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AN IMPROVED PROJECTION OPERATION FOR

CYLINDRICAL ALGEBRAIC DECOMPOSITION

Scott McCallum

Under the supervision of Professor George E. Collins

A fundamental algorithm pertaining to the solution of polynomial equations in
several variables is the cylindrical algebraic decomposition (cad) algorithm due to
G.E. Collins. Given as input a set 4 of integral polynomials in r variables. the
cad algorithm produces a decomposition of the euclidean space of r dimensions
into cells. such that each polynomial in A is invariant in sign throughout each of

the cells of the decomposition.

A key component of the cad algorithm is the projection operation: the
projection of a set A of r-variate polynomials is defined to be a certain set P of
(r—1)-variate polynomials. The solution set. or variety. of the polynomials in P
comprises a projection in the geometric sense of the variety of 4. The cad algo-
rithm proceeds by forming successive projections of the input set 4. each projec-

tion resulting in the elimination of one variable.



iti

This thesis is concerned with a refinement to the cad algorithm. and to its
projection operation in particular. It is shown, using a theorem from real alge-
braic geometry, that the original projection set that Collins used can be substan-
tially reduced in size, without affecting its essential properties. The results of
theoretical analysis and empirical observations suggest that the reduction in the
projection set size leads to an overall decrease in the computing time of the cad

algorithm.




iv

Acknowledgements

I would first like to thank my mother. Mrs. Margaret McCallum. for her unfail-
ing support and encouragement from a great distance away. To my masters thesis
supervisor, Dr. Tzee-Char Kuo, I owe a very great debt: for many inspiring lec-
wres and conversations, for posing the problem that eventually led to this thesis,
and for continued support. It has been a pleasure to share offices and ideas with
Jian-Tu Hsieh and Mani Subramanian. Thanks aiso to the Computer Sciences
Department for providing an excellent computing (and otherwise) environment.
I am most grateful to three special friends - Liz and Ernst Hintz. and Tony Hirst
- for their good company and camaraderie during our dissertating years. It has
been a great pleasure to interact with Dennis Arnon on subjects both related and
unrelated to this thesis: many thanks are due Dennis for his advice and
encouragement, for the ideas from his thesis, and for the boundless energy he
has put into our joint projects. I am indebted to Professor Joseph Lipman for
bringing Zariski’s work to my attention. Professors Hiroshi Gunji and Debby
Joseph have been generous of their time in reading and discussing this thesis.
To my advisor, Professor George E. Collins. 1 owe a very large debt: for provid-
ing several years of support and encouragement. for believing strongly in the
value of this work, and for his unwavering commitment to excellence in every

aspect of research.






Table of Contents

ADSITACE ..ottt e ii
ACKNOWIEAZEMENTS ..ottt iv
Table Of CONMIEIMS .....ooviiiiieii et e e e ea e v
Chapter One: Introduction ... 1
Chapter Two: Mathematical Preliminaries .................. 6
2.1 Analytic functions of several variables ............................ 7
2.2 Submanifolds of Euclidean space ................ccccoeciviiiiiiiiiiiiiiniiini, 18
2.3 Miscellaneous results ... 26

Chapter Three: Reduced Projection Map for

Cylindrical Algebraic DeCOmMPOSIION ............ccoooviiiiiiiii 33

3.1 The original cad algorithm and its

PTOJECHON TMAP ......oiuiiimiitiiiittttiet ittt e 33

3.2 A reduced projection map and new

projection thEOTEIM ..............iiiiiiiiiiiiiiiii e 43
3.3 Proof of the lifting theorem .....................ooii 49
Chapter Four: The Zariski Theorem ... 66

4.1 The general theoTem ... 66



vi

4.2 Special case (COGIMENSION OME) ..ovevevarranssrreissnss s 73

Chapter Five: Cad Construction Using Reduced

PPOJECHON . ovvcerrunnsssssseisemes s 91

5.1 Cad computation for well-oriented

POIYRIOMHALS ....oorovcrriei s 9]
5.2 Cad computation in GENETal ... 99
5.3 Clustering cad algorithms ... 104

Chapter Six: Evaluation of the Modified Cad

ALGOTIRITS . .c.ocvorevseis i 115
6.1 AlGOrithm analysis ...........oooorreimmmmssmms s 115
6.2 Empirical ODSErVAHONS ....o.oomiiirramirmnsisssss s 131
Chapter Seven: CONCIUSION .o eeiimesssss b s 146




Chapter One

Introduction

The nature of the solutions to polynomial equations in more than one
variable has been a subject of study for centuries. Conic sections were stu-
died in antiquity, and Newton [NEW] classified all cubic curves. Hilbert
[HIL35] posed a problem concerning the arrangement of the components of
non-connected plane curves defined by algebraic equations. Since the advent
of the digital computer, there has been growing interest in computing with
multivariate polynomials and in the solution of multivariate polynomial

equations.

A fundamental procedure that pertains to the solution of multivariate
polynomial equations is the cylindrical algebraic decomposition (cad) algo-
rithm due to G.E. Collins [COL75]. This method was developed as part of a
decision procedure for elementary algebra and geometry (formally speaking,
the theory of real closed fields) that was shown to be more efficient than
Tarski’s [TARS1] pioneering method, and indeed any other subsequent
method. The cad algorithm accepts as input a set of integral polynomials in
some r = 1 variables, and produces as output a description of a certain cel-
lular decomposition of r-dimensional Euclidean space IR". This cellular

decomposition of IR” has the property that each polynomial in the input set
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is invariant in sign throughout every cell of the decomposition. The "solu-
tions” of the polynomials occuring in the input are thus obtained by retain-

ing those cells in which the sign of each input polynomial is zero.

Implementation of the component parts of the cad algorithm (for exam-
ple, real root isolation for polynomials of a single variable, and polynomial
greatest common divisor computation) had begun before the algorithm’s for-
mulation. F. Mueller [MUE77] used portions of the cad algorithm to solve a
nonlinear optimization problem. Dennis Arnon carried out the first complete
implementation of the cad algorithm in 1979-80. As reported in [ARNS1]
Mueller and Arnon had both observed that certain steps of the algorithm
appear to be very time-consuming, and seem to constitute a definite obstacle
to the use of the method. The time-consuming steps involve computations
with real algebraic numbers, and in particular the constructive version of

the primitive element theorem.

In 1981 Arnon [ARNS1] presented a modified form of the cad algorithm
(applicable in low dimensions) which was designed to circumvent many of
the expensive algebraic number calculations. The new method, known as
the clustering cad algorithm uses cell adjacency information to combine cells
into groups called clusters. Certain algebraic number computations, carried
out for each individual cell in the original method, need only be carried out
for each cluster in the new method. As the number of clusters is usually
much less than the number of cells, far fewer algebraic number calculations
are required in the clustering algorithm. The cell adjacency algorithm used
by the clustering cad algorithm was developed by Arnon, Collins and

McCallum [ACMS84ab] and was based upon a method for curve




triangulation in [MCC79].

A key component of the cad algorithm is the projection operation: the
projection of a set'of r-variate polynomials is defined to be a certain set P
of (r —1)-variate polynomials. The solution set, or variety, of the polynomi-
als in P comprises a projection in the geometric sense of the variety of A.
The cad algorithm proceeds by forming successive projections of the input

set A, each projection resulting in the elimination of one variable.

The exact definition of the projection of a set A of r-variate integral
polynomials is rather involved (see Sec. 3.1). However one can roughly
describe the projection of A as consisting of the (r —1)-variate coefficients of
the elements of A together with certain discriminants, subdiscriminants,

resultants, and subresultants formed from the elements of A.

The work reported in this thesis stemmed from the surface triangula-
tion procedure contained in [MCC79]. The relevant observation is that a tri-
angulation of a surface defined by a polynomial equation F (x,y,2) =0 can
be "based upon” a triangulation of the plane curve defined by the vanishing
of the discriminant of F (x,y,z). This observation has an implication for the
size of the projection of a set of trivariate polynomials: provided that the
elements of A are primitive, squarefree, and pairwise relatively prime, it
suffices to include just the coefficients, discriminants and resultants (of
pairs) of the elements of A in the projection. It is unnecessary to include the
other polynomials specified by the original projection operator. McCallum
conjectured that a similar simplification to the projection would be possible

in higher dimensions as well.
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Through Joseph Lipman of Purdue University, McCallum learnt of
work by O. Zariski in abstract algebraic geometry that appeared to have
close connections with the projection problem. A recent paper by Zariski
[ZAR75] contained a theorem on local properties of complex hyper-
surfaces that appeared to be relevant. McCallum was able to derive from
this theorem a result pertaining to real pclynomials, discriminants, and pro-
jection. The new result states that if f (x1,--%,) is a real polynomial with
discriminant D (x1,...,X,—1), then under certain conditions a smooth cell in
R’ ! in which the order of D is invariant can be lifted” (or extended) in a
certain sense to a sequence of disjoint smooth cells in IR" in each of which
the order of f is invariant. This result, termed the lif ting theorem , leads to

a simplified projection for polynomials in several variables.

This thesis reports the proof and applications to cad construction of the
lifting theorem. Chapter 2 provides background mathematical material on
which the proof of the theorem is based. Analytic functions of several (real
or complex) variables, and submanifolds of Euclidean space, are the main
subjects dealt with. Chapter 3 gives a review of the cad algorithm, intro-
duces the lifting theorem, and shows how the theorem leads tc an improved
(because reduced) projection operation for cad construction. In Chapter 4
is presented an exposition of the Zariski theorem on which the lifting
theorem is based. The presentation is self-contained and original in many
respects. It provides the interested reader with an alternative to studying
Zariski’s original paper, the grasping of which would require a command of

advanced techniques in commutative algebra and algebraic geometry.




Chapter 5 presents algorithms for cad construction which make use of
the reduced projection operation. For so-called well-oriented poynomials
the application of the reduced projection to cad construction is straightfor-
ward. For more general polynomials, extra work is required to obtain
order-invariant decompositions over the so-called nullifying cells of positive
dimension. Clustering cad algorithms, producing smooth, order-invariant
clusters of cells, are also presented. Chapter 6 contains both theoretical and

empirical analysis of the cad algorithms from Chapter 5.



Chapter Two

Mathematical Preliminaries

This chapter presents mathematical background material which the reader

should find helpful in reading Chapters 3 and 4.

Our discussion of projection of algebraic varieties presented in Chapter
3 involves a rather careful study of the properties of algebraic sets in the
neighborhood of a particular point (such properties are called local proper-
ties). A basic tool in local analysis of algebraic sets is the (multiple) power
series. Functions having power series expansions, or analytic functions, thus

enter the discussion in a natural way.

There are a number of texts which include a discussion of the elemen-
tary properties of analytic functions of several complex variables (for exam-
ple, [GROG65], [BMA48], and [KAP66]). Analytic functions of real variables
are best studied with the aid of complex variables: Chapter 2 of [BMAA48]
contains a comparison between the real and complex cases. Section 1 of this
chapter is a collection of many basic results about analytic functions (of
both real and complex variables). For proofs one is generally referred to

texts.

The original cylindrical algebraic decomposition (cad) aigorithm
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[COL75] decomposes IR" into semi-algebraic subsets which Collins called
cells . It has been subsequently observed [KAH78] that the cells produced by
this decomposition of n-space are actually bona fide cells in the sense of
topology: that is, each cell is homeomorphic to the open unit ball in R?, for
some i, 0=i=n . What is further true is that each cell is homeomorphic
to an open unit ball via a mapping which is analytic : thus each cell is an ana-
lytic i-dimensional submanifold of R", for some i. This smoothness pro-
perty of the cells turns out to be quite important in developing an improved

projection operation for the cad algorithm.

Section 2 develops the concept of submanifold as far as needed for our
purposes. Although the material is standard, it does not appear in quite the
form we require in any of the texts. Our presentation is tailored to the

needs of our later chapters.

Section 3 is a collection of miscellaneous results which will prove useful

in subsequent chapters.

2.1 Analytic Functions of Several Variables.

We assume that the reader is familiar with the elementary theory of
analytic functions of a single complex variable. We discuss the notion of a
multiple power series and that of an analytic function of several (real or
complex) variables. We present statements of many basic theorems about

such functions, often referring the reader to standard texts for the proofs.

We present a short summary of the material presented in this section. A
function f (xy,-.,X,) (the x; real or complex variables) is said to be analytic

if it has a (multiple) power series representation about each point of its



domain. An analytic function of complex variables is also termed holo-
morphic . An analytic function is continuous and has continuous partial
derivatives of all orders. A function defined as the sum of a convergent
power series is analytic, and its partial derivatives can be obtained by
differentiating the defining series term-by-term. Sums, products and quo-

tients (assuming nonzero denominator) of analytic functions are analytic.

Let IR denote the field of real numbers, and let € denote the field of
complex numbers, i.e. numbers of the form z = x + iy, where x and y are
elements of IR and i is a square root of -1. Throughout this section K will
denote either R or €. K™ will denote the Cartesian product K X - - - XK of
n copies of K. In this section, unless otherwise specified, we will use the

notation x = (x1,...,x, ) for points of K".

Def inition. Let ¢ = (cq,....c,) be a point of K " A power series about ¢

over K is an expression of the form

i a;, g et T (% —cy)" (2.1.1)

il....,i. =

where the coefficients a; ; are elements of K.

Remark. If n > 1 then the power series (2.2.1) is a multiple power series
because of the multiple index iy, ...,i,. We can, however, arrange the

terms to form a simple series, for example, withn =2,

agy + ay(x1—cy) + agi(xa—cy) + ay(xi—c)? + ay(x1—c)(x2—c2)
+ agy(xy—c)? + azx1—cy)? +

We are thus, in this example, sweeping out all the combinations (iy, iz) by




following diagonals of the corresponding array (see fig. 2.1.1).

- Q

& W N

Fig. 2.1.1.

Another arrangement of the terms is obtained by going around the sides of

squares of increasing size, that is, choosing the successive pairs (i,,i;) as fol-

lows:
(0:0)’ (1,0)1 (1:1)’ (0!1)’ (2’0)’ (231)’ (2’2)’ (172), (0,2), (3:0), e

If x =(xq .- .,%,)is a point of K" then one can ask whether the series
(2.1.1) has some arrangement as a convergent simple series. If there exists an
arrangement of the series as a simple series for which one has absolute con-
vergnce, then by theorem 28 on p.333 of [KAP52], the series is absolutely
convergent for every arrangement as a simple series, and the sum is the
same for all arrangements. We shall say, simply, that the series (2.1.1) is

absolutely convergent if it is absolutely convergent for some arrangement as
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a simple series.

If ¢ € K™ then a neighborhood of c is an open subset W of X" contain-
ingc. LetceK" &letr =(ry, ... ,r,) €R", with r;>0 for i=1=n. Con-
sider the neighborhood

{xeK" : Ix;—¢;| <r;,1=i=n}
] ] ]

of ¢. In the case K =IR; we call this neighborhood a box about ¢ and
denote it by B(c;r). In case K =C, we call this neighborhood the polydisc
about ¢ of polyradius r and denote it by A(cr). Note that if ceIR", then
B(cy)=A(c;r) R". Let1= s =< n and let = :K" - K* be the pro-
jection w(xy, ..., %,) = (¥, ...,%). Let K =R and let B be the box

B(c ;) in R". Then we shall denote by B®) the image of B under =, i.e.
BG) ={(xq,...,x;) €R® : Ix;—x, I<r;,1=i=s}.
Let K =C and let A be the polydisc A(c ;) in €*. We similarly denote by

A®) the image of A under 7.

Def inition. Let U be an open subset of X n and let f : U~ K be a func-
tion. Then f is said to be analytic in U if each point ¢ of U has a neigh-

borhood W C U such that f has a power series about ¢ over K

FG )= 3 @, e o me)t (213)

which is absolutely convergent for every point x of W.

Example : Every polynomial in x4, . . .,x, over K is analytic in the whole of

K",

Remwark. If K=C and U C K" is open, then a function f :U - K
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analytic in U is also termed kolomorphic inU.

Remark. In the case K = IR, the above is the definition of analytic function
that appears in most texts. In the case K = €, one sometimes finds an alter-
native, equivalent definition of holomorphic function: a complex-valued
function f (zq, . - - ,2,) defined in the open subset U of €" is said to be

holomorphic in U if it is continuous in U and has continuous partial deriva-

tives gL in U. That this definition is equivalent to our definition for the
i

case K = C follows from Theorems 2.1.1 and 2.1.8 below.

Theorem 2.1.1. Let U C K" be open and let f :U~ K be an analytic
function. Then f is continuous and has continuous partial derivatives of all

orders, given by:

al.1+ A +i,|f . .
: —(c) = (1) D, ..
axyt - - 9xy"
where the a; | ;, are the coefficients of the power series expansion (2.1.3)

of f about the point ¢ of U.

Ref erences for proof . For the real case, (i.e. K = R), we refer the reader
to Sec. 6-20 of [KAP52]; and for the complex case, (K = €), to Theorem 1
of Chapter Il of [BMA48] O

Remark 1: It follows from Theorem 2.1.1 that the power series expansion of

an analytic function about a point is unique.

