seen from the figure that duplicates have almost no effects on PSNL. For SSNL.
however, an increase in the duplication factor moves it from being much much worse than PSNL to being
much better. Obviously, the benefit due to the elimination of duplicates outweighs the usual disadvantages of

the sequential methods when the duplication factor is high.
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4.2.5. Summary of Test Results

There are a few observations that we would like to make here. First, if we set the issue of join site
selection aside, Figures 4.11 and 4.12 show that the three nested loop methods PINL, SSNL and PSNL pro-
vide the best performance when joining a large relation with a small one. For "medium” similar size relation
joins, such as those shown in Figure 4.16, PINL and PSNL also perform the best, and the sequential SSNL
algorithm becomes worse than the two pipelined sort-merge methods (PJSM and PSSM). This leads to the
conclusion that pipelined join and semijoin methods seem to be the most promising of the distributed join
methods tested. To join very large relations of similar size, the pipelined sort-merge methods seem to be the
best choices, as shown in Figure 4.7. These conclusions hold for the entire range of queries that we investi-

gated.

Another general conclusion of this study is that the communications cost did not play a significant role
in determining algorithm performance in our environment. The contribution of communications costs to the
overall measured elapsed times was typically around 10-15%. As an illustrative example, to transfer a
"tenthoustup” relation from one site to another requires about 1000 messages, but it only takes about 16-17
seconds for this transmission. In queries where such a transfer might be useful. however, the processing
cost may be as high as several hundred seconds. The relatively poor performance of the sequential semijoin
method is also evidence that communication cost savings alone does not help much. As a more concrete
example, Figure 4.18 compares local join costs with distributed join costs in our environment. In all cases,
IR, = 10K. and the local and distributed join methods used were those that gave the least elapsed time. It is

clear from the example that the message cost is not the major determining factor for performance.

Elapsed Time (seconds)

Relation Size Jocal join | distributed join | degeneration (%)
[R| = |Rb| = IK 55.8739 58.6128 4.90
IR] = |Rb| = 100 8.0877 9.3826 16.00
[R] = |Rb| = 10 0.9503 1.1164 17.48
Rl = [Rb] = 1 0.3500 0.3895 11.29

Figure 4.18: A Comparison of Local Join and Distributed Join (|Ra|=10K).
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The last point to be made is that choosing the right combination of a join processing site and a join
method is important. Figures 4.11 and 4.12 indicate that, if the two relations to be joined have different sizes.
the pipelined nested loop join method (PJNL) needs the site with larger relation to be the join site (i.e., it
needs the outer relation to be the smaller of the two source relations). In contrast, the semijoin nested loop
methods (PSNL and SSNL) perform much better when the smaller relation site is chosen as the join site
(i.e.. they also need the outer relation to be the smaller of the two). The intuition behind these results is
fairly simple. in retrospect: PJNL and PSNL are basically the same algorithm if communications cost is
zero. both being distributed executions of a simple nested loop join: they have the same local processing
costs. The outer relation should be the smaller of the two in the centralized case as well [Blas76, Seli79].
Note also that in a low communications cost environment such as this, we can switch our join site choice with
little or no significant impact on performance. For example, suppose that R, is a small relation, R, is a large
relation. that S, is to be the result site, and therefore that the pipelined semijoin (PSNL) method is the best
choice. In this case, S, ends up being the join site. If we would prefer to have S;, be the join site for some
reason. such as load balancing considerations [Care85], we can accomplish this by doing a pipelined join

(PINL) at site Sp and shipping the results back to site S,.

