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Abstraci- PIPE [SPKG83] [CGKP83] [GHLPS5] is a very-high-performance computer archi-
tecture intended for heavily pipelined VLSI implementation. A number of architectural
queues are included in the PIPE architecture to reduce the influence of delay due to access-
ing memory. The prepare-to-branch instruction is a mechanism to decrease the penalty
incurred by conditional branches. We have developed a compiler for a subset of Pascal. A
code scheduler is used to reorder the compiled code to take advantage of the architectural
queues and the prepare-to-branch instruction. For well-structured code (loops), sofnvare
pipelining is a technique that can take advantage further of the aforementioned features. We
present the scheduling methods for automatic code scheduling and software pipelining,
which can be applied 1o most register-register pipelined architectures by simply changing the
cost table. We show the functions of these scheduling methods by examples and we illustrate
some simulation results.
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1. Introduction

Many studies [Amda67] [Lee80] [Buch83} [Worls4] hvave shown that even in highly vectoriz-
able programs. a slow mode (i.c.. the scalar mode) dominates total execution time. Thus. it is cru-
cial that all modern vector processors be augmented with a powerful scalar processor. Pipelining has
been used to build processors with a fast scalar mode for quite some time [Kogg81]. The perfor-
mance of pipelined machines. however. is often limited by memory accessing and conditional
branching. A new architecture, called PIPE (Parallel Instructions and Pipelined Execution)
[SPKG83] [CGKP83] [GHLPS85], is a VLSI-oriented, high performance architecture project at the
University of Wisconsin. The primary goal of the PIPE architecture is fast execution of sequential
programs. Architectural data queues are included in the PIPE architecture to reduce the influence of
delay due to accessing memory. The prepare-o-branch (PBR) instruction is a mechanism to decrease

the penalty incurred by conditional branches.



In order to achieve a high instruction issue rate, the major design principle of PIPE is simple
issue conditions. That is, only a few simple conditions must be checked to initiate an instruction.
The instruction itself (e.g., floating point multiplication), however. may take several clock periods to

complete.

A compiler for a subset of Pascal has been developed to evaluate aspects of the PIPE architec-
ture. A code scheduler is used to reshape the compiled code to take advantage of the data queues and
the PBR instruction. We have run a set of eight benchmark programs to study the impact of the
aforementioned features on system performance [YoGo84al. Sofiware pipelining [Char81]
[YoGo84b] (also known as loop folding [Weis84]) is a technique to schedule the code sequence of the
inner-most loops by rearranging the code across basic block! boundaries. In this paper. we describe
the methods used for code scheduling and software pipelining. The methods described in this paper

are applicable to most register-register pipelined architectures by simply changing the cost table.

The PIPE architecture and the rationales behind the architectural queues and the prepare-to-
branch instruction are described in section 2. The basic structure of the compiler is outlined in sec-
tion 3. The code scheduler methods for the intermediate language (IL) and the machine code are
discussed in section 4 and 5. respectively. The concept of software pipelining is explored in section
6. Some simulation results are presented in section 7. Related research and conclusions are

presented in section 8.

2. The PIPE Architecture

We briefly describe the relevant details of the PIPE architecture to make this paper self-

contained. A more complete description is available elsewhere [SPKG83] [CGKP83] [GHLPS5].

(1) Most instructions are of a 3-address form. Only LOAD’s and STORE's are used to access

memory.

1 A basic block is a code sequence with no jumps in except at the beginning and no jumps out except at the end
[AhUI7T)
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Several execution modes are possible depending on the organization and the number of PIPE

processors in the system. For this discussion. we will consider primarily the single processor

(SP) mode where there is only one processor in the system. The instruction set for PIPE in SP

mode is comparable in style to the CDC-6600 [Thor70], with the addition of the queues and the

PBR instruction. A block diagram of a single PIPE processor is shown in Fig. 1.
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Fig. 1. A PIPE Processor
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2.1.

The interface between the processors and memory subsystem is a set of architectural queues.
When a LOAD instruction is executed, the data specified will be returned via the Load Daia
Queue (LDQ) as its last element. An additional instruction is needed to move an operand to
one of the general purpose registers if the compiler decides to keep that operand in a register.
Because of the three address instruction format. either one or two elements can be removed
from the queue at a time. To simplify the implementation. we restrict generated code to make
only one reference to the load queue per instruction [CGKP83]. A STORE is accomplished by
the following two primitive instructions: (1) the store address is put on the Siore Address Queue
(SAQ): (2). the data is put on the Siore Daia Quene (SDQ). The order of these two instruc-
tions is irrelevant. and other instructions mav occur in between. including multiple instances of
the first instruction. There are no queue manipulation instructions. At the architectural level.
the heads and tails of these queues appear as registers. A specific register (R7 is used for the
discussion of this section) in a register field designates one of the queues. instead of register 7.
(That is, general purpose register R7 is not accessible 1o the programmer.) Thus. the queues
are implied by the instruction. For example. R7 as the source register means LDQ while R7 as
the destination register means SDQ. SAQ is implied by all STORE instructions. and LAQ by

all LOAD instructions. The rationales of these queues are explicated in section 2.1.

Prepare-to-Branch (PBR) is used in PIPE. The meaning of the PBR instruction is explained in

section 2.2.

The Load Data Queue

Among all the queues. the Load Data Queue (LDQ) is of particular interest. In general, the

execution time of a memory reference instruction (LOAD/STORE) is longer than that of a register-

register instruction. In particular, the delay due to a load in a pipelined computer has great influ-

ence on the performance of the entire system. The LDQ is a mechanism to separate the request of

an operand (i.c.. the LOAD instruction) from its use. thus reducing the urgency of memory read

operations. Throughout this paper. the LOAD instruction is used to represent memory accessing



operations and LDQ is used to indicate relevant queues, whenever appropriate. The advantages of

the LDQ are;

(M

)

(3)
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The LDQ serves as a window between the CPU and the memory system. One can view the

LDQ as a set of queue regisiers in addition to the general purpose registers.

There is no need to allocate registers for use-once operands. The use-once operands are taken
out of the LDQ directly. In many programming environments. most operands are used either
once or repeatedly. A smart compiler should allocate registers only for latter type of operands.

An additional move instruction is needed for operands which are allocated in registers.

Data can be requested several cycles before it is needed. The code scheduler can reorder the
code to overlap the data transmission and access time with the execution of other instructions.
This overlap is achieved by moving instructions between the LOAD instruction and the instruc-

tion that uses the operand. This is particularly important for tight loops.

It is more flexible for the code scheduler to schedule the code with the presence of the LDQ
than the case where the scheduling is limited to a set of general purpose registers. There is no
data dependence. at the register level. between use-once operands (except that they must be
fetched in the order they are used). The same variable for different iterations can be fetched
without register conflicts. The software pipelining mechanism described in this paper is an

automatic wav of prefetching operands across basic biock boundaries.

The slowness and irregularity of memory accesses can be hidden. and bursts of memory

requests can be smoothed out.

The major disadvantage of the LDQ is that processor deadlock is possible for a queue of finite

length. The code scheduler must guarantee a deadlock-free code sequence. Also, twice-used vari-

ables are expensive.



2.2. Prepare-To-Branch
In general, a branch instruction can be subdivided into three parts:
(1) Calculate the branch target address.
(2) Determine the branch outcome.
(3) Transfer control (if branch is taken).

