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ABSTRACT

We propose in this paper an extension to the token ring protocol that allows special type of arith-
metic, called shifi arithmelic. 10 be performed directly on the nodes’ interfaces. The new protocol is
based on the approach that the communication channel together with the interfaces can form an
environment in which simple commands can be executed. Each command operates on operands
located at the interfaces and places the result at the interface that initiated the command. The com-
mands utilize the mandatory 1-bit delay of the token ring protocol to implement arithmetic and logical
operations on the operands. We present a low level command structure. and high level very efficient
algorithms that use the simple commands to compute commonly used functions. The goal of this
protocol is to enhance the performance of distributed algorithms on ring networks by performing
many simple tasks in the lowest possible level. This reduces the processing overhead generated by
the need for synchronization and data movement through the different protocol layers. Potential
application areas include parallel algorithms. distributed simulation, load balancing, distributed
operating systems, distributed databases, and real-time computations.

1. INTRODUCTION

Local area networks are designed to provide low cost fast exchange of information among com-
puters in a limited area. The complexities involved in designing protocols that support the network
operations lead to a design that includes several hierarchical layers. The protocol of the lowest layer
(the physical layer) is responsible for the raw transmission of bits, while the highest layer deals with
the actual applications. In between. there are layers that are concerned with establishing connec-
tions. dividing messages to packets and then to data frames, receiving acknowledgements, providing
fault tolerance. etc. Some of the main delays involved in local area network communication are
caused by the need to move through all the protocol layers.

In this paper we study the possibility of extending the function of a local area network from
“‘passive’’ exchange of messages to “‘active™ computation involving information distributed among
the communicating nodes. An example for such a computation is evaluating the average machine
load in a distributed system. which is very useful for load balancing. The data required for this com-
putation in each node (in the example above one number) is very specific and need not go through
some of the protocol layers that deal with general type of data. In addition, the physical layer in
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some cases already contains significant processing power and can handle the computation (addition in
the example above) with little overhead. We regard the communication channel together with the
interfaces as an integral environment in which simple commands can be executed. We call this
environment, together with the command structure. ATON. Each ATON command operates on
operands located at the interfaces and places the result at the interface that initiated the command.
The protocol we propose is an extension of the token ring network protocol. It supports several sim-
ple commands very efficiently. These commands can in turn be used to implement algorithms for a
variety of applications.

In a token ring network a special bit pattern. called the roken. is circulated around the network.
Each station (node) that wants to transmit listens and tries to identify from the sequence of bits it
receives the bit pattern corresponding to the token. say 11111111, When the token is identified the
station modifies it (e.g.. by inverting the last bit to 0) and then transmits its message. This station is
said to be holding the token. Since there is now no token. no other station can transmit. The token
must be appended to the end of the message. In order to decide whether a sequence of bits is indeed
the token. each node. which receives one bit at a time, has to “‘run’’ it through a pattern matching
circuit. If a bit is found to be the last bit of a token then it is inverted: otherwise the same bit is sent.
As a result. there is a 1-bit delay caused by the decision process [Ta81].

Consider a loop network of n node machines such that each machine / maintains a number »;.
Assume that we want to compute the sum of all the x;’s and have the result in one machine. In a
regular network architecture each machine will have to send a message containing its value.
Whether all messages go to one machine or a distributed algorithm is used (e.g.. summing all the
numbers along a logical tree). it is clear that n—1 messages are required. A loop network allows
only one message at a time. hence a significant time is required if » is even moderately large. On
the other hand. if we add to the pattern matching mechanism in the token ring protocol a simple
adder we can perform the addition of all the numbers with only one ‘‘active’” message. Assume that
one node initiates the computation and sends its own number to the network with the least significant
bit first. Let each machine maintains a register with its number. and a bit for the carry: when the bit
from the network comes in it is added to the appropriate local bit and the carry. the output is sent to
the neighboring node. and the carry is updated. This is a simple example of the kind of operations
that can be efficiently performed directly on the nodes’ interfaces. The reason for the efficiency is
that addition can be performed sequentially bit by bit. We call such computations shifi arithmetic
computations.

