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1. Introduction

It is widely recognized that advances in semiconductor technology have had a powerful impact
on computing. Its influence. however. has not been uniform across the computing spectrum. In
particular, microcomputer-based systems have seen enormous improvements in cost-effectiveness,
producing seemingly endiess miracles for consumer products. The impact on larger. more powerful
computers has been much less dramatic. For computers with a CPU implemented on more than one
chip. by far the most important advance has been a reduction in memory cost. While microproces-
sors also have access to equally cheap memory. it is relatively more expensive in these systems
because the CPU cost is so low. This has resulted in different attitudes toward memory in micropro-
cessor systems as opposed to minicomputers and mainframes. Indeed. a major distinction between
minicomputers and microprocessors now is the amount of memory they access. both virtual and real.

What is the future direction of computer memory systems? We would like to suggest that there
is a fundamental distinction between those for single-chip processors and those for CPUs imple-
mented with many integrated circuits. The limitations imposed by interchip communications are so
substantial compared to internal communications that this distinction must be one of the most impor-
tant considerations in the design of a new computer architecture. For single-chip processors.
memory will always be more expensive relative to computing power than for multi-chip CPUs.

1.1. A Very-High-Performance Single-Chip Processor

It will soon be possible to fabricate an extremely high-performance CPU on a single chip,
roughly the size of today’'s mass-produced microprocessors. However. devoting the entire chip to the
CPU is not a good idea. The communications necessary to utilize effectively such a powerful proces-
sor are substantially greater than that feasible in a 64-pin. or even 100-pin, package. Though there
is substantial interest in packaging techniques that greatly expand the number of pins. this advance
brings with it major problems. Among them are

(1) a decrease in reliability. which is closely related to the number of pins. and

(2) an increase in power consumption. An increasing proportion of the total power of a chip is
consumed driving signals off-chip.

For these reasons. we believe that the total communications bandwidth onto a VLSI chip will become
an increasingly severe limitation.

Extrapolating historical trends to predict future component densities. in a few years we might
expect years to purchase a single-chip processor containing at least ten times as many transistors as
in. say. the MC68020. For the empirical rule known as Grosch’s law [Grosch53). /=4 C ¥,
where P is some measure of performance. C is the cost. and A and g are constants,
Knight[Knighto6] concluded that g is at least 2. and Solomon|[Solomon66] has suggesied that
¢=1.47. For the IBM System/370 family. Siewiorek determined that ¢=1.6 [Siewiorek82]. While
Grosch’s law breaks down in the comparison of processors using different technology or architec-
tures, it is realistic over a limited range for predicting improvements within a single technology.
Siewiorek in fact suggests that it holds **by definition. ™

Assuming ¢ = 1.5, using processor-memory bandwidth as a measure of performance. and
number of transistors (or gates) as a measure of cost. Grosch’s law predicts that a processor contain-
ing 10 times as many transistors as a current microprocessor would require 30 times the memory

bandwidth.! The Motorola MC68000, running at 12.5 MHz, accesses data from memory at a max-
imum rate of 6.25 million bytes per second. using more than half its pins to achieve this rate.
Although packaging technology is rapidly increasing the pins available to a chip. it is unlikely that
the increase will be 30-fold (the 68000 has 64 pins). We would suggest a factor of two is realistic.
Although some techniques are clearly possible to increase the transfer rate into and out of the 68000,
supplying such a processor with data as fast as needed is a severe constraint. One of the designers of

T This is a conservative estimate. in fact. because it sgnores predictable decreases in gate delays
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the 68000. has stated that all modern microprocessors - the 68000 included - are already bus-limited
[Tredennick82].

1.2. On-chip Memory

One alternative for increased performance without proportionately increasing processor-
memory bandwidth is to introduce memory on the same chip with the CPU. Several recently
announced. high-performance microprocessors. (e.g., the MC68020 and Z80000). include an on-
chip cache. While devoting the entire chip to the CPU could result in a more powerful processor,
introducing on-chip memory offers a reduction in memory access time due 1o the inherently smaller
delays as compared to inter-chip data transfers. If most accesses are on-chip. the slower processor
can outperform the more powerful one because of the reduced memory latency.

Ideally. the chip should contain as much memory as the processor "needs” for main storage.
Conventional wisdom today says that a processor of the speed of current microprocessors needs at
least 1/4 megabytes of memory [Lindsay81]. This is certainly more than is feasible on-chip. though
a high performance processor could make good use of several megabytes. Clearly in the foreseeable
future. all the primary memory for the processor cannot be placed on the same chip with a powerful
CPU. What is needed is the 1op element of a memory hierarchy.

The remainder of the paper is organized as follows. Section 2 discusses the issue of bus traffic
between the cache and main memory. Section 3 discusses the architecture of single-board comput-
ers. and limitations imposed by the backplane bus. Section 4 discusses the issue of data consistency
in the presence of multiple cache memories. and describes a technique appropriate for single-chip or
single-board computers for assuring consistency. Section 5 presents simulation results for a variety
of cache designs. Section 6 contains our conclusions.

2. Cache Memory

Cache memory is effective because it exploits the non-random nature of memory reference pat-
terns. This is usually characterized as two types of locality. sparial and remporal. Spatial locality
reflects the fact that memory locations with small addresses relative to a location just accessed are
much more likely than average to be accessed in the near future. Temporal locality reflects the fact
that references to a given location tend to be clustered in time.

The use of cache memory. however. has often aggravated the bandwidth problem rather than
reduce it. Spatial locality is generally exploited by fetching a large block of data whenever a miss
occurs. As a result. often a larger burst bandwidth is required from main storage to the cache than
would be necessary without a cache. For example. the cache on the IBM Svstem/370 model 168.
receives data from main memory at a burst rate of 100 megabvies per second [IBM76]. supplving
data to the CPU at less than 1/3 that rate. This is done in order to exploit the spatial locality in
memory references. the data being transferred from backing store into the cache in large blocks. or
lines. but resulting in requirements for very high bandwidth bursts of data. We measured the aver-
age bandwidth on an IBM System/370 model 155. and concluded that the average backing-store-to-
cache traffic is less than the cache-to-CPU traffic.