One of the major goals in designing a CPU pipeline is to ensure a steady flow of instructions to
the issue logic [LeSm84]. It is well known [AnST67] [Flyn72] [RiF072] [Smit81] [LeSm84] that in
a highly parallel computer system. branch instructions generally break the smooth flow of instruction
fetching and execution. This results in delay. because a successful branch (a branch that is taken)
changes the location of instruction fetches and because the issuing of instructions must often wait
until conditional branch decisions are made. Even an unsuccessful branch (a branch not taken) or an

unconditional branch usually interrupts the smooth flow of instructions.

PIPE was defined to allow the separation of these three parts. The first is actually a separate
instruction so that it can be moved outside a loop. The branch target address is stored in a branch
register via a move instruction. (In PIPE. in addition to the general purpose registers. there is a set
of branch registers. The branch registers are used to hold the branch targets.) The last two are a

single instruction. but the effects are separated in time. The PBR instruction decides the branch out-

come and specifies a delay (in terms of number of subsequent instruction parcels3 to be issued)
before transfer of control. The number of instruction parcels that should be executed uncondition-
ally after a PBR is specified by a field of the PBR instruction (called the branch count (BC) field).
The transfer of control occurs after BC instruction parcels following the PBR have been issued. We
insert a pseudo-instruction. XBR (XBR denotes the eXit point of the BRanch instruction), at the
assembly language level to indicate the exit point. That is, the transfer of control for a successful

branch happens at the place where XBR stands. The prepare-to-branch instruction is simply a gen-

2 . . . . .
= An instruction parcel is a 16-bit quantity



eralized form of the delayed branch used in many machine organizations (e.g., 801 [Radi82]. MIPS

[HIBGS81]. RISC [PaSe81] [PaSe82]).

(1

(3)

4)

3.

The advantages of the PBR instruction:

It is a mechanism to separate the branch decision from the transfer of control. Thus, it is pos-
sible to do guaranieed pre-decoding in the sense that the pre-decoded instruction is always exe-
cuted. In the case of an instruction cache miss. the cache controller can do guaranteed (cache)
preferching.

There is no penalty on the program size in using this generalized delayed branch. That is. it is
never necessary to insert NOP’s after the PBR instruction. For some architectures with a
delayed branch (e.g.. RISC-1 [PaSe81]). the number of instructions must be executed after a
delayed jump is fixed. Under certain circumstances. NOP’s have to be inserted after the

delaved jump instructions.
It is not necessary to fetch instructions that won't be executed.

Most branch targets. stored in the branch registers. are loop invariants. Thus. standard optimi-
zation techniques [AhUI77] can be used to move the calculation of branch targets and assign-

ment of (loop-invariant) branch registers out of the loops.

The PIPE Pascal Compiler

Currently. there is one high level language compiler for the PIPE architecture. The source

language is a subset of Pascal. The compiler has five phases. Phase one generates intermediate

language (IL) in five-tuple form. which is the quadruple form [AhUI77] augmented with the fifth

attribute-tuple. The attributes are used to keep track of the original high level language structures.

Phase two performs data flow optimizations [AhUI77] on the IL. Phase three schedules the IL..

Phase four generates the machine code. Phase five does the machine code level scheduling to take

advantage of the architectural queues and the prepare-to-branch instruction,
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We do two-level scheduling for the following reasons:

There are less structural dependencies at the IL level than those at the machine code level.
Since we assume an infinite number of pseudo registers at the IL level, all pseudo registers are
assigned at most once. (We shall see in section 6 that the software pipelining method dupli-
cates some of the code within the body of a loop. If we do software pipelining at the 11 level, a
given pseudo register may be systematically assigned more than once in different basic blocks.)
Thus. read-after-write (RAW) and write-after-read (WAR) hazards due to register allocation
are deferred until register binding time. The register allocation algorithm can take the variable

hazards into account and allocate registers accordingly.

The time complexities are ()(nlogn)3 and O(n) for scheduling methods at the IL level and the
machine code level. respectively. The time complexity of one-level machine code scheduling is
O(n?) (see section 5). Under the two-level scheduling scheme. the sequence of operand
requests is reordered at the IL level. Thus. there is no need to change the order of memory-

accessing instructions at the machine code level.

Although the IL was designed with the PIPE architecture in mind. the novel features of PIPE

are not expressed explicith. The code generated by the front-end. however. must meet the following

criteria to effectively schedule the 11..

(N

2)

3)

The branch condition has to be in a pseudo register. That is. the branch condition is computed
before the branch instruction itself. Thus. it is possible to separate the evaluation of the

branch condition from the branch instruction.

The index to access an array element has to be in a pseudo register. Thus. it is possible to

separate the index calculation from the array element accessing.

Operands for arithmetic/logic operations have to be in pseudo registers. The corresponding

Joad (MOVE from memory) instructions are attributed with a special flag which intimates the

3 Base 2 logarithm is used through out this paper



code generator that these operands are used directly from the LDQ.

A complex (high level language) expression is subdivided into multiple simple IL instructions,
each of them is either a binary or a unary operation. Thus. independent complex expressions may
be scheduled to execute in an interleaved fashion. The code scheduler at the IL level makes a simple
assumption about real variables (as opposed to pseudo registers) in that one object is not referenced
by two or more different names. We also assume that an array. not each element of an array, is an
object. Thus. we treat A[/] and A[/] as the same object regardless of the relationship between i and
j. That is. we ignore the aliasing problem for the purpose of this study. Some of the restrictions
mentioned above can be lifted by using sophisticated algorithms. such as the disambiguator described

by Fisher er. o/, [FERNS84].

4. Code Scheduler for the Intermediate Language

The code scheduling method used at the IL level is explicated in this section. This scheduling

method is similar 10 that at the machine level. We show the function of the scheduler by an example.

4.1. The Algorithm
Definition 1. A weighted dependency graph (WDG) G = | V.E.T.C! is a weight directed acyclic
graph where (a) ) is a set of vertices corresponding to instructions. (b) E is a set of edges
expressing data/control dependencies between pairs of vertices. (¢) 7 is a function mapping from
E to a set of non-negative integers. and (d) C is another function mapping from V to a set of
non-negative integers.
0
We will use the terms “‘vertex’ " and ‘‘the instruction represented by that vertex™” interchangeably.

when the meaning is clear from the context. The edges are the different dependencies (to be defined
later) between vertices. An edge ¢, is the k-th dependency from vertex v; to v;. If there is an edge
e;;x pointing from vertex v; to vertex v, the value 7, associated with the edge is the time* from the
issuing of v; till the k-th dependency of v; has been lifted. Note that it is possible to have more than

one edge between a pair of vertices. Each edge represents a different dependency and the costs with

these edges may vary. All dependency edges are pointing forward in the sense that a given

4 This is an estimated time. 1 is very difficult. if not impossible, w0 get the actual execution time of each instruction be-
cause of some asynchronous operations (¢ g . memory bank contlicts, cache misses)

9.



instruction is dependent only on instructions that appear earlier in the textual order. The cumulative
cost ¢; associated with the vertex v; is the minimum amount of time from the issuing of v, to the end
of the WDG.

Definition 2. Given two vertices (instructions) v; and v; in a weighted dependency graph, and v;

precedes v; in the original sequence.

(M Vv, is RAR (read-after-read) dependent on v, iff both instructions get values from the same
object.

(2) V, is RAW (read-after-write) dependent on v, iff v, assigns a value to an object and v; gets a
value from the same object.

(3) ¥; is WAR (write-after-read) dependent on v, iff v, assigns a value to an object and v; gets a
value from the same object.

(4) V; is WAW (write-after-write) dependent on v, iff both instructions assign values to the same

object.
(5) V; is CON (control) dependent on v, iff v, must precede v, logically.