In this paper we present a low level command structure, and high level very efficient algo-
rithms that use the simple commands to compute commonly used functions. The paper is organized
as follows. In section 2 we present a command structure that supports several functions which can
be computed by shift arithmetic. In section 3 we discuss how to implement the command structure
on top of the token ring protocol. We selected functions which on the one hand offer a wide variety
of applications. and on the other hand are easy to implement. These functions are by no means the
only functions that can be efficiently implemented. They serve as examples for the validity of the
idea rather than a final design. In section 4 we give examples of algorithms that utilize active mes-
sages and demonstrate that shift arithmetic is powerful. In section 5 we describe several applications.
in section 6 we suggest extensions to the basic implementation, and we present conclusions in section
7.

We are only at the beginning phases of the ATON project and the emphasis in this paper is on
presenting the main ideas and their feasibility rather than describing a complete system. We do not
advocate using this extension for every network. In many cases there are few, if any, arithmetic
operations of values distributed among the nodes that need to be performed. In these cases the net-
work serves only as a logical point-to-point communication network with little cooperation or shar-
ing. We believe though that as more distributed operating systems are built and more distributed
applications are developed there will be a need for very efficient computation in the lowest level.
Several such applications are discussed in section 5.



2. COMMAND STRUCTURE

The operands of an ATON command are integers that are located at the network interfaces.
Each ATON interface has an operand register in which the operand is stored. The command
operates on this set of physically distributed operands and produces an integer result that is placed at
the interface that initiated the command. The command is executed in a pipeline fashion con-
currently on the n interfaces. Each stage of the pipeline is an operation on two or more bit
operands. The first bit operand is taken from the stream of bits coming from the network. The
second bit operand is taken from the local operand register. There may be other bit operands. for
example a carry for addition or a condition code to compare operations. The operation produces a
one bit result that is sent out to the network, and it may also modify the local operands.

Each interface may trigger the execution of a command by sending an active packet. The
access to the ring is controlled according to a regular token ring protocol and thus an interface has to
wait for the token to reach it before a command can be triggered. An interface that wishs to trigger a
command. the T-inierface of the command. must first build an active packet in a local buffer. The
type of packet. passive or active, is determined according to the value of a flag which is part of the
header of the packet. Both types of packets have the same structure. Figure 1 illustrates the format of
a packet. A packet consists of three main parts. /ieader, data, and trailer. The header contains four
fields. The first field marks the beginning of the packet. the second field contains a number of con-
trol flags. the third field includes the destination address. and the fourth field contains the address of
the interface that sent the packet. The set of operands on which an active packet operates is deter-
mined by the value of its destination address. This set of operands constitutes the execution region of
the command. We currently allow only two types of execution regions - the entire network or a sin-
gle interface. However. it is possible to extend the addressing mechanism so that execution regions of
various sizes are supported.

The data part of an active packet can be viewed as a carriage on which intermediate results are
transferred from one interface to its neighbor. ATON is taking advantage of the fact that the archi-
tecture of a token ring enables every interface to change the content of a packet as it passes by. The
interface uses the information stored in the data part of an active packet as an input operand and
replaces this information with the result of its local computation. The data part consists of three
fields. Counter. Variable-1. and Variable-2. Counter records the number of participating interfaces.
Each active interface increments the value of Counter. Counter is used by the T-interface to deter-
mine whether the expected number of interfaces have taken an active part in the execution of the
command. Variable-1 and Variable-2 contain intermediate results whose type depends on the com-
mand. They serve as the operands to the pipeline. More details on these fields will be given later.

The trailer of the packet consists of three fields. The first field contains a set of standard con-
trol flags, the second field contains the Cyclic Redundancy Check (CRC) of the packet, and the third
field is a delimiter that marks the end of the packet. The CRC field of an active packet will be modi-
fied by every interface that participates in the execution of the command. An interface uses the
incoming CRC to verify the content of the data it has received. It then sends a new CRC that reflects
the changes in the active packet. In case of an error, the interface that detects the error places a CRC
that does not match the new content of the packet. As a result, the error will propagate to the T-
interface, which will then disregard the result.

Eight instructions constitute the basic command set of ATON. The logic of all basic com-
mands does not require more than 1-bit delay per interface. Each basic ATON command can be exe-
cuted as a sequence of one bit operations and thus no intermediate buffering is required at the inter-
face. We assume that the token ring uses a differential Manchester code [AS82] to convert binary data
into analog signals so that there is no need for a bir siuffing mechanism [Pr82].

