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ABSTRACT

This paper extends earlier research on hash-join algorithms to a multiprocessor architecture. Imple-
mentations of a number of centralized join algorithms are described and measured. Evaluation of these algo-
rithms served to verify earlier analytical results. In addition. they demonstrate that bit vector filtering pro-
vides dramatic improvement in the performance of all algorithms including the sort merge join algorithm.
Multiprocessor configurations of the centralized Grace and Hybrid hash-join algorithms are also presented.
Both algorithms are shown to provide linear increases in throughput with corresponding increases in proces-
sor and disk resources.






1. Introduction
After the publication of the classic join algorithm paper in 1977 by Blasgen and Eswaran [BLAS77].
the topic was virtually abandoned as a research area. Everybody "knew"” that a nested-loops algorithm pro-

vided acceptable performance on small relations or large relations when a suitable index existed and that

sort-merge was the algorithm of choice for ad-hoc! queries. Last year two papers [DEWI84a. BRAT84] took
another look at join algorithms for centralized relational database systems. In particular, both papers com-
pared the performance of the more traditional join algorithms with a variety of algorithms based on hashing.
The two papers reached the same conclusion: that while sort-merge is the commonly accepted algorithm for

ad-hoc joins. it is. in fact. not nearly as fast as several join algorithms based on hashing. In retrospect, it is

interesting to observe that a simple. but very good algorithm has been virtually ignored3 simply because Sys-
tem R [ASTR76] did not support hashing as an access method.

The motivation for the research described in this paper was twofold. First. since [DEWI84a] and
[BRATS84] were both analytical evaluations, we wanted to implement and measure the algorithms proposed in
these papers in a common framework in order to verify the performance of the hash-based join algorithms.
Second. we wanted to see if the results for a single processor could be extended to multiple processors. The
hash-based join algorithms described in [DEWI84a], and in particular the Hybrid algorithm, made very
effective use of main memory to minimize disk traffic. It seemed that since multiprocessor joins require that
data be moved between processors. that the multiprocessor hash-based join algorithms might minimize the
amount of data moved in the process of executing a join algorithm. Hash-based multiprocessor join algo-
rithms for multiprocessors are not new. They were first suggested in [GOODS81]. next adopted by the Grace
database machine project [KITS83]. and evaluated in [VALD84]. While each of these papers made important
contributions to understanding multiprocessor hash-based join algorithms. a number of questions remain.
First. in [GOODS1]. it is hard to factor out the influence of the X-tree architecture and the parallel readout

disks on the results obtained. [KITS83]. on the other hand. concentrates on the speed of the sort-engine and

! By "ad-hoc” we mean a join for which no suitable index exists.

2 While INGRES [STON76] uses hashing for ad-hoc queries. the limited address space of the PDP 11
on which INGRES was first implemented made it impossible to exploit the use of large amounts of memory
effectively. Consequently, the algorithm never received the recognition it deserves.



not the overall performance of the Grace hash-join algorithm. Finally, the algorithm presented in
[VALDS84] exploits hashing only during the partitioning process and resorts to a pure nested loops algorithm
aided by bit vector filtering during the join phase. The goal of our research was to examine the multiproces-
sor hash-join algorithms in a multiprocessor environment that enabled us to identify CPU, communications.
and I/0 bandwidth design parameters.

In Section 2. we review the join algorithms and analytical results presented in [DEW184a]. As a first
step toward developing a multiprocessor version of the hash based join algorithms, we implemented the join
algorithms described in [DEWI184a] on top of the Wisconsin Storage System (WiSS). The results presented
in Section 3 verify the analytical results presented in [DEWI84a]. Based on these results. we feel that all
relational database systems should provide a hash-based join algorithm in order to effectively exploit main
memory as it becomes increasingly inexpensive. The algorithms described in Section 3 were also used to
gather some "real” numbers for use in a simulation of the multiprocessor join algorithms. In Section 4, we
describe two multiprocessor hash join algorithms. We also present the results of a simulation study of these
algorithms. The results are extremely exciting as they indicate that both algorithms provide very close to a
linear speedup in performance with corresponding increases in resources. In Section 5, our conclusions and

our plans for a new database machine based on these multiprocessor join algorithms are described.

2. An Overview of Hash-Partitioned Join Operations

In [DEWI84a]. the performance of three hashed-based join algorithms (termed Simple, Grace
[KITS83]. and Hybrid) were compared with that of the more traditional sort merge algorithm. In the follow-
ing discussion of the hash-partitioned join algorithms, the two source relations will be named R and S. Ris
assumed to be smaller (in pages) than S. All hash-join algorithms begin by partitioning R and § into disjoint
subsets called buckets [GOOD81. KITS83]. These partitions have the important characteristic that all tuples
with the same join attribute value will share the same bucket. The term bucket should not be confused with
the overflow buckets of a hash table. The partitioned buckets are merely disjoint subsets of the original rela-
tions. Tuples are assigned to buckets based upon the value of a hash function that is applied to a tuple’s join

attribute value. Assuming that the potential range of hash values is partitioned into the subsets X,. ... X,



then every tuple of R whose hashed join attribute value falls into the range of values associated with X; will be
put into the bucket R;. Similarly. a tuple of S that hashes to the partition X; will be put into the bucket §;.
Since the same hash function and partitioning ranges are used with both relations, the tuples in bucket R; will
only have to be joined with those tuples in S;. It will be the case that tuples from bucket &; will never have
join attribute values equal to those of tuples in S; where i /. The potential power of this partitioning lies in
the fact that a join of two large relations has been reduced to the separate joins of many smaller relation buck-
ets.