5]
The objects at the IL level. such as variables in a program and pseudo registers. are independent of
the organization of the processor. The objects at the machine code level. however. are processor
resources. such as registers. queues and the memory system It is relatively difficult to distinguish
an arbitrary memory element from another at the machine code level. Hence. the memory system.
rather than the elements of the memory system. is considered a single object. This constraint will

not affect the code quality reordered by the machine level scheduler because the IL. scheduler has put

all memory references in the proper order.

Because a basic block. at the IL level, ends with a branch. this branch has to be the last
instruction even after the scheduling. Thus. there are control dependencies between all other
instructions in that basic block and this branch. In other words. a control transfer point induces
control dependency between instructions before and after it. As mentioned before, we introduce a
pseudo instruction XBR as a place holder for the exit point of the prepare-to-branch instruction. At
the machine language level. all other instructions within the same basic block are CON dependent on
the XBR pseudo instruction (not the PBR instruction). Thus, no instructions will be moved to follow
the XBR instruction. Instructions, however, may be moved to follow the PBR. In fact. one of the
purposes of the machine code scheduler is to move suitable instructions to follow the PBR instruc-

tion.

-10 -



RAR and WAW dependencies are for the machine code scheduling method only, for the rea-
sons explained below. In general. an object can be read many times and still hold the same value.
Hence. the order of reading from that object is irrelevant. Therefore, RAR does not exist between
objects at the IL level. There is at least one exception in that if the object is a queue, the order of
reading is important. Suppose both v; and v, read from the same queue and v; precedes v;. Then v;
gets the first element of that queue where v; gets the second one. The effect is different if we swap
the order of v, and v,. The same argument holds for WAW hazard on writing to a queue. If an
object at the IL level is assigned twice without being used between the two assignments. the first
assignment is useless. hence can be removed (by the compiler). That is. the WAW hazard does not
exist at the IL level. either. Consequently. we don’t have to check for RAR and WAW dependencies

for scheduling done at the IL level.

It has been shown that the reorganization problem with strict limitations is NP-compleie
[HeGr83]. Thus, heuristics are used in developing algorithms in this study.

Algorithm 1. Intermediate Language Code Scheduling.
foreach basic block do
(1-1) build data/control dependency graph:
(1-2) assign cost to each instruction in reversed topological sort order:
(1-3) issue instructions according to weighied topological sori order,
od:

Algorithm 2. Build Data/Control Dependency Graph.
foreach instruction in the original textual order do
(2-1) add a vertex corresponding to this instruction to the dependency graph:
(2-2) forall objects the current instruction defines (writes 10) do
(2-2-1) add a WAR edge from the last previous instruction that uses (reads) the
object to the current instruction:
(2-2-2) assign a cost to the edge:
od;
(2-3) forall objects the current instruction uses (reads from) do
(2-3-1) add a RAW edge from the last previous instruction that defines (writes) the
object to the current instruction;
(2-3-2) assign a cost to the edge:
od;
(2-4) if the last instruction of the current basic block is a branch instruction then
(2-4-1) add a CON edge from the current instruction to the branch instruction;
fi:
od:
]
Lemma 1. There is a one-to-one correspondence between input instructions and vertices of the

- 11 -



dependency graph.
Proof. From statement (2-1).
O

Lemma 2. All dependencies, at the IL level, are included in the dependency graph constructed
by Algorithm 2.

Proof. From Definition 2 and statement (2-2), (2-3). and (2-4).
[}

For the discussion of this section. we assume the current basic block size is n. That is. there
are 1 instructions in the current basic block.

Lemma 3. The time complexity of Algorithm 2 is linear in the size of input.

Proof. Since an instruction defines only a (small) finite number of objects. the maximal number
of objects an instruction can define is dependent on the design of the instruction set but indepen-
dent of the input program size. Let the maximum numbers of objects that can be defined and
used by an instruction be D and U. respectively. Thus. statement (2-2) is executed at most DU
times per iteration Similarly. statement (2-3) is executed at most DU/ times per iteration.
Statement (2-4) is executed once per iteration. A scheme similar 10 hashing can be used to find
the last previous define (use) of an object in constant time. Let C, be the time required to find
the last previous define (use). Therefore. the running time of Algorithm 2 is bounded by
(2-D-U-C_+C,)n. where C, is the time to add a control dependency. In other words, the time
complexity of Algorithm 1 is O(n):

O

For practical purposes. the values of D and U are small. 1n a typical three-address form. the
values for D and U/ are 1 and 2. respectively. Thus. DU is still a very small number,

Algorithm 3 Assign Cost to a Dependency Graph.
* The cumulative cost of an instruction v; is designated by C(v,). |
(3-1) foreach instruction v; do
(3-1-1) Cvypy <-00
od:
(3-2) do the topological sort:
(3-3) foreach instruction v, in the reversed topological sort order do
(3-3-1) foreach edge ¢;, pointing out from v; 10 v; with cost 7(¢;,) do
(3-3-1-1) C(v)) <-Max2(C(v;). C(v)) +T(e;)
{ Max2 returns the larger one of its two arguments ‘
od:
od:
]

The reason we use the reversed topological sort order is that when we are computing the cumu-
lative cost of v, . the cumulative costs of instructions that are dependent on v, have been evaluated
earlier. In other words. in statement (3-3-1-1), C(v;) has been known and will not be changed
when we are calculating C(v;).

Lemma 4. The time complexity of Algorithm 3 is linear in the size of input.

-12-



Proof. Statement (3-1) is executed n times. Except for the branch instructions, there are at most
D-U edges pointing to any vertex. There are n-1 edges pointing to the branch instruction.
Therefore, there are at most ((n-1)-D-U)+(n-1) edges in the WDG. The time to do the topo-
Jogical sort on the WDG is O(| | V| +|E | |). hence O(n) [Knut73]. The time to execute
statement (3-3-1-1) is constant and statement (3-3-1-1) is executed at most ((n -DYD-Uy+(n-1)
times. (Recall that (n-1)-D-U)+(n-1) is the number of edges in the WDG.) Thus, the time
complexity of (3-3) is also O(n). Therefore, the time complexity of Algorithm 3 is linear in the
size of input.

]
Definition 3. A leader of a WDG in a topological sort is a vertex with no predecessors. That is,
either this vertex does not depend on any other vertices. or all its predecessors have been
removed (issued)

|
Definition 4. A weighted 1opological sort order of a WDG is topological sort order subject to the
following constraint. J; and v; are two vertices. if v, precedes v;. then C(v))=C(v)). where C

j
is the cumulative cost function of a vertex.

0
Algorithm 4. Issue Instructions by Weighted Topological Sort Order.
(4-1) calculate the leader set:
(4-2) repeat
(4-2-1) pick up an instruction (v from the leader set with maximum cumulative cost;
(4-2-2) issue v;;
(4-2-3) remove v, from the leader set;
(4-2-4) insert new leaders to the leader set:
until the leader set is empty:
{4-3) if some instructions have not been issued then
(4-3-1) error condition:
fi:
[

The error condition. (i.c.. statement (4-3)) should not happen at the IL level. Because the ori-
ginal input is a legal sequence.

Lemma 5. The time complexity of Algorithm 4 is O(ilogn).

Proof. The data structure used for the leader-set is an AVL tree [Knut75]. which has O(logm)
time complexity to insert. delete. and find the maximal element. where m is the size of the AVL
tree. The size of the leader set is no bigger than 17 and each vertex (instruction) is put on the
leader set only once. Similarly. a vertex is removed from the set only once. Thus. each of the
statements (4-2-1). (4-2-3) and (4-2-4) is executed at most 1 times. The original leader set can
be built with time complexity O(nlogn). Therefore. the time complexity of Algorithm 4 is
O(nlogn).