In the comming paragraphs we will present the commands and define their meaning. We
denote the operand of the T-interface by x, and the rest of the operands by x,. - - - .x, in the order
they appear in the ring. A simple hardware extension to the token ring interface that implements the

ATON command set will be discussed in section 3. The ATON command set consists of the
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Figure 1: ATON Packet Format

following three groups of commands:

arithmetic: The first group of commands includes three commands, ADD, AND, and OR. The
first command computes the sum of x;...... x, whereas the two latter commands perform the
AND and the OR operations on these n operands respectively. Each interface places the inter-
mediate result of the computation in Variable-1.

select: In many cases a group of numbers is searched in order to select one of its members
that meets a given condition. A search for the largest number or the smallest number of a
group are two examples of such an operation. So far we have included only two commands in
this group - the MAX and the MIN command. The MAX command computes the maximum of
Xy. - - - .x, whereas the MIN command finds the minimum of these n operands. However.
we believe that more commands will be included in this group as more algorithms that are
based on the ATON protocol will be developed. Variable-1 plays the same role in the execu-
tion of a select command as it plays in the previous group of commands. However. unlike
arithmetic commands. a select command utilizes Variable-2 as well. The address of the inter-
face whose operand register has been selected by the command is stored in Variable-2. (If
several operands satisfy the condition then the last address will appear in Variable-2.)

counting: Unlike the previous command groups. the value of x; plays a special role in the exe-
cution of commands that are part of the count command group. Each count command counts
the number of times x; REL x; is true. where REL is either =, <, or =. The value of x, is
stored in Variable-1 by the T-interface. It remains unchanged throughout the execution of the
command. Variable-2 is used as the counter. Note that by using the value of the counter field



from the header part of the packet the T-interface can find the number of operands that do not
meet the given relation. Therefore all basic relations are covered by these three commands.

3. IMPLEMENTATION

In this section we present a schematic description of the structure and functionalities of the
ATON interface. We will address the key issues related to the structure and operation of the interface
and discuss how the different types of commands are executed by the interface.

The structure of an ATON interface is similar to the structure of a token ring interface like the
ProNET interface [Pr82] The interface consists of a Modem, Input machine, Ouipui machine, and a
buffer. Figure 2 presents the schematic structure of an ATON interface. The buffer unit of an
ATON interface includes. besides storage facilities for incoming and outgoing packets, a set of regis-
ters. The current set of commands utilizes ten different registers. One of these registers is the
operand register. The results of a command are stored in three registers. All registers can be set and
tested directly by the host CPU. Accessing the registers should be a simple operation with minimal
overhead. The input machine is responsible for address recognition and OPC identification. The
machine maintains bit and field counters. and directs both incoming data and the results of the dif-
ferent commands to the buffer unit. Transient passive packets. as well as active packets triggered by
other interfaces. are forwarded by the input machine to the output machine.

The novelty of the ATON protocol is encapsulated in the output machine of the interface. In
figure 3 we show the structure of the output machine. The main logic associated with the execution
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of an ATON command is located at this machine, which is composed of two components - an arirh-
metic unit and a compare/select unit. The arithmetic unit consists of a one bit adder. an AND gate
and an OR gate. The three arithmetic commands as well as all the counting operations associated
with the execution of other commands are performed by this unit. The operands of an add operation,
both the one stored at the interface and the one stored in the active message. enter the add operation
with their least significant bit first. The operand is stored in the packet with the least significant bit
closest to the header and the operand register is fed into the arithmetic unit via a shift operation that
moves from the most significant bit towards the least significant bit.

The second unit. the compare/select (CoSel) unit. is composed of a selecior. a set of flags. and
a Test and Ser (TeSet) component. The CoSel unit performs the selection commands and checks the
relation of count commands. The flags. set by the TeSet logic. control the operation of the selector.
The selector determines whether the bit coming from the network or the bit coming from the operand
register will be sent to the network at the next clock tick. The replacement of the Variable-1 field of
a MAX or MIN command is performed by this component of the CoSel unit. The TeSet component
identifies the first bit place in which the operand register differs from Variable-1 and determines
whether Variable-1 is greater than or less than the operand register. A flag that reflects the relation
between the two operands is set accordingly. In the case of a MAX command setting the Greater Then
flag leads the selector to send bits from the operand register to the network, whereas the same setting
will have an opposite effect in the case of a MIN command. The flags are also used when the
Variable-2 field of selection and counting commands is processed. The values of the flags determine
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whether the Variable will be incremented (in case of a count command) or loaded with the interface
ID (in case of a selection command).