The hash-join algorithms have two distinct phases. In the first phase. relations R and S are parti-
tioned into buckets. In a centralized environment. this partitioning might be done by allocating a page frame
to buffer the tuples being assigned to the particular buckets. As a page buffer is filled. it is flushed to a file
on disk that represents a particular bucket. Each relation is scanned and partitioned in turn. At the end of
the partitioning phase. relations R and S are represented by equal numbers of bucket files that have been
written to disk. This partitioning phase must create a suitable number of buckets such that each bucket of
relation R will be small enough to fit into main memory. The size of the buckets of S can be ignored
because. at most. only a single page of relation S needs to be resident in memory at a time during the join
phase.

The second phase of the hash-join algorithms effects the actual search for tuples from relations R and
S that have matching join values. Any of the traditional join methods could be used in this phase to realize
the final join result. However. as relation R has been partitioned into buckets that will fit into memory, it
seems most appropriate to use a hash-based algorithm to process the search for matching join tuples. This
second phase will be referred to as the join phase. In the first step of the join phase. a bucket &; is used to
build a hash table in main memory. Then bucket S, is read and each tuple of S§; is used to probe the hash

table for matches.

2.1. Problems with Hash Join Algorithms
The partitioning phase must ensure that the size of the buckets created from relation R do not exceed

the size of main memory. Guaranteeing that a chosen partitioning of hash values will result in buckets of



relation R that will fit in memory is not necessarily trivial. The problem of buckets growing unacceptably
large is termed bucket overflow. The choice of an appropriate hash function will tend to randomize the distri-
bution of tuples across buckets and. as such. will minimize the occurrence of bucket overflow. If the chosen
hash function fails to distribute the tuples uniformly and bucket overflow occurs. a number of remedies are
available. The relations could be partitioned again with another hash function. This solution is almost
always too expensive. A better alternative is to apply the partitioning process recursively to the oversized
buckets [DEWI84a. BRAT84]. The net effect of this solution is to split an oversized bucket into two or more
smaller buckets. If relation R is partitioned before relation S. then this method only requires rescanning the
particular bucket that overflowed. The range of values governing the partitioning of relation S can be
adjusted to reflect the final partitioning of R after bucket overflow has been handled. This method could fail
in the case that the combined sizes of tuples having identical join values exceeds the size of available memory.
In such a case. a hash-based variation of the nested loops join algorithm can be applied. The performance of
such an algorithm is analyzed in Section 3 of this paper. The solutions used to handle bucket overflow can

also be applied to the overflow of a hash table.

2.2. Simple Hash-Join

The Simple hash-join processes one bucket at a time while doing a minimal amount of partitioning.
In fact. the partitioning and join phases are executed simultaneously. Two files are associated with relations
R and S. There are files R input (S input) which contain tuples that are waiting to be processed by the
current phase of the algorithm. The files R output (S output) contain tuples that have been passed over by the
current phase of the algorithm. At the start of the algorithm. R input and S input are set to equal the relations
R and S. R output and S output are initially empty.

A partitioning basis consisting of a number and range of of hash values is chosen at the start. There
will be as many stages to the algorithm as there are buckets of relation R. The buckets of R are sequentially
used to build hash tables in main memory. One hash table is built at the start of each stage. Each stage
begins with a scan of R input. As each tuple is considered, if it belongs to the targeted memory bucket R; the

tuple is added to the hash -table. Otherwise. the tuple is written. to R output. R output contains all the



remaining buckets that are not of current interest. Then S input is scanned sequentially. If a tuple of S input
hashes to bucket S;, then it is used to probe the hash table built from bucket &;. If a match is found. the
tuples are joined and output. Otherwise. (ie. the tuple does not belong to bucket §;) it is written to S output.
At the end of each stage of the Simple hash-join. the R output (S output) file becomes the R input
(S input) file that will be used by the next stage. As the algorithm progresses. the R output (S output) file
becomes progressively smaller as the buckets of interest are consumed. The algorithm finishes when either

R output or S output are empty following a processing stage.

2.3. Grace Hash-Join

The Grace hash join algorithm [GOODS1. KITS83] is characterized by a complete separation of the
partitioning and joining phases. The partitioning of relations R and S is completed prior to the start of the
join phase. Ordinarily. the partitioning phase creates only as many buckets from relation R as are necessary
to insure that the hash table for each bucket R; will fit into memory. Since only a single page frame is
needed as an output buffer for a bucket, it is possible that memory pages will remain unused after the
requisite number of bucket buffers have been allocated. In the Grace algorithm. these extra pages can be
used to increase the number of buckets that are generated by the partitioning phase. Following the partition-
ing phase. these smaller buckets can be logically integrated into larger buckets that are of optimal size for
building the in-memory hash tables. This strategy is termed bucket tuning [KITS83]. Bucket tuning is a

useful method for avoiding bucket overflow.

2.4. Hybrid Hash Jein

The Hybrid hash join was first described in [DEWI84a]. All partitioning is finished in the first stage
of the algorithm in a fashion similar to the Grace algorithm. However. whereas the Grace algorithm uses
any additional available memory during the partitioning phase to partition the relations into a large number of
buckets. Hybrid uses additional memory to begin the joining process. Hybrid creates the minimum number
of buckets such that each bucket can be reasonably expected to fit into memory. Allocating one page frame to
be used as an output buffer for each bucket, the Hybrid algorithm utilizes any remaining pages frames to

build a hash table from R,. The partitioning range is adjusted to create N equal-sized buckets. Ry, .... Ry.



that are written to disk and one independently sized bucket. R . that is used to build the hash table. The
same partitioning range is used for relation S. Tuples of S that hash into bucket Sy are immediately used to
probe the hash table for matches. When the partitioning phase completes. the Hybrid hash-join has already
completed processing part of the join phase. Thus. the tuples that are immediately processed do not have to
be written to and retrieved from the disk between the partitioning and join phases. These savings become sig-

nificant as the amount of memory increases.