O
Lemma 6. If Algorithm 4 terminates successfully. there is a one-to-one corresponds between
vertices of the WDG and the output instructions. In other words. the output instructions are a
permutation of vertices of the WDG.

Proof. If Algorithm 4 terminates successfully, then all vertices have been issued. On the other
hand. instructions issued by Algorithm 4 are members of the leader set which is constructed

from vertices of the WDG.
0

Lemma 7. All dependencies represented by the WDG are preserved in the output instruction
stream.

-13-



Proof. From the properties of topological sort.

Theorem 1. The time complexity of Algorithm 1 is O(nlogn).

Proof. From Lemma 2, 3. and 4. the time complexity for one iteration of the loop in Algorithm
1 is O(nlogn). Let n; be the size of the i-th basic block and N be the size of input program.

That is

N =Sn
i

Thus, the time complexity of Algorithm 1 is

O(S nlogn )= 0 n logN) = O(NloghN)
i i
O
Definition 5. For two code sequences. C; and C;. C; is said to be logically equivalent to C; iff

C; is a permutation of C, and all dependencies in C; are preserved in C;.
O

Theorem 2. The scheduled code (the output of Algorithm 1) C,,, is logically equivalent to the
original code (the input to Algorithm 1) Cj,.

Proof.

If-part:

[C,,, is a permutation of C;,] From Lemma I and Lemma 6.

[All dependencies in C,, are preserved in C, ;] From Lemma 2 and Lemma 7.
Only-if-part: Similar to that of the if-part by introducing comparable lemmas.

4.2. Examples
We assume the following timing for the relevant functions for the discussion of examples in

this paper.

Function Time (clock periods)

Load from Memory

Store to Memory

Branch (taken)

Integer Add

Floating Point Add

Floating Point Multiplication
Load Branch Register

T N N I =)

It may take more than one clock period for an operand to be written to the memory system. As far as
the issue logic is concerned. however, a store operation does not cause any subsequent instructions
being blocked owing to data dependency. The time for a branch is the number of clock periods

required from the issue time of the branch instruction to the issue time of the first instruction of the

-14 -



pranch target for a successful branch. We also assume the issue logic is capable of issuing one
instruction every clock period providing there are no dependencies between instructions.

Example 1. We will use the following example [HwBrg4] throughout this paper.

DO 9991 = 1, 1000
999 YO = FO x YJI-1) + G(I)

This loop is hard to vectorize on some Supercomputers because of the first order linear
recurrence. Some notations used in the IL are briefed below: (a) %Rn stands for the n-th
pseudo register at the IL level: (b) x[y] denotes an access to array & with offset v and (c) An
M’ in the attribute tuple of a memory-accessing MOVE instruction gives a hint to the code
generator that such operand will be used directly from the LDQ. The compiled IL is:

MOV %R6.1000.. /* loop bound
MOV %R3v-1[%R1}.M /¥ Y(O)
LOOP
MOV %R2 1[%R1].M /= F(1)
MULF  %R4.%R2.%R3. = FO*Y(I-1)
MOV %R5.g[%R1].M G
ADDF  %R3.%R4.%RS5. =G
MOV y[%R11.%R3.. # gtore the result
ADDI %R1.%RI1.1. /% increment loop count
BRLE %R1,%R6.LOOP. /% check loop bound

The code generated from the above IL is:

RO

-~ 1000 /* loop bound
BRO - LOOP 7* branch targel
LDQ - RI.y-1 /* load Y(0)
R3 - LDQ # move Y(0) to R3
LOOP
S! LDQ - RI,f 7% Joad F(I)
S2 R2 ~  LDQ xfR3 /¥ FODOHxY(D
S3 L.DQ - Rl.g /* load G(I)
S4 SAQ - RI.y /* addr of Y{(I)
S5 R3 -  R2ZHILDQ /7 ... +G®I)
N SDQ - R3 /% value for Y(I)
S7 R1 - R+ 1 /* increment loop count
S8 R4 - RI — RO /* test bound
S9 PBRLE R4, BRO. 0 /¥ branch back
S10  XBR

The issue time and the completion time of the above code sequence are:
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Statement  Issue  Completion
Number Time Time
S1 0 6
S2 6 10
S3 7 13
S4 8 9
S5 13 17
S6 17 18
S7 18 19
S8 19 20
S9 20 26

As a convention used in this paper. the boldfaced number in the completion-time column indi-
cates the effective execution time (in terms of clock periods) per iteration. The scheduled code
from Algorithm 1 is:

LOOP
MOV  %R2.fl%R1].M
MOV  %R5.g[%R1]..M
MULF  %R4.%R2.%R3.
ADDF  %R3.%R4.%R5.
MOV y[%RI1].%R3..
ADDI  %RI.%RI.1.
BRLE % RI.%R6.LOOP.

The machine code generated from the scheduled IL. code is:

LOOP
SI LDQ -~ RI.{
$3  LDO - Rl.g
2 R2 - LDQ %fR3
S4  SAQ - Rl
S5 R3 - R2+fLDQ
S6  SDQ - R3
S7  RI - RI+1
S§ R4 - RI-RO
SO  PBRLE R4. BRO. 0
S10  XBR

The issue time and the completion time are:
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Statement  Issue  Completion
Number Time Time
S1 0 6
S2 1 7
S3 6 10
S4 7 8
S5 10 14
S6 14 15
S7 15 16
S8 16 17
S9 17 23

0

We didn't intend to include many architectural features within the IL. In particular. the con-
cepts of prepare-to-branch and data queues are not delineated. Thus. the machine level code shown
above is not optimal. Especially. the prepare-to-branch instruction is not utilized at all. We shall
see in the next section that the code scheduler at the machine code level takes advantage of the special

architectural features.

5. Code Scheduler at the Machine Code Level

The algorithm used for the machine code level scheduler is similar to that used in the IL level
scheduler. The major differences are (a) all objects are processor resources. such as registers: (b)
RAR and WAW hazards are used to enforced the first-in-first-out (FIFO) order of queues for the
reasons explained earlier: and (c) an additional restriction (described below) is imposed for a queue-
filling instruction (instruction that puts an element on a queue) to become a leader. viz.. this queue-
filling instruction should not overflow the queue. The last difference guaraniees that the scheduled
code is deadlock-free. It is. however. possible to have an error condition at the machine code level
because of different assumptions about queue sizes. The functions of the machine code scheduler
are: (1) to utilize the architectural queues; (2) to utilize the prepare-to-branch instruction; (3) to
enforce the FIFQ nature of the queues; and (4) to guarantee deadlock free code for queues of finite
size. From the different constraints at the machine code level, we have the following theorem.

Lemma 8. The time complexity of Algorithm 4 at the machine level is linear in the size of input.

Proof. The number of elements in a leader-set, for the scheduling method at the machine code
level, is dependent on the number of objects (thus processor resources) in the system but
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independent of the input program size. Thus, the size of the leader-set in Algorithm 4 is
bounded by a constant which depends only on the processor organization. Therefore, it takes
constant time to insert an element, delete an element, and find the maximal element from the
leader set. We have to do the insert/delete/find operations at most 1 time in Algorithm 4.
Hence, the time complexity of Algorithm 4 is linear in the size of input program.

o
Theorem 3. The time complexity of scheduling method used at the machine language level is
linear in the size of the input program.

Proof. From Lemma 3. 4. 8. and superposition.