4. EXAMPLES OF EFFICIENT ALGORITHMS

In this section we give examples of efficient algorithms to demonstrate the power of shift arith-
metic. We have already shown that certain simple algorithms such as finding the minimum or max-
imum can be performed with one message. More complicated algorithms. which require some
modifications to the basic command structure, are described here. We believe that these algorithms
are typical of the use of ATON. The necessary modifications to the command structure will become
obvious with the description of the algorithms.

1. Sorting

Sorting can be performed with one (long) message in the following way. Initially the T-
interface sends its operand. At step i the message consists of /i—1 operands in increasing
order following each other. Node i compares its operand with each of the /—1 operands until it
finds the correct place to insert it. It then uses a shift register to buffer the rest of the message
(one operand at a time) while it inserts its operand to the message. (This is similar to the way
insertion rings work; see [Li78]). We now show that finding the right place to insert can be
done with only 1-bit delay. Let the incoming message be denoted by aja, - - - g, (the g;’s
are the sorted order of x; to x;_,, and they are represented with the most significant bit first).
The operand x; at the node is compared bit by bit to the g,’s. At the same time, the current g;
is put in a shift register. This is done in a very similar way to the MIN or MAX commands.
Assume that x; > g, and consider the comparison of x; and a,. Let x; and g, differ first at
bit j. This bit determines which one of the two is larger. If x; is larger then the node contin-
ues to output g, ; otherwise it continues to output the rest of x; while the rest of g, is put in the
shift register. In this case a;, ; will be put in the shift register while g, is output. and so on.
At the end the message will contain all the 1 operands sorted. The amount of delay equals the
total number of bits. and this is optimal in the worst case since all the bits may have to move.
No additional time. besides the message delay. is spent for the actual sorting.

2. Finding a majority

The problem is the following: Given n nodes such that each node i contains an integer x; with
k bits. determine whether there exists a majority, namely a number that appears more than %
times. If a majority exists then find it: otherwise report that no majority exists. This problem
is important for recovery in distributed databases [Th79]. An optimal sequential solution is
given in [FS82]. The solution we propose consists of two active messages. The first message
is divided into A parts each of size [log,n]. (This message is longer than regular messages.)
Each part corresponds to one bit. Initially each part contains, as the leading bit. the
corresponding bit of the node that initiated the message. Each node adds its bits to the
corresponding parts. The outcome of this message is thus for every O=i=<k-1 the sum of the
n i'th bits. The originator of the message now computes a number x such that bit / in x is |
if and only if the corresponding /’th sum is greater than %n. If there exists a majority M then
in particular each bit in M appears more than %n times, hence it is equal to x. We only need
to verify that a majority exists. This can be done by sending another active message with the
basic command of counting the number of times x appears.

3. Emulating tree computation
Consider a computation which is performed on a (logical) tree such that the operands are in the
leaves and each internal node represents an arithmetic or logical operation. For example, the
tree can be a parse tree of an arbitrary expression. Assume, for simplicity, that the tree is bal-
anced, that it contains n leaves (n is a power of 2) each of them resides at a different node in
the network, and that the tree is fixed. Assume, furthermore, that all the operations can indivi-
dually be performed by shift arithmetic with 1-bit delay. The computation can be performed



with only one active message in a similar way to the sorting algorithm. Conceptually, all even
nodes perform the operations at height 1, all the nodes with indices divided by 4 perform the
operations at height 2 and so on. The last node perform log,n operations ending with the root.
In reality, all the operations above are pipelined. and most can be done concurrently. We omit
the details of the algorithm.