The cost of providing a high-bandwidth path from main storage to a cache (and the high-
bandwidth memory itself). while reasonable for main-frame computers. is relatively more expensive
for mini-computers. Lowering the bandwidth from backing store to the cache can be accomplished
in one of two ways:

(1Y bring in small blocks of data from backing store to the cache. or

(2) accept long delays while a block is being brought in, independent of (and in addition to)
the access time of the backing store.

While it is possible to bring in the word requested initially (read through). thus reducing the wait on
a given reference. the low bandwidth memory interface will remain busy long after the initial transfer
is completed. resulting in long delays if a second backing storage operation is required. This also
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creates complicated bookkeeping operations if a cache is repeatedly accessed while a line is partially
filled.

The designers of the PDP-11 models 60 and 70 chose small line sizes to keep main memory
traffic low [Bell78]. This choice reduces cache effectiveness, particularly at the time of a context
switch. when spatial locality can best be exploited. It apparently was made to reduce cost. but even
s0. a new cache/main memory bus was introduced for systems including a cache.

In the single-chip processor, increasing the off-chip memory bandwidth is extremely expensive,
and high bandwidth is simply unavailable. Thus spatial locality is difficult to exploit and we must
relv on temporal locality for the cache effectiveness. We have explored cache memorv which exploits
primarilv or exclusively temporal locality, i.¢.. the blocks fetched are near the minimum size possi-
ble.

3. The Single-Board Computer

It happens that the single-board-computer business -- already a major market -- contains the
same basic constraint. processor/memory bandwidth. Though several standard buses exist. by far

the most popular is IEEE Standard 796-1983. which is essentially the Multibus -

A single board computer typically contains a microprocessor and a small number of memory
chips. If needed. access to additional random access memory is through a backplane bus. which is
designed for generality and simplicity. not for high performance. Mulubus. in particular. was
defined in the early 70s to offer an inexpensive means of communication among a variety of sub-
systems. Nearly a thousand different Multibus cards are available from hundreds of vendors.

While the market has rapidly developed for products using this bus. its applications are limited
by the severe constraint imposed by the bandwidth of Multibus. Clearly the bus bandwidth can be
increased by increasing the number of pins. and by modifving the protocol. This has in fact been
done with Multibus 11 [Intel]. The broad popularitv of Muhibus and the availabilitv of components
1o implement its protocol suggest. however. that it is likelv to survive many vears in its present form.
Thus a large market exists for a computer-on-a-card which. much as if it were all on a single chip.
has severe limitations on its communications with the rest of the system.

Multibus systems have generally dealt with the problem of limited bus bandwidth by removing
most of the processor-memory accesses from the bus. Each processor card has its own local
memory. which mav be addressable to others through the Multibus. While this approach might be
considered a user-managed cache. we believe that the allocation of memory - local or remote -
should be handled by the system. freeing the programmer of this task. In typical Multibus applica-
tions. much effort is expended guarantecing that the program running is primarily resident on the
same card with the CPU. This approach is viable for a static partitioning of tasks. Svstems trving to
allocate processors dvnamically have generally found it necessary to include a higher-performance
bus [Isaack82. Frank84].

In many environments, a simple dynamic hardware allocation scheme can efficiently determine
what memory locations are being accessed frequently and should therefore be kept in local memory -
better than the programmer who often has little insight into the dynamic characteristics of his pro-
gram. There are environments where the programmer is intimately familiar with the behavior of his
program and can generate code to take advantage of it. In this environment the time spent running a
program is often much more substantial than the time developing the program. This explains, for
example, why an invisible? cache is not appropriate on the CRAY-I. Freeing the programmer from
concern about memory allocation is essential where programmer productivity is critical. however.

We suggest as an alternative a single-board computer containing. (possibly along with other
things) a CPU and no local memory except a cache, with backing store provided through Multibus.

) . . . . .
“Multibus is a trademark of Intel Corporation

3Some would arguc that the Jarge number of registers in the CRAY-] architecture constitute a user-visible cache
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While several commercial products exist which have a microprocessor and cache memory on a single
board. all the systems of which the author is aware involve the use of a much higher speed backplane
bus. Particularly important is the ability for multiple processors -- including some not containing
cache -- to work in parallel. Thus the well-known consistency problem resulting from memory
redundancy must be solved. We present a solution in section 4.

We believe that a system which could reasonably support 5 to 10 such processors would be a
significant advance. This can’t be compared directly against current systems because a single pro-
cessor overloads the Multibus. Thus local memories must be heavily exploited if performance is
important,

Earlier cache studies [Kaplan73. Bell74. Rao78. Patel82] have used the cache hit ratio or
something closelv related to measure performance. The important criterion here is to maximize use
of the bus. not the hit ratio. or even necessarily to optimize processor performance. We optimize
system performance by optimizing bus utilization. achieving higher performance by minimizing indi-
vidual processors’ bus requirements. and thereby supporting more processors. We allow individual
processors 1o remain idle periodically rather than create bus traffic prefetching data which they might
not use.

We have identified two distinct computer classes -- single-chip. high-performance processors of
the future and single-board computers using standard backplane buses -- each of which has as a
major constraint. not the memory access time, but rather the rafe at which it supplies data to the pro-
Cessor.

4. Cache Coherency

It is well-known that multiple caches present serious problems because of the redundancy of
storage of a single logical memory location [Tang76. Censier78. Rao78]. The most common method
among commercial products for dealing with this. the stale data problem. is to create a special.
high-speed bus on which addresses are sent whenever a write operation is performed by any proces-
sor. This solution has weaknesses [Censier78] which have generally limited commercial implemen-
tations to two caches. In the single-chip processor or single-board computer environments. it has the
added weakness that it involves additional communications bandwidth off-chip.