2.5. Sort-Merge Join Algorithm

The standard sort-merge [BL.AS77] algorithm begins by producing sorted runs of tuples that are. on
the average. twice as long as the number of tuples that can fit into a priority queue in memory [KNUT73].
This requires one pass over each relation. During the second phase. the runs are merged using an n-way
merge. where n is as large as possible. If n is less than the number of runs produced by the first phase.
more than two phases will be needed. In the final phase, the sorted source relations are sequentially scanned

and matching tuples are joined and output.

2.6. Comparison of the Four Join Algorithms
Figure 1 displays the relative performance of the four join algorithms using the analysis and parame-

ter settings presented in [DEWI84a]. The vertical axis is execution time in seconds. The horizontal axis is

| M| .
the ratio of where |[M| and [R| are. respectively. the sizes of main memory and the R relation in
R | #F

pages and F equals 1.2 (F is a fudge factor used to account for the fact that even if IR} = |M]. a hash table
for R will occupy more than |R| pages in main memory). For all the algorithms. R and S are assumed to be
resident on mass storage when the algorithm begins execution. These results clearly indicate the advantage of
using a hash based join algorithm over the more traditional sort merge algorithm. In retrospect, the results
are not too surprising, as sorting creates a total ordering of the records in both files, while hashing simply

groups related records together in the same bucket.
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3. Evaluation of Centralized Hash Partitioned Join Algorithms

To verify the analysis presented in [DEWI84a] and to gather information on CPU and I/O utiliza-
tions during the partitioning and joining phases of the three hashing algorithms. we implemented the Simple.
Grace. and Hybrid algorithms on a VAX 11/750 running 4.2 Berkeley UNIX. In addition to the three
hash-partitioned join algorithms. two other popular join algorithms were studied. These algorithms. a sort-
merge algorithm and a hash-based nested loops algorithm. provide a context for comparing the performance
of the hash-partitioned join algorithms. All the algorithms were implemented using the Wisconsin Storage

System (WiSS) [CHOU83].

3.1. An Overview of WiSS

The WiSS project was begun approximately 3 years ago when we recognized the need for a flexible
data storage system that could serve as the basis for constructing experimental database management systems.
While originally conceived as a replacement for the UNIX file system (WiSS can run on top of a raw disk

under UNIX). WiSS has also been ported to run on the Crystal multicomputer [DEWI84b]. The services

provided by WiSS include structured sequential files. byte-stream files as in UNIX. B™ indices. streich data
items, a sort utility. and a scan mechanism. A sequential file is a sequence of records. Records may vary in
length (up to one page in length). and may be inserted and deleted at arbitrary locations within a sequential
file. Optionally. each sequential file may have one or more associated indices. The index maps key values to
the records of the sequential file that contain a matching value. The indexing mechanism is also used to con-
struct UNIX-style byte-stream files (the pages of the index correspond to the inode components of a UNIX
file). A stretch item is a sequence of bytes. very similar to a file under UNIX. However. insertion and dele-
tion at arbitrary locations is supported. Associated with each stretch item (and each record) is a unique iden-
tifier (RID). By including the RID of a stretch item in a record. one can construct records of arbitrary
length. As demonstrated in [CHOU83]. WiSS’s performance is comparable to that of commercially avail-

able database systems.



3.2. Summary of Algorithms Evaluated

Centralized versions of the Grace. Simple and Hybrid hash-partitioned join algorithms were imple-
mented in the manner described in Chapter 2. A modified version of the nested loops algorithm. termed
Hashed Loops. was also implemented [BRAT84]. The Hashed Loops algorithms is so named because it uses
hashing as means of effecting the internal join of tuples in main memory. It is similar to the algorithm used
by the university version of INGRES [STON76]. For each phase of the Hashed Loops algorithm, a hash
table is constructed from those pages of R that have been staged into memory. Tuples from S are used as
probes into the hash table. Constructing such a hash table avoids exhaustively scanning all of the R tuples in
memory for each tuple in S as is done with the simpler form of the nested loops algorithm. The last algo-
rithm. the Sort Merge join. employed the sort utilities provided by WiSS.

All the algorithms were allocated identical amounts of main memory for buffering pages of the rela-
tion. Similarly. all the algorithms accessed relations on disk a page at a time. blocking until disk operations

completed.

3.3. Presentation of Performance Results

The join algorithms were compared using queries and data from the Wisconsin Benchmark Database
[BITT83]. As in Figure 1. the execution time of each join algorithm is shown as a function of the amount of
available memory relative to the size of the smaller relation. The relative amount of memory is defined to be
the number of pages of main memory. |M|. divided by the size in pages of the smaller relation, |R|. The
elapsed times for all join algorithms include the time required to write the final result relation to disk. All
tests were run in single user mode. The test machine had 8 megabytes of memory so no paging occurred.
Bucket overflow did not occur in any of the tests of the hash-partitioned algorithms.

The results of joining two 10,000 tuple relations using each of the join algorithms is presented in
Figure 2. The join produces 10.000 result tuples. The join attribute is a randomly ordered, two byte
integer. Every tuple from both relations participates in the result relation produced by this join query.
Whereas Figure 1 presented performance results that were calculated from analytical models, Figure 2

presents the measured performance of actual implementations of the algorithms. We find the similarity of
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Figures 1 and 2 both reassuring and encouraging.