5. APPLICATIONS

Consider first a multicomputer environment with a distributed operating system. In order to
fully utilize such a multi-resource environment we would like to distribute work among the proces-
sors so that idle processors can help others with full load. One of the major problems in designing
an effective load balancing mechanism is communication costs. We have identified this problem as
the rransmission dilemma of a load balancing strategy [LM82]. One aspect of this dilemma is how to
provide all the processors with an updated picture of the instantaneous load distribution of the sys-
tem. A number of studies have addressed the load balancing issue and several different answers to
this dilemma have been developed [Li83, BS84, KF84]. Some of the proposed algorithms are based
on frequent computation of the average load of the system, whereas others are based on a polling
approach. Both approaches limit the rate at which information is being exchanged in order to main-
tain the level of processing and communication overhead due to load balancing activity at a ‘reason-
able’ level. ATON provides an environment where both polling and average load computation can
be performed in a very simple and efficient manner. Selecting the node with the maximum or
minimum load as well as obtaining the average instantaneous load of the system requires only one
ATON command. Therefore. the exchange of information regarding the load distribution of the sys-
tem can be performed frequently and an up to date picture of the system load can be maintained by
all processors.

A more specific problem of load balancing was encountered in the design of DIB - a Distri-
buted Implementation of Backtracking [FM85]. DIB is a general-purpose package that allows appli-
cations that use backtrack or branch-and-bound to be implemented on a multicomputer. It is based
on a distributed algorithm. transparent to the user. that divides the problem into subproblems and
dynamically allocates them to the available machines. The package runs on the Crystal multicom-
puter at the University of Wisconsin-Madison. Any number of machines may be devoted to the
application. The distribution of work in DIB is dynamic. When a machine M, finishes the work it
was given it sends a ‘‘request for work™" to another machine M. If M, is currently working it
divides its work and sends part of it to M,. The performance of the algorithm depends very much on
the way the selection of who to ask for work is done. On the one hand we would like to assign M,
higher priority work, but on the other hand we cannot afford to poll all machines every time work is
sought. The following algorithm can be used with the ATON network.

Each piece of work is assigned (by the designer of the application) a priority. Each node main-
tains a queue of work to be done (organized as a heap). The highest priority of work on the queue is
always put on an ATON register. This register is updated by the node whenever the highest priority
work is changed. When a node looks for work it first sends an ATON message seeking the node with
available work of highest priority. It then sends a regular *‘request for work™* message to that node.

Another area of distributed computation that can benefit from the efficiency of the shift arith-
metic approach is distributed simulation. In order to reduce the amount of storage utilized by a distri-
buted simulation that runs on a Time Warp machine, the value of the global virmal time (GVT) has to
be maintained by the system [DH85]. The GVT is used by each processor to release memory space
occupied by useless information. Any information about events or messages with a time stamp
smaller than GVT is useless and thus can be removed. If every processor maintains a copy of its
timer in its operand register of the ATON interface. a processor can derive the current value of
GVT by triggering the MIN command. The low overhead of such a command enables a frequent
update of GVT and thus reduces the memory requirements of the simulation. Such a reduction



increases the applicability of the time warp approach.

Other applications of ATON include distributed operating systems (finding available
resources). distributed databases (optimizations of distributed queries, recovery algorithms, etc.). and
real-time applications (data collection).

6. EXTENSIONS

So far we assumed the existence of only one operand register. As a result only one application
using ATON can be performed on the network. In general. it is possible to add a cache to the inter-
face, such that everv command includes the address of the appropriate operand in the cache. Fetch-
ing a word from a small cache can still be done within the 1-bit delay. This will enable several dif-
ferent applications to run at the same time. although not concurrently, in the network.

Some algorithms need to be executed frequently (e.g.. finding the average load, number of
active nodes). One way to do it is to have the node machines update the cache with the correspond-
ing variables periodically. Then let the interfaces run these operations (by initiating the appropriate
active messages) only when the network is not used for a while - for example. whenever a node sees
the token twice in a row.

Another possibility to extend ATON is by allowing more than 1-bit delay for the shift arith-
metic operations. As long as the delays are not cumulative their effect is not too significant. We
found algorithms that can be improved with additional delays. for example. the majority algorithm.

7. CONCLUSIONS

We studied in this paper the feasibility of designing network protocols that allow efficient
implementations of active messages. Active messages are simple commands that are performed on
operands which are located at the network interfaces of the node machines. The new protocols make
the communication channel together with the interfaces an environment in which simple computation
can be carried out very efficiently. We have shown that these protocols can be implemented without
a significant overhead and with little additional hardware. and that they enhance the performance of
distributed algorithms on ring networks.
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