An alternative approach. implemented in C.mmp [Hoogendoorn77] the Honeywell Series 66.
and Elxsi 6400. is to require the operating svstem to recognize when inconsistencies might occur and
take steps 1o prevent them. This solution is unappealing because the cache is normally regarded as
an architecture-independent feature. invisible to the software.

A third approach. variations of which have been proposed by Censier and Feautrier [Cen-
sier78]. Tang [Tang76]. Widdoes [Widdoes79]. and Yen and Fu [Yen82]. is to use some form of
tagged main memory. keeping track of individual lines to prevent inconsistency. An individual line
is temporarily designated as privaie for a particular processor so that it may modify it repeatedly
without reference to main memory. The tag must be set whenever such a critical section is entered
and reset whenever the critical section is left. i.e.. the modified word is written back to main storage.
This approach requires substantial hardware. and appears infeasible for a large number of caches.
since an operation in a central place is required at the entry or exit of any critical section. though a
nice simplification of this approach has been proposed which reduces the hardware requirements
[Archibald84].

Another approach allows the critical section information to be distributed among the caches.
where it already resides. The Synapse N+ 1 architecture [Frank84] uses a tag bit in main memory to
keep track of ownership of 16-byte lines. By the use two distinct read requests. private and public.
the ownership is transferred to individual caches. A related scheme [Amdahl82] which uses a special
bus to convey the notice of entry or exit from a critical section, has been implemented in a commer-
cial product. but has not been published to our knowledge.



Our approach [Goodman83, Ravishankar83] has much in common with these approaches. but
uses the normal read and write operations, with no tag bits in main memory. to accomplish the syn-
chronization. It is called write-once.

4.1. Write Strategy

Two strategies are generally recognized for handling write operations in a cache. One. often
referred to as write-through or store-through, stipulates that all writes are immediately recorded in
main memory. The alternative. variously called write-back, siore-back. or copy-back. allows data to
be written temporarily only to the cache. memory being updated before the cache line is purged.
Write-through has the advantages that it is simpler to implement and that main memory is always
current. The latter is an important point because it means that only error dereciion is necessary
within the cache. Write-back generally has the advantage of fewer main-storage operations.

While the choice between write-through and write-back has no bearing on the read hit ratio. it
has a major impact on bus traffic. particularly as the hit ratio approaches 100% . In the limit. when
the hit ratio is 100% . write-back results in no bus traffic at all. while write-through requires at least
one bus cycle for each write operation. Norton [Norton82] concluded that using write-back instead
of write-through for a hypothetical processor typically would reduce the bus traffic by more than
50% and if the processes ran to completion bus traffic would be decreased by a factor of §. Pier
[Pier83] indicates that using write-back reduces traffic between the cache and main storage of the
Dorado by a factor of about seven for write operations. For typical read-to-write and hit ratios and
when task switching is infrequent. our simulations have confirmed that write-back generates substan-
tially less bus traffic than write-through.

But write-back has more severe coherency problems than write-through. since even main
memory does not always contain the current version of a particular memory location.

4.2. A New Write Strategy: Write-Once

We describe a write strategy which solves the stale data problem and produces minimal bus
raffic. While the scheme was developed to assure coherency among multiple caches and a main
memory. a surprising result is that it consistently generates bus traffic as low as the better of the two
traditional strategies. and in many cases is superior to both. The replacement technique requires the
following structure. Associated with each line in the cache are two bits defining one of four states
for the associated data:

Invalid There is no data in the line.
balid There is data in the line which has been read from backing store and has not been modi-
fied.

Reserved  The data in the line has been locally modified exactly once since it was brought into the
cache and the change has been transmitted to backing store.

Dirry The data in the line has been locally modified more than once since it was brought into
the cache and the latest change has not been transmitted to backing store.

As with most schemes that assure coherence. the tag memory must be queried periodically
because of activity other than from the attached CPU. Write-once requires this request to be serviced
quickly in order to assure consistency without delaying normal bus accesses. This can most easily be
achieved by creating two (identical) copies of the tag memory. Censier [Censier78] claims that dupli-
cation is "the usual way out” for resolving collisions between cache invalidation requests and normal
cache references. though we are unaware of any commercial products employing this method. Itis a
significant cost. particularly for a single-chip processor. but is necessary. In section 5.5 we show
that the size of the tag memory can actually be kept quite small despite the large number of tags
implied by a small line size. For the single-board computer, the cost could be as low as a single
replicated chip. though such a chip is not commercially available. (The TMS2150 [TI84] chip is
similar to what is needed but does not support write-back).
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The two copies of the tag memory always contain exactly the same data, because they are
always written simultaneously. While one unit is used in the conventional way to support accesses
by the CPU. (i.e.. any state but invalid signifies a valid address), a second monitors all accesses to
memory via the Multibus. For each such operation, it checks for an address match in the local
cache. If a match is found on a write operation. it notifies the cache controller. and the entry in both
tag memories is marked invalid. This should be done as soon as possible. and must be done before
any write requests from the CPU are satisfied. Finding a modified tag at this location indicates an
error.

If a match is found on a read operation. nothing is done unless the line has been modified.
i.ce.. its state is reserved or dirtv, If it is dirrv. the local system inhibits the backing store from supply-
ing the data. It then supplies the data itself * On the same bus access or immediately following it.
the data must be written to backing store. In addition. for either reserved or dirty data. the state is
changed to valid

This scheme achieves coherency in the following way. Write allocation is emploved in the
cache. This means that any modification to data can only be performed if it is in the cache. and
results in a fetch on a cache miss (the data may come from another cache). For unmodified (val/id)
data in the cache. write-through is employed. The resulting bus operation achieves an additional
goal: purging the copies from all other caches. The cache writing through the bus is now guaranteed
the only copy except for backing store. This is the meaning of the state reserved: **written once.”” If
it is purged at this point. no write is necessary to backing store. Since main storage contains the
correct value. it may be treated the same as valid data (and marked va/id) when accessed through the
bus. 1f another write occurs locally. the reserved line is marked dirry. Now write-back is employed
and no bus activity required. The local copy is the sole correct copy. however. and when purged (or
downgraded 10 valid). must be written 10 backing store.