Remark 2 : The converse of Theorem 2.1.1 holds in the case K =C (this is
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Theorem 2.1.8) but not in the case X =IR, as is shown by the example

fx)=e -1/* (discussed in Sec. 6-17 of [KAP52]).

A function defined as the sum of a convergent power series is, as might

be expected, analytic:

Theorem 212 : Let ¢ = (cy,.-¢,) be a point of K" and let the power

series over K

o

S a,. Ge)t o Gamen)” (2.1.4)

i 1,...,1.. =0

converge (for some arrangement as a simple series) for

x,=cy+rq, ..., X%, =c¢, +r, , where each r; > 0. Let
D={x =) €EK" 1 Ix;—c; | <r; 1=i=n}

Then the series (2.1.4) is absolutely convergent for every x €D, and the
sum of the series, say f (x), is an analytic function in D. Moreover, every
partial derivative (of any order) of f is analytic in D, and its power series
expansion about ¢, absolutely convergent for every x € D, is obtained by

differentiating (2.1.4) term-by-term.

Proof : We first present a proof for the case K =€. For the complex case
let us imagine that z; replaces each occurrence of x; in the statement of the
theorem. Note that in this case, the neighborhood D of ¢ is the polydisc
A(c;r) about c. The first part of the conclusions, as to the absolute conver-
gence of the series (2.1.4), follows from the n-variable anaiogue of Theorem
54 in [KAP66]. By analogy with Theorem 55 of [KAP66], let E be the set of

points z € C" for which the series (2.1.4) converges and let E' be the
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interior of E. As the series (2.1.4) converges for every z € D, we have
D C E . Consequently, D C E i Hence the hypothesis of the n-variable
analogue of Theorem 55 of [KAP66] is satisfied. The holomorphicity of the
function f now follows by the n-variable analogue of Theorem 56 of
[KAP66]. The proof of this n-variable analogue of Theorem 56 yields the
required results about the partial derivatives of f . The theorem is now

proved for the case K =C.

Let us now deal with the real case. In this case the neighborhood D of
¢ is the box B(c ;) about c. The first part of the conclusions as to the con-
vergence of (2.14) follows from the n-variable analogue of Theorem 54 in
[KAP66]. By the complex case, the series (2.14) (with the x,’s replaced by
z;’s) is absolutely convergent in A := A(c;r) and its sum, say F(z), is
holomorphic in A,. Moreover, every partial derivative of F is holomorphic
in A,, and its power series expansion about ¢ is obtained by differentiating
(2.14) term-by-term. It is not hard to see that, for every point d of D, the
power series expansion of F (z) about d has real coefficients. Hence, when
x.’s are substituted for z;’s in this power series about d, a power series

representation for f (x) is obtained. It follows that f is analyticin D.

The proof of the assertion concerning the partial derivatives of f is

straightforward. O

It is well-known that sums, products and quotients of analytic functions

are analytic. We state this as

Theorem 213 : Let U be an open subset of X" and let f and g be analytic

in U. Then the functions f +g and fg (defined pointwise) are analytic in
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U. If f # 0 in U then the function 1/f is analyticin U.

Example : Any rational function f (X15eerXs) / 8 (X 150%,) (Where f and g

are polynomials over K) is analytic in the region of K" where g # 0.

Theorem 2.1.4 (IdentityTheorem): Let D C K" be a connected open set
and let f be analytic in D. If f (x) =0 for all points x in a nonempty

open subset U of D, then f = 0 everywherein D.

Ref erences forproof : The complex identity theorem is Theorem 6 of Ch. I,

[GRO65]. The real identity theorem is the theorem on page 53 of [JOH75). O

Let U be an open subset of K" and let G :U - X ™  be a mapping.

Then there are m functions gi, ..., 8, from U to K such that

G(x)=(81&), -, &m(x))

for all x € U . We call G an analytic mapping if the m functions g1,-;8m

are analytic in U.

Theorem 2.1.5 (Composition Theorem): Let U and U - be open subsets of K"
and K™ respectively, let G :U -~ U- be an analytic mapping, and let
f :U-~ K be an analytic function. Then the composite foG is an ana-

lytic function in U .

Ref erences forproof : For the real case, see the last paragraph of Sec. 2,

Ch. 2 of [BMAA48]. For the complex case, see Theorem 5 of Sec.A, Ch. I of

[GRO65)- O
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If F is an analytic mapping from U C K" into K7,

F(x)=(f1&),+fm(x)), and if p is a point of U, then we denote the

d
Jacobian matrix (—a—;f- (p)) of F at p by Jr (p). We can now state a cou-

J
ple of fundamental theorems on the local properties of analytic mappings.
These theorems, the inverse mapping and the implicit mapping theorems,
generalize the familiar inverse function and implicit function theorems from

the elementary calculus.

Theorem 2.1.6 (Inverse Mapping Theorem): Let F be an analytic mapping
from the open subset U of K" into K", and let p be a point of U . Suppose
that J  (p) is invertible. Then there is a neighborhood V C U of p in
which F is invertible. That is, the set V-:= F (V) is open in K", and there

is an analytic map G : V-~ V such that,forallx inV andy in W,
y = F(x) if and only if x = G(y).

Ref erences : The real case of the theorem is stated without proof in the
appendix on Calculus in [HIR76]. (Note that the linear map
Df , :R" - IR" , which is mentioned in the statement of the theorem in
[HIR76], has matrix J  (p) with respect to the standard basis of unit coor-
dinate vectors of R". Hence, the mapping Df , is invertible if and only if

the matrix J ; (p) is invertible.)

The complex version of the theorem appears in [GROG65]: it is Theorem

7 of Sec.B, Ch. I of this book. O

Theorem 2.1.7 (Implicit Mapping Theorem): Let 0=s=n, let U be an

open subset of K", and let F :U - K"~ be an analytic map with
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component functions f,4y,...,f, . Let p = (p1,---,py) be a point of
U and suppose F (p) = 0. Suppose that the (n—s)X(n —s) square submatrix
of J ¢ (p) consisting of the last n—s rows and columns of J 5 (p) is inverti-
ble. Then there are neighborhoods V C K* of (py,....,ps) and

WC K" of (Pygtr---+Ps),With VXW C U , and analytic functions

$,41s - - -» ¥, from V into K, such that for all (x4,..-,x,)in V and all
(xy41s -+ -+ Xz )iIn W,
Fxgs o) = 0iff 541 = ya1(Fs o %) oo oo %g = W Gps o0 5).

This result can be proved using the inverse mapping theorem (cf. [BUCS56)).
Up to now, the theories of real and complex analytic functions have been
developed in parallel. We now mention a couple of differences between the
two theories. The following theorem holds for complex but not real ana-

lytic functions:

Theorem 2.1.8 : Let U be an open subset of €" and let f be a complex-

valued function defined in U. Suppose that f is continuous in U and that

each partial derivative 3 exists and is continuous in U. Then f is ana-
Z

lyticinU.

Ref erences for Proof : The result follows from the n-variable analogue of
Theorem 53 in Sec. 9-3 of [KAP66] (note that the definition of holomorphi-
city in [KAP66] is equivalent to the conditions in the hypothesis of Theorem

2.18).

We include one more theorem that is valid for holomorphic functions
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but which does not have a real analogue.

Theorem 2.19 : Let U be an open subset of €* and let f be holomorphic in
U.Let c be a point of U, let r = (ry,..,r, ) , where each r; > 0, and sup-
pose that A(c;r) C U . Then the power series expansion of f about c is

absolutely convergent in A (c;r).
Ref erence for proof : See Theorem 3 in Ch.II of [BMA48).

Remark. In a real analogue of the above theorem one would presumably
have boxes B (c ;) in place of polydiscs A (c;r). That there is no real analo-

gue of the theorem, however, is shown by the following example: the func-

tion f (x) = is analytic on the whole real line, but the interval of

1+x

convergence of the power series expansion for f about 0

1-x2—x%—x5+ ---

is IxI<1.

By a zero of a holomorphic function f (z 1s-sZy) IS meant a point
p = (p1-Pn) such that f (p) = 0.1t is noted in Sec. 9-7 of [KAP66] that if
n = 2, then a holomorphic function f (z1,...,z,) can have no isolated zeros.
Further information on the set of zeros is given by the Weierstrass prepara-
tion theorem. We need a definition before we can state the theorem. Let 2

denote the (n—1)-tuple (z1,..,2,-1) -

Def inition: Let

h(z,z,) = agz)zy +a(z)zy 14 +a,(z) (2.1.6)
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where each g;(z) is holomorphic in the polydisc A; C €" -1 about 0. Then
h(z,z,) is called a psexdopolynomial (in A,). If ag is not identically zero,
then the degree of h(z,z,) is m. If ag=1 and 4;(0) =0 for each i,

1= i < m,then k(z,z,) is called a Weierstrass polynomial (in A,).

Theorem 2.1.10 (Weierstrass preparation theorem): Let f (z,2,) be holo-
morphic in the polydisc A; XA (0) C C*~1xC, let z, =0 be a root of
f (©0,z,) of multiplicity m =1, and assume that f (0,2,) # 0 for
0< Iz, | < e. Then there is a polydisc A, C A, about 0 in €"1, a func-
tion u(z,z,) holomorphic and non-vanishing in A-:= A, xA(0;e), and a
Weierstrass polynomial h(z,z,) in A,, of the form (2.1.6) (with a4 = 1),

such that
f(z.2,) =ulz.2,)h(z,2,) (2.1.7)

for all (z,z,) € A- , and such that for each fixed z € A,, all the m roots of

k(z ,z,) are contained in the disc A (0;e).

Ref erences for proof : We refer the reader to the proof of the Weierstrass
preparation theorem (Theorem 62) in Ch. 9 of [KAP66]. (Although there are
minor respects in which our statement of the Weierstrass preparation
theorem differs from that of Kaplan, the careful reader will note that our

theorem follows from the proof of Theorem 62 of [KAP66].)

2.2 Submanifolds of Euclidean space

In this section we develop the concept of a submanifold of real n-space

R".
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We first give a summary of the material presented in this section. An
s-submanifold of R" is a set S which "looks locally like Euclidean s-space
IR*"; that is, for every point p of §, there is an (analytic) coordinate system
about p with respect to which S is locally the intersection of some n—s
coordinate hyperplanes. For example, the (n—1)-sphere snl=
{x = (x150%,) € R" : Sx? =1} is an (n—1)-submanifold of R". The first
part of this section gives a rigorous definition of submanifold, and shows

that it corresponds to the above intuitive notion.

Nonempty open subsets of IR” are submanifolds - in fact, the nonempty
open subsets are the n-dimensional submanifolds. But lower-dimensional
submanifolds are not open. One can, however, define in a natural way the
notion of an analytic function from an s-submanifold § into IR, where
0<s =< n. A function f : S ~ IR is said to be analytic if for every point p
of S, there is a coordinate system about p with respect to which § looks
locally like R®, and with respect to which f looks locally like an analytic
function from IR® to IR. The second part of this section gives a rigorous
definition of an analytic function on a submanifold, and proves that the
definition is independent of any particular coordinate system for the sub-

manifold.

The third and last part of this section gives a couple of results on the
creation of new submanifolds from old. In particular, it is shown that the
graph of an analytic function defined on a submanifold of IR" is a submani-

fold of R"*1.

We now begin to look at the material described above in detail. Before

giving a formal definition of submanifold we define the notion of a regular
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point of an analytic mapping.

Definition. Let U C IR" be open and let F:U - IR*, m < n, be an ana-
lytic map. Forx = (xq,..,%x,) € U let F(x) = (F 1(x)seesF g (x)). The point p
of U is said to be a regular point of F if the rank of the Jacobian matrix

dF,
Jr(p) = (-é-;— (p))of F atp isequaltom. O
J

Example. Let F:R? - R be defined by F (x,y,z) = x> + y> +z2 — 1. Then
Jp = (2x,2y,2z), so every point of IR? other than the origin is a regular

point of F .

Definition. The nonempty subset S of R” is an analytic s-dimensional sub-
manifold of R® (or C® s-submanifold, or C® smooth, for short), where
0 =< s = n, if for each point p of § there is a neighborhood W C IR" of p
and an analytic map F: W - IR"™ which has p as a regular point, such that
SN W={x €W:F(x)=0} o
We remark that there is a notion of an s-submanifold of R" of class C',
defined as above in terms of maps F which are required to be of class C"
(i.e. to possess continuous partial derivatives through the order r). Here, r
is allowed to be any non-negative integer, @ , or  (meaning analytic). The
only kind of submanifold we shall consider is the analytic kind. Thus we
shall henceforth omit the term ’analytic’ when referring to submanifolds: all

submanifolds will be understood to be analytic.

Example. Let §% = {(x y,2) € R3 : 22 +y% + z2 = 1} be the unit sphere in

IR3. For each point p in §? we may take W =IR>and F: W - IR to be the
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map F (x,y,z) = x2+y2 + 22 — 1. As noted above, F is regular at every
point p # 0, and hence at every point p of S2. Thus S2? is a 2-submanifold

of R3. O

Definition. Let U and V be open subsets of IR®. A homomorphism
®:U - V such that both ® and &1 are analytic maps is called an analytic

isomorphism.

Definition. Let U and V be open subsets of IR” and let ®: U - V be an
analytic isomorphism. Then & is called a coordinate system in U . Suppose
thatp € U,0 € V,and ®(p) =0. Then & is called a coordinate system (in
U) about p. O

The next theorem expresses the intuitive idea that an s -submanifold of

IR*,0 = s =< n, is a set which "looks locally like Euclidean s -space”.

Theorem 22.1. The nonempty subset S of IR” is an s-submanifold of R",
0= s < n, if and only if for every point p of S there is a neighborhood
U C R" of p and a coordinate system d:U - V,® =(dy,.-.,d,), about
p such that

S U ={x € Usd,41(x) = 0, (x) = O} (22.1)

Remarks. Let 0 = s < n and let T be the s-dimensional linear subspace

T = {y "—'(yl,...,}’") € R": Vs +1=0,...,y,, =O} (2.2.2)
of IR". Then IR® may be identified with T under the natural identification
mapping Uy qseYs) = (F1reeeYs 505,0) (we write IR* = T). By Theorem
22.1, the nonempty subset S of R" is an s -submanifold of IR" if and only if

S "ooks locally like the subspace T = R*® of R"” (i.e. for each point p of
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S there is a neighborhood U C IR" of p and a coordinate system

&:U - V about p such that ®(S M U)=T N V)

Proof of 22.1. Suppose that § is an s -submanifold of IR". Let p be a point
of S. Then there is a nbd W C R" of p and an analytic map
F:W - R*™ having p as a regular point such that § (| W =
{x € W:F(x)=0}. If s =n thenset U =W and ®(x) = x—p: note that
(22.1) holds. Assume that s < n. Write F(x) = (f s 41(x)seeaf o (x)). As the
Jacobian matrix Jz(p) of F at p has rank n—s, we may assume after a
renumbering of the coordinates that the (n—s) X (n —s) submatrix
[%% @) ),ﬂs.-s,.,

s+lsj=n

of Jp(p) is invertible. Define $: W - R", d = (b1, ...,d,), as follows:

Xk ~Diy 1=i=<ys
d;(n) = fix), s+tl=i=n

Then @ is an analytic map, and the Jacobian matrix J o) of @ at p is
invertible. Hence, by the inverse mapping theorem (Theorem 2.1.6), there is
a neighbbrhood U C W of p in which @ is invertible (i.e. V :=®(U) is
open in R?, and the restriction of ® to U has an analytic inverse which
maps V onto U). By definition of @, (2.2.1) holds. The other direction of

the theorem is obvious. O

Now nonempty open subsets of IR" are submanifolds - in fact the
nonempty open subsets are the n-dimensional submanifolds. But lower-
dimensional submanifolds are not open. One can, however, define in a
natural way the notion of an analytic function from an s -submanifold S into

R, where 0 < s < n. Having the notion of chart at one’s disposal
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facilitates this definition. Let S be a subset of R". A chart for S is a
homomorphism from an open subset of S onto an open subset of IR*, for
some s, 0= s =n. Let S now be an s-dimensional submanifold,
0< s =< n,and let p be apoint of S. Let U C IR" be a neighborhood of
p,and let ®:U - V, ® =(d;, ... ,b,), be a coordinate system about p
such that ®(S | U) =T (O V, where T is given by (2.22). As remarked
following the statement of Theorem 22.1, T = IR* under the identification
mapping vIR* - T:let T (M) v correspond to the neighborhood W of 0 in
R under this identification (written T (| V = W). The mapping
$:8 | U ~ W given by
d(x) = ($1(x)sr0; (x))
is a homomorphism with analytic inverse f , and is called the chart for §

corresponding to ®.

Definition. Let S be an s-submanifold of R", 0 =< s < n, let T be given
by (222), and let f : S -~ IR be a function. Then f is said to be analytic (in
S) if for each point ¢ of S there is a neighborhood U of ¢ and a coordinate

system ®: U - V about some point p of § (| U, such that

(@) ®S N U)=T N V;and

) f 0¢‘1: W - IR is analytic, where W is the neighborhood of 0

in R for which T (| V = W, and ¢:§ (| U - W is the chart for §
corresponding to ®. O

Condition (b) in the above definition can be paraphrased, "f is analytic

t (& lis the composite of @1 and the restriction of L to W)
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with respect to the coordinate system ®". The following theorem states that
if f:5 - IR is analytic then, for each point p of S, f is analytic with
respect to any coordinate system ® about p satisfying condition (a) of the

above definition.