5. CONCLUSIONS

In this paper. we have studied the performance of a number of different join methods for a distributed
database system. Eight different methods were implemented on top of the Wisconsin Storage System and run
on an experimental distributed computer system, the Crystal multicomputer. at the University of Wisconsin.
Join queries with various sizes, join selectivities, and attribute value distributions were tested. Qur results
have shown that. in a local network, communication cost is not the dominant factor. Shipping an entire rela-
tion from one site to another site is a reasonable way to process a distributed join query — as long as it is
done correctly. Correctly in this case means that a pipelined join algorithm. where the outer relation is
shipped to the join site (the inner site) in parallel with the local join processing itself, is employed. Although
traditional (sequential) semijoin methods can reduce the communications cost. and they perform well in cases

where the join column duplication factor is high (many matching inner relation tuples per outer relation
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tuple), pipelined semijoin methods were found to be preferable in most of the test cases examined. These
results hold over a wide range of query characteristics. For the case where two very large relations are to be
Joined, pipeline sort-merge methods are recommended. We also found that the combination of the join
method and the join site are important. that it is very important to ensure that the outer relation for the join is

the smaller of the two source relations (as in centralized database systems).

Our results are related to several other pieces of work on distributed query processing techniques.
First. the pipelined semijoin methods that we implemented are the ones used in System R*. known there as
the "fetch the inner tuple as needed” methods [Seli80]. They opted to use the pipelined version of semijoin
over the more traditional sequential version because they believed that it would tend to win in most situations
due to lower local processing costs. Our results indicate that this is indeed the case in a local network. Our
results also concur with the claims of Page, which indicate that, in a distributed database system based on a
local network, it is far more important that joins be done in the correct order and with the correct inner and
outer relations than that they be done at the site which minimizes communications [Page83]. The key differ-
ence between Page's results and ours are that his conclusions were based on a cost analysis of the INGRES
database system and the LOCUS distributed operating system, whereas ours were obtained from measuring
the performance of a number of actual distributed join queries. Finally, earlier analytical studies have indi-
cated that pipelined query evaluation techniques provide the best performance in centralized database systems
[Yao79, Smit75]. Our results in favor of pipelined join methods can be viewed as showing experimentally

that pipelining is still the method of choice in a locally distributed database system.

There are several directions that can be taken from here in terms of future research on query process-
ing methods for locally distributed database systems. One direction that we are actively pursuing is the incor-
poration of load balancing techniques into a distributed database system [Care85]. We intend to use the
results obtained here to guide the design of query processing algorithms that incorporate such techniques.
We also plan to use our detailed measurements to drive a simulation model that we have developed for
research in this area. Another direction that one might pursue is a study of the performance of processing

strategies for n-way joins (where n > 2). While we feel that our results paint a fairly complete picture of the

-26-



relative merits of the alternative join methods for our environment, we do not claim to have taken an exhaus-

tive look at every possibility.

ACKNOWLEDGEMENTS

The authors wish to acknowledge helpful discussions with David DeWitt. We must also thank Hong-

Tai Chou, who provided us with the instrumented version of WiSS used in these experiments. We also want

to thank Bart Miller, who helped us learn about Unix/IPC for an earlier implementation of the distributed

join methods. Finally, we wish to acknowledge the NSF-sponsored Crystal multicomputer project at the

University of Wisconsin, which provided the experimental environment for this work and a helpful group of

staff members to aid us in learning how to work in the Crystal environment.

REFERENCES

[Bern79a]  Bernstein, P. A. and Goodman, N. The theory of semijoins. Tech. Rep. CCA-79-27, Computer
Corp. of America.

[Berna79b] Bernstein, P. A, and Goodman. N. “*Full reducers for relational queries using multi-attribute
semi-joins.”” in Proc. 1979 NBS Symp. on Comp. Network., Dec. 1979.

[Bern81] Bernstein. P. A.. and Chiu. D. W. “‘Using semijoins to solve relational queries,”’ J. ACM.
28. 1 Jan. 1981. 25-40.

[Bern81a]  Bernstein. P. A.. and Goodman, N. ‘‘The power of natural semijoins,”’ SIAM J. Compur. 10,
4. Nov 1981, 751-771.

[Bitt83] Bitton. D.. DeWitt, D. J., and Turbyfill, C. ‘‘Benchmarking database systems; a systematic
approach’”. In The 9th International Conference on Very Large Database , October, 1983.