In Figure 2. the performance of the Grace hash-join algorithm is constant for the given range of
available memory. This results from the total separation of the partitioning and join phases in the Grace
algorithm. From a performance viewpoint. the Grace algorithm only uses memory optimally during the join-
ing phase. Excess memory during the partitioning phase is used as a means of creating a large number of
buckets for the bucket tuning process. In contrast. the performance of the Simple hash-join algorithm is sig-
nificantly affected by the amount of available memory and performs well only when the smaller relation is

less than twice the size of available memory. The performance of the Hybrid algorithm reflects the fact that it

combines the best performance features of the Grace and Simple? hash-join algorithms. Since Hybrid com-
pletes all partitioning in a single pass through both source relations. it's performance is always as least as
good as that of the Grace algorithm. The Hybrid algorithm increasingly outperforms Grace as the amount of
relative memory increases because the additional memory is used for immediately joining tuples from one
bucket of each source relation. Such immediate joining eliminates the cost of writing and reading these
tuples to disk between the partitioning and joining phases. The performance of all of the hash-partitioned
algorithms remains unchanged once the smaller relation fits in memory. This point occurs at a relative
memory value of 1.2 and not when available memory exactly equals the size of the smaller relation. This
results from the fact that the hash-join algorithms use some of the available memory during the join phase for
the structure of the hash table itself. Also. it must be realized that partitioning is a predictive process and as
such. prudence requires that additional memory be used to accommodate fluctuations in the size of the hash
tables that are constructed from buckets.

The performance of the Sort-Merge join algorithm is constant over a wide range of available memory
in Figure 2. Until a source relation fits into memory. the sorting process completely reads and writes the
relation at least twice. once when the sorted runs are produced and a second time when the sorted runs are

merged. The Sort-Merge join algorithm then reads the source relations a third time to effect the final joining

» The Simple hash-join algorithm should have performance equal to that of the Hybrid algorithm for re-
lative memory values in excess of approximately 0.5. The difference in the performance of the Hybrid and
Simple hash-join algorithms for relative memory values between 0.5 and 1.2 is an artifact of the implementa-
tion.
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of tuples. An optimization is possible. Given sufficient memory. the sorted runs of both relations can be
merged and joined simultaneously. In this case. the performance of the Sort-Merge algorithm could be
expected to be similar to the Grace algorithm as each algorithm would access every page of each source rela-
tion three times (two reads and a write).

Perhaps. surprisingly. the Hashed Loops algorithm has quite good performance over a wide range of
available memory in Figure 2. Due to the existence of the hash table. the cost of of probing for matches with
tuples from relation S is a relatively inexpensive operation. The algorithm performs especially well when the
size of the smaller relation is less than twice the size of available memory. As this is exactly the situation one
would expect in the case of bucket overflow, the hash-based nested loops algorithm is an attractive remedy for
handling bucket overflow.

The performance of the join algorithms for a join of a 1.000 tuple relation with a 10,000 tuple rela-
tion is shown in Figure 3. The result relation contains 1,000 tuples. The Hybrid algorithm continues to
dominate all the other join algorithms over a wide range of relative memory values. The stepwise perfor-
mance transitions of the Sort-Merge and nested loops algorithms become more obvious in the environment of
this query.

Figure 4 reflects the performance of the join algorithms on the same query used for Figure 3. The
difference is that in Figure 4 all the algorithms use bit vector filtering techniques [BABB79. BRATg4,
VALDS84]. The notable performance improvements demonstrated are the result of eliminating, at an earlier

stage of processing. those tuples that will not produce any result tuples. The bit vector filtering technique

used by the hash-partitioning and Sort-Merge algorithms are very similar 4 Prior to the initial scan of relation
R. a bit vector is initialized by setting all bits to 0. As each R tuple’s join attribute is hashed. the hashed
value is used to set a bit in the bit vector. Then as relation S is scanned, the appropriate bit in the bit vector
is checked. If the bit is not set. then the tuple from S can be safely discarded. Applying the bit vector from
relation R against relation S approximates a semijoin of relation S by relation R. The net impact of this pro-

cess depends on the semijoin selectivity factor of relation S by R which is defined to be the ratio of tuples

4 The bit vector filtering technique used by the hash-partitioned and Sort-Merge algorithms is directly
extendible to the case of Hashed Loops if the names of the relations in the discussion are reversed.
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resulting from the semijoin of S by R relative to the cardinality of S. In the example query of Figure 4, the
semijoin of relation S by R has a semijoin selectivity factor of 0.1. The net effect is that approximately 90%
of the tuples of relation S can be eliminated at a very early stage of processing by the hash-partitioned and
Sort-Merge algorithms. Significant 1/0 savings accrue from the fact that these non-participating tuples do not
have to be stored on disk between the partitioning and joining phases of the hash-partitioning algorithms.
Two disk accesses are saved for every page of tuples that can be eliminated by the bit vector filtering of rela-
tion S.

Since. the Hashed Loops algorithm does not complete a scan of relation R until the end of the query.
it must instead use bit vector filtering to approximate a semijoin of relation R by S. In Figure 4 the semijoin
selectivity factor for a semijoin of R by Sis 1.0. Therefore. in this instance. the Hashed Loops algorithm
doesn’t derive any benefit from applying bit vector filtering.

Collisions that occur in the process of accessing bit vectors may result in non-qualified (phantom)
tuples being propagated along to the final joining process. The phantom tuples will, however. be eliminated
by the final joining process. The number of phantom tuples can be reduced by increasing the size of the bit
vector or by splitting the vector into a number of smaller vectors [BABB79]. A separate hash function would
be associated with each of the smaller bit vectors. The costs associated with bit vector filtering are modest.
For the given test. a single bit vector of length 4K bytes was used. Since the hash-partitioning algorithms
already compute the hashed value of each tuple’s join attribute. the only additional cost of bit vector filtering

for these algorithms is the amount of space required for the bit vector itself.