Theorem 222. Let S be an s-submanifold of R", 0= s =< n, let T be
given by (22.2),and let f :§ - IR be an analytic function. Let p be a point
of S and let ®:U - V be a coordinate system about p such that
PE N U)=TN V=W, Then f ¢ :W - IR is analytic, where
$:5 (| U - W is the chart for § corresponding to ®.

Proof. Let w € W. Then w = &(q) for some point ¢ of S M U. By
definition there is a neighborhood U" of ¢ and a coordinate system Y:U"
-~ V'suwchthat ¥ N U)=T O V' =W and f o¥ W' - R is ana-
lytic, where ¢:S (|} U ~ W' is the chart for § corresponding to ¥. Let
m:IR" = IR® be the projection w(yq,m¥y) = (P15e¥s). Then we have
f 0d NG 1e¥s) = (f 0¥ Dol o¥od ™Y (1,--5) for every point (y1,....y5) of
the neighborhood ¥(S N\ U M U ) of w. Therefore, by the composition
theorem (Theorem 2.1.5), f o¢ ! is analytic near w. Hence f o® ! is analytic
inw. O

Finally, a couple of results on the creation of new submanifolds from

old.

Theorem 223. Let S be an s-submanifold of R*™1, 0 < s < n—1, and let
f:5 - R be an analytic function. Then the graph of f is an s-

submanifold of IR".
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Proof. Let G be the graph of f and let (p,p,) be a point of G, where
p = (P1s-Pn-1)- We shall find a coordinate system about (p p,) in R" with
respect to which G is locally the intersection of the last n —s coordinate
hyperplanes. By Theorem 22.1 there is a neighborhood U C R" “lof p and
a coordinate system ®:U - V about p such that ®(S O\ U)=T N V,
where T is given by (22.2). Let W be the neighborhood of 0 in IR® such
that W =T (| V and let $: 5 (| U - W be the chart for S correspond-
ing to ®. Let wdR"!~ IR® be the projection TP 1reeeVn1) = O 1seens¥s )
Then w,® is an analytic map from U into IR*. Hence, as W is a neighbor-
hood of 0 in IR®, the set U~ = ('zr0<I>)'1(W) is a neighborhood of p in R" -1
withU'C U. Let V' = ®(U") and define amap ¥: U' X R - V' X R by

VY (x1%,) = (@(x)5 — (f o0& Do(mo@)(x)),
for (xx,) € U X R. Then ¥ is an analytic map (the n-th component of ¥
is analytic because f o® 1 is analytic in W by Theorem 222). In fact, one
can verify that ¥ is invertible, with analytic inverse ¥~1 given by

Ty y,) = (@70) v + (f 00T 1ms)s
for y = (yqpe¥a—1) € V" and y, € R. Thus ¥ is a coordinate system about
(p .p,)- Where ¥y, .. ., ¥, are the components of ¥, we have

G N (U XR) ={(xx,) €U xR, 1(x%,) = 0,y (x.%,) = O}
By Theorem 22.1, G is an s -submanifold of R". O

Theorem 224. Let S be an s-submanifold of R"™1, 0= s < n-1, and let

f and g be continuous functions from § into R (also allowed are f = —©
org= +o) with f < g. Let R ={(xx,) €S XIR: f (x) < x, < gx)}
Then R is an (s +1)-submanifold of R".
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Proof. Let (p.p,) be a point of R. By Theorem 2.2.1 there is a neighbor-
hood U C R*™! of p and a coordinate system ®:U - V about p,
@ = (dy, - - - »d,-1)» Such that
SN U=1{x€U:d;44(x) = 0,....0,1(x) = 0}.
Choose € > Osuch that f (p) < p, € < p, Tt €< g (p). By continuity of
f and g, there exists a neighborhood U"C U of p in R*"! such that
f(x)<x, < g(x)foreveryx €5 (| U andeveryx, € (p, — € p, + €).
Let I =(p, — €,p, T€), let J = (—€,+€), and let V' =®(U’). Define
.U X[ - V' xJ by ¥(x x,) = (®(x)x, — p,)- Then ¥ is an analytic
map, with analytic inverse ¥~ given by Ty ) = (@7)y. +Pa)-
Where ¥y, . . . , ¥, are the components of ¥, we have
RO W XI)={(Fx) € U XI:¥,41(x %) = Oy 1(x %) = 0}

Even though ¥, (x,x,) = 0 is not included amongst the local defining equa-
tions for R, by an obvious analogue of Theorem 22.1, R is an (s +1)-

submanifold of R". @

2.3 Miscellaneous Results

Definition. Let K =R or €. Let U be an open subset of K" and let
f:U - K be an analytic function. Let p be a point of U. If some partial
derivative of f of non-negative order does not vanish at p then we say that
f has order k at p, and write ord,f = k , provided that k is the least non-
negative integer such that some partial derivative of f of order k does not
vanish at p; we also say that f has order k; at p in x;, provided that k; is
the least non-negative integer such that some partial derivative of f of

order k; in x; does not vanish at p. If, on the other hand, all partial
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derivatives of f of all orders vanish at p, then we say that f has order = at

p, and write ord,f = ;we also say that f has order © at p in each x;.

Theorem 231. Let K =R orC. LetU C K" and V C K™ be open sets,
let G:U -~ V be an analytic mapping, and let f:V - K be an analytic

function. Then, for every point p of U,

ordg,)f = ord,f G-
Proof. Let the coordinates of K" be (x1,---X,) and let those of K™ be
(7 15--¥m)- Let B = foG. We prove by induction on k that every partial
derivative of h of order k is a finite sum of terms of the form
(PoG)Q
where P = P (yq,--¥n) is a partial derivative of f =f (1se-s¥m) of order
< k and Q is an analytic function. This is true for k = 0 by definition of h.
Assume that the above proposition is true for &k = 0. Let
ak+1p

R = — — be a partial derivative of h of order k+1. As some
ax',‘ R}

i, > 0, we have R = _(_9@_._8__’ where § is a partial derivative of h of order k.
xS

By the induction hypothesis, S is a finite sum of terms of the form (P,G)Q,
where P is a partial derivative of f of order = k. (Let g4,....8, be the

component functions of G.) As

3(PoG)Q _ a(PoG)

¢ +@G) T2

0xg ax; s
and
a(P oG ag ad
(o)=(aP06) Ly (2B, )8
dx ayq dax Y m ax,
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(PG )Q
axg

it follows that is a finite sum of terms of the form (P¢G)Q’,

where P’ is a partial derivative of f of order = k + 1. Hence R is such a
sum. We have shown that the required propositiop holds for k + 1. The
proof by induction is complete.

Let p be a point of U and let the order of f at G()bel. If 1 =0
then clearly ord,k = 0, so assume [ > 0. Let R be a partial derivative of &
of order k < I. Then R is a finite sum of terms of the form (P,G)Q,
where P is a partial derivative of f of order < k. But P(G(p)) =0 for
every partial derivative P of f of order =< &k, as ordg)f =1 > k. Hence

R(p) = 0. It follows that ord,h = I. O

Theorem 232 (Root continuity principle).

Let f (z) = f 2 +fz9 1+ --+ +f4 be a polynomial in C[z], with
fo=f1= """ =f4-p-1=0and fy_; # 0, forsome [,0=< ! =< d. Let
o be a root of f (z) of multiplicity m and let C be a circle in the complex
plane centered at a, of radius € > 0, such that f # 0 in the punctured disc
0 < lz—al =< e. Then there is a number & > 0 such that if gg,g1,-84 € €
and Ig; —f;1 <3 for 0 =< j = d, then the polynomial

g(z) =gp? +gzd i+ -ty (23.1)
has exactly m roots inside C.
Proof. There exists 8 > 0 such that if gq,....84 € C, lgj —f;I < d for
0= j=d,and g(z) is given by (23.1), then Ig(z) — f ()1 < If (z)! for
lz] =€. Let gg,ngqy € Candlet lg; —f;1 <dfor0=j=d. Let g(z)
be defined by (2.3.1) and let f ,(z) = f (z) + s(gz) —f(2)),for0=s = 1
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Now if 0 = s < 1 then

If, @) = 1f @)+s(gG)~f N = 11f ()1 —1s(eG)~f )
= 11f (z)I—slg(z)—f @)
>0
for 1z1 =e. Hence, if 0 = s =< 1, then f (z) has a total number m, of

zeros inside C given by
o= L [ f(@)de
*zmivc Q)

But the integral on the right-hand side of (23.2) is continuous in s and is

(232)

integer-valued, and hence is constant. Therefore my =my,. O

Let R be an integral domain and let

A()=ax™ +ap™ 1+ - +a,,
B(x)=by" +bx" 1+ -+ +b,
be polynomials in R[x], not both constant, of degrees m and n respectively.

The Sylvester matrix of A and B is them +n by m + n matrix

)
dg 41 - . . a,
ag ay - . . ap,
apg a4 an
M=l b, . . . b
by by . . . b,
by by . . b,
| J

The resultant of A and B, res (A ,B), is defined by

res(A,B) = det(M).
Suppose now that the characteristic of R is zero and that A is not constant.

Then ma, # 0, and so the degree of the derivative



A'lx) = magx™ " + (m ---l)alx""'2 + - tap
of A(x) is m—1. Consider the Sylvester matrix of A and A’. The first

column has two nonzero entries, ay and ma,. Hence we can factor out ay
from res (A ,A°). The discriminant of A, discr (A), is defined by the equation
agdiscr (A) = ) D2 res(A,A")
Let K be the quotient field of R and let () be an algebraic closure of

K. Then we can completely factor A(x) and B (x) into linear factors over ()

thus:
AR) =agx—ay) - (x—ap), (233)
B(x) = bo(x—B1) - - (x —Ba)- (234)
The following expressions for res (A ,B) and discr (A)) are well-known:
res(A,B) = agb§ H (a; —B;) (235)
u ij
discr(A) = a2 11 (a -aj)z. (23.6)
i<j

Theorem 233. Let A(x) and B(x) be non-constant polynomials over the

integral domain R of characteristic zero. Let C (x) = A(x)B(x). Then

discr (C) = discr (A)(res (A ,B )2 discr (B).
Proof. Let K be the quotient field of R and let () be an algebraic closure

of K. Factor A(x) and B (x) completely over ) asin (233) and (234). Let

Y1 =Qp - Ym T %mo 7m+1=Bl’-'-!7m+n=Bn' Let Co=aobo and

! =m +n. Then

Ck)=colx —v1) - (x — 1)
Therefore

discr(C)=cf?* TI (- 'Yj)z
1=si<j=sl

(a2 T (a,-—a,-f].[a&"b&m mai—ﬁ,-r

1si<j=m 1<i=m,
1sj=n
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b2 I (B B

isi<j=sn

= discr (A)(res (A ,B))? discr (B).O

The sum —norm (or just norm for short) of an integral polynomial A in
r variables is the sum of the absolute values of the integer coefficients of A.
The max —norm of such a polynomial is the maximum of the absolute values
of the integer coefficients. We denote the sum-norm by |A |4, and the max-
norm by |A |, . The following theorem leads to a bound for the coefficients

of the factors of an r-variate integral polynomial.
Theorem 234 (Gelf ond) : Let Ay, ..., A, be r-variate polynomials with
complex coefficients, and let A =A; -~ 4. Let n; be the degree of A in
r
the i-th variable, assume n; > 0 for all i, and let m = 2 n; . Then
i =1

k
I 14;1e = 2™ 72141, .
j=

Proof : See [GEL60], pp 135-139.

Corollary 235 : Let A be a non-zero integral polynomial in r variables, and
let B be a factor of A. Let n be a bound for the degree of A in each vari-

able. Then
Bl = (n+1) 2720410, .
Proof : As B has at most (n+1)" terms, we have

Bly=< (n+1).1B 1,



The corollary now follows from the theorem. O

32
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Chapter Three

Reduced Projection Map for Cylindrical Algebraic Decomposition

In this chapter we launch the main thrust of the thesis. Section 1 contains a
review of the essential aspects of the cylindrical algebraic decomposition
(cad) algorithm. The main focus of the review is the projection operation
used in the cad algorithm. In Section 2 we introduce a new projection map,
which is a reduced version of the original. Theorems are presented which
suggest the usefulness of the reduced projection map in cad construction
(algorithms for cad computation using the new projection are presented in
Chapter 5). Section 3 contains mathematical details that substantiate the

results in Section 2.

3.1 The original cad algorithm and its projection map

The purpose of this section is to provide a quick introduction to the cad
algorithm. More detailed accounts appear in a number of sources, e.g.

[COL75], [ARNS1], [ACM84a].

Let A be a finite set of r-variate polynomials, r = 1. An A-invariant
cylindrical algebraic decomposition (cad) of IR" partitions IR" into a finite
collection of semialgebraic cells in each of which every polynomial in A is

sign-invariant. A more precise definition of cad is given in [ACM84a]. An



A -invariant cad of the plane, where
A = {F(xy) =y*-2y3+y2-3%y +2x%,
is depicted in Figure 3.1.1. Note that F (x,y) vanishes in each of the O-cells

and "curved” l-cells, and is either positive or negative throughout each of

the remaining cells.

Fig. 3.1.1.

The cad algorithm accepts as input a finite set A of integral polynomials
in r variables, and yields as output a description of an A -invariant cad D of
IR". The description of D takes the form of a list of sample points and (if
required) defining formulas for the cells of D. The algorithm consists of
three phases: projection (computing successive sets of polynomials in one
fewer variables, the zeros of each set containing a projection of the “critical
zeros” in the next higher dimensional space), base (constructing a cad of
IR), and extension (successive extension of the cad of R’ to a cad of Ri*1,

i =12,..,r—1). We shall describe each of the phases in turn.
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For a set A of r-variate integral polynomials, we shall define a set
PROJ (A) of r —1-variate polynomials whose zeros contain the projection of
the "critical locus” of A. We shall show that for any PROJ (A)-invariant j-
cell R in R" 1, the cylinder over R (i.e. R XIR) is partitioned by the zeros of
A into a finite number of pairwise disjoint j-cells (the graphs of continuous
functions defined on R) and their complementary j +1-cells. This property
will enable us to carry out the extension of a PROJ (A)-invariant cad of

R"~! to an A -invariant cad of R".

We introduce some terminology first. The reductum of a polynomial F
is the polynomial F — Ildt(F), where ldt (F) is the leading term of F, i.e.

the term of highest degree. Let red k(F) denote the k-th reductum of F . Let

F (x) and G (x) be nonzero polynomials over an integral domain D, F and G -

not both constant. Let n = min(deg (F ),deg(G)). For 0= j < n,let §;(F,G)
denote the j-th subresultant polynomial of F and G, an element of D [x] of
degree = j. (Each coefficient of §; (F ,G) is the determinant of a certain
matrix of F and G coefficients; see [LOO82b], [BRT71], or [COL75] for the
exact definition. Subresultant polynomials are intimately connected with
polynomial remainder sequences: the fundamental theorem of polynomial
remainder sequences [BRT71] makes the connections explicit. The fact con-
cerning subresultant polynomials of chief importance to us is that if D is a
unique factorization domain, then where k = deg(ged (F,G)), we have
S;(F,G) =0 for 0= j <k, and §;(F,G) = ged (F ,G) modulo multiplication
by elements of D.) For 0= j = n, the j-th subresultant of F and G, written
subres;(F ,G), is the coefficient of x/ in S;(F,G). Note that

subreso(F ,G) = res(F ,G) . Suppose now that the characteristic of D is 0.
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Let ldcf (F) denote the leading coefficient of F, and assume that
(n :=)deg (F)> 0. Then nldcf (F) # 0, and so the degree of F’, the
derivative of F, is n—1. By considering the Sylvester matrix of F and F 7, it
can be seen that, for 0= j = n—1, ldcf (F) is a divisor of subres;(F ,F ).
For 0= j =< n-—1, we define the j-th subdiscriminant of F and G, written
subdiscr ;(F ,G ), by the equation
ldcf (F).subdiscr;(F) = (—-1)"(""1)/2.subresj (F,F)

(cf. definition of discr (F ) in Sec. 2.3). Note that subdz'scro(F) = discr (F) .

Let A be a set of integral polynomials in the r variables xy,....%, . We
regard the elements of A as polynomials in x, over the ring of polynomials
in X1, Xy 1. We now define several sets of (r —1)-variate polynomials. The

reducta set of A written red (A) is the set
{red*(F):F €A,0=k = deg(F), red*(F) # 0}
The coef f icient set of A, written coef f (A), is the set
{ f (x{seeesXp—1) 1 f is a non—2zero coefficient of some F € A }.
The subdiscriminant set of A, written subdiscr (A), is defined to be
{ subdiscr;(F): F€A,0=j < deg(F)}
The subresultant set of A, written subres (A), is defined to be
{ subres;(F ,G):F,G €A,F # G,0=<j < min(deg (F ), deg(G)) }

We can now define the projection of A. Suppose first that A is a squarefree
basis (that is, the elements of A have positive degree, and are primitive,

squarefree and pairwise relatively prime). Then we define PROJ(A) to be
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the set
coef f (A)\ subdiscr (red (A))\) subres (red (A)).