Example 2. The scheduled code of the machine code in Example 1 is

LOOP
SI  LDQ - RI.{
S2  SAQ - Rl.y
$3  LDQ - Rl.g
S4  RI -~ RI+1
S5 R4 - RI-RO
S6 R2 - LDOQ xfR3
S7  PBRLE R4. BRO. 2
S8 R3 - R2+fLDQ
S9  SDQ - R3
S10  XBR

The issue time and completion time of the code sequence are

Statement  Issue  Completion
Number Time Time
S1 0 6
S2 | 2
S3 2 8
S4 3 4
S5 4 5
S6 6 10
S7 7 13
S8 10 14
S9 1] 12

S7 completes at time 13 (shown in boldface in the table). which is the number of clock periods to
execute an iteration of the loop. Although S8 completes at time 14, the resuit generated by S8
will not be used until time 6 of the next iteration. Thus. the effective execution time is 13 clock

periods per iteration.
0

Flynn [Flyn66] observed that there is always some point in the instruction fetch/decode path

through which instructions pass at the maximum rate of one per clock cycle. Put differently, the

maximum instruction initiating rate of an issue unit is one per clock period. This bottleneck is

referred as the Flynn limit [GHLP85]. An examination of commercially available high performance

computer systems supports this observation. The weighted topological sort method described in
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Algorithm 4 does not take this limit into account. Consequently, there are cases where many
independent instructions are crowded to be issued near the end of a basic block. This clustering of
instructions results in unnecessarily prolonged execution time due to the Flynn limit. A simple
scenario of this situation follows. Suppose there are five independent instructions with cumulative
costs of two and the cumulative costs of any other instructions are larger than two. Hence, the
aforementioned instructions will be the last ones to be issued according to Algorithm 4. The relative
issuing order of these five instructions. however. is unimportant. As mentioned above. the cumula-
tive cost of a given instruction is the least amount of time (in terms of clock periods) from issuing of
that instruction to the end of the basic block. Thus. the best case is to finish the basic block two
clock periods after issuing any of these five instructions. The underlying hardware. confined by the
Flynn limit. requires 6 clock periods to complete all five instructions. which is 4 clock pertods longer
than we would like it to be. Some of these five instructions can be issued earlier if a slightly different

scheduling method is used.

We introduce a modified scheduling method to take the Flynn limit into account. The basic
idea behind the modified weighted iopological sort order is explained here. Suppose two consecutive
instructions in the weighted topological sort order with cumulative costs of 22 and n-k(A=1). respec-
tively. It is possible to issue & -1 other instructions. between these two instructions. from the leader
set without increasing the total execution time of the basic block. In other words. -1 free time slots
are available to issue instructions with smaller cumulative costs without execution time penalty.
When an instruction becomes a member of the leader set. a sequence number is assigned to that
instruction. This sequence number is just a form of time-stamp. which is used as a secondary key in
issuing instructions. The bigger the sequence number is. the later the instruction enters the leader
set. The modified topological sort order is detailed in the next Algorithm.

Algorithm 5. 1ssue Instructions by Modified Weighted Topological Sort Order.
(5-1) calculate the leader set with proper assignment of sequence number:
(5-2) p.cc - 0; { previous cumulative cost H
(5-3) ccc - 0; { current cumulative cost 3

(5-4) repeat
(5-4-1) pick up an instruction (v,) from the leader set with maximal cumulative cost:
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(5-4-2) pcc ~ c e
(5-4-3) c cc = C(v;); { the cumulative cost of v; }
(5-4-4) if (p.cc—c cc) = 2 then
(5-4-4-1) SN issue (p.cc—c cc— 1, v
else
(5-4-4-2) issue v;;
(5-4-4-3) remove v; from the leader set;
(5-4-4-4) insert new leaders to the leader set with proper assignment of sequence
number:
fi
until the laeder set is empty.
(5-5) if some instructions have not been issued then
(5-5-1) error condition:
fi

Algorithim 6. SN issue (n @ integer: v I vertex):
{ issuing at most 'n”" instructions. other than v according to the sequence number |
£y must be in the leader set |
(6-1) set tmp leader set to empty:
(6-2) while (n > 0) and (Jleader set| > 1) do
(6-2-1) pick up an instruction (Vi) from the leader set with maximal sequence number:
(6-2-2)if (v; 5 v) then ‘
(6-2-2-1) issue v,
(6-2-2-2) remove v, from the leader set;
(6-2-2-3) ¢ cc = C(v;): | cumulative cost of v, }
(6-2-2-Yn - n — 1:
(6-2-2-5) insert new leaders to the tmp leader set with proper assignment of
sequence number:
fi;
od:
(6-3) merge tmp leader set 1o the leader set.
]

In Algorithm 6 when the size of the leader set is equal 1o one. the onlv element remaining in
the leader set is the argument "v'". The “tmp leader set” is used to avoid excessive unfairness.
That is. instructions. which become leader in an activation of SN issue. are not considered to be

issued within the same activation of SN issue.

Many variations of SN issue are possible. We will not discuss alternative versions of SN issue
in this paper. The Flynn limit applies only to the hardware instruction issue unit. Thus. we have t©0
apply this modified method to the machine code level scheduler alone. The bounded leader set
assumption. used in Lemma 8. still holds. Therefore. we have the following theorem.

Theorem 4. The time complexity of the modified Algorithm 4 at the machine code level is linear
in the size of input.

Proof. The proof is similar to that of Lemma 8 and Theorem 3.
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0

As long as the high level language is available. the two level scheduling methods proposed is
applicable. If we must schedule the assembly language program to take advantage of architectural
features, a more expensive (in the sense of execution time) scheduling method must be used. The
expense come from the reordering of memory accessing instructions without deadlock. This single
level scheduling method is described below. For the simplicity of discussion. we will only elucidate
the scheduling of load instructions and instructions that consume the operands from the LDQ.
Without loss of generality. we assume that a given instruction takes either no operands or exactly m
operands from the LDQ. We will use queuc-draining insiruciions to vefer to instructions that take
operands from the LDQ. The corresponding load instructions are termed queue-filling instructions.
We enumerate all queue-draining instructions from D, to D, . Similarly. queue-filling instructions
associated with D, are numbered from F;; to F;,. That is F;; loads the j-th operand for the /i-th
queue-draining instruction. In order to enforce the FIFO nature of the queues without leading to
deadlock. all queue-draining instructions have to be strung together by appropriate RAR dependency
links. The corresponding queue-filling instructions are chained by suitable WAW dependency links.
The FIFO nature is enforced by finding a total order of all queue-draining instructions. The
corresponding queue-filling instructions are arranged accordingly. The goal of finding this total
order is to minimize the execution time of a basic block subject to the system constraints.

Definition 6. A queue-draining instruction and its queue-filling instructions form a FD-uni.
Thatis. F;, F;~ - F,, and D; form the i-th FD-unit of a basic block.

! i

0

We state without proof the following:

(1)  Since a queue-draining instruction takes m consecutive elements from the LDQ. queue-filling
instructions from the same FD-unit do not intermix with queue-filling instructions from any

other FD-units.

(2) The total order of queue-filling instructions of the i-th FD-unit is F;y F;5 - F,. In other

e

words, operands used by a given queue-draining instruction are always requested in the desired

order.
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Thus, the total order of all FD-units leads to the total order of queue-draining instructions as well as
that of queue-filling instructions. The cost of the i-th FD-unit is the cumulative cost of D;. That is.
the minimum cumulative cost within that FD-unit. The following algorithm finds the total order of
all FD-units.