4. Multiprocessor Hash-based Join Algorithms

Multiprocessor versions of the Hybrid and Grace algorithms are attractive for a number of reasons.
First. the ability of these algorithms to cluster related tuples together in buckets provides a natural opportun-
ity for exploiting parallelism. In addition. the number of buckets produced during the partitioning phase (or
activated in the joining phase) of each algorithm can be adjusted to produce the level of parallelism desired
during the joining phase. Second, the use of buckets by multiprocessor versions of the two algorithms should

minimize communications overhead. Furthermore, just as the centralized form of the Hybrid algorithm
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made very effective use of main memory in order to minimize disk traffic. one would expect that a multipro-
cessor version of the Hybrid hash join algorithm should be able to use memory to minimize both disk and
communications traffic. Finally. it appears that control of these algorithms can also be decentralized in a

straightforward manner.

4.1. Horizontal Partitioning of Relations

All relations are assumed to be horizontally partitioned [RIES78] across all disk drives in the system.
From the view point of raw bandwidth. this approach has the same aggregate bandwidth as the disk striping
strategies [GARC84. KIM85. BROWS5] given an equal number of disk drives. The difference is that in our
approach once the data has been read. it can be processed directly rather than being transmitted first through
some interconnection network to a processor.

There are at least two obvious strategies for distributing tuples across the disks drives in the system.
One approach is to apply a randomizing function to each tuple (or the key attribute of the tuple) to select a
disk for storing the tuple. Each processor maintains an independent index on the tuples stored on its disk.
The advantage of this approach is that as additions are made to the file. the number of tuples on each disk
should remain relatively well balanced. The second approach is to cluster tuples by key value and then distri-
bute them across the disk drives. In this case the disks. and their associated processors. can be viewed as
nodes in a primary. clustered index. A controlling processor acts. in effect. as the root page of the index.
We intend to investigate whether traditional tree balancing algorithms provide acceptable performance in such
an environment. This approach is similar to. but much simpler than, the clustering approach employed by
MDBS [HE83]. In MDBS [HES83]. each backend processor must examine every query as the clustering
mechanism is implemented by the backends. not the controlling processor.

The real advantage of the second approach comes when processing queries. With the first distribu-
tion strategy (ie. tuples distributed randomly). except in the case of exact match queries on the attribute used
to distribute tuples. all processors must execute every query. With the second distribution strategy. the con-
trolling processor (which maintains the root page of each index) can direct each query to the appropriate pro-

cessors. . While there is certainly some overhead in performing this function it is certainly less than the cost
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of sending the querv to all the processors. Furthermore. for even a fairly large database. the root pages of
all indices should fit in the controlling processor’s main memory. While the two distribution strategies
should provide approximately the same response time in single user benchmarks. we expect that system
throughput would be significantly higher with the second distribution Strategy in a multiuser environment.

When no suitable index is available. all processors are available to perform the query.

4.2. Description of Multiprocessor Hybrid and Grace Algorithms

The algorithms described in this section assume that the relations of the database have been horizon-
tally partitioned across multiple disk drives in the manner described above. Each disk drive has a processor
associated with it. (Note. the converse is not necessarily true.) For the purposes of the performance evalua-
tion presented below. we have assumed that the processors are interconnected with an 80 Mbit/second token
ring. As we will demonstrate. such an interconnection topology provides adequate performance even when

50 processors are being used.

4.2.1. A Multiprocessor Version of the Grace Hash-Join Algorithm

There appear to be a number of alternative strategies for parallelizing the Grace hash-join algorithm.
The approach we have selected and evaluated assumes that a different set of processors is used for the joining
and partitioning phases of the algorithms. Furthermore. while the "partitioning” processors are assumed to
have disk drives associated with them. the "joining” processors are assumed to be diskless. One reason that
we find this strategy attractive is that diskless nodes are cheaper than nodes with disks and we are interested
in exploring whether such processors can be effectively utilized.

The algorithm proceeds as follows. Each node with a disk partitions the smaller relation into buckets
that are written across the network to the nodes without disks. These nodes perform the join phase of the
algorithm. Each joining node will contain a single hash table that has been built from the tuples of a single
bucket of the smaller source relation. After the hash tables have been completely built, the larger relation is
partitioned and the buckets are sent to the joining nodes, Corresponding buckets of both source relations are
guaranteed to be sent to the same joining node. Tuples from the larger relation are used to probe the join

node hash tables for matches. If the size of the smaller relation exceeds the aggregate memory capacity of the
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joining nodes. multiple phases are necessary and unused buckets will be temporarily saved on the disks
attached to the partitioning nodes.

The multiprocessor Grace algorithm can allocate varying numbers of joining nodes. The Grace
algorithms have been named according to the ratio of partitioning nodes to joining nodes. The Grace 1:1
design allocates one partitioning node for each joining node. There is one partitioning node for every two
joining nodes in the Grace 1:2 design. Finally, the Grace 2:1 design allocates two partitioning nodes for
each joining node. While these design combinations proved optimal for the execution of single join queries.
it may very well be the case that more varied combinations of processors may prove optimal for more complex

queries.