Now let A be any set of r-variate integral polynomials. Let cont (A) be the
set of non-constant contents of elements of A, and let prim (A) be the set of
primitive parts of positive degree of elements of A. Then where B is the
finest squarefree basis for prim(A) (that is, the set of irreducible divisors of

elements of prim(A)), we set

PROJ (A) = cont (A) U PROJ(B).
The following concept is crucial:

Def inition: A real polynomial F (x ,x, ) is said to be delineable on a subset §
of R"1if

(1) the portion of the real variety of F lying in the cylinder over S consists
of the union of the graphs of some k =0 continuous functions
0;< --- <86 from$S to IR; and

(2) there exist integers my,...,m; = 1 such that for every a €S, the multipli-

city of the root 8;(a) of F(a,x,) is m;.

In the above definition, the graphs of the functions 8; are called the
F —sections over S. The regions between successive F -sections are called

F —sectors .
We can now state the main theorem about PROJ :

Theorem 3.1.1: Let A be a finite set of integral polynomials in r variables

and let ¢cCR" 7! be a connected set in which every element of PROJ (A) is
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sign-invariant. Then every element of A is either delineable or identically

zero on ¢, and the sections of A over ¢ are pairwise disjoint.

We briefly discuss the ideas involved in the proof. It is shown in [COL75]
that for a polynomial F (x ,x,) whose leading coefficient does not vanish on a
set ¢ C IR"1, the invariance of the number of distinct roots of F (a,x,) as a
varies within ¢ implies the delineability of F on c. On the other hand, the
number of distinct roots of F (a,x,) is equal to d —k, where d is the degree
of F in x, and k is the least integer j = 0 such that subdiscr;(F)(a) # 0
(this follows from the fundamental theorem of polynomial remainder

sequences [BRT71)).

Let us assume the hypotheses of the main theorem, and assume first
that A is a squarefree basis. Let F be an element of A which is not identi-
cally zero on c¢. Then as the elements of coef f (A) are sign-invariant on c,
F is identical with some reductum G of F on c, such that G has non-
vanishing leading coefficient on c. As the elements of subdiscr (red (A)) are
sign-invariant on c, subdiscr;(G) is sign-invariant on ¢, for 0= j <deg (G).
Thus, by the above remarks, the number of distinct roots of G(a,x,) is
invariant throughout c, hence G (and therefore F) is delineable on c. The
invariance of subres(red (A)) on c ensures that the various sections of ele-
ments of A on ¢ are pairwise disjoint.

If A is an arbitrary set of polynomials, then we can apply the above
argument to the basis B for prim (A). The required conclusions for A follow
immediately. The reader can consult either [COL75] or [ACMB84a] for a

more detailed proof O
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Let A be the input to the cad algorithm. Let us assume for the present
that defining formula construction is not required. In the projection phase of
the algorithm we compute PROJ(A),PROJ (PROJ (A)) = PROJ?*(A), and so
on, until we compute PROJ' ~1(A). It is the task of the base phase to con-
struct a PROJ"~Y(A)-invariant cad of IR!. We begin the base phase by con-
structing the set of all distinct irreducible factors of nonzero elements of
PROJ" "1(A). We then isolate the real roots of (the product of) these factors.
We thus have an exact representation for each root consisting of its minimal
polynomial and and an isolating interval (see [LOO82a], Section 1 for more
information on this). The cad of R! consists of the collection of these roots
(the O-cells) together with the collection of complementary open intervals
(the 1-cells). Sample points for the O-cells are the roots themselves
represented as above, while rational sample points for the 1-cells can be
readily chosen. Defining formulas for the O-cells and 1-cells can be obtained

in a straightforward manner (see p. 45 of [ARNS1])).

Let D * be the cad of R! constructed as above. Let us first consider the
extension of D * to a cad of IR2. In the projection phase we computed a set
J = PROJI""%A). Let c be a cell of Dx Then by Theorem 3.1.1, the
cylinder over ¢ is partitioned by the zeros of J into a finite number of sec-
tions and sectors. These sections and sectors will be cells of our decomposi-
tion of IR%Z. We now describe how to determine the number of these cells
over ¢, as well as a sample point for each cell. Let a be the sample point
for ¢, and let J, be the product of all elements G of J for which
G(a,x;) # 0. Using algorithms for exact arithmetic in Q (a) [LOO82a], we

construct J, (a,x;). We isolate the real roots of J,(a,x,), which provides us
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with the number of sections and sectors of J lying over c. Now (x,B) lies
on a section of J over c if and only if B is a root of J, (a,x5). For each
such B, we use the representation for a, the isolating interval for B, and the
algorithms NORMAL and SIMPLE of [LOOS82a] to construct a primitive
element y for Q(a,B); we use y to construct an appropriate representation
for the algebraic point («,B), by expressing « and B as polynomials in y. We

readily get sector sample points of the form (a,r), with r rational.

After processing each cell ¢ of D# in this way, we have determined a

cad of IR? and constructed a sample point for each cell.

Extension from IRi~! to IR! for 3= i <r is essentially the same as from
R! to IR?. The only difference is that a sample point in R~ has i—1,
instead of just one, coordinates. But where « is the primitive element of an
R/ ~! sample point, and F is a polynomial in r variables, arithmetic in 0 ()
still suffices for constructing the univariate polynomial over Q(a) that

results from substituting the coordinates (a;, . - . ,@; —1) fOF (X 1,.%; pinF.

We have also to define the augmented projection APROJ (A) of A, which

is used when defining formulas are to be constructed. First some notation:

Def inition Let us take the degree of the zero polynomial to be -1. Let

Fx) =F o) +F 4w e+ fax)
be a polynomial in R[xx,] and let S be a subset of R"~1. Say that f is
degree —invariant in S if there exists [, —1= [ = d , called the degree of f
in § (written degg(f)), such that for every point p of S, the univariate
polynomial f (p x.) has degree I. If f is degree-invariant and of non-

negative degree [ in § then fo=f,= - =f44-1=0 in §, while
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f4—; #* 0in S ( the converse is also true ).

Let FU) denote the j-th derivative of F. Define the derivative set der(A)

of A to be the set
{FU):FeA,0< j=deg(F)}.

Suppose first that A is a squarefree basis. Then we define APROJ (A) to be

the set
subdiscr (der (red (A))) U PROJ (A).

If A is an arbitrary set of polynomials then where B is the finest squarefree

basis for prim (A), we set
APROJ (A) = cont (A) |J APROJ (B).

The role of the augmented projection in defining formula construction is

indicated by the following two theorems:

Theorem 3.12: Let A be a finite set of integral polynomiais in r variables
and let ¢ C IR"~1 be a connected set in which every element of APROJ (A) is
sign-invariant. Then for every F €A, F is degree-invariant on ¢, and FU)is

delineable on ¢, for every j, 0= j <deg (F).

Theorem 313: Let F be an integral polynomial in r variables. Let
c¢CIR" "1 be a connected set on which F is degree-invariant and not identi-
cally zero, and on which FU) is delineable for 0 < j < deg.(F). Then, given
a sample point and a defining formula for ¢, we can construct defining for-

mulas for the F -sections and F -sectors over c .
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For the proofs of these theorems one should consult Sec. 2.5 of [ARNSI1].

The following abstract algorithm indicates how augmented projections

are used in the cad algorithm, and generally serves to summarize the discus-

sion of this section.
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CAD (r A ;S ,F)

[Cylindrical algebraic decomposition. A is a set of integral polynomials in r

variables, r = 1. k satisfies 0=k =< r. § is a list of sample points for an

A-invariant cad D of R". If k = 1, F is a list of defining formulas for the

induced cad of RY, and if k =0, F is the empty list.]

€))

)

)

[Initialize.] Set B ~ the finest squarefree basis for prim(A). Set
S~ (QandF ~ ().

[r = 1] If r > 1 then go to 3. Isolate the real roots of B. Construct
sample points for the cells of D and add them to §. If kK =1, then
construct defining formulas for the cells of D and add them to F.

Exit.

[r > 1] If k <r then set P ~ PROJ(A) and k” ~ k; otherwise set
P « APROJ(A) and k- k—1. Call CAD recursively with inputs r -1,
P, and k~ to obtain outputs S~ and F ~ which specify a P -invariant cad
D’ of R"~1, For each cell ¢ of D", let a denote the sample point for
¢, and carry out the following sequence of steps: set B* - the set of
all B; (a,x,) such that B; € B and B; (a,x,) # 0; isolate the real roots
of B#*; use a and the isolating intervals for the roots of B* to construct
sample points for the B-sections and B-sectors over ¢, adding them to
S; if k =r, then, from the defining formula for ¢, construct defining
formulas for the B-sections and B-sectors over ¢, adding them to F,

andifk < r,setF -« F’. Exit O

3.2 A reduced projection map and new projection theorem
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In this section we introduce a new projection map P which is a
‘reduced’ version of the map PROJ discussed in Section 3.1. We state a
theorem analogous to Theorem 3.1.1 which implies that under certain
assumptions on a given set A of polynomials, any cad of R’ ~1 such that
every element of P(A) has constant order (as opposed to sign - recall the
definition of order given in Section 2.3) throughout every cell, can be lifted
(or extended) to a cad of IR" such that every element of A has constant
order throughout every cell. The mathematical result underlying this analo-
gue of Theorem 3.1.1 will be termed the lif ting theorem, and is the main
contribution of this thesis. In this section we state the lifting theorem and
derive the important consequences for cad construction from it. We post-
pone the proof of the lifting theorem to the next section of this chapter. In
Chapter 5, we present algorithms for cad construction based upon the lifting

theorem.

Before we can state the lifting theorem we need to make a few

definitions.

Def inition Let K =R orC. Let U be an open subset of X" and let
f :U - K be an analytic function. We say that f is order —invariant in a

subset S of U provided that the order of f is the same at every point of §.

Example. Let f :IR?~ IR be given by f (x.y) =x2 - y2. Let C; be the
curve defined by f(x,y)=0 and let S =Cy —{0}. Then f is order-
invariant in § ( ord, ,,f =1 for every point (xq,yo) of S ). However f is

not order-invariant in C; ( ordggf =2 ).
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Remark. Let U and V be open subsets of K", let G :U - V be an ana-
lytic isomorphism, and let f :V - K be an analytic function. By Theorem
2.1.5 the composite function f (G is analytic in U. It follows from Theorem

2.3.1 that, for every point p of U,
ordg,)f =ord,f G-

Hence, if S is a subset of U, then f is order-invariant in G () if and only

if f (G is order-invariant in S .

Throughout the remainder of this section and the next, let x denote the

(r —1)-tuple (x1,...,x, 1) and let (x x,) denote (% 15eesXr —15%7 )-
We now introduce the concept of analytic delineability.

Def inition. Let S be a connected submanifold of IR" 1. We saw in Sec. 2.2
that one can define the notion of an analytic function from S into IR. If
f (x x,) is a real polynomial then we say f is analytic delineable on S if f
is delineable on § by means of some k =0 analytic functions

8, < -+ < 0, from$ into RR.

Remark. Suppose that f (x,x,) is analytic delineable on the connected s-
submanifold § of IR"~l, Then each f -section over § is a connected s -
submanifold of R” (Theorem 2.2.3) and each f -sector over S is a connected

(s +1)-submanifold of IR" (Theorem 224).

We can now state our main mathematical result.

Theorem 32.1 (Lif ting theorem ). Let f (x,x.) be a squarefree polynomial
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in IR[x ,x,] of positive degree in x, and with non-zero discriminant D (x). Let
S be a connected submanifold of IR" ! in which f is degree-invariant and
of non-negative degree, and in which D is order-invariant. Then f is ana-

lytic delineable on S and is order-invariant in each f -section over S .

The proof of this theorem is quite long, and is supplied in the next section
of this chapter. The theorem will enable us to show that our reduced projec-
tion map P, to be defined shortly, is essentially as good (for the purpose of

cad construction) as its larger counterpart PROJ .

We now proceed to define the map P. Let A be a set of r-variate
integral polynomials. Recall the definition of the coefficient set coef f (A)
from the previous section. We define the discriminant set of A, written

discr (A), to be the set

{discr(F):F€A,deg(F)=2},
and the resultant set of A, written res(A), to be the set

{res(F,G):F,G€EA,F # G, deg (F),deg(G)=1}.
We can now define P . Suppose first that A is a squarefree basis. We set
P(A) = coef f (A) \J discr (A) | res(A).
Now let A be any set of r -variate polynomials. We set
P(A) =comt(A) | P(B),

where B is the finest squarefree basis for prim(A).

Noting that the resultant of two polynomials F and G is equal to

subresy(F ,G), and that the discriminant of F is equal to subdiscr(F), we
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can compare the definitions of PROJ and P. Itis clear that P (A) is a subset
of PROJ (A). There are two respects in which PROJ and P differ. The first
is that PROJ forms resultants, etc. of elements of the reductum set of B,
whereas P forms resultants, etc. from just B itself. The second is that
PROJ constructs full sequences of subdiscr;’ and subres;’s, whereas P con-

structs only the O-th order subdiscr’s and subres’ (i.e. discriminants and

resultants only).

Before deriving a counterpart of Theorem 3.1.1, we give a useful

lemma.

Lemma 322 :Let K = RorC. Let Fy,..,F, be nonconstant analytic func-
tions defined in an open subset U of K", and let f =F,.F,. Let S be a
connected subset of U . Then f is order-invariant in § if and only if each F;

is order-invariant in S .
The proof is straightforward. O

We now state our central result pertaining to P:

squarefree
Theorem 323 : Let A be a finitel basis consisting of r-variate integral poly-

nomials, r = 2, and let S be a connected submanifold of IR" 1. Suppose that
each element of A is not identically zero on S, and that each element of
P(A) is order-invariant in §. Then each element of A is degree-invariant
and analytic-delineable on S, the sections of A over S are pairwise disjoint,

and each element of A is order-invariant in every section of A over S.
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Proof . Assume that some element of A is nonconstant (otherwise the

theorem is trivial) and let F,,..,F, be the nonconstant elements of A. Let

n
f =]IF;- Then f issquarefree, as the F; are squarefree and pairwise rela-
i=1

tively prime. Let D (x) be the discriminant of f (x ,x,). By Theorem 233

n
D = [[discr (F;).I1res (F; ,Fj)z.
i=1 i<j
By hypothesis, each discr (F;) and each res(F;,F;) is order-invariant in S .
Hence, by Lemma 322, D is order-invariant in S . Furthermore, f is not
identically zero on S, and is degree-invariant on §. Hence, by the lifting
theorem, f is analytic delineable on §, and is order-invariant in each f -

section over § . By Lemma 322, each F; is order-invariant in every such sec-

tion. The conclusions of the theorem now follow. o

We shall also define a reduced augmented projection map AP, and
establish a counterpart of Theorem 3.12. Let A be a squarefree basis of
integral polynomials in Z [x ,x,]. We define a slight variant of the derivative
set of A: where gsfd (P) denotes the greatest squarefree divisor of the poly-

nomial P, let
der »(A) = {gsf d (prim (FU)):Fe€A0< j=deg(F)}
We set
AP (A) = discr (der #(A)) |J P(A).
For an arbitrary set A we set

AP (A) = cont (A) U AP (B),
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where B is the finest squarefree basis for prim(4).

The following result is our counterpart of Theorem 3.1.2:

squarefree
Theorem 324 :Let A be a finite!basis of integral polynomials in r variables,

where r = 2, and let § be a connected submanifold of IR =1, Suppose that
each element of A is not identically zero on S, and that each element of
AP (A) is order-invariant in S. Then, for each F €A, F is degree-invariant

on S, and FU) is delineable on §, for every j, 0= j = deg; F).

Proof : Let F €A. The degree-invariance of F on § is obvious. Let
0< j < degg(F). Then F U) is degree-invariant and not identically zero on §
(as F is). Let G be the greatest squarefree divisor of the primitive part of
FU). Then, as G is a divisor of FU), G is degree-invariant and not identi-
cally zero on S . By hypothesis, the discriminant of G is order-invariant in S .
Hence, by the lifting theorem, G is delineable on §. As the content of FU)

is non-zero in S, it follows that FU) is delineable on §. O

3.3 Proof of the lifting theorem

The lifting theorem can be regarded as an adaptation to Euclidean
space of certain aspects of O. Zariski’s work on equisingularity over the
complex field. In this section we give a straightforward proof of the lifting
theorem based upon a recent result due to Zariski [ZAR75]. We do not,
however, require the reader to consult Zariski’s original paper and to
attempt to see how the result stated therein is applicable. Instead, we pro-
vide in Chapter 4 a self-contained, and in some respects original, rendition

of the relevant theorems due to Zariski.
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The proof presented in this section is quite detailed, and hence rather

long. The main thread of the proof can be gleaned from the first few pages.

Notation. We denote by Z(S) the cylinder over a subset § of R (ie.

Z(S) = S XR).

Proof of 32.1: Let the dimension of S be s, where 0= s = r—1. If
s =0 then the theorem is trivial. For 1= s = r—1, the theorem follows

from the following assertion as to the "local delineability” of f :

Assertion 1. For each point p of S there is a neighborhood N C R 1 of p

such that f is analytic delineable on S (N and f is order-invariant in

each f -section over S\ N .