Definition 7. Let M;; M;; ...,M,;, . be members of a FD-unit FD; and M;y M;; ... M/m, be
members of a FD-unit FD;. FD is dependent on FD; iff there exist a x and a y. and M, isin
FD,; and MJ‘, is in FD such that M transitively depends (i.e.. directly or indirectly depends)
on M, . A coalesced zzansmve c/o.sum among FD-units is formed by the dependency relations
among all FD-units.
o
Algorithm 7. Find the Total Order of All FD-units.
(7-1) find the transitive closure of the WDG:
(7-2) find the coalesced transitive closure among all FD-units:
(7-3) build the FD-WDG according to the coalesced transitive closure: { the FD-WDG con-
sists of all FD-units |
(7-4) do weighted topological sort on the FD-WDG:
O

The output order from Algorithm 7 is a legal total order among all FD-units. If FD; and FD,
are two adjacent FD-units according to the total order and FD; proceeds FD;. the following depen-

dencies are added to the original WDG.

(1)  Add a WAW link between F,

im

and F
(2) Add a RAR link between D, and D/.

This algorithm can always find a legal total order among FD-units. because the original text order is
a legal one

Theorem 5. The time complexity of Algorithm 7 is o(n-).

Proof. Since there are O(n) edges for a WDG of n vertices. the algorithm of finding the transi-
tive closure for use with sparse relations [HuSU77] applies. The transitive closure of the origi-
nal WDG can be computed with time complexity of O(n”). The size of any given FD-unit is
bounded by a small constant. Thus, the dependency between any two FD-units can be computed
in constant time. There are at most O(n) FD-units for a basic block of size n. Therefore, the
dependency relations among all pair of FD-units (i.e.. the coalesced transitive closure) can be
compmed with time complexity of O(n?). The FD-WDG can also be built with time complexity
of O(n- ). The weighted topological sort can be done in time complexity O(nlogn). Hence, the

time complexity of Algorithm 7 is O(n?).
O

This scheduling method moves appropriate instructions. according to their cumulative costs,

between the PBR and XBR subject to dependencies and system constraints. It does not. however,
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move as many as possible. There is no execution time penalty. however, because instructions not
moved are issued on cycles where following instruction could not be issued anyway. The same argu-

ment holds for the queue-filling/draining instructions.

The branch count field of the PBR instruction should be updated in accordance with the
number of instruction parcels being moved between the PBR and the XBR. This updating is done by

the assembler.

One possible mode of PIPE is the access/execute (AE) mode. In AE mode. the access proces-
sor (AP) calculates all memory addresses and initiates all memory references for both processors.
The execute processor (EP) does all algorithmic computations. Since the IL does not know different
execution modes of PIPE. we don’t have to introduce new scheduling method at the IL level for dif-
ferent execution modes. The scheduling method. for the AE mode. at the machine code level is
similar to that for the SP mode except that the scheduler for the AE mode has 1o look at two instruc-

tion streams at the same time 1o avoid deadlock.

All code scheduling methods discussed so far are applied to one basic block at a time. There
are not many instructions within a small basic block. It is obvious that code scheduling can be more
effective for large basic blocks than for small ones. One example of an inherently small basic block
comes from the high level language while-statement in that the evaluation of the Boolean expression
associated with the while-statement forms a small basic block. However. it is possible. for a com-
piler. to convert a while-statement into an if-statement followed by a repeai-uniil-statement with proper
adjustment to the Boolean expression. which reduces the number of small basic clocks. This exam-
ple demonstrates that a compiler can do necessary transformations to make other optimization
methods (in this case. code scheduling) more effective. In the next section. we will introduce a

method which does code scheduling across basic block boundary.

6. Software Pipelining

Software pipelining [Char81] is the deliberate partitioning of a program loop. carried out by the

compiler, into load/computation/store sequences. This allows overlapping the execution of these
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operations in a fashion similar to hardware pipelining. The effect of software pipelining is to
increase the throughput of the hardware pipeline. This is accomplished by anticipating operand

requests and overlapping their access time with computations on previously fetched operands.

Essentially. the function of code scheduling is to identify the critical path in the data depen-
dency graph and to reorder the code sequence in order to overlap the operations of non-critical paths
with the ones in the critical path. On the other hand. the function of software pipelining is to
reshape the dependency graph by reconstructing the body of a loop in order to form a shorter critical
path. The control dependency (i.c.. the branch instruction) is placed in the most appropriate loca-

tion. and is often overlapped with some data dependencies.

The idea of software pipelining is explained by an example. Considering the following code

segment:

for i ;= 1 to Max do

begin
Load;:
Computation,:
Store;:

end:

The space-time diagram of this loop is: (The x-axis is the time axis where the y-axis is the space axis.

1. C. and S stand for Load. Computation. and Store. respectively.)

i-1 i 1+ 1

i-1 i i+l

There are three “‘stages™ in the loop shown above. There are data dependencies between Load;, and
Computation; as well as between Computation, and Store,. Consequently. there are **bubbles’” in the

hardware pipeline. That is. some stages in the pipeline are not filled with useful work. An

_equivalent code sequence is:
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Load,:
Computation,
Load,;
for i := 2 to Max—1 do
Store;_ 3
Computation;:
Load;, ;:
od;
Storey,,. -
Computationy, -
Storey, .

For the next space-time diagram. we ignore the time to issue instructions (i.c.. only the execution

time of instructions are shown). The space-time diagram for the new sequence looks:

i-1 i it 1

There mayv be fewer data dependencies in the latter code sequence. Thus. the efficiency of the issue
unit of the latter code sequence is higher. Consequently. the execution time of this particular loop

can be reduced by software pipelining.

In PIPE. the only windows between CPU and the memory system are the architectural queues.
These queues make it easier to do software pipelining because registers need not be allocated for
loads and stores. Also. with queues. it is possible to load the data several iterations ahead of time (if
it is beneficial to do so). This software pipelining technique can be applied to either the IL level or
the machine level. Some semantic information. such as the loop boundary, may have to be kept
around to simplify the job of software pipelining.

The following symbols are used for the discussion of the algorithms described in this section.
Assume there are M, instructions in the body of the loop and M of which are unrelated to loop con-
trol. That is. there are M,-M instructions which are used for loop control. Let §;; be the i-th

instruction from the j-th iteration of the loop.

Definition 8. Momenious instructions within a loop are instructions other than the loop control
ones.
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O
Definition 9. The n-th order unrolled sequence is a sequence of momentous instructions formed
by unrolling the body of a loop # times.

o
Definition 10. The cos! of a code sequence is the time between the issuing of the first instruction
in that sequence and the completion of the last one.

o
Definition 11. The core of a scheduled n-th order unrolled sequence is a code sequence that
satisfies the following conditions.
(1) For all 1=/=M. there exists a unique j such that 5;; is in the sequence.
(2) For all code sequences satisfy condition (1). choose the one with minimum cost.

]
Algorithm 8. Software Pipelining.
(8-1) get the n-th order unrolled sequence;
(8-2) do code scheduling:
(8-3) find the core:
(8-4) reconstruct the loop:
O

Algorithm 9. Find the core.
foreach instruction 5, do
(9-1) find a sequence. starting with Sij that satisfies condition (1) of a core or end-of-
1/7pul'slr‘eam;
(9-2) if end-of-input-stream then
(9-2-1) exit:
else
{ call this sequence Q;; |
(9-2-2) calculate the cost of Q-
(9-2-3) if Q;; has the minimum cost up to this point then
(9-2-3-1) record Q,-,:
fi:
od:
! the last recorded Q,; is the core found by this algorithm |

Xif
0

For practical purposes. the degree of unrolling (the value of n) should be at least two to make
the software pipelining more effective than the simple scheduling method. It is easy to see that a core
can always be found as long as the degree of unrolling is no less than one.

Lemma 9. The time complexity of Algorithm 9 is on?).