4.2.2. A Multiprocessor Version of the Hybrid Hash-Join Algorithm

While the multiprocessor Grace algorithm employs a combination of processors with and without
disks. the multiprocessor Hybrid algorithm requires that each processor has a disk drive. The multiproces-
sor Hybrid hash-join algorithm performs the partitioning and joining phases on the same nodes. Each pro-
cessor partitions the source relations in a fashion similar to the Grace algorithms. However. each node allo-
cates excess memory during the partitioning phase to a hash table for one bucket of tuples. As the source
relations are partitioned on a local Hybrid processor. most tuples are written across the net to the appropriate
join node. Tuples belonging to the bucket associated with a partitioning processor are instead immediately
used to either build or probe the local hash table. Because some of the tuples can be processed locally. the
Hybrid hash join algorithm generates a relatively lighter network load than the Grace algorithm. For a given
level of resources. a Hybrid multiprocessor algorithm will use more disks and fewer processors than a Grace

multiprocessor algorithm.

4.3. Discussion of Simulation Model

To evaluate the performance of the distributed Hybrid and Grace hash-join algorithms a simulation
model of the proposed multiprocessor architecture was constructed. The hardware components that are
represented in the model are intended to be examples of current, commercially available components. The

capabilities of the various components can be varied to test the effects of various combinations of resources.



While the distributed hash-partitioned algorithms could be implemented in many different kinds of network

environments, the processors in the current simulation are loosely coupled via a token ring network.

4.3.1. Hardware

The model allows us to simulate 1. 2. and 3 MIP processors. The disk drives were modeled after
the Fujistu Eagle drive and are assumed to support a transfer rate of 1.8 Mbytes/second. The combined posi-
tioning and latency times have been modeled as a normal distribution with a mean value of 26 milliseconds
and a standard deviation of 4 milliseconds. The processor’s network interface is assumed to have a single.
output buffer of 2 Kbytes. A similar input buffer is assumed. The effective DMA bandwidth at which these
buffers can be filled or flushed to the main memory of a processor is assumed to be either 4 Mbits/second or
20 Mbits/second. The 4 Mbits/second number is derived from measurements made on a VAX 11/750 with a
Proteon ProNet interface [PROT83] attached to the Unibus. The 20 Mbits/second is an estimate of the DMA
rate if the device were attached to the internal bus of a VAX 11/750. The token ring is assumed to have a
bandwidth of either 10 Mbits/second or 80 Mbits/second. The 10 Mbits/second value is representative of
currently available local network interfaces such as the ProNet token ring. The 80 Mbits/second interface
with a 20 Mbits/second DMA rate is representative of the CI interface from Digital Equipment Corporation.

Since the multiprocessor version of the Hybrid algorithm requires that each processor has a disk
drive. while the Grace algorithm employs processors with and without disks. a method for computing the
"cost” of a particular configuration of processors and disk was needed. The approach we adopted was to
assume that a 1 MIP processor cost the same as a disk drive and controller. The relative cost of the 2 and 3
MIP processors was computed using Grosch's law [GROS53] which relates the cost of a processor to the per-
formance (speed) of the processor:

Performance = Technology Constant * Processor_Costg

The technology constant and cost exponent were assigned. respectively. values of 1 and 1.5.5 The cost of a

particular configuration is calculated by computing the aggregate cost of all processors® and disks.

3 The price/performance relationship of the IBM System/370 series correlates well with a value of 1.6
for the cost exponent [STEW82]).
® Note that in the case of the Grace algorithm. different performance processors might be used for the
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So far. we have not incorporated memory or communications costs in our cost model. It might. for
example. be more cost effective to use more memory and a lower speed communication device.

Using this cost model. calculating the cost of a particular configuration of processors and disks is
straightforward. The reverse transformation. is not. however. always obvious. Assume. for example. that all
processors are 1 MIP processors. Then a Hybrid join configuration with a cost of 10 will consist of 5 pro-
cessors and 5 disks. A 2:1 Grace configuration (2 partitioning processors for every join processor), with a
cost of 10 will consist of 4 partitioning processors. 4 disks. and 2 joining processors. No 1:2 or 1:1 Grace
configuration will have exactly a cost of 10. For example. a 1:2 configuration with 2 partitioning nodes. 2
disks. and 4 joining nodes has a cost of § while the next 1:2 configuration (3.3.,6) has a cost of 12. Like-
wise. the 1:1 Grace configuration with a cost closest to 10 will have 3 partitioning processors, 3 disks. and 3
join processors. To facilitate interpretation of the results presented below. we have summarized in Table 1
the resource costs of 6 alternative hardware configurations (assuming | MIP processors) for each of the four
algorithms (Hybrid. Grace: 1:1. 2:1. and 1:2). The same 6 configurations were also used when we
evaluated 2 and 3 MIP processors. While the cost of each configuration changes for these cases, the table

can still be used to determine the hardware configuration associated with each data point.

4.3.2. Software

The operation of each simulated processor is controlled by a simple operating system kernel that pro-
vides a preemptive scheduler. Processes have associated priorities that are used to resolve contention for sys-
tem resources. To minimize overhead. all disk transfers are done a track (28 Kbytes) at a time [GARC84].
In addition. a double buffer is associated with each open file so that while a process is processing track i,
track i-+1 can be read. The maximum packet size supported by the network is assumed to be 2K bytes.

The proposed multiprocessor join algorithms require that large blocks of data be transferred across
the communications device. To this end. a model has been built of a modified. sliding window protocol that
insures the reliable delivery of large blocks of data while enhancing the effective throughput of the network

for such transfers. To help control contention for receivers. a higher-level. connection-based communica-

partitioning and joining nodes.
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Resource Hybrid Grace 1:1 Grace 2:1 Grace 1:2
Cost #P  #D | #PP  #D  HIP | #PP  #D  H#IP | #PP  #D  #IP
2 1 1
3 1 1 1
4 2 2 1 1 2
5 2 2 1
6 2 2 2
8 2 2 4
9 3 3 3
10 5 5 4 4 2
12 3 3 6
15 5 5 5 6 6 3
16 4 4 8
20 10 10 8 8 4 5 5 10
21 7 7 7
24 1212 6 6 12
25 10 10 5
30 15 15 10 10 10 12 12 6
#P - number of Processors
#D - number of Disks
#PP - number of Partitioning Processors
#JP - number of Joining Processors
Table |

Resource Costs for Hash-Join Configurations
(1 MIP Processors)

tions protocol has also been incorporated in the simulation model.