We explain now how the theorem can be deduced from the above assertion.
Let Assertion 1 hold. Then it follows by connectedness of § that the
number, say k =0, of distinct real roots of the univariate polynomial
f (p x,) does not depend upon the particular point p of § ( that this
number is locally constant is an immediate consequence of Assertion 1). If
k =0 then the theorem is vacuously true, so let k = 1. Then one can define
k functions ©,, --- ,8, from § into R by setting 8,(p) equal to the i-th
real root of f (px,),forp in§ and 1=i=<k. Clearly the graphs of the ©;
comprise the portion of the real variety of f lying in the cylinder over S.
Let p be a point of §. Then by Assertion 1 there is a neighborhood
NCR 1 of p and k& analytic functions from S N into IR, say
8;< --- <8, whose graphs comprise the portion of the real variety of f

which lies in Z (S () N), and such that f is order-invariant in the graph of
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each 0;. Let 1=si=<k.As 8;(x)= 0;(x) for all x in S} N it follows
that @, is analytic near p, and hence in S. Thus f is analytic delineablie on
S . By connectedness of S, f is order-invariant in the graph of each 8,. The

conclusions of the lifting theorem have been verified.

It remains to establish Assertion 1 (i.e., the local delineability of f ).
Let p be a point of S, and let the degree of f (p,x,) be /. Then | = 0 by
hypothesis. If ! =0 then Assertion 1 follows immediately by the degree-
invariance of f in §. Therefore, let us henceforth assume that / > 0. Let
;< ---<ay, k=0, be the distinct real roots of f(pyx,) let

@y4+1> 5%, , k=t , be the distinct non-real roots of f (p x,), and let

]
m; be the multiplicity of the root a;, for 1=<i=1t.Then 3 m =1 .Letx

i=1

be the minimum separation between the roots of f (p,x.) : that is,

K=min{la,-—-ajl:15i<js.t}. Let 0<e< —'—;—,and let C; be the

circle in the complex plane of radius e centred at «;. By the root continuity
principle ( Theorem 23.2 ) there is a neighborhood N(C IR” =1 of p such
that for every x € N, each C; contains exactly m; roots ( multiplicities
counted ) of f (x ,x,). Consider the following assertion, which implies that if
x is sufficiently close to p, and belongs to S, then all of the m; roots of

f (x x,) inside C; are coincident:

Assertion 2. For each i, 1= i <k, there is a neighborhood N; C N, of p
and an analytic function 6; from S (| N; into (a; —€,a; +€) such that for
every x € S (| N; and every a € (a; —€,a; +€),

f (x,@) =0 if and only if « = 0;(x), (33.1)
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and such that f is order-invariant in the graph of 6;.

We say that the above statement asserts the nonsplitting of the roots «a;, as
x varies within S near p.

We shall now verify Assertion 1 on the strength of Assertion 2.

k
Assume that Assertion 2 holds. Let N = (| N, , and consider the domain of
i=0

each 8; to be S (| N . We shall show that the portion of the real variety of
f ( denoted by V (f ) ) which lies in the cylinder over S (| N is the union
of the graphs of the 0;: that is,

Vg ZENN) = U graph @) (332)
( where the right-hand side of the equation is understood to be the empty
set in case k =0 ). Let (x,a) be an element of the right-hand side of (33.2).
Then x € SN and a = 0;(x) for some i, 1=i= k. hence, as the range
of §; is (a;—€,a; +€), a€ (a;€,a +e). Therefore, by (33.1),
f (x,@) =0, and so (x,a) is contained in the left-hand side of (3.3.2). Con-
versely, let (x,a) be an element of VEIN ZSNN). Then
x€SOAN,a€R,and f (x,a) =0. As f is degree-invariant in § and the
degree of f (p x,) is !, the degree of f (x x,) is also [. As x € Ny, the inte-

rior of each C;, 1= i =t , contains exactly m; roots ( multiplicities counted
) of f(xx) Since Sm =1, every root of f (x,x.)

is contained within one of the C; . Each C; with k+1=i=1 contains no
real points, however, as the non-real roots of f (p,x,) occur in conjugate

pairs. Hence, as a is a real root of f (x x,), « must lie inside a C; with
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1= i < k . Hence, by (33.1), a = 0;(x) , so (x,a) is contained in the graph
of 0;,. We have shown that (3.3.2) holds. This completes our proof of Asser-

tion 1, on the strength of Assertion 2.

It therefore remains to establish Assertion 2 (i.e., the nonsplitting of
the roots a; as x varies within § near p). We now give a point-by-point

summary of the steps involved in proving the nonsplitting of the roots.

1. We fix on a particular «;, and observe that there is no loss of generality
in assuming that a; = 0. We are able to dispose quite quickly of the case in
which the dimension s of S is equal to r —1. In this case, S is just an open
subset of IR""! and so both the discriminant of f and the leading
coefficient of f are nonzero in S. Hence, the nonsplitting of the roots is
obvious (all roots are simple), and the analytic function ; of Assertion 2 is

given by the implicit function theorem.

2. There remains the harder case 1=s =r—2. We choose coordinates
(y1,--+¥s —1) about the point p, such that § is defined locally by the equations
¥ 41 = 0sesy, -1 = 0 in the new coordinate system (by Theorem 22.1). Let
g(y,y,) denote the function f (x ,x.) transformed into the new coordinates.
Then g(y,y,) is a polynomial in y, whose coefficients are analytic functions
of y, defined near O (the analyticity here comes from the analyticity of the
coordinate change map). The discriminant E (y) of g (y,y,) is analytic near 0,
and is order-invariant in the linear subspace T defined by

Ys41 = 0,00y, 1 = 0, near 0 (as D (x) is order-invariant in S ).

3. Each coefficient of g(y,y,) can be expanded in a convergent power series



54

about 0 (by definition of analyticity). Each such power series can be
regarded as a complex power series in the complex variables (zq,...,2, -1) = 2,
where z; = y; +iv;, say. By the multivariate analogue (Theorem 212) of a
well-known result on convergence, each of these power series is absolutely
convergent in a neighborhood of 0 in complex (r —1)-space €"~1. In this
way, each coefficient of g(y.y,), and hence also g(y,y,), can be extended
(uniquely) to complex space. We write g(z,z,) to denote this extension of
g(y.y,): g(z,2,) is a pseudopolynomial near 0 (see Section 2.1 for definition).
We observe that the discriminant E (z) of g(z,z,) is order-invariant in the

complex linear subspace T » defined by z, 41 = 0,....z, -1 = 0, near 0.

4. The next step is to focus our attention on the structure of the complex
variety g (z,z,) = 0 in a neighborhood of the origin. We use the Weierstrass
Preparation Theorem (Theorem 2.1.10) from the theory of several complex
variables to do this. This theorem gives us a monic pseudopolynomial
k(z ,z,) which has the same locus as g (z ,z,) near the origin. It is shown that

the discriminant F (z) of k(z ,z,) is order-invariant in T *, near 0.

5. We can now apply Zariski’s theorem (Theorem 4.1.1) to k. This theorem
implies the nonsplitting of the roots of h(z,z,), as z varies within T #, near
0. In fact, the theorem yields an analytic function ¥(z1,---2;) defined near 0
which gives the unique distinct root a of h(z,z,), for z = (z1,...,%; ,0,...,0) in
T », sufficiently close to 0. The theorem also assserts order-invariance of h

along the locus of this root.

6. All that remains is to retrace our path. The nonsplitting of the roots of
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g(».y,), as y varies within T near 0, is immediate (as T C T *). Taking the
restriction of ¢ to a neighborhood of 0 in real s-space IR® gives a real-
valued analytic function m(yi,...ys) Which represents the i-th real root of
g(y,y,) for y in T, near 0. Finally, transforming back to the (x,x,)-
variables, we deduce the nonsplitting of the roots of f (x x,) as x varies
within §, near p. We obtain an analytic function 8; defined in S near p,
which represents the i-th real root of f (x,x.), for x in S, near p. Order-
invariance is preserved under the restriction and detransformation, and thus

f is order-invariant in the graph of 6;.

This concludes our summary of the proof of Assertion 2 (the nonsplitting of

the roots).

We now fill in the details of the proof of Assertion 2 outlined above.
Assume k > 0 (k the number of real roots of f (p,x,)) and let 1=i = k.
There is no loss of generality in assuming that «; = 0. (For if a; # 0 then
we can use a translation of the x,-coordinate to obtain a polynomial
f (xx,) :=f (x,x,"+a) such that (a) f (p X, has a root of multiplicity
m; at x,” =0 and no other roots either inside or on the circle C of radius €
about 0; and (b) the discriminant of f “(x,x.7) is the same as that of
f (x x,). Assuming that the required assertion has been proved for o; =0,
we obtain a neighborhood N; of p and an analytic function
8, :SON; -~ (—¢€,+e€) corresponding to f . We need simply "de-

translate” 8; " to find the desired

8, :SMN; - (a;—€,a; +€)
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corresponding to f ) Let m =m; and C =C; : we seek a neighborhood
N =N; of p and an analytic function 8 =6, satisfying the required proper-
ties.

Let us first dispose of the

Case s =r—1.
By definition of submanifold there exists a neighborhood U C N of p such

that U C S . Let f 4(x) be the leading coefficient of f (x x.), and let R(x)

be the resultant of f (x x,) and Eaf— . Recall that D (x), the discriminant of

14

f (% ,x,), is defined by the equation

(-1) 2 RE)=fo=)D().

As f is degree-invariant and D is order-invariant in §, f o # 0Qand D#0
in U ( since f o(x) and D (x) are non-zero polynomials ).Hence R# 0 in U

and in particular R(p)# 0. As f o(p) # 0, R(p) is equal to the resultant of

the univariate polynomials f (p,x,) and —gx'[—(p X, ). ( Although this may
r

seem like a restatement of the definition of resultant, it actually depends

crucially on the fact that f o(p) # 0. Recall that R(x) is defined to be a cer-

tain determinant in the coefficients of f (x ,x,) and _;LL . The only non-zero
xf

entries in the first column of this determinant are f o(x) and df o(x), where
d is the degree of f (x,x,) ( with respect to x, ). Hence if f (¢)=0 then

R(q)=0. However the resultant of the univariate polynomials f (g ,x,) and

87 (g %,) could be non-zero in spite of f o(¢)=0. ) Since f (p,0)=0, we

ax,
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must therefore have -aé*[-(p,O);ﬁ 0. Hence, by the implicit function
x

r

theorem ( obtained by taking s =r —1 in Theorem 2.1.7 ), there are neigh-
borhoods N°C U of p and W C (—e,+e) of 0, and an analytic function
8:SM N =N"~ R,such that forall x €N~ and all c € W,

f (x,@) =0 if and only if a = 6(x) . (333)

By continuity of 8, N” may be refined to a neighborhood N C N~ of p such
that 6(N)C W . Let x €SN =N and let a¢€ (—e,+e). We shall
check that (3.3.1) holds. Assume that « =6(x). Then a € W, so by (333),

f (x,a)=0. Assume conversely that f (x,a)=0. Now m=1 as

T_‘}[—-(p,O)ab 0. Hence we must have a=0(x) ( otherwise f (x ) would
x

r

have at least two distinct roots, a and 6(x), inside C, contradicting m =1 ).

So (3.3.1) has been verified. Let x € N and let « =0(x). As m=1, x, =«

is a simple root of f (x,x.). Thus —gf—(x ,)# 0, and so ord, ,)f =1.
r

Hence f is order-invariant in the graph of 8. Assertion 2 has been esta-

blished.

There remains the

Case 1=s=<r-2.

It will be convenient for us to use a coordinate system about p with respect
to which § is locally an s-dimensional linear subspace of IR’ -1, By
Theorem 22.1 there exists a neighborhood U C N, of p and a coordinate

system @ :U - V aboutp, ® =(dy, " ,&,_1) , such that
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SAU ={x €U :4,:E)=0, - = ,¢,4(x)=0}.

By replacing U by the connected component of U containing p we shall
henceforth assume that U is connected. Let T be the s-dimensional linear

subspace

{}’ =()’1a-~-ayr-—1)€ ]R"-—l :ys+1=0’ e v)'r—1=0 }

of IR" L. Then the image of S (| U under ® is T V . Let

f(x,x,.)=fo(x)x,‘.’+f1(x)x;'"1+ e+ fa(x)

where f o(x)# 0. We shall denote by g(y,y,) the transform of f (xx,) by
®. That is, if y € V , then g;(¥) =f;(®7Y(y)) for 0=j=d ,and

g ) =80d + e GWF T+ o +2a()

As the analytic map @1 is not in general a polynomial map, g (¥.y,) is
not in general a polynomial in y and y,. However we can regard g(y,y,) as
a polynomial in y, whose coefficients gj(y) are analytic functions of y,
defined in V (' so g(y,y,) is an instance of the real analogue of the pseudo-
polynomials introduced in Sec. 2.1 ). Note that y, =0 is a root of multipli-
city m of g(0,,), that g(0,a)* 0 for complex a satisfying 0< lal <e€,
and that, for each fixed y € V, g(y,y,) has exactly m roots ( multiplicities
counted ) inside C. Let E (y) be the discriminant of g(y,y,). Then E(y) is
an analytic function in V and E(y) = D(®7Y(y)) for every y € V. Recall
that D is order-invariant in S. Hence, by the remark following the

definition of order-invariant in Section 32, E is order-invariant inTO V.
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We should like to find a box B =B(0;3)C V about 0 in R -1 where
8=(8y ...,8,—y), and an analytic function TM(Yyyesyr—1) from
BO={(yy ..., ¥ys) ER Iy 1 <¥;,I1=i= s} into (—e,+e), such that

for every y =y, - - - »¥s:0,--0) €T B and every a € (—€, +e),
g(y,@) =0 if and only if a =n(yy, ... Ys) (334)

and such that g is order-invariant in the set

(335)
G={Q0y)ER" 1y =0y - - ,¥5:0,-,0) €T (M B andy, =n(yy - - - :}’s)}
( Note that as B®)=T M B we can think of n as a map from T (M) B into
(—e€,+e), and the set G as the graph of m. ) We shall make an excursion
into the complex domain from which we shall return with the box B and the

function m. Upon detransforming B and m via @ we shall have our desired N

and 6.

Choose p=(py.--,Pa-) €V , with p;>0 for all i, such that
B,:=B(0;p)C V and the power series expansion about 0 of every g; is
absolutely convergent at y =p . By Theorem 2.12, the power series expan-
sion about 0 of every g;, considered as a complex power series in the com-
plex variables zj,..z.-1, IS absolutely convergent in the polydisc
Ay:=A(0;p)C €~ and the sum of the series, g;(z)=g;(zy - -- ,Zp_1) » IS

holomorphic in A;. For z € 44, set

g(z.2,) = go2)zf +g1(2)z! TH+ o +2a(2)
( so g(z,2,) is a pseudopolynomial in A; ) and let E (z) be the discriminant
of g(z,2,). Let

S a4ty (33.6)

ip e iz 0
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be the power series expansion for E (y) about 0. Then the power series
expansion for E(z) about 0, which is absolutely convergent in A;, is

obtained by substituting zy, . . .,z,— for yy, ...,y - in (33.6).

Let T = be the s -dimensional linear subspace
{ z =(Zl, “ e ,z,_l)EC'“I :Zs+1=0, tet ,Zr._.1=0}

of € ! ( note that s is the dimension of T * considered as a complex sub-
space of the complex vector space €' -1). We claim that, after refining A,
suitably, we can assume that E (z) is order-invariant in T *{") A,. We prove
this claim now. Let ordyE =p . Then every partial derivative of E(z) of

order less than p vanishes at 0. Let

iyt ety 1
Py = ———=
azyt - -z
r—1
be a partial derivative of E (z) of order 3 i; < p . By Theorem 2.12, P (z)
j=

is holomorphic in A; and its power series expansion about 0, which is abso-
lutely convergent in A, is obtained by differentiating (33.6) ( with the y;’s

replaced by z;’s ) term-by-term. Let

iytoti, .
a 1 r XE

00) = ——
ay1' tc 3y

By Theorem 2.12, Q(y) is analytic in By and its power series expansion

about 0, which is absolutely convergent in By, is obtained by differentiating

(33.6) term-by-term. Hence the power series for P (z) can be obtained by

substituting zy, ...,z,_y for yq ...,y in the power series for o).

Recall that E (y) is order-invariant in T (| V . Hence, as ord¢E =p , Q(v)
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vanishes  throughout TN B, It follows that  substituting
¥e+1=0, - ,y,1=0 in the power series for Q (y) yields the zero power
series in i, ...,ys . Hence substituting z,41=0,---,z -1=0 in the

power series for P (z) yields the zero power series in zq, ...,z; . It follows
that P (z) vanishes throughout T#*( A;. We have shown that every partial
derivative of E (z) of order less than p. vanishes throughout 7 *( A;. As
ordgE = p , some partial derivative of E (z) of order p., say R(z), does not
vanish at 0. Let A,C A; be a polydisc about 0 in which R # 0. Then
ord,E =p for every z € T*( Ay, so E(z) is order-invariant in T*M A,.
Replacing A, by A, we may assume that E (z) is order-invariant in TxM 4.