Write-once has the desirable feature that units accessing backing store need not have a cache.
and need not know whether others do. A cache is responsible for maintaining consistency exactly for
those cases where it might create a violation. i.¢.. those lines that it modifies. Thus it is possible to
mix in an arbitrary way svstems which employ a cache and those which do not: the latter would
probably be 1/O devices. Considerable care must be exercised. however. when a write operation
over the bus modifies less than an entire line.

5. Simulation

To evaluate the effectiveness of cache memory in reducing processor/memory traffic we
evaluated the memory traffic for a variety of conditions using trace-driven simulation. We generated

and used six different traces for a VAX-11° architecture running UNIX® version 4.2bsd:

NROFF The program nroff interpreting the Berkeley macro package -me.
CACHE The trace-driven cache simulator program.

COMPACT A program using an on-line algorithm which compresses files using an adaptive
Huffman code.

AS The standard UNIX (VAX-11) assembler

GREP The UNIX string matching program grep. searching through the dictionary for a
nonsense string.

4There is 4 mechanism in Multibus which allows this capability  Unfortunately. it is rarely used. poorly defined. and requires
that local caches respond very rapidly, Other standard buses have cleaner mechanisms by which this end can be accom-
plished. usually involving & "retry” procedure

JVAX is a rademark of the Digital Equipment Corporation

SUNIX and NROFF are wrademarks of Bell Laboratories
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SORT The standard UNIX sorting program sorting the first 1000 entries in the diction-
ary.

The VAX is an example of a modern microcoded instruction set and, therefore is a reasonable
example of one kind of processor likely to appear in a single-chip CPU in the future. The trace pro-
gram actually generates virtual addresses. but all of the programs we ran are small enough to fit
easily into a million bytes of main memory. Since we are tracing only a single process. we conclude
that there is no significant difference between virtual and real addresses.

The traces were collected on a VAX-11 by a program using the UNIX prrace system call,
which sets the VAX trace bit to trap after each instruction. The instruction is then interpreted and
memory references are recorded. Thus the trace represents a single process executing without
interruption. This is unrealistic in a time-sharing environment. such as the one used to collect and
evaluate the data. where frequent interruptions occur for page faults. task-switching. and terminal
handling. We argue here. however, that in the single processor environment of the future. single
processes mayv actually run for long periods without interruption. so our trace is perhaps not unreal-
istic for the environment under investigation. It did result in substantially more optimistic predic-
tions than direct measurements have indicated [Clark83].

An additional effect. however. of the method used for tracing is that any svstem call appears in
the trace as a single instruction. When a svstem call requires changing the mode to kernel. (i.c.. a
CHMK instruction is executed.) the tracing is turned off until the occurrence of the corresponding
return (RE/). which restores the user mode. A large portion of all cache misses occur either on a
task switch or in the operating system [Smith82]. Treating the CHMK instruction like any other may
result in serious distortion of the actual memory reference patiern in two wavs:

(1) The svstem code executed may exhibit different memory reference behavior than the programs
being traced Being unable to trace programs running in kernel mode. we have so far been
unable to determine this.

(2)  Upon the return from the system call. the cache is likelv 10 have been radicallv changed. possi-
blv completely flushed. This is particularly significant for very small caches

In this studv we have made no attempt to evaluate the behavior of kernel programs. but we did
bracket the effect of the internally generated system call by evaluating two extreme cases: (1) treating
CHMK like anv other instruction and (2) flushing the cache completely on every CHMK instruction.
This had relatively little effect (less than 1% difference) on small caches because of the infrequency
of the CHMK instruction (0.013% of all instructions executed). but somewhat more effect on large
caches because of the long time to refill them: The miss ratio was approximately 30% lower for cold
start. 60% lower for warm start for the former case. For small block sizes the first assumption
resulted in numbers 15-25% lower for cold start. 20-50% lower for warm start. For large block
sizes the differences were less than 1% . In the tables we report only the times for the more pes-
simistic assumption. viz.. that the cache is flushed every time a system call occurs. We point out that
the effect of virtual memory may result in substantially more pessimistic results than our cold start
measurements indicate if additional interruptions are necessary because of page faults.

Cache performance is greatly affected by cache parameters. particularly total size and line size.
In addition. performance varies greatly depending on the program running. For each of the above
traces, a wide and unpredictable variation occurred as we varied a single parameter. Thus plotting
parameters for the individual traces was often not enlightening. Averaging over the traces in each
category gave much more revealing results, providing data that suggested a continuous function for
many of the variables studied. Thus all our results are reported as the mean of the programs. each
running alone.

5.1. Assumptions and Default Cache Parameters

Clark has pointed out serious limitations for the simulation approach to cache evaluation
[Clark83]. A major advantage over measurement, however, is the relative ease of varying numerous
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cache parameters. simulating a wide variety of cache designs. The actual sequence of memory refer-
ences can only be approximated by simulation, however, since the interlacing of instruction fetching
and data fetching for most computers is very hard to predict. It is also different for different imple-
mentations of the VAX architecture. For the VAX-11/780, the instruction buffer fetches data by a
simple algorithm [Clark83] but one for which the number of instruction fetches varies depending on
many things, including the cache behavior. Thus it is impossible to predict even the number of
instruction fetches independently of the cache definition. Again. while it can be argued that this
affects the absolute miss ratio. the relative performance of different cache designs should compare
realistically. We made the following assumptions regarding the implementation:

(1) The individual bytes of the instruction are fetched as they are interpreted by the microcode.
However. a four-byte. longword-aligned. instruction buffer is assumed. so that the cache
always supplies four byvtes at a time. and the same longword is never fetched twice consecu-
tively .

(2)  All data locations fetched during the execution of a single instruction are fetched exactly once,
All data locations stored within a single instruction are written exactly once. Within a single
instruction. we assumed that the microcode was smart enough to optimize the reads and writes
within a single longword.