We have. so far. ignored the issue of memory size and bucket overflow. The preliminary results
presented below assume that the smaller of the two relations being joined always fits in the aggregate memory
of the processors used for joining. While this assumption will be true in a number of cases, one would not
want to base the design of a machine on such an assumption. Assume, for example, that 8 processors are
used for partitioning. With 64K RAMs, 1 megabyte memory boards are common. As 256K RAMS become
available, a typical memory board will hold 4 megabytes of data. Thus with just 2 memory boards. an aggre-

gate. of 64 megabytes will be available for holding buckets. 'If one assumes that the smaller relation will be



18

produced by applying a selection operation first. 64 megabytes might be enough to hold most temporary rela-
tions. We have also not addressed the issue of bucket overflow (the size of a bucket is larger than the memory
of the joining processor to which the bucket is assigned) which can occur even in the case that the size of the

smaller relation is less than the total available memory.

4.4. Preliminary Results

To evaluate the performance of the different algorithms. two 10.000 tuple relations were joined with
each other. The result relation contained 10.000 tuples. For 1. 2. and 3 MIP processors, the network
bandwidth and DMA rate were held constant while varying the resources available to the multiprocessor
Hybrid join algorithm and the 3 configurations of the multiprocessor Grace algorithm: 1:1. 1:2, and 2:1.
Throughput, measured in terms of queries per minute. was used as the performance metric. While we have
conducted a wide range of tests, we have included only the results obtained using a network bandwidth of 80
Mbits/second and a DMA rate of 20 Mbits/second. A summary of the results obtained with other configura-
tions is contained in Section 4.6. Since the cost of displaying or saving the result relation is the same for
each configuration it has been ignored in the results displayed below.

The performance obtained by the multiprocessor Hybrid join algorithm and the 3 configurations of
the multiprocessor Grace algorithm are displayed in Figures 5. 6. and 7 for 1, 2, and 3 MIP processors.
respectively. We think these results are very exciting and represent a breakthrough in designing an architec-
turally simple. but very high speed database machine. For each type of processor. almost linear speedups
are obtained with increasing level of resources.

With 1 MIP processors. the 1:1 Grace configuration provides a higher throughput rate over a wide
range of available resources. The principal reason is that with 1 MIP processors. the average CPU utilization
for the Hybrid design is almost 100% . whereas the 1:1 Grace design. which uses a larger number of proces-
sors per resource cost level. is not CPU bound. For example. when the total resource cost is equal to 6. the
Grace design is using 2 partitioning nodes. 2 join nodes. and 2 disks. By comparison, for a resource cost of
6 the Hybrid design is using 3 processors and 3 disks. The average disk utilization was approximately 20%

for the Hybrid design and 30% for the 1:1 Grace design. Thus, Hybrid’s. advantage of having the source
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relations partitioned over a larger number of disks for a given resource cost level was not a significant factor.
Figure 6 presents the throughput results for the case where all processors are assumed to be 2 MIP
processors. In this test. the Hybrid processors are no longer CPU bound and the Hybrid algorithm outper-
forms all the Grace design combinations. The balanced nature of the processing requirements of this query
favor the Hybrid and Grace 1:1 designs that allocate balanced processor resources. The Grace 2:1 and 1:2
designs perform less well because of lower processor utilizations resulting from the mismatch of processor
resources. Figure 7 presents the throughput resuits when 3 MIP processors are used. The increased proces-
sor performance favors the Hybrid design which processes a bucket of each relation on the local processor.

The Grace designs are not able to utilize the increased processor performance to the same magnitude as the

network data transfers’ become an impediment to increased performance.

4.5. A Look at Resource Utilizations with 2 MIP Processors

The performance of the multiprocessor hash-join algorithms necessarily depend on how well the
algorithms utilize hardware resources. The Hybrid algorithm has the intrinsic advantage of sending a rela-
tively smaller number of tuples across the communications network. On the other hand, the Hybrid algo-
rithm imposes a greater load on each of the processors.

Figure 8 presents the resource utilization levels for the multiprocessor Hybrid algorithm with 2 MIP
processors. The high CPU utilization levels reflect the fact that each processor in the Hybrid algorithm is
used for both the partitioning and joining phases of the algorithm. The initial increase in CPU utilization is
caused by the transition of the algorithm from using a single processor to using two processors. Whereas the
single processor Hybrid design did not utilize the network at all. the two processor Hybrid design must
expend a substantial amount of processing effort transferring buckets of tuples between processors. As addi-
tional processors are added to the Hybrid algorithm, the CPU utilization of the processors begins to decline.
This decline corresponds to an increased level of contention for the network. As the level of contention for
the network increases. processors are more frequently blocked waiting to transfer blocks of data across the

network. The increased levels of network contention also result in an increase in the total utilization of the

7 For a given query. the Grace designs must transfer a larger amount of data across the network than the
Hybrid design.
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network. The relatively low disk utilizations result from the fact that data is read from the disk a track at a

time. With that disk 1/0 blocking factor. the disk is frequently idle while the previously read tuples are being

partitioned. 8

Figure 9 presents the resource utilizations for the Grace 1:1 multiprocessor algorithm design with 2
MIP processors. The relative CPU utilizations for the partitioning nodes and joining nodes reflect the fact
that the partitioning phase is normally the most computationally expensive phase of the hash-join algorithm.
The CPU utilizations of both the partitioning nodes and joining nodes decrease as the levels of network con-
tention increase. The CPU utilizations of the Grace processors are relatively lower than the CPU utilizations
presented for the Hybrid algorithm. This is due to the fact that for a given resource level. the Grace algo-
rithm uses a greater number of processors than does the Hybrid algorithm. Conversely. the fact that the
Grace algorithm uses fewer disks than the Hybrid algorithm for a given resource level leads to the relatively

higher disk utilizations that are seen for the Grace algorithm.