We wish to study the structure of the zero set of g(z ,z,) near the ori-
gin. An application of the Weierstrass preparation theorem will facilitate
this study. Recall that g(z,z,) is holomorphic in the polydisc A;xA(0ze),
that z, =0 is a root of g(0,z,) of multiplicity m, and that g(0,z,)# 0 for
0< Iz, | < e . By the Weierstrass preparation theorem ( Theorem 2.1.10 ),
there is a polydisc A,C A;, a function u(z,z) holomorphic and non-

vanishing in A":=A,xA(0;e) , and a Weierstrass polynomial
h(zz,) =z +ay(z)zP P+ - +ay(2)
in A,, such that
g(z2,) =ulz 2z )h(z 2) (33.7)

for all (z,2,) € A", and such that for each fixed z € A,, all the m roots of
h(z ,z,) are contained in the disc A(0;e). By (33.7), as u # 0 in A", the zero

set of g(z,z,) is the same as that of k(z ,z;), in A",
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We claim that u(z,z,) is in fact a pseudopolynomial in A;. We prove
this claim now. Let z be a fixed point of A,. Let z, =§ be a root of
h(z z,). Then &€ A(0;e) . Hence, as (33.7) holds near z, =£ in the z,-
plane, and as u(z,z,) # 0 near z, =§, g(z,§) =0 and the multiplicity of the
zero € of h(z,z,) is equal to the multiplicity of the zero § of g(z,z,). We
have shown that every root of k(z,z,) is a root of g(z,z, ), and moreover has
the same multiplicity in g(z,z,) as it has in k(z,z,). Thus h(z,2,) 18(z,z)
in €[z,] and the quotient of g(z,z,) by k(z.z,) is clearly equal to u(z,2,).
Let ! be the degree of g(z,z,). Then m <[ < d , and the degree of u(z,z,)

is { —m. Let us write
u(z’zr =uo(z)zf""+u1(z)zf"”"'1+ st +ud-—-n|(z):

where ug(z)= - =uy_;-1(z)=0, and uy;_;(z)# 0. Letting z now be a
variable point of A,, the coefficients u;(z) of u(z,z,) can be regarded as
functions defined in A,. That these functions are in fact holomorphic in 4, is
seen by equating coefficients in (33.7). We have established our claim that
u(z ,z,) is a pseudopolynomial in A,.

Let F (z) be the discriminant of k(z,z,). We shall find a function Q(z)

holomorphic in A, such that
E(z) =Q()F(z) (33.8)

for all z in A,. If d > m in which case u(z,z,) has positive degree in z,

then set

Q@) = GE)RGE))

where G(z) is the discriminant of u(z,z,) and R(z) is the resultant of
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u(z 2,) and k(z,z ). Equation (3.3.8) holds by Theorem 233.If d =m in

which case u (z ,z,) has degree zero in z, then set

(z) = (ko)™ 2.
Equation (3.3.8) holds by Equation (23.6).
By Lemma 322, F(z) is order-invariant in T»M A,. Hence, by
7 ariski’s 1975 theorem ( Theorem 4.1.1 ), there exists a polydisc A; C A;

about 0, and a holomorphic function ¥(zy, . ..,z;) from Afs) into A(Oz)

such that for all z =(zq, . ..,2;,0,.,0) € T*( A; and all a € A(0;¢) ,
k(z,@) =0 if and only if a =¥(zy, .. .,2;) (33.9)

and such that k is order-invariant in the set

Gr={(z,2,)€C" :z2=(21, .. .,2,0,..,0) € T* Az and z, =y(zq, . ..,2)}-

As remarked following the statement of Zariski’s theorem in Sec. 41, Aé’)
can be identified with T #() A3, and § regarded as a map from T*( A3
into A(0;e), with graph G =.

Let the power series expansion for ¥(zy, .. .,z;) about 0 be absolutely
convergent at the point (zy, ...,2) = (3y, ... ,8;) of Af), where 8;,> 0
for each i. Choose Bypps---20,1>0 so that, if
8=(8y .--,058;41 - - -»5,-1) , then the polydisc A,:=A(03) in clis
contained in A;. Let B =B(0;8) in R" ~1 and let m be the restriction of ¢ to
BG). Then BC V and we claim that m is a real-valued analytic function,
that for every y =0y --.,¥5,0,.,00 €T (B and every a¢€ (—e,+e)
(3.34) holds, and that g(y,y,) is order-invariant in "the graph of " ( ie,,

strictly speaking, in the set G defined by (33.5) ). We prove these claims
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now. Let (yg,--.,¥:)€ BG) and let y =@y .- -.¥s50,..,0) be the
corresponding element of T (M) B . By (339), a:=¥(yy, ...,y;) isaroot of
h(y,y,) inside A(0;e). Hence, by (3.3.7), « is a root of g(y,y,) inside A(Ose).
But g(y.y,) is a real polynomial in y,. Hence & is a root of g(y,y,) inside
A(0:e), and so by (33.7), k(y,@)=0. But (339) implies that a =& , and
hence o is a real number. Thus m is a real-valued function, and

m:B6) - (—e,+e). Let

J Je
E dizy' -z (33.10)
j=0
where j denotes the multi-index (jq, - .-, js) , be the power series expansion

for $(zy, - - - »25) about 0. Then (33.10) is absolutely convergent in Af), by
Theorem 2.12. Let d; = b; +ic; , where b; and c; are real numbers, for

each multi-index j. By Theorem 48 of Chap. 6, [KAP52],

W(dy, . ...8,) = Ebjsfl---a,"' +i(2cja{1~--aj') ,
j=0 j=0

where both the real and imaginary parts of the right-hand side are abso-

lutely convergent. By Theorem 2.1.2, each of the series

j i iy i
S biyi¥s s S, c;jy1ts
j=0 j=0

is absolutely convergent in B¢), and the sum of each series is an analytic

function in B¢). But for (yq,....¥s) € BG) |

Tl()’p---,)’s):\ll()’p---»}’s zd,)’l

120
—Zby +1(20y
j=0 ji=z0

= Ebjy{‘...ys" , as m is real—valued.
j=0
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Hence 7 is analytic in B (), It is straightforward to verify the remaining
claims about 7.

Finally, set N =®7}(B) and define 6:SM\N - (—e,+e) by
8(x) = (mgd)(x) , where ¢: SN - B®) is the chart for S correspond-
ing to ®. As 0ypp"! =m is analytic in B®), ¢ is analytic in SO\ N.
Clearly (3.3.1) holds for every x € S| N and every a € (—e,+e), and
the order-invariance of f in the graph of 8 follows from that of g in the
graph of m, by the remark following the definition of order-invariance in
Section 3.2. This completes the proof of Assertion 2 and hence of the lifting

theorem. O



Chapter Four

The Zariski Theorem

This chapter presents an exposition of Zariski’s 1975 theorem on equisingu-
larity over the complex field [ZAR75]. Our presentation of this result is
self-contained and in many respects quite different from Zariski’s. Our
basic tools are analytic functions of several complex variables, and elemen-
tary topology (covering spaces in particular). Puiseux series (or fractional
power series) enter into one aspect of the argument.

The proof is divided into two cases: the codimension one case, and the
remaining case. The codimension one case was established by Zariski in 1965
[ZARG65] (the essential ideas were known earlier [ZAR35]). Section 2 con-
tains an exposition of this result. The remaining case is proved by reduction
to the codimension one case. This reduction is the essential content of

[ZAR75]. Section 1 provides our version of the reduction.

Throughout this chapter we shall denote the (z —1)-tuple (z1ses2n—1) bY

4.1. The general theorem

The following theorem is an adaptation of a result published by Zariski

in 1975 [ZART75]:
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Theorem 4.1.1. Let h(z z,) be a Weierstrass polynomial of positive degree
in the polydisc A; about 0 in €" -1, and assume that for every fixed z in A4,
all the roots of k(z,z,) are contained in the disc A(0;e) about 0 in €. Let
F(z) be the discriminant of (z,z,) and assume that F (z) does not vanish
identically. Let 1< s < n-2, let
Tea={z = (215021 € € 1:z,,,=0,.2,.1,=0},

and assume that F is order-invariant in T *() A;. Then there exists a
polydisc A,C A, about 0, and a holomorphic function ¥(z1,...,2;) from A,¢)
into A(0;e), such that for all z = (z4,...,% ,0,...,0) in T#(M A, and all a in
A(0se),

h(z,«) = 0 if and only if @ = Y(z1,..,25),
and such that & is order-invariant in the set

G*={(z,2,) € C" I XC iz =(21,00025:0500) € T2 A & 2, = (z 15525 ) }-

Remark 1. As A§) can be identified with T#() A, under the mapping
UZ1yeesZs ) = (Z1500sZs ,0,...,0), we can think of § as a map from T *(") A, into

A(0;e), and the set G * as the graph of .

Remark 2. Zariski’s theorem itself actually allows in place of the particular
s -dimensional linear subspace T * of €" ~1 an arbitrary s-dimensional sub-
manifold §* of €*~! (containing 0). We shall not need to formulate this

slightly more general theorem here, however.
Proof of 4.1.1. Our proof of the theorem is given in numbered stages.

1. Let ordyF =r. We may assume without loss of generality that

a"F
3251

(0) # 0. (If this is not the case then we can find an invertible linear
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transformation L of €~ fixing T » pointwise such that if F := F,L™! is the

a'F
Zg-1

transform of F by L then (0) # 0.

2. For the remainder of this section we shall denote the s-tuple of variables

(¥ 1,---»vs) by v. Let the power series expansion for F (z) about 0 be

S, fipde?l Tz (4.1.1)

il’-—vin—lz 0
n—1
Then f;, . . _, =0 forall (iy,...i,—1) with S.ij<r,and fo_o, # 0 (by
j=1
(1)). The series is absolutely convergent in A;.

3. The series (4.1.1) can be arranged as an iterated series thus:

i i\ i, i
z (2 f l,i,ﬂ,...,i,...lz 1l ot zs')zx'+i e zn-‘l' (412)

g 4lseonsin-12 0i=0

For each fixed i 41,..is—1 = 0, the inner series in (4.12) is absolutely conver-

gent in A;©). Let p; . (z) denote the sum of this inner series. Let

8 = (8,5,41, - - - »8,—1) be the polyradius of A;. Then the outer series

S Piyina(® eah S A (4.13)

'.l 'H’-"vin—l =

is absolutely convergent in the polydisc 1z, 41! <841, ..., 1211 < 8p1.

4. Forz € A{®)and k = 0, let

i i _
Pk (z’zs +1r",zn “1) = 2 p‘.x+l’-"vin-l(z) z"":i T zn'—i‘

i,+l+...+l'. -1 = k

Then Pg= --- = P,_; = 0, by order-invariance of F in T*(") A;. Hence,
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for each fixed z€ Af*), and for 1z, 411 <8;41, ..., 1z51! < Byy,

F (2.2, 41520 -1 = Pr (@:Zs 415Zn-1) + Pr41(Z2 +eeZn—D) T 00
(grouping terms in the series (4.13)).

5. Case I:s =n—2.
We have

F(2,2,-1) =P, (@251 *+Pr +1(z)zr'l‘i% + oo
Hence F (2,2,-1) = z; 1N (2,2, -1), where

N (22,0 =p,(2) + Pra1@zp1 + 0
for (z,2,-1)€A;. It can be shown that N is holomorphic. Now
N(0,0) =p,(0) = f o, # 0 (from (2)). Hence, there exists A,C A, such that
N # 0in A,. We can therefore apply Theorem 42.1 to obtain the required

function .

6.Case ll: 1= s < n-2.
Our essential strategy is to reduce Case II to Case I. We use a quadratic
transformation (or "blowing-up map”) to bring about the reduction to the

codimension 1 case. Define the map @ :€"~1 -~ C" ~1 by

Q(Z.Z, 41ymiZn—1) = (ZZ;41Zn 15 Zp-2Zn-1Zn-1)-

Q is called a quadratic transf ormation, as each of its components has
degree at most two, and some component has degree exactly two. Q maps
the entire hyperplane H#: Z,_; = 0 to the s -dimensional linear subspace T *
of €*~1. Even though strictly speaking Q ! does not exist, one can think of a
"map” Q! which sends a point z = (2,2;.41,Zy—1), With z,_; # 0, to the

point
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(for which Q(Z) = z), and which sends a point z €T * to the set of points
ZeC*! for which Q(Z) =z. Points in {z,_y =0} —T# would have no
image under 01, however. We say that T # is blown —up by 0~ 1to H=*, and

call 0 ~! a blowing —up map .

Where §;,”=8; for 1si=<s and i=n-1, and §;"= for

n—1
s+l=i=n-2,and 8 = (8, ...,8,-1), let A;" = A(0;3). We have that
Q(A;) C A,. Hence if we set h'(Z ,Z,) = h(Q(Z),Z,) for Z€Ay’, then h”is

a Weierstrass polynomial in A,". Let F (Z) be the discriminant of k(2 Z )

7. Case II (continued).

We show that F~ satisfies the hypotheses of Theorem 4.2.1 (and
equivalently that F~ is order-invariant in H=*, near 0). Let

Z = (Z,Z, 41,-Z,-1) be an element of A", and let
N@)=P,(Z.2Z,11pZp21) + Zy1 Prs1(BZsstsmZn-21) + -7
Then

FAZ) = F(Q(Z)) = F(2Z; +Zn-trZn-2Zn-1Zn—1)
= P (Z,Z; 125 -19+Zn-2Zn—-1n-1)
+ P, 412251120 ~1pZn—2Zn-1Zn-1) T
=Z;N@2),

as
P(ZZ,11Zn-1soZn-2Zn-1Zn-1) = Za—1Pr(ZZs s150eZn151)-

It can be shown that N is holomorphic; further, we have
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N (0) = Pr (0,0,...,0,1) =Do,..0r (0) = f 0,...,0,, # 0’ by (2)

Hence there exists A,"C A" such that N # 0in A;".

8. Case II (conclusion).

By Theorem 42.1, there exists a polydisc A;” contained in A;" and a
holomorphic function $(Z,....Z,-7) from A;=2 into A(0;e) such that for
all Z = (Z1,-sZq-2,0) in H*( Az and all Z, in A(0;e),

k*(Z ,Z,) = 0 if and only if Z, = $(Z1,....2,2)
and such that &~ is order-invariant in the set
Ks= {(Z ,Z,,)GC" 2 = (Zl,...,Z,,._z,O) € H‘n A3’ and Zn = \‘I’(Z 1,...,2,'_2)}.
Let v° be the polyradius of A3, let v = Q(v?), and let A; = A(O;v). Define
P :AL) -~ A(0;€) by ¥(z) = ¥(2,0,...,0). We shall show that § satisfies the
properties asserted of it in the conclusion of Theorem 41.1.

It is clearly the case that for all z = (2,0,...,0) in T+ A3 and all z, in

A (0se),

k(z ,z,) =0 if and only if z, = ¥(z) .
It remains to show that k is order-invariant in the set G» defined in the
statement of the theorem (with ‘A’ replaced by ‘A7).

Let (w,w,)€G#* and let r =ordg, , k. We shall prove that
t = ordg, 4 h". The order-invariance of k in G * will then follow by the
order-invariance of h” in K*. We have ¢ =< ord, , )k, by Theorem 23.2.

We shall prove that there exists a point (ww,)€K=*, with

w’= (WW,41..-rWa—g,0) an element of H=*M Ay, such that
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t = ordg, - w b - This will show, by order-invariance of k2~ in K#, that
= ord(w,,,,_)h’ .