5.1.1. Effect of Writes on Miss Ratio

The miss ratio calculation includes writes. Excluding them has no significant effect.

5.1.2. Write Allocation

Write allocation. also known as feich on wrile. means that a line is allocated in the cache on a
write miss as well as on a read miss. While it seems natural for write-back. it typicallv is not used
with write-through. It is essential for write-once to assure coherency. Our early simulations showed
that it was highly desirable for write-back and write-once. and superior even for write-through with
small lines. This was true using both the measures of miss ratio and bus traffic. In all results
presented. write allocation was employed.

5.1.3. Associativity

We ran a number of simulations varying the associativity all the way from direct mapped to
fully associative. While this is clearly an important parameter. we found no unexpected correlation
between this and the other parameters studied. Again. the associativity may affect the absolute miss
ratios. but not the relative ones. For all results reported. the cache was assumed to be 4-way set-
associative

5.1.4. Replacement Algorithm

Replacement strategy has been the subject of other studies using the same simulator and traces
[Smith83. Smith85]. In order to limit its significance. which seems to be orthogonal to the issues
raised here. we have assumed true LRU replacement among the four lines in each set

5.1.5. Bus Width

The width of the data paths between units is an important parameter being related to. but not
the same as. memory bandwidth. The bus traffic is given as a percent of the number of accesses that
would be required if no cache were present. and assumes both the CPU/cache bus and the
cache/main memory bus are 4 bytes wide. An 8-byte transfer therefore is counted as two cycles.

Most microprocessors today provide bi-directional pins for moving the data on and off the chip.
and some also multiplex addresses on these pins as well. Bandwidth is therefore strongly affected by
access time, and fetching two words from memory typically takes twice as long as fetching one (bar-
ring an external cache, of course). While higher bandwidth can result from a pair of unidirectional
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buses -- one supplying addresses and write data, the other receiving read data -- backplane buses
such as Multibus also generally tie up the bus for the duration of a fetch operation. We therefore
assume a memory access delay proportional to the block size. In section 5.5 we address the question
of a block transfer across the bus and its implication on the appropriate block size.

5.1.6. Default Parameters

In the tables that follow. unless otherwise stated, the cache size was 4K bytes. The organiza-
tion was four-way set-associative with LRU replacement. The write strategy was write-once (with
write-allocation) and the line size was 4 bytes. All simulations are the average of the same 600,000
memory references. 100.000 from each of the six traces. Boldface entries generally indicate the
most desirable choices.

5.2. Cache Size

Cache size is almost certainly the single most important parameter affecting cache perfor-
mance. Our simulations confirmed this well-known result. Both the bus traffic and the miss ratio.
which show high correlation when this parameter is varied, show steady improvement as the cache
size is increased. The miss ratio declined 20-30% as the cache was increased from 4K bytes to 8K.
Under steady-state conditions, it even declined when the cache was increased from 32K byvtes to 64K.
though it is so low already by that point that system flushes (if included) are the dominant cause of
misses.

Though early implementations of on-chip caches are quite small. the size of cache memory will
steadily grow over time. We believe that the improved performance -- both miss ratio and bus traffic
-- will soon warrant a cache of substantial size. We arbitrarilv chose the values of 4K and 16K bytes
for the simulation studies because we believe such sizes represent a realistic range for single-board
and single-chip implementations.

5.3. Cold Start vs. Warm Start

Based on the work of Easton and Fagin [Easton78] we define the cold siart period as the
number of memory references from an initially empty cache until C4/> misses have occurred. where
CAP is the capacity of the cache (in lines). (This is the point at which data from a fully associative
cache with LRU replacement is first purged). This initial burst of misses is amortized over all

Table 1: MISS RATIO vs. CACHE SIZE
Cache 4-Byte Lines 8-Byte Lines 16-Byte Lines
Size Cold Start | Warm Start | Cold Start | Warm Start | Cold Start | Warm Start
(Bytes)

64 81.7 69.7 63.2 51.3 59.6 43.3
128 62.1 50.2 45.6 36.0 43.3 31.5
256 46.7 36.3 34.4 25.4 29.7 20.5
512 34.0 24.0 23.8 16.9 17.7 12.5

1024 18.3 11.4 14.7 8.86 12.3 7.73
2048 9.36 5.89 7.19 4.40 6.43 3.81
4096 5.44 4.39 3.83 2.91 2.92 2.04
8192 4.33 3.70 2.67 2.30 1.76 1.49
16384 3.66 3.33 2.37 2.01 1.47 1.36
32768 3.52 3.21 2.05 1.88 1.24 1.14
65536 3.52 3.21 2.05 1.88 1.23 1.13
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Table 2: BUS TRAFFIC RATIO vs. CACHE SIZE
Cache 4-Byte Lines 8-Byte Lines 16-Byte Lines
Size Cold Start | Warm Start | Cold Start | Warm Start | Cold Start | Warm Start
(Bytes)

64 86.3 75.1 131 114 243 186
128 65.5 55.3 94.8 81.1 178 139
256 50.0 41.3 71.9 58.7 123 93.0
512 36.9 27.3 50.0 38.9 73.6 57.4

1024 20.0 13.2 31.3 20.5 51.3 35.2
2048 10.4 7.03 15.3 10.3 27.0 17.5
4096 6.17 5.17 8.25 6.80 12.3 9.24
8192 4.91 4.26 5.76 5.14 7.44 6.54
16384 4.22 3.84 5.11 4.36 6.17 5.73
32768 4.07 3.71 4.43 4.05 5.18 4.75
65536 4.06 3.71 4.43 4.04 5.13 4.70

accesses. so the longer the trace analyzed. the lower the miss ratio obtained. In addition to the initia-
tion of a program and occasional switches of environments. a cold start generally occurs whenever
there is a task switch. (At least a partial cache flush occurs on a system call. as discussed earlier).
Thus an important consideration in traditional cache evaluation is the frequency and distribution of
task switches. We have argued that task switching must be very infrequent to minimize bus traffic.