[Blas76] Blasgen. M. W.. and Eswaren, K. P. “‘On the evaluation of queries in a relation data base sys-
tem, " IBM Research Rep. RJ1745, April, 1976.

[Brab84] Brabergsengen, K. ‘*Hashing methods and relational algebra operations’’. In the [0th Interna-
tional Conference on Very Large Data Base, September 1984.

[Care85] Carey. M. J.. Livny. M., and Lu. H. "*‘Dynamic task allocation in a distributed database sys-
tem’’. to appear in The 5th International Conference on Distributed Computing Sysiems, May
1985.

[Chou83} Chou, H.T., DeWitt, D.J.. Katz, R. H.. and Klug. A. C. Design and implemeniation of the
Wisconsin storage system. Technical Report, Computer Sciences Department. University of
Wisconsin-Madison, November 1983.

[DeWi84a] DeWitt, D. J., Katz, R. H., Shapiro. L. D.. Stonebraker. M.. and Wood, D. ‘‘Implementa-
tion techniques for main memory database systems’’. Proceedings of the ACM-SIGMOD Interna-
tional Conference on Management of Data. June 1984.

[DeWig4] DeWitt, D. J., Finkel, R., and Solomon. M. The Crysial multicomputer: design and implementa-

tion experience, Technical Report, Computer Sciences Department, University of Wisconsin-
Madison, September. 1984.

-27-



[DeWi85]
[Epst80]
[Kers82}1
[Lohm84]
[Nieb76]
[Page83]
[Seli79]

[Seli80]

[Smit75]
[Ulim82]
[Wong76]
[Yao78}

[Yao79]

DeWitt, D.J. and Gerber, R, Partitioned hashing algorithms, Technical Report #583, Computer
Sciences Department, University of Wisconsin-Madison, February, 1985

Epstein, R., and Stonebraker, M ‘‘Analysis of distributed database processing Strategies’” In
the 6th International Conference on Very Large Data Base, October 1980, 82-101.

Kerschberg, L., Ting, P. D., and Yao, S. B. ‘*Query optimization in star computer net-
works,”” ACM Trans. Database Syst. 7. 4, Dec. 1982, 678-711.

Lohman. G. M., Mohan, C., Haas. L. M., Lindsay, B. G., Selinger, P. G., Wilms, P. F.,
and Daniels, D., **Query Processing in R* *". IBM Research Report, RJ 4272, April 1984.

Niebuhr, K. E. and Smith. S. E. **N-ary joins for processing Query by Example’’, IBM Tech.
Disclosure Bull, 19. 6, 2377-2381.

Page, T. W. Jr., “*Distributed query processing in local network databases’”, Master Thesis.,
University of California, Los Angeles. 1983.

Selinger, P.. et al. ‘*Access path selection in a relational database management system’".
Proceedings of the ACM-SIGMOD International Conference on Management of Daia. June 1979,

Selinger. P.. and Adiba, M.. **Access path selection in distributed database management sys-
tems’ ", Proceedings of the First International Conference Conference on Disiributed Data Bases.
Aberdeen. 1980.

Smith, J. M. and Chang, P. Y. T., **Optimizing the performance of a relational algebra data-
base interface’”. Commun. ACM 18, 10, October 1975, 568-579.

Ullman, J. D. Principles of Database Sysiems, Computer Sciences Press. Rockville. Maryland.
1982.

Wong, E., and Youssefi, K, ‘‘Decomposition -- A strategy for query processing.”” ACM
Trans. Database Sysi. 1, 3 (Sept. 1976). 223-241

Yao. S. B.. and DeJong, D. ‘*Evaluation of database access paths'". In Proceedings of the
ACM-SIGMOD International Conference on Management of Data, 1978, 66-77.

Yao, S. B. *Optimization of query evaluation algorithms,”” ACM Trans. Database Syst. 4, 2.
June 1979. 133-155

.28 -