Now w is an element of T#»() A3, and so w = (w,0,...,0), where

we AL) . As ordg, ,, k =1, thereisa term

e e _ .
c(""l"""lfl o (z.: -ws)e'z:-;? o znlll(zn —wn)e s

n
with 2‘;‘ =¢t and ¢ # 0, in the power series expansion of h about
i=1

(w ,w,). This term gives rise to the non-zero term

c(Z 1""“’1)el <o (2, ""w.r)e"z.r:e-i‘-*l-1 ttt zn‘_.:—z Zn"-'-l (Zn _wn)el
n—1

where m = 3, e; , in the power series expansion of h” about (w,w,)
j=s+1

(since h"(Z Z,) = h(Q(Z).Z,))-
Let the power series expansion of i~ about (w ,w,) be arranged as an
iterated series thus:

2 Qi 1,0 (Zs+1a'"»zu-2) '(Zl'"wl)i1 ot (Zs —ws)i'zniz-_lx (Zn —wn)i.

'r‘.n —bin =0

(cf. stage 3 of the proof of Theorem 4.1.1). Now q., . is not identically

. . 4 €. .
zero, as it contains the non-zero term cZ,ii' - - Z,27' . Hence, there exist

Wep1 s -nosWaeg», With wi=(ww, ..., w,-2,0) an element of
H =M Aj”, such that
q = dem,e, Ws+1"s -« -» Wp-2)

is non-zero.
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Now the power series expansion of &~ about (w “,w,) contains the term

q(Z 1"'W1)e1 e (2 -ws)e‘(zs +17 W5 +1')0 T (Zn~2—wn~27025”—1 Z, '-wn)e. .
Hence, as ¢ # 0 and the total degree of this term is
et - te,tmte, =1,

we have ¢ = ord,-, k" . Hence, by the order-invariance of &~ in K'*, we

have t = ordy, )k~ -

We have now shown that ¢ = ord, ., k" . The order-invariance of k

in G » now follows by the order-invariance of #“in K*. O

4.2. Special Case (codimension one)

We present in this section a theorem established by Zariski in 1965
[ZARG65). This theorem is essentially the special case s = n —2 of Theorem
4.1.1. Our formulation of the result is adapted to our needs and is somewhat
different from Zariski’s formulation. Our proof is also different from the
one Zariski gave. Throughout this section we shall adopt the notational con-
vention that z = (z1,.r2s—2)° thus z = (z,2,-1). Let H=» be the hyperplane
{z =(22,-1)€C" 112,y =0} in C""L. The theorem can be stated as fol-

lows:

Theorem 42.1 (Zariski) : Let n = 3 and let h(z,z,) be a Weierstrass polyno-
mial of positive degree in the polydisc A, about 0 in €*~1, and assume that
for every fixed z in A;, all the roots of h(z,z,) are contained in the disc
A(0;e) about 0 in €. Let F(z) be the discriminant of k(z,z,) and suppose

that there exists a function N (z), holomorphic and non-vanishing in A4, and
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an integer r = 0, such that
F(z) =2z,4N(z)

for all z = (z,z,—¢) in A;. Then there exists a polydisc A, C A, about 0, and
a holomorphic function ¥(z) from A?_"‘z) into A(0;e), such that for every

fixed z = (z,0) in H* (" A; and every z, in A(O;e),
h(z,z,) =0 if and only if z, = V(z),
and such that & is order-invariant in the set

G»={(z0.z,) €C":2€ A" Dandz, =¢(@) }. (42.1)

Note that the hypotheses on F (z) that it be associated to the function z;_
is essentially equivalent to the hypothesis that F (z) be order-invariant in
H », near the origin. Thus the above theorem is essentially the special case
s = n—2 of Theorem 4.1.1: that is, the case in which the linear subspace T =
of €" ! has codimension one.

This result of Zariski is equivalent to the following two theorems taken
together. The first theorem (4.2.2) asserts the "nonsplitting” of the locus G *
of h over Hs, and the second (423) asserts the order- invariance of & in

G,

Theorem 422 : Let h(z,z,) be a Weiersrass polynomial of positive degree
in the polydisc A, about 0 in L" -1 and assume that h satisfies the
hypotheses of Theorem 42.1. (In particular, assume that for every fixed z in
Ay, all the roots of k(z,z,) are contained in the disc A(0;e) in €.) Then there

exists a holomorphic function {(z) from A2 into A(0;e) such that for
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every fixed z = (z,0) € H+( A; and every z, € A(O;e),

h(z,z,) =0 if and only if z, = ¥(2).

Theorem 423 : Let k(z ,z,) be a Weierstrass polynomial of degree m =1 in
the polydisc A, about 0 in C" -1 and assume that k satisfies the hypotheses
of Theorem 421. Assume further that hA(z,0,2,)=2z; for all
z € A{""D Then there exists a polydisc A;C A, about 0 such that & is

order-invariant in the set A,*~2 x { (0,0) }.

Proof that 421 <=> (422 & 423): Clearly 42.1 implies 422 and 423.
Assume conversely that 422 and 423 hold. Let h(z,z,) be a Weierstrass
polynomial of degree m = 1 in the polydisc A; about 0 in €1, and assume
that h satisfies the hypotheses of Theorem 4.2.1. Theorem 422 gives us the
required function , defined in A ~2), It remains to establish that there is a
polydisc A, G A, about 0 such that & is order-invariant in the set G * d.eﬁned
by equation (42.1). For z = (z,2,—1) € Ay, let h(z,2,) = h(z,z, +9(2)).
Then k(z,z,) is a Weierstrass polynomial in A; and k(z,0,z,) = z;' for
z € A", Moreover, by root continuity, there exists a polydisc A,"C A,
about 0 such that for every fixed z € A", all the roots of k(z,z,) are con-
tained in A(0;e). Hence, by Theorem 423, there exists a polydisc A;C Ay’
about 0 such that k~ is order-invariant in A,("~? x{(0,0)}. Now the map
(z,z,) - (2,2, +¥(z)) is an analytic isomorphism of A;XT onto itself.
Hence, by Theorem 2.3.1, the order of &~ at (z,0,0) is equal to the order of h
at (z,0,¥(z)), for every z € A, =2), Therefore k is order-invariant in the set

G » defined by equation (4.2.1). We have shown that Theorem 4.2.1 holds. O
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It remains, therefore, to establish Theorems 422 and 423. We will
first need to study irreducible Weierstrass polynomials and factorization. Let
R be an integral domain. A non-constant element of the polynomial ring
R[z,] is said to be reducible if it is a product of non-constant polynomials of
lower degree, and is otherwise said td be irreducible . Let R now be the ring
of all holomorphic functions in the polydisc A; about 0 in €™l As A, is
connected, R is an integral domain (by the identity theorem, Theorem 2.1.4).
Let h(z ,z,) be a Weierstrass polynomial in A;. Then h can be regarded as a
polynomial in z, over the ring R, i.e. as an element of R{z,]. It follows by
induction on the degree of k that k may be factored as a product of irredu-

cible Weierstrass polynomials thus:

It will follow from Lemma 425 below that the k; are uniquely determined,
provided that the discriminant of k does not vanish identically.

Let U be an open subset of €. A continuous function r:[j,1]- U,
with T(0) = wo and T'(1) = wy, is called a path in U from wyto wy. Let T
and I'” be paths in U, from w, to w,, and from wq to wy, respectively. Then
the composite path T’»' from wj to w; is defined as follows:

) r(:) if0<t=<1/2
([=0)@) = {r'(zz -1) ifl2=t=1

The reverse path T™ of T is defined by I'"(¢) = rd-t),0=t=1

Lemma 424 : Let Ay be a polydisc about 0 in €*~! and let h(z,z,) be a

Weierstrass polynomial of positive degree in Ay. Let U be an open subset of
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A, in which the discriminant of & does not vanish. Let w and w” be points
of U, not necessarily distinct, and let T be a path in U from w to w’. Let a
be a root of k(w ,z,). Then there is a unique path ¢ in €! such that $(0) = a
and h(T(2),4(t)) =0 forallt € [0,1}.

Proof . Let the degree of h be m=1, let
Vv ={(z,2,) € U XC:h(z,2,) =0}, and let wy be a point of U. By m
applications of the implicit function theorem, there exists a neighbourhood
W C U of wg such that the portion of V contained in W X consists of the
disjoint graphs of m holomorphic functions from W into €. Hence
(IMUNT75], Chapter 8) V is an m-fold covering of U, with covering map
w:V - U given by =m(z,z,) = z . The existence and uniqueness of ¢ then

follows by the path lifting property (Lemma 4.1 in Ch. 8 of [MUNT75]). O

Remark . With the notations of the above lemma, we set T, [a] :== (1) and

say T carries a into (1) (via k).

The following is an important lemma about irreducible Weierstrass

polynomials:

Lemma 425 : Let A, be a polydisc about 0 in €1 and let h(z,2z,) be n
irreducible Weierstrass polynomial in A;. Let G(z) be the discriminant of
h(z z,), let F (z) be a holomorphic function in A, not identically zero, such
that G@E)=0=>F(z)=0 for all z in Ay, and let
U={z € Ay:F(z) # 0}.Letw € U and let a be a root of h(w,z,). Then
for every w € U and every root o’ of h(w’z,), there exists a path T in U

from w to w “such that T',[a] = a”.
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Proof . A proof of this result, using slightly different notation and termi-

nology, is given in [BMA48], Ch. 9, Sec. 3, pp 194-198. O

Remark. The above lemma implies that the irreducible factors of a Weier-
strass polynomial whose discriminant does not vanish identically are

uniquely determined.

We can now give the

Proof of Theorem 422 : Factor h into a product of irreducible Weier-
strass polynomials ky *-- k. Let 1=i=<k, and let G(z) be the discrim-
inant of k;(z,z,). Recall that the discriminant F (z) of k(z,z,) has the form
F(z) =z[_N(z) for all z € A;, where N (z) is holomorphic and non-
vanishing in A;. Now the zero set of G is contained in that of F by Lemma
234, and is hence a subset of H*( A;. But if G(w,0) =0 for some
w€ A2, then G(z,0) =0 for all z¢€ A"*~2 by zero system continuity (see
[WHI72], Ch. 1, Lemma SE). Hence the zero set of G is either empty, or

the entire region H=* (") A;.

We shall show that, for each point w = (w,0) in H* (") A,, there exists
exactly one distinct root of k;(w ,z,). This is clearly true ifG # 0in Ay, as
in this case the degree of k; is 1. Suppose, on the other hand, that G = 0 in
H#( Ay, and that, for some w = (w,0)€ H*( Ay, h;(w,z,) has some
[ = 2 distinct roots, say «, . - - ,&;, with multiplicities m,...,m; respectively.
Choose disjoint open discs D,...,D; about ay, . ..,q;, respectively. By root
continuity of the bivariate Weierstrass polynomial k;(w,z, —1s2, ), there exists

a disc D° about 0 in the plane of the z,_j<coordinate such that
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A"~ xD"C A, and such that, for every fixed w,_; in D’, there are
exactly m; roots (counted according to multiplicity) of k;(w,w,_1,2z,) in D;,
1=j=1l.

Let w,_,” be a non-zero point of D", let w” = (w,w,_1) and let « and B
be roots of hk(w'z,) in Dy and D, respectively.  Let
U={z€A:G()# 0} Then U = A H* By Lemma 425, there is a
path T'(t) = (T(t),T,1(t)) in U from w ” to itself such that T'; [a] = B. Let
r = (r,r,-1) be the polyradius of A;. We can deform I' in U to a path I'"in
the set defined by z =w, lz,_4| <r,_1, by means of the path homotopy

([MUN75], Ch. 8)
H(s,t) = ((1=s)C () +swT, ()

(for which H(04) =T(¢) and H (1,t) = (w,I',_1(¢))). Furthermore, we can
deform T’ in U to a path I'” along the circle defined by z=w,

lz,_y| = Iw,—1"| by means of the path homotopy

rn-l(t)lwn-l’l
|r,,_1(t)|

K (s ) = (w,(1=$)Tpy(t) + = )

Let ¢~ be the path in €! such that ¢$"(0) = a and k; (T"(t),0"()) =0
for all ¢ € [0,1], given by Lemma 424. By Theorem 43 of Ch. 8 of
[MUN75}, (1) = B (which implies T, “Ta] = B). Yet, as ¢~(¢) is a root of

!

b, (T"(t)z,), We must have that $"(t) € | D;, for all r. Hence, as ™ Is
j=1

continuous, the Dj are disjoint, and $~(0)€ D;, we must have that

$~(t) € D4 for all ¢. This contradicts (1) = B, as B is an element of D,.

Hence our assumption that k; (w ,z,) has more than one distinct root must be
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false. Thus k; (w ,z,) has exactly one distinct root, for each fixed w in the set
H#*(M Aq.

We can now show that k(w,z,) has exactly one distinct root, for each
fixed w € H# (| A;. There is nothing further to prove if k =1, so assume
k>1. Letw € Hx A letl=si<j= k, and let «; and a; be the roots
of h;(w,z,) and h;(w.z,) respectively, and assume that «; # a;. Then the
resultant R(z) of k;(z,z,) and k;(z ,z,) does not vanish at z = w. However,
the zero set of R contains 0, is contained in H=*( Ay (as
R(z) =0 => F(z) = 0), and is hence equal to the entire region H=* () A,
(by zero system continuity), contradicting R(w) # 0. Therefore, we must
have a; = a; after all. Hence h(w ,z,) has exactly one distinct root, say a.

For w € A", let Y(w) denote the unique root a of h(w,0,z,). Then,

where m is the degree of k, we have
h(w,0,2,) = (z, —$(W)".
Thus, where a4(z) is the coefficient of z;* ! in k(z z,), we have
ay(w,0) = —m{P(w).
Hence ¢ is holomorphic in A2, o
We turn now to establishing Theorem 4.23. The theorem will follow
from three lemmas on parametrizing an irreducible Weierstrass polynomial

which satisfies the hypotheses of the theorem. The first lemma asserts the

existence of a parametrization for such a Weierstrass polynomial.

Lemma 426 : Let h(z,z,) be an irreducible Weierstrass polynomial of
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degree M =1 in the polydisc A, = A(0;3) in €"~!, and assume that h
satisfies the hypotheses of Theorem 4.2.3. (In particular, assume that for
every fixed z in Ay, all the roots of h(z ,z,) are contained in the disc A (0e)
in ©) Let p =38, let p,_, =87, let p = (p,ps—1), and let A" = A (0sp).
Then there is a holomorphic function ¢ : A;"~ A (0;e) such that for every

fixed z = (2,2,-1) € A, and every z, in A(0;e),

h(z,z,) =0 if and only if there exists u, lu | < p,—1, such that

Ip-1 = u™
z, =d(zu).

Proof . Even though the hypotheses of Theorem 42.1 specify n = 3, the
hypotheses of the theorem, as indeed the present lemma, can be stated for
n =2 as well. The case n =2 of the present lemma is Theorem 10A of
[WHI72], Ch. 1. The hypotheses of Theorem 42.1 permit the extension of

the result to higher dimensions. O

With the notation of the above lemma, we shall say that the pair of

equations

Zp-1 =u™
z, = o(zu)
defines a parametrization for k (in Aq). In such a parametrization let m,

denote the order of & at 0 in u. Then we shall see (Lemma 4.2.8 below) that

for all z sufficiently close to 0,
ord (1,0,0)}! = min (m ,ml) .

That k is order-invariant in the set A("~2 x{(0,0)} (near the origin) will fol-
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low from this. The next result will be used in proving Lemma 4.2.8.

Let K be an algebraically closed field of characteristic zero. We shall
denote by K {x} the field of all fractional power series in the indeterminate
x with coefficients in K ; (see [WALS50],Ch. 4, Sec. 3, in which the notation

K (x)# is used). That is, K {x} consists of all elements 6 of the form
8 = a,xh/m FayxhtUm 4 (422)

where m = 1 and & is an integer (possibly negative).

If 0 is an element of K {x} given by (422) and a, # 0, then we define
the order of 8, denoted by O (8), to be h/m. Puiseux’ theorem (Theorem 3.1
of [WALS0], Ch. 4) states that the field K {x} is algebraically closed. Thus
every nonconstant polynomial g (x ,y) over K{x} can be factored into linear
factors over K {x} thus:

d

gxy)=JI0 —8);
i=1
{84,...,08,} is called the set of Puiseux roots of g(x,y). We can now state

and prove our next result.

Lemma 427 : Let h(z,z,) be an irreducible Weierstrass polynomial of
degree m =1 in the polydisc A, about 0 (in €"7Y), and assume that h

satisfies the hypotheses of Theorem 4.2.3. Let

Zy-1 =™
z, = &(z,u)

be a parametrization for 2 and assume that ¢ is not identically zero. Assume
that the power series expansion for ¢ about 0 is absolutely convergent in Ay~

(using the notation of the previous lemma) and let this power series be
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arranged as follows:
c@u™ +cy@u™+ - -
where 0< m;<m,< --- and the ¢; are not identically zero. Assume

m > m,. Then there is a polydisc A;C A, about 0 such that ¢,(z) # 0 for all

z€ A 2(" _2).

Proof. Let z be a fixed element of A, and set
82 (Zn-1:2n) = B(Z.25-1:24)- Regard g, as a polynomial in z, over the field
C{z,_;} by replacing each coefficient of g, by its power series expansion
about 0. Let { be a primitive m-th root of unity and for 1=i=m, let 6;(z)

denote the element
AR OIS A
of €{z,_1} - As the power series in u obtained by expanding
g, (™ ciDu™ +cy(z)u™ + )

is identically zero, we have, setting u = (G- Um that g,(z,-1,9;(z)) = 0.
Thus 6, (z) is a Puiseux root of g,(z,-1,2,). But the 0,(z), 1=i=m, are
distinct. (For suppose 1<i<j=m, and C(i “hm ;‘j“""'* Lk =1.2,....
Let luyl < p,-1, %1 # 0. Then the m distinct roots of h(zuT z,) are the

numbers
¢(z’ul) ’ d’(z’; ul): « e ¢(1,Cm_1ul) .