Proof. There are 11-M instructions in the n-th order unrolled sequence. where 1 is the degree of
unrolling. Normally. the degree of unrolling (i.e.. the value of n) is a small constant (c.g.. 3).
and is independent of M. Thus. statement (9-1) is executed O(M) times. Similarly. statement
(9-2) is executed O(M) times. Statement (9-2-2) and (9-2-3) can be done in constant time.
Consequently. the time complexity of Algorithm 9 is O(M?).

O
Algorithim 10. Reconstruct the loop.
(10-1) put all instructions before the core before the body of the newly constructed loop;
(10-2) put all instructions after the core after the body of the newly constructed loop:
(10-3) adjust loop bounds;
(10-4) add loop control instructions back;
o
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Lemma 10. The time complexity of Algorithm 10 is constant.

Proof. Trivial.
m

Theorem 6. The time complexity of Software Pipelining is O(M?). where M is the number of
momentous instructions within the loop.

Proof. It takes constant time to do the following two operations: (a) get the n-th order unrolled
sequence: and (b) reconstruct the loop (Lemma 10). The time complexity of code scheduling is
no worse than O(MlogM) (Theorem 1). From Lemma 9. the time complexity of finding the
core is O(M?). Therefore. the time complexity of the Software Pipelining algorithm is oM?) .
|

The software pipelining algorithm can be applied to both the IL level and the machine code

level. In either case. the time complexity is O(M™).

With minor modification. this software pipelining method can be applied to loops where the
number of iterations is not known at compile time (c.g.. for-loops having variables as loop bounds;
while or repeai-until 100ps).

Example 3. The software pipelined code of Example 1 is:

LOOP
S1 SDQ - R3
S2 SAQ -  Rl.y
S3 R2 ~  LDQ xfR3
S4 R1 -~  RI + 1
S5 R4 - RI - RO
S6 PBRLE R4. BRO. 5
S7 R3 -  R2+fLDQ
S8 LDQ ~  RI.T
S9  LDQ - Rl.g
S10 XBR

The issue time and completion time are:

Statement  Issue  Completion
Number Time Time
S1 0 1
S2 1 2
S3 2 6

S4 3 4
S5 4 5

S6 5 1

S7 6 10
S8 7 13
S9 8 14

Although S9 completes at time 14, the operand loaded by S9 will not be used until §7 of the next
iteration. The effective speed of this loop is 11 clock periods per iteration. If the memory load
delay were much longer. the software pipelining method could generate code to do operand
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prefetching two or more iterations ahead.
o

The efficiencies of the issue unit for the code segments shown in the previous examples are
35%. 39% . 69% . and 82% . respectively. The efficiency of the issue unit is a good indication of the
throughput, hence. speed up. Thus. for this particular example. the speed-up of software pipelining

over straight forward scheduling is about 19%.

It is relatively difficult to do software pipelining on loops with if-statements. because it is hard
for the compiler (code scheduler) to know whether operands in the if-part should be prefetched. The
compiler. however, can at least prefetch operands that are used to determined the Boolean condition
of the if-statement. If the rrue-ratio of the if-statement is known. the compiler can do appropriate

prefetching accordingly. This is often the case. for example. in testing for error conditions.

Software pipelining has marginal performance effects on loops where the execution time of an
iteration is much longer than that of a memory reference. Thus. it is advisable to apply the software
pipelining method only to loops where the execution time of an iteration is comparable with that of a
memory reference. Intuitively. it is beneficial only to do software pipelining on small loops. There
may not be many small loops in programs. A big loop may be split (by the compiler) into a few
smaller loops to fit the loop bodies into the hardware instruction buffer. In the supercomputing
environment. however. a relative big loop may be divided into vectorizable parts and non-vectorizable
parts by applving high level language program transformation techniques. such as the ones in
Parafrase [KKLW80]. The non-vectorizable parts of a big loop may consist of a few small loops
intermixed with some vectorizable loops which may also be small. The execution time of these non-
vectorizable loops tends to dominate the total execution time. Software pipelining is a good way to
reduce the execution of the non-vectorizable small loop. hence. total execution time. Because the
software pipelining method is invoked only for small loops. the quadratic execution time of the

software pipelining algorithm will not introduce excessive overhead to the entire scheduling process.

Loop unrolling is another method to speed up loops. The major difficulties of loop unrolling

are [Weis84] (a) register allocation: and (b) code size of the loop. The latter has dramatic impact on
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the performance of loops. When the code size of a loop exceeds the hardware instruction buffer size.
the system performance degrades significantly due to excessive instruction buffer misses. The
software pipelining method. on the other hand, does not affect the code size of a loop body (though
the preamble may be larger). Thus, the software pipelined code does not have optimization
anomalies in that the execution time of the software pipelined code is no longer than that of the origi-
nal code. In the worst case. the software pipelined code is the same as the original code. Since the
execution times of each instruction is used to guide the software pipelining. The degree of prefetch-
ing (c.g.. the number of preload operands) is flexible in the sense that different loops may have dif-

ferent degrees of prefetching.

7. Simulation Studies

In this section. we show some experimental results concerning the effectiveness of the
aforementioned scheduling methods in utilizing the special features provided by the PIPE architec-

ture.

7.1. Queues and PBR Instruction

A functional interpreter and a performance simulator have been built to evaluate the perfor-
mance of the PIPE architecture. Qur measurement method is to compare the performance of the
current PIPE architecture with that of a **bare PIPE™". By ‘*bare PIPE"". we mean the PIPE archi-
tecture with the degenerate case for each special feature: in particular. the LDQ size is 1. the branch

count field is always O (i.¢.. no instructions are moved to follow the PBR instruction).

We ran a set of eight bench programs. These benchmark programs are described below.

ACK Ackermann function with arguments 1. 1.
FACT Calculate the factorial by recursive calls. The argument is 5.
HEAP A heap sort program.

We picked heap sort because its run time is less data dependent than most other

sorting algorithms.
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LLL5> The fifth loop (tri-diagonal elimination -- below diagonal) from the Livermore
Loops [McMa72] [RiSc84].

We ran the loop 20 iterations instead of the original 1000 iterations.

LLL8Y The eighth loop (numerical solution for P.D.E.) from the Livermore Loops.

MATMUL Matrix (of size 3 x 3) multiplication.

There is no procedure call in this program.
VECADD The sum of two vectors of size 200.
VECHAND Hand-coded version of VECADD for the bare PIPE.

Though. it is impractical to build a very large on-chip instruction cache for the fabrication
technology available to universities. we assume a large. fully-associative instruction cache with block
size of four parcels. The instruction cache is much larger than any of the programs tested. There-
fore. we may consider the size of the instruction cache to be infinite. Thus. when a line (cache
block) is referenced for the first time. an instruction cache miss occurs. All subsequent execution of

the instructions within the same line (block) wiil not cause any further cache misses.