To assess the significance of filling the cache we attempted to separate the steady-state perfor-
mance from transient behavior. encountered whenever the cache contains little useful data. To do
this, we collected statistics for each of the six traces under two different conditions.

(1) Warm Siarr We simulated 200.000 memory references in the cache, but collected statistics
starting after 100.000 references. at which point the cache has long since reached steady-state
for all situations studied.

(2)  Cold Siart We skipped 100.000 memory references, then started simulation with an empty
cache In addition. we flushed the cache whenever the accumulated number of misses reached
the total number of lines in the cache. i.c.. at the end of each measure cold start period.

The results arc shown in tables 1-4. In tables | and 2. the miss and bus traffic ratios respectively
are shown for a varietv of cache sizes. with line sizes of 4. 8 and 16 bytes. Tables 3 and 4a and 4b
show the miss ratio and bus traffic respectivelv for various line sizes.

5.4, Effect of Write Strategy on Bus Traffic

Although write-through normally generates less bus traffic than write-back. the latter can be
worse if the hit ratio is low and the line size is large. Under write-back. when a dirty line is purged.
the entire line must be written out. With write-through. only that portion which was modified must
be written. We found that write-back is decisively superior to write-through except (1) when cache
lines are very large. or (2) when the cache size is very small.

Write-once results in bus traffic roughly equal to the lower of the two. For a number of cases
it actually performs better on the average than either write-through or write-back. This is a surpris-
ing result, since write-once was developed to assure coherency. not to minimize bus traffic. Unfor-
tunately, this occurs when relatively large lines are used, and write-back is slightly superior for small
blocks. See tables 4a and 4b.
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Table 3: MISS RATIO vs. LINE SIZE
Line 4K Bytes 16K Bytes
Size Cold Start | Warm Start | Cold Start | Warm Start
(Bytes)
4 5.44 4.39 3.66 3.33
8 3.83 2.91 2.37 2.01
16 2.92 2.04 1.47 1.36
32 2.71 1.68 0.892 0.795
64 2.95 1.76 0.627 0.528
128 3.70 1.92 0.542 0.398
256 4.59 2.53 0.710 0.432

Table 4a: BUS TRAFFIC RATIO vs. LINE SIZE
Cache size is 4K Bytes.

Line Write Back Write Once Write Through
Size Cold Start | Warm Start | Cold Start | Warm Start | Cold Start | Warm Start
(Bytes)
4 4.94 4.42 6.17 5.17 17.9 17.0
8 7.49 6.27 .25 6.80 20.4 18.7
16 11.8 9.04 12.3 9.24 24.6 21.1
32 22.4 15.3 22.6 15.1 34.6 26.5
64 50.2 33.6 49.2 31.8 60.0 41.0
128 126 76.8 122 70.6 131 74.5
256 312 210 302 189 306 175

Table 4b: BUS TRAFFIC RATIO vs. LINE SIZE
Cache size is 16K-Bytes.

Line Write Back Write Once Write Through
Size Cold Start | Warm Start | Cold Start | Warm Swuart | Cold Start | Warm Start
(Bytes)
4 3.18 2.88 4.22 3.84 16.3 16.0
8 4.53 3.83 5.11 4.36 17.6 16.9
16 5.84 5.44 6.17 5.73 18.9 18.5
32 7.16 6.47 7.35 6.62 20.2 19.4
64 10.5 8.10 10.5 9.02 23.1 21.5
128 18.7 14.5 18.6 14.3 30.4 25.8
256 50.6 34.6 50.0 33.4 58.4 40.7

5.5. Line Size

Our cache design incorporates small lines. depending heavily on temporal locality. The results
shown in tables 1 and 2 assumed a line size of four to 16 bytes. Easton and Fagin [Easton78] argue
that for a sufficiently large cache. line size has no effect on the warm start miss ratio. but strongly
affects the cold start miss ratio. They argue that if the cache can hold all the data required. misses
occur only during the cold start period. Our simulations found that line size affects miss ratio under
warm or cold start conditions. In fact. the miss ratio is more sensitive to line size variations under
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warm start conditions. Keeping the total size constant (4 K bytes). as line size is increased the miss
ratio generally declines up to a point -- 32 bytes for a 4K-byte cache, 128 bytes for a 16K-byte cache
__ then increases for either warm or cold starts. Under cold start conditions for a 4K-byte cache, the
cold start miss ratio declines by 50% as line size is increased from 4 to 32 bytes. Under steady-state
conditions. it declines 62%. For a 16K-byte cache the effect is even more dramatic: for cold start it
declines 75% going from 4- to 32-byte lines. and 85% for 128-byte lines. For warm start the
numbers are 76% and 88% respectively. Thus we conclude that 32-byte lines result in the minimum
miss ratio under either warm or cold start conditions for a 4K-byte cache. For a 16K-byte cache the
minimum miss ratio is achieved with 128-byte lines. See Table 3.

The bus traffic to main memory is affected differently by the line size. When the line size is
doubled. the miss ratio must be halved to maintain constant bus traffic. It is nearly impossible for
the miss ratio to be cut by more than 50% . and our simulations show that it rarely approaches that.
Consequently. the bus traffic always increases as the line size is increased. As the effect on the miss
ratio of increasing line size declines. the bus traffic grows more rapidly. so that the bus traffic
becomes very large even before the miss ratio starts to increase. For 32-byte lines the bus traffic is
two to four times that for 4-byte lines under all conditions except when write-through is used (both
numbers are large. being dominated by writes). Clearly smaller lines are needed when bus traffic is
a potential bottleneck

The bus traffic under transient conditions is higher than for steady-state conditions. though not
by much for small line sizes. This suggests that even if task switching occurs frequently. a cache
with small lines can significantly reduce bus traffic to/from memory.