4.6. Other Tests
Similar results were obtained when we varied the network bandwidth and the DMA rate. With a net-

work bandwidth of 10 Mbits/second and a DMA rate of 4 Mbits/second (the slowest configuration tested).

almost hinear speedups were obtained up to approximately a resource cost of 20.° After this point. the net-
work tended to become completely utilized and throughput remained constant.

We have, so far. chosen the same type of processors for the partitioning and joining nodes for the
three alternative Grace designs. Join queries with varied distributions of join attribute values may provide the
possibility of altering the balance of performance between the processing and joining nodes. We plan on

investigating this alternative.

8 Disk 1/0 blocking factors have been reduced to as low as 8 Kbytes without significantly altering the
performance of the algorithms.

9 The actual point-varied with the MIP rate of the processors.




21

5. Conclusions and Future Research

In this paper, the hash-join algorithms presented in [DEWI84a] were extended to a multiprocessor
architecture. As a first step. the algorithms described in [DEWI84a] were implemented using WiSS
[CHOUS83] running on a VAX 11/750 running 4.2 Berkeley UNIX. In addition to providing CPU and 1/0O
utilization figures for use in the simulation of the multiprocessor algorithms. these centralized experiments
provided two interesting results. First, the measured performance of the algorithms was very similar to that
predicted analytically in [DEWI84a]. Second, bit vector filtering [BABB79] was shown to provide a
dramatic reduction in the execution time of all algorithms including the sort merge join algorithm. In fact,
for the one query tested. with bit-vector filtering all algorithms had virtually the same execution time.

We also extended the centralized Grace and Hybrid hash-join algorithms to a common multiproces-
sor configuration. These two centralized algorithms were chosen as they each provide a natural point for
separating the joining and partitioning phases of the algorithm. The multiprocessor Hybrid algorithm uses a
multiprocessor configuration consisting entirely of nodes having an associated disk drive. The nodes are used
for both the partitioning and join phases of the algorithm. Three configurations of ’the multiprocessor Grace
algorithm were evaluated: Grace 1:1. Grace 2:1. and Grace 1:2. In the 1:1 design one diskless joining pro-
cessor is allocated for each partitioning processor. The 2:1 design allocates two partitioning nodes for each
diskless joining node. The 1:2 design has one partitioning node for every two diskless joining nodes. The
results from the simulation experiments of these algorithms is very encouraging as both algorithms provide
linear increases in throughput with corresponding increases in processor and disk resources.

There are two interesting extensions to this research that we are currently exploring. This first is

what we term adjustable join parallelism. By adjusting the partitioning algorithms. the number of buckets
produced can be adjusted.’® This in turn, effects how much parallelism can be used during the joining

phase.!! For example. if the partitioning phase produces just two buckets. than at most 2 processors can be

used during the joining phase. There are a number of cases when such a technigue might be useful:

10" Constrained by the requirement that each bucket be reasonably be expected to fit into the memory of
the joining processor.

H Equivalently, multiple buckets can be assigned to the same join processor. Since only one bucket will
- be-active-at any given time, the level of parallelism is controlled.
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(1) load balancing under heavy loads
(2) low priority queries

(3) joins of small relations - Too much parallelism doesn’t make sense if the relations being joined are
small.

A second promising area is the use of bit filtering in multiprocessor hash join algorithms. There are a
number of ways bit filtering [BABB79. KITS83] can be exploited by the multiprocessor hashing algorithms.
For example. each joining node can build a bit vector simultaneously with the construction of a hash table.
When completed. the bit vectors would be distributed to the partitioning processors. The partitioning proces-
sors could maintain the bit vectors on a per bucket basis. Alternately. the partitioning nodes might merge the
per bucket bit vectors into a single bit vector. The bit vector(s) would then be applied during the partitioning
of relation S. This strategy. plus a number of other bit vector filtering strategies. look promising.

Finally. we intend to use these algorithms as part of the Gamma Project. Gamma is a new database
machine project that was begun recently. Gamma will provide a test vehicle for validating our multiprocessor
hash-join results. Gamma will be built using the Crystal multicomputer [DEW184b] and WiSS [CHOUS83]
as a basis. The Crystal Multicomputer project was funded as part of the National Science Foundation’s Coor-
dinate Experimental Research Program. Crystal is a network of bare VAX 11/750 processors (currently
twenty, eventually forty) serving as nodes. connected by a 10 Mbit/second token ring from Proteon Associates
[PROTS83]. This ring is currently being upgraded to an 80 Mbit/second ring. Nine node machines have
attached disks. File and database services are provided to Crystal "users” using WiSS. Crystal software pro-
vides a simple operating system (NOSE) with multiple. lightweight processes with shared memory and reli-
able connections to NOSE processes on other node machines and UNIX processes on the host machines
(Vax’s running 4.2 Unix). WiSS runs on top on NOSE. Crystal. NOSE. and WIiSS are all operational and in
production use.
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