Table 1. Relative performance gain by adding the LDQ
and the PBR instructions 1o bare PIPE machine

Bare Loaded  Speed
PIPE PIPE Up
(cvclesy  (cveles)

ACK 1787 1356 1.32
FACT 2104 1451 1.45
HEAP 3228 2597 1.24
LLL5 5993 2893 2.07
LLLS8 49443 19928 2.48
MATMUL 2067 1048 1.47
VECADD 13774 6957 1.98
VECHAND 4693 2508 1.87

3 Since the only compiler for PIPE at the present lime is a Pascal compiler, we converted these two loops to the Pascal
syntax using integer arithmetic
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Table 2. Relative speed-up due to the LDQ only

Bare  Loaded Average Speed

PIPE PIPE Load Dist. Up
ACK 1787 1406 7.31 1.27
FACT 2104 1499 8.10 1.40
HEAP 3228 2724 3.68 1.19
LLLS 5993 2958 6.99 2.03
LLLS 49443 | 20468 1111 2.41
MATMUL 2069 1514 12.39 1.36
VECADD 13774 7972 7.40 1.73
VECHAND 4693 2719 7.02 1.73

Table 3. Relative performance for

- different LDQ Size

LDQ size
] 2 3 4 6 =
ACK 1742 1473 1416 1396 1372 1356
FACT 2051 1608 1527 1500 1470 1451
HEAP 3112 2649 2612 2607 2601 2597
LLLS 5808 3939 3415 2894 2893 2893
LLLS 46820 | 29707 | 24201 | 21661 | 20584 | 20468
MATMUL 1857 1525 1410 1408 1408 1408
VECADD 12367 8756 6957 6957 6957 6957
VECHAND 4693 2508 2508 2508 2508 2508

Table 4. Maximum number of operands in the LDQ

Maximum Number

ACK

3

FACT

HEAP

LLL5

LLLS

MATMUL

VECADD

VECHAND

N ['w (O | b~ Y




Table 5. Relative speed-up due to PBR only

count=0 Using Count Speed

PBR Field Up

(cycles) (cvecles)  Average

ACK 1787 1690 3.65 1.06
FACT 2104 1969 4.26 1.07
HEAP 3228 2013 2.60 1.11
LLL5 5993 5313 2.93 1.13
LLLS 49443 44917 2.84 1.10
MATMUL 2067 1836 4.72 1.13
VECADD 13774 11554 5.98 1.20
VECHAND 4693 2508 5.01 1.87

Table 6. The dynamic branch count distribution

Branch
Count
(BC)
ACK Max 7
Mean 3.71
Median 6
FACT Max 7
Mean 4.32
Median 6
HEAP Max 7
Mean 2.05
Median 0
LLL5 Max 6
Mean 2.93
Median 0
LLLS Max 3
Mean 2.84
Median 3
MATMUL Max 7
Mean 4.21
Median 5
VECADD Max 7
Mean 6.98
Median 7
VECHAND | Max 7
Mean 5.01
Median 5

In table 1. we present the performance gain by adding the LDQ and PBR instruction to the
bare PIPE. The speed-up column is the ratio of ‘‘the bare PIPE’" column to ‘‘the loaded PIPE™

column. The speed-up ranges from 1.24 (HEAP) to 2.48 (LLL8). The mean and variance of the
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Fig. 2. Relative Performance for Different LDQ Sizes.

speed-up are 1.74 and 0.41. respectively. In table 2, we show the relative speed-up owing to the
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LDQ alone. The load distance is the number of instruction parcels between the instruction that loads

the operand and the instruction that takes that particular operand out of the L.DQ. The average load

distance is also included in table 2. In table 3. we show the relative performance of different LDQ

sizes. In table 4, we illustrate the maximum number of entries in the LDQ at any given time. In

table 5. we compare effectiveness of the PBR instruction. In table 6. we list the dynamic branch

count distribution.

3

C))

From this experiment. we make the following observations.

Comparing table 1 and table 2. we conclude that most of the speed-up achieved is due to the

LDQ.

From table 3. the performance gains. due to the LDQ. level off when the LDQ size is about 4.
(This. of course. is dependent on memory access time.) The relative performance of these pro-
grams for different LDQ size is shown in Fig. 2. where the y-axis is the reciprocal of the rela-

tive performance with respect to an infinite LDQ.

From table 5. the performance gain due to the PBR instruction alone is not as good as that due
to the LDQ alone. We offer the following reasons: (a) For a computer with elemental instruc-
tions. branch instructions occur less frequently than load instructions. (b) Since a relatively
Jarge instruction cache is used. it takes only a few cycles to complete a branch instruction even
if the branch count field is zero. (c) There are not always enough instructions to follow the
PBR instruction if we do the assembly language level code scheduling within a basic block.

Other possibilities of doing code scheduling are discussed in section 6.

From table 6. the average branch count for all the benchmark programs is 4.0 with variance
1.43. The number of instructions that can be moved after a branch instruction depends on (a)
the algorithm(s) used to schedule the code: and (b) the nature of the instruction set. From
table 5, the speed-up owing to PBR alone is about 10%. Though our algorithm is not as
aggressive as that used with MIPS [GrHe82]. our results are comparable to theirs. We have

shown that the generalized delayed branch is worthwhile for a reduced instruction set computer
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such as PIPE. Simple algorithms, such as the code scheduler described in this paper, can be
used to take advantage of the generalized delayed branch. Exotic algorithms, such as software

pipelining. may utilize the PBR instruction even better.

7.2. Software Pipelining

Supercomputer performance reported [Worl84] [RiSc84] on the Livermore loops [McMa72]
indicates that often the worst performance is on loop 11 (first sum). Loop 11 is relatively hard to
vectorize by current vectorizing compilers because recurrence is not well supported by the underly-
ing hardware. It takes 15 and 8 clock periods to execute one iteration of the scheduled code and the

software pipelined code. respectively. The speed-up. due to software pipelining. is 1.88.

Loop 13 (2-d particle pusher) is also hard to vectorize. The code scheduling. however. is
almost as effective as software pipelining because of its relative large loop body (see section 6). If the

memory access time were extremely long. software pipelining on loop 13 would be more effective.

§. Conclusions

We have demonstrated the feasibility of using the LDQ to reduce the impact of memory delay
and using the PBR instruction as a generalized delaved jump. A simple code scheduler is capable of
reordering the compiled code to take advantage of these special features automatically. Software
pipelining can take advantage of the aforementioned features even further (in particular, the PBR
instruction). The degree of prefetching (i.c.. the number of prefetches across the loop boundary) is
determined by the execution times of different pipes in a processor. Our scheduling methods are
applicable to most register-register pipelined architectures by simply changing the cost table which
shows the execution times and issue conditions of instructions. The scheduling methods described in
this paper will be less effective for memory-memory pipelined processors. Incidentally, but not
accidentally. register-register architectures are prevalent among the scalar mode of most high perfor-
mance computers (e.g.. Cray-1[Russ78]. Cyber 205[Linc82]. VP-200[MiUc83]. S-810[Naln84]) for

control simplicity and other reasons. Even in the 360/370 family, where upward compatibility is
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critical, the internal organization of some high-end pipelined processors are of register-register form
(e.g.. the floating point unit of the 360/91[AnST67]). Thus. we believe that queues and PBR
instructions are compatible with super-computers and that the scheduling methods described in this

paper are effective in utilizing special features available in PIPE.

The scheduling methods described above assume all results computed by instructions in a basic
block are needed at the end of the basic block. This is always true for a branch instruction where the
instructions from the branch target cannot be issued until the transfer control (the XBR point) com-
pletes (for a successful branch). This assumption leads to the fact that all cumulative costs have
non-negative values. It is possible to consider the uses of an object in all successor basic blocks. If
an object A will not be used. in all successor blocks. until 1 clock periods later and it takes m clock
periods to compute A. the instruction that computes A would have a cumulative cost of m-n. rather
than m. If n>m. the cumulative cost can have a negative value. This modified cumulative cost
reflects the urgency of objects more than do the original cumulative cost. We are looking into the

effects of this modification.

One possible extension of the LDQ is that a// registers be implemented as queues. These
queue registers can also be used as vector registers. Thus. another extension is to design a vector
mode of PIPE which is compatible with the current PIPE design principle (i.c.. simple issue condi-

tions). The performance implications of these extensions are under investigation.
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