Our simulations show that reducing the line size to a single transfer across the bus decreases
the hit ratio. decreasing bus traffic roughly in proportion. Increasing the transfer line size from one
bus cvele (four bytes) to two (eight bytes) decreases the miss ratio by 30 to 40% . increasing the bus
traffic by a similar amount. These results compare favorably with those reported by Strecker for the
PDP-11/70 [Bell78].

For the results reported above we have made the assumption that access time is related linearly
to line size. In many cases this is not true. It is essentially true for the Multibus, since only two
bytes can be fetched at a time. though arbitration is overlapped with bus operations. For a single-
chip implementation. higher bandwidth can be achieved by providing the capability for efficient mul-
tiple transfers over a set of wires into the processor. We evaluated this approach by assuming a dif-
ferent model of cost: the number of transfers required. including the transmission of the address to
the memory. Thus a single memory access. for example. if no cache were present. would require
two transfers. A line access incorporating 4 transfers of data would then have a cost of 5. Under

Table 5: BUS TRAFFIC RATIO vs. LINE SIZE
NON-LINEAR BUS COST
Line 4K Bytes 16K Bytes
v Size Cold Start Warm Start Cold Start Warm Start
(Bytes)

4 6.17 5.17 4.22 3.84
8 6.50 5.34 4.04 3.46
16 7.95 5.95 3.99 3.71
32 13.0 8.63 4.23 3.81
64 26.5 17.1 5.66 4.86
128 63.7 36.6 9.68 7.43
256 154 96.3 25.5 17.1
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this cost assumption, we computed the bus traffic. again relative to that for no cache. The results are
shown in table 5. Under this cost assumption the traffic for a two-transfer line (eight bytes) is still
higher for a 4K-byte cache, but only marginally so. For a 16K-byte cache it actually declines. the
minimum bus traffic reached at 8-byte lines for steady-state. 16-byte lines during the start-up tran-
sient. For larger lines the increase in the bus traffic is still substantial.

We conclude that for the linear cost model, a single data transfer (4 bytes) per miss is gen-
erally best, though two transfers improves the hit ratio by roughly the same amount that it increases
the bus traffic for a 4K-byte cache. double that for a 16K-byte cache. For the non-linear bus cost
model. we conclude that an 8-byte line for a 4K-byte cache provides neither the lowest miss ratio,
nor the lowest bus traffic. but is near enough on both counts to be the best choice. For a 16K-byte
cache. 16-byte lines is probably best. though 8-byte lines yield slightly lower bus iraffic under
steadv-state conditions.

5.5.1. Lowering the Overhead of Small Lines

Small lines are costly in that they greatly increase the overhead of the cache: an address tag and
the two state bits are normally stored in the cache for each line. We reduced this overhead by split-
ting the notion of line into two parts:

(1Y A block is the amount of data ransferred from backing store into the cache on a read miss.

(2) A secioris the quantum of storage for which a tag is maintained in the cache. It is always the

Table 6a: MISS RATIO vs. SECTOR SIZE
Block Size is 4 Bytes.

Sector 4K-Byte Cache 16K-Bvte Cache

Size Cold Start | Warm Start | Cold Start | Warm Start

(Bytes)

4 5.44 4.39 3.66 3.33
8 6.28 4.74 4.00 3.4
16 7.73 5.33 4.01 3.68
32 10.9 6.82 4.15 3.72
64 15.8 9.35 4.45 3.84
128 24 .4 137 5.32 4.08
256 30.5 17.8 8.04 4.94

Table 6b: MISS RATIO vs. SECTOR SIZE
Block Size is 8 Bytes.

Sector 4K-Byte Cache 16K-Byte Cache
Size Cold Start | Warm Start | Cold Start | Warm Start
(Bytes)
8 3.83 2.91 2.37 2.01
16 4.69 3.27 2.38 2.19
32 6.66 4.19 2.47 2.22
64 9.73 5.80 2.68 2.31
128 15.2 8.44 3.27 2.50
256 19.3 11.2 4.95 3.09
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same size as, or a power of two larger than a line.”

We have discovered that an effective cache can be achieved by keeping the block small but making
the sector larger.

For most commercial products containing a cache, the sector is identical to the block, though
in at least one [IBM74] the sector contains two blocks. The IBM System/360 Model 85 [Liptay68]
included a fully associative cache with 1K-byte sectors, each containing 64 16-byte blocks.

5.5.2. The Effect of Large Sectors

The use of sectors larger than blocks means that only data from one sector in backing store can
occupy any of the blocks making up a sector in the cache. There are cases where the appropriate
block is empty, but other blocks in the same sector must be purged so that the new sector can be
allocated. We examined this for various sizes of sectors and found that the miss ratio increased very
slowly up to a point. Table 6a and 6b show how the miss ratio varies with sector size for a constant
block size -- 4 bytes for table 6a. 8 bytes for table 6b. When the cache is sufficiently large (16K
bytes) the miss ratio rises very slowly with increasing sector size Under warm-start conditions. the
miss ratio has increased by less than 25% when the sector size is increased from the block size to

Table 7a: BUS TRAFFIC RATIO vs. SECTOR SIZE
Reservation by Sector
Block Size is 4 Bytes.

Sector 4K-Byte Cache 16K-Byte Cache
Size Cold Start Warm Start Cold Start Warm Start
(Bvtes)
4 6.17 5.17 4,22 3.84
8 6.49 5.24 4.10 3.49
16 7.63 5.68 3.87 3.56
32 10.6 7.16 3.88 3.52
64 15.3 9.78 4.15 3.67
128 23.2 14.2 4.96 3.96
256 28.8 18.7 7.61 4.95

Table 7b: BUS TRAFFIC RATIO vs. SECTOR SIZE
Reservation by Sector
Block Size is 8 Bytes.

Sector 4K-Byte Cache 16K-Byte Cache
Size Cold Start Warm Start Cold Start Warm Start
(Bytes)
8 8.25 6.80 5.11 4.36
16 9.71 7.30 4.89 4.52
32 13.5 9.17 4.93 4.49
64 19.6 12.6 5.34 4.73
128 30.3 18.1 6.51 5.17
256 38.4 24.3 9.63 6.53

7ln this paper we use the term line when either (1) the block and secilor are the same, or (2) a choice exists. and either block
or seclor may be appropriate
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128 bytes for either four- or eight-byte blocks. For a smaller cache (4K bytes). the increase in the
miss ratio is more substantial, doubling for 64-byte sectors. In all cases the situation is somewhat
worse during cold start.

The bus traffic decreases even more slowly (tables 7a and 7b). In fact. for the 16K-byte cache
it actually declines as the sector size increases. For both four and eight-byte blocks the minimum
bus traffic is reached with a 16-byte sector size for cold start, 8-bytes for warm start. For eight-byte
blocks the bus traffic is only 19% higher for 128-byte sectors than for eight-byte sectors.

We point out. however. that an additional factor has come into play here. The write-once algo-
rithm employed reserves sectors. not blocks. This would seem to increase greatly the traffic when-
ever the line is purged from the cache. but in fact the effect is smail: only those blocks which have
actually been modified need be written back (though this requires maintaining dirty bits for each
blocky. Because of write locality. it is often possible to eliminate writes by grouping small blocks
into sectors. Effectively, write-back is emploved in all but one block of a sector. If a write were
necessary for each block to assure exclusive access, more traffic would be generated. This effect is
shown in tables 8a and 8b. where the reservation is done on a block, rather than a line. basis. With
this algorithm. the bus traffic correlates very well with the miss ratio.

For anv block size. clearly a better hit ratio will be achieved by associating a tag with every
block. i.¢.. making sectors and blocks the same size. For commercial machines having larger sec-
tors than blocks. we believe it was done to reduce the size of the tag memory. However. if bus
traffic is being optimized rather than hit ratio. multiple blocks per sector may be justified for better
performance. Using larger sectors reduces the cost of the tag memory and. to a point, will not signi-
ficantly increase the bus traffic or miss ratios.

5.6. Implications for Multiple Processors

The simulation studies reported here assumed a single processor. running a single process.
They demonstrate that it is possible to reduce the bus traffic to memory by more than 90% by the
introduction of an appropriate cache. This suggests that it is therefore possible either (1) to support a
high-performance processor (with infrequent context switching) with memory connected by a bus of
insufficient bandwidth when used in the conventional way. or (2) to support a number of processors
with a single. shared memory through the use of a bus of modest speed. Our studies assumed that
actual collisions resulting in cache invalidations are rare enough to be ignored for performance pred-
iction. We have no proof that this is the case. but no evidence to the contrary.

6. Summary

Our simulations suggest that a processor with a 4K-byte cache can achieve a miss ratio below
5% while requiring only about 5% of the traffic to memory necessary if no cache is employed. A
processor with a 16K cache with 8-byte lines requires even less traffic. and can achieve a miss ratio
of about 2% . If 64-byte sectors are employed -- reducing the number of tags from 2048 to 256 --
the hit ratio will increase to about 2.5% . while the bus traffic will still be under 5% . This assumes
no task switching. but a cache consistency algorithm which allows multiple processors to maintain
private caches.

An important result is the use of the write-once algorithm to guarantee consistent data among
multiple processors. We have shown that this algorithm can be implemented in a way that degrades
performance only trivially (ignoring actual collisions. which are rare). and performs better than
either pure write-back or write-through in many instances.

The use of small blocks with larger sectors results in an inexpensive cache which performs
effectively in the absence of frequent process switches. The low bus utilization and the solution to
the stale data problem make possible an environment for which this condition is met. As the sector
is enlarged while holding the block size constant. the miss ratio increases some. but bus traffic may
actually decline. Therefore sectors should be used as the allocation unit for reserving memory for
modification even if small blocks are used for transfer of data.
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Table 8a: BUS TRAFFIC RATIO vs. SECTOR SIZE
Reservation by Block
Block Size is 4 Bytes.

Sector 4K-Byte Cache 16K-Byte Cache
Size Cold Start Warm Start Cold Start Warm Start
(Bytes)
4 6.17 5.17 4.22 3.84
8 7.06 5.58 4.56 3.92
16 8.60 6.22 4.57 4.21
32 12.0 7.88 4.72 4.26
64 17.3 10.7 5.07 4.42
128 26.3 15.2 6.02 4.70
256 32.7 19.8 8.96 5.74

Table 8b: BUS TRAFFIC RATIO vs. SECTOR SIZE
Reservation by Block
Block Size is 8 Bytes.

Sector 4K-Byte Cache 16K-Byte Cache
Size Cold Start Warm Start Cold Start Warm Start
(Bvtes)
8 8.25 6.80 5.11 4.36
16 10.1 7.59 5.15 4.76
32 14.2 9.66 5.33 4.85
64 20.7 13.3 5.81 5.16
128 32.0 18.8 7.09 5.65
256 40.5 25.2 10.7 7.12

The approach advocated here is appropriate only for a system containing a single logical
memory. This is significant because it depends on the serialization of memory accesses to assure
consistency. It has applications bevond those studied here. however For example. the access path
to memory could be via a ring network. or any other technique in which every request passes every
processor. This extension seems particularly applicable for maintaining consistency for a file system
or a common virtual memory being supplied to multiple processors through a common bus such as
Ethernet[Metcalfe76].

Clearly there are many environments for which this model is inappropriate -- response to indi-
vidual tasks may be unpredictable. for example. However. we believe that such a configuration has
many potential applications and can be exploited economically if the appropriate VLSI components
are designed. We have investigated the design of such components and believe that they are both
feasible and well-suited for VLSI [Goodman83, Ravishankar83].

Our analysis indicates that the cache approach is reasonable for a system where bandwidth
between the CPU and most of its memory is severely limited. We have demonstrated through simu-
lation of real programs that a cache memory can be used to significantly reduce the amount of com-
munication a processor requires. While we were interested in this for a single-chip microcomputer
of the future. we have also demonstrated that such an approach is feasible for one or more currently
popular commercial markets.
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