However,

$lat ) = @ LI 40 T+
= cl(z)g(j'“l)mxu’l"l +cz(z)§(j"1)mzu’1"2 4 - .-
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= ¢(z,¢ huy),
a contradiction.) Hence the 0;(z), 1= i < m, constitute the complete set of
Puiseux roots of g,(z,-1,2,)- For 1=i<j=m, let n; ;(z) = 8;(z) — 0;(2).
Then

m,/m

miy @ =d D @z " +af D @+
where
44 @) = @1 O™ — @1 = @™ -0,
Let 1=i<j=m,and let k; ; be the least positive integer k such that
AR }(0) # 0; (the number k; ; certainly exists as 6; (0) # 8, (0), and
hence m; ; (0) # 0). Then O (w;; ) =my,, /m . By continuity of the
functions d,¢~), there exists a polydisc A; C A about 0 such that for
every pair (i,j)with 1=i<j=m,
dld) (@) # 0
for every z € A,("? | Thus, for all (i ,j),
O(mij@D)=my, /m,
for every zin A,(""2 . We shall show that in fact we have equality here.
For fixed z in A,"7?, let D,(z,—y) = F (z,2,—1) (F the discriminant of
h). Then as F(z,2,-y = z5_1 .N (2,2,—1) by hypothesis,
ordgD,=r . (423)
On the other hand, D,(z,_1) can be regarded as the discriminant of the

polynomial
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gz(zn—l’zn) € C{zn-—l} [z,]

and hence as an element of €{z,_1}. As 0,(2), ..., 0, (2) are the roots of

81(2n-152,) In €{z,1}, we have

D,= JI (6;(z)—¢; @)X= II ;@ -

I1si<j=m Isi<jsm
Hence, by (42.3), we have

r=2 3 O0(u;@ . (42.4)

Isi<j=m
As (42.4) holds with z =0, and as O (w; ; (@) = 0 (m; ; (0)) for all @i,j),
it follows that
0 (m;;(@)=0(n; (@), (425)
for all (i ,j).
Now there exists some z” in A,("~2 such that c;(z) # 0, as ¢, is not
identically zero. Note that {™' # 1,as 0<m;<m and { is a primitive m-
th root of 1. Thus ¢%™ —¢'™ # 0 and hence by (425),

4] (m,z(ﬂ)) =m,/m . Therefore, by 425), 0 ("h,z(z)) =m,/m, for all z
in the polydisc A, =2) : that is, d* (z) # 0, for all z € A 2. As

di? @) =, @™ -t ™,

it follows that c,(z) # 0 for all z € A,("~?. This completes the proof of

the lemma. O

Lemma 428 : Let h(z,z,) be an irreducible Weierstrass polynomial of
degree m =1 in the polydisc A; about 0 (in complex (n—1)-space), and

assume that k satisfies the hypotheses of Theorem 4.2.3. Let
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Zp-1 = u™
Zn = ¢ (z,u)

be a parametrization for k, and let m, be the order of ¢ at 0 in u. Then

there is a polydisc A; C A; about 0 such that
ord (1’0,0)}! = min (m ,m 1)

for allz € A(* 7D .

Proof . Suppose first of all that ¢ = 0. Then m =1 and h(z,z,) =z, .
Thus ordgoqk =1 forall z € A{"~2 . Suppose on the other hand that ¢
is not identically zero. Using the notation of Lemma 42.6 we may assume,
by refining A,” suitably, that the power series expansion for ¢ about 0 is

absolutely convergent in A;". Let this power series be arranged as follows:

ci@u™+cy(@u™+ -
where 0<m;<my< --- and the ¢; are not identically zero. Let €{z}
be the field of all fractional power series in zq,...,2,-z - Thatis, induc-

tively, € {z} consists of all elements of the form

ay (2 1eeZn=3) 205 + By11 (21, - - - 220 -3) 7 BF0/m 4

where m = 1, k is an integer (possibly negative), and
g (2 15eeesZp—3) € C{zZ10sZg -3} -

We can show by induction on n—2, using Puiseux’ theorem, that £{z} is
algebraically closed. Let K =C{z}, and regard h(z,z,-1,2,) as a polyno-
mial in z, over the field K {z,_1} by replacing each coefficient of & by its

power series expansion about the origin (suitably arranged). Let { be a prim-
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itive m-th root of unity and for 1=<i < m , let §; be the element
ex@EEIm + @I
of K {z,_1}- Now the power series in z and « obtained by expanding
h(zu™,ci@u™ +c@u™ + ---)

is identically =zero. Hence, setting u = g¢-n z,,l.f'{' , we obtain
h(z,z,-1,9;) =0 . Thus 6; is a Puiseux root of h(z,z,—,2,) . But the 6;
are distinct (cf. proof of Lemma 4.2.7) and hence constitute the complete set

of Puiseux roots of k(z,z,_1,z,) - Thus

h(z’zn—l’zn) = ﬁ(zn —ei)

i=1
and so, where
B(Zy2y—1:24) =2 + a1 (@2, )zl P+ 0+ Ay (2:2,-9)
we have

ay(z,2,-1) = —(01+ -+ +6,)

ay(zz,-) =+ 3 8;9;
1si<j=m

ap (2,2, = (-1)" 0y --- 0,

We shall consider separately the two cases m < my and m > m, .

Case I : m=m;
We have 0 (8;)=m;/m=1, for 1=i<m. Hence O (g;)=j, for
1= j < m . This impies that, for 1= j=m , the order (say t,) in z,_; of

the holomorphic functions a; at the origin is at least j. Let A, C Ay bea
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polydisc about 0 in which the power series expansion about 0 of each g; is
absolutely convergent. Then it follows that, for each point z” in A" ~2), the
order in z,_ of a; at (z°,0) is at least j. (This is clearly true if a; = 0, so
assume that a; is not identically zero, and let the power series expansion for

a; about (0,0) be arranged thus:

t !
“l(z)zn-x-l +a2(z)znf-1 + -

where the «; are not identically zero. Then, where «; ‘(z—z") denotes the

power series expansion for a; about z°, we have that
” rd 14 » ” £
a; (z2-2)z, 4 tar(z2—27)z,2 + ---

is the power series expansion for a; about (z",0). Thus the order in z,_; of

a; isty (=] ) at (z",0). ) Therefore, for each point z° of A, -2) | we have

ord;-gya; = j , hence
ord 00 (8; @za-D2zn J)Z j tm —j=m
It follows that
ord;-g0ph =m = min (m ,my)

for every z° € A,""3 .

Case Il : m>mq.

By Lemma 42.7, there is a polydisc A; C A; about 0 such that ¢,(z) # 0
for all z € A""D . As in Case I, O (8;) = my/m . Thus O (a;)= jmy/m ,
for 1= j=m . Therefore, for 1=j=m, the order in z,_, of the holo-
morphic function a; at the origin is greater than or equal to jm;/m .

Assume, by refining A, if necessary, that the power series expansion about
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0 of each a; is absolutely convergent. Then it follows that, for 1=j=m,
and for each point z” € A", the order in z,_; of a; at (27,0) is greater
than or equal to jmq/m. Therefore, for 1= j<m and for z° € Az(" -2) |
we have ord-ga; = jmqy/m , hence
ord (;-0,0) (8; (2,2,-1)2" ) = jmy/m +m — ]

=m —j(1—my/m)

>m-m(@A-my/m)

=mq .
Now a, (2,2,_1) = (-1)" 8y -~ 6, and

0y - Oy =dq(2)z,2} “"‘1'2(2)2r.’?-’1+1 + oo,

where  dy(z) = (<) *Dmc ()" . Thus, as c¢qy(z)# 0 for each
z’ € A,"7D | we have that ordg-ga, =m for each z” € A",

Hence
ord (z°0,0) h=m 1= min (m »m ]_)

for every z” € A" ™. O

We can give at last the

Proof of Theorem 423 : Factor k into a product of irreducible Weier-
strass polynomials hy - -- kb . Let 1=i=k and let G(z) be the discrim-
inant of k;(z ,z,)- Recall that the discriminant F (z) of h (z ,z,) has the form

F()=z,1N(G),

where N(z) is holomorphic and non-vanishing in A;. Let

5= ...,8,~1) be the polyradius of A;. Now F(z)=G()H(z), for
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some holomorphic H(z), by Theorem 233. Hence, for every fixed
z € A ~2), we must have
G(z’zn -1) = z:—l'U (z’zn-l) ’

for some s, 0= s =< r , and some U (2,z,-1), holomorphic and non-vanishing
in the disc lz,_q| < 8,-1 . By zero system continuity, s does not depend
on z. In fact, U(z,z,_,) is holomorphic in the variables zy,...,z,-3, a8

well as z,_q, as the expression

U(z’z"__l) = _LI_U._(.Z_LM

2mie L—2z,

holds for z € A" -2 and z,_, inside C, for any circle C about 0 in the disc
|zy_1! < 8,—1 . Thus k; satisfies the hypotheses of Theorem 423. Let p be

the degree of h;. By Lemma 4.2.6 there exists a parametrization

Zp-1 = ufP
z, = b(zu)

for k; in A;. Let p, be the order of ¢ at 0 in u. By Lemma 4.2.8 there exists

a polydisc A;” C A; about 0 such that

ord 00k = min(p p1)

for all z in A;"®*~2. Thus k; is order-invariant in 4; (n=2) x {(0,0)} .
k k
Let A,=(A;”. Then hk(=][k ) is order-invariant in
i=1 i=1

AL~ x{(0,0)} . O
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Chapter Five

Cad Construction Using Reduced Projection

This chapter presents algorithms for cad construction which use the reduced

projection operation studied in Chapter 3.

Section 1 develops an algorithm for computing cad’s when the input
polynomials are oriented favourably in a certain sense. The algorithm
presented resembles the algorithm CAD from Section 3.1 closely, except that

the reduced projection is used in place of the original.

Section 2 presents a cad algorithm which can be used on quite general
sets of polynomials. The algorithm has to work harder to provide order-
invariant decompositions over nullifying cells (where some polynomial van-

ishes identically) in each dimension.

Section 3 provides clustering cad algorithms for the plane and 3-space.

These algorithms yield smooth, order-invariant clusters of cells.

5.1 Cad computation for well-oriented polynomials

In this section we shall endeavour to formulate a cad construction algo-
rithm using the reduced projection operation introduced in Chapter 3, which
resembles the fundamental algorithm CAD reviewed in Section 3.1 as closely

as possible. In attempting to keep the algorithm as simpie as possible, at
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least for the time being, we will be required to impose certain assumptions
on the input set of polynomials. These assumptions have their origin in the
hypothesis of Theorem 323 that each polynomial of the given basis not van-
ish identically on the submanifold in question. It will be argued that many
sets of polynomials satisfy the required assumptions, and a partial test for
determining whether or not the assumptions are satisfied will be given.
Furthermore, it will be shown that any set of polynomials can be
transformed into a set for which the assumptions hold. In the rext section
we shall relax the assumptions on the input polynomials, and show how to

deal with the general case.

We now state precisely the assumptions referred to above.

Def inition. A set A of non-zero r-variate integral polynomials is said to be
well —oriented if r =1, or,if r > 1, then

(1) for every F € prim(A), F (ax,) = 0 for at most finitely-many a € IR" -1,
and

(2) P (A) is well-oriented.

Thus, if A is a well-oriented set of polynomials, then no element of prim(A)
vanishes identically on any submanifold of R’ -1 of positive dimension.

Moreover, this property holds recursively for P (4).

It is not hard to see that if »r =1,2,3 then every set A of non-zero r-
variate polynomials is well-oriented. A random polynomial in four variables
of degree at least two in the main variable is likely to be well-oriented, as
there are not likely to be more than a finite number of simultaneous solu-

tions of the coefficients. Let F be a random polynomial in five variables of
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degree at least three in the main variable. Then it is probable that condi-
tion (1) of the definition of well-oriented shall hold, as the set of 4-variate
coefficients of F (a set containing at least 4 elements) probably has only
finitely-many common zeros. If, further, the degree of each 4-variate
coefficient in its main variable is at least two, then it is probable that condi-
tion (2) of the definition of well-oriented shall also hold. More generally, it
would be reasonable to suggest that a finite set A of random polynomials
F (x1,---,%,) such that the degree of F in the i-th variable is at least i —2 is

probably well-oriented.

The cad algorithm that we shall shortly present accepts as input a set A
of well-oriented polynomials. The question thus arises as to how one deter-
mines whether a given set of polynomials is well-oriented or not. When the
number of variables does not exceed three, the set is always well-oriented.
In the case of four variables one needs to examine the primitive part of each
input polynomial to determine whether its coefficients vanish simultaneously
at at most finitely many points in three-space. In general, one must examine
not only the input set A, but also P(4), P (P(A)), and so on. In the next
paragraph we consider the problem of determining whether the coefficients

of a polynomial have only finitely many simultaneous solutions.

It is sometimes easy to see whether the coefficients of a polynomial
F (x1,..,x,;) have at most finitely many common zeros (for example, when-
ever a coefficient is a non-zero constant). Computation of successive resul-
tants of some or all of the pairs of the coefficients (eliminating x, _y,....xz in
that order) may reveal that the common zeros of the coefficients have only

finitely many distinct x;- coordinates. If it can be determined in a similar
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way that, for each i, 1=<i=r—1, the common zeros have only finitely
many distinct x;-coordinates, then there are only finitely many common
zeros. A finitely many common zeros test based upon resultant computation
has been implemented in the SAC-2 computer algebra system: the name of
the algorithm is /PFZT ("Integral Polynomial Finitely Many Common Zeros
Test"). For details of the method one should consult the listing of IPFZT .
For most cases in which there are only finitely many common zeros, the test
[PFZT will indicate this. However, there are some exceptional cases in
which IPFZT cannot distinguish the well-oriented from the non well-
oriented case. Whenever the "well-oriented” property has not been deter-
mined to hold, one can apply the more general cad algorithm given in the

next section.

We now present a sixﬁpliﬁed cad construction algorithm CADRW which
can be applied to a well-oriented set A of polynomials in r variables, yield-
ing a list of sample points for an A-invariant cad D of R". The algorithm
CADRW is modelled on its counterpart from Section 3.1, CAD. The main
difference between the two algorithms is that in CADRW , the map P is used
in place of the map PROJ . Defining formula construction is possible in this
setting, although requires a somewhat generalized notion of "well-oriented”
(see remarks following the abstract algorithm CADRW , presented later in

this section).

A cad constructed by the new algorithm CADRW has certain additional
properties: each cell is smooth, and every polynomial in the input set 4 is
order-invariant in each cell. A cad which has these properties is thus termed

a smooth, A —order —invariant cad. The additional properties are bought
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quite cheaply. Theorem 323 guarantees that they will hold except where the
primitive part of some input polynomial vanishes identically. But the
number of such nullifying points is finite, by the well-oriented condition. To
take account of the nullifying points we introduce the following terminol-
ogy: for a smooth cell ¢ in R’ -1 with sample point «, and basis
B = {Bq,...,B,}, the delineating set ﬁc for B on c is defined to be the set
{B jri=j=n }, where éj is the "least” partial derivative (with respect to
the standard lexicographic ordering of partial derivatives) of B; such that
éj (a,x,) is not identically zero. Thus, if A is a finite well-oriented set of

polynomials and B is a squarefree basis for prim(A), then we have

A

B, =8B

for every P (A)-invariant cell ¢ of IR" ~1 of positive dimension. The algo-
rithm CADRW below uses the delineating set to obtain an order-invariant
decomposition of the cylinder over any nullifying 0-cell.
CADRW (r A;S)

[Cylindrical algebraic decomposition, reduced projection, well-oriented
polynomials. A is a well-oriented set of integral polynomials in r variables,
r=1. S is a list of sample points for a smooth, A -order-invariant cad D of
R" ]

(1) [Initialize.] Set B ~ the finest squarefree basis for prim(4). Set

S~ (.
(2) [r =1] If r > 1 then go to 3. Isolate the real roots of B. Construct

sample points for the cells of D and add them to §. Exit.

(3) [r>1] Set P~ P(A). [Recall P(A) =comt(A}{J P(B)] Call
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CADRW recursively with inputs r —1 & P to obtain a list S of sample
points for a smooth, P -order-invariant cad D~ of R" ~1, For each cell
¢ of D, let « denote the sample point for ¢, and carry out the follow-

ing sequence of steps: set B ~ the delineating set for B over c; set
B» ={B;(ax,) : B;€B};
isolate the real roots of B#*; use a and the isolating intervals for the

roots of B* to construct sample points for the B -sections and B -sectors

over c, adding them to §. Exit O

It is straightforward to prove the validity of CADRW using Theorem 3.2.3.

The above algorithm could be modified so as to yield defining formulas
as well as sample points. The modified algorithm, like the algorithm CAD
of Section 3.1, would accept as input a triple (r,A,k), 0=k = r, and would
yield as output lists § and F (F the list of defining formulas). In the

modified algorithm the first instruction of Step 3 would be the following:

If k<r then set P~ P(A) and k'~ k, and otherwise set
P~ AP(A) and k"~ k-1.
The next instruction would be a recursive call to the algorithm with inputs
(r —1,P k). There would be a restriction on the allowed inputs (r ,A k)
comparable to the well-oriented condition: an input (r ,A k) would have to

be well-oriented in the sense that:

(1) for every F €prim(A), F(a x,) = 0 for at most finitely many a ¢R"1

and
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() if k<r then (r—1,P(A),k) is well-oriented, and otherwise

(r —1,AP (A),k —1) is well-oriented.

We shall show that any set A of r-variate non-zero integral polynomials
can be transformed by means of an invertible linear transformation into a
well-oriented set A”. The coordinate transformation we shall use will yield

an even stronger property for A

Def inition. A set A of non-zero r-variate real polynomials is said to be
very —well —oriented (vwo) if r =1 or,if r > 1, then

(1) for every F € A , the degree of F in x, is equal to the total degree of
F; and

(2) P(A) is vwo.

We will need the following lemma:

Lemma 5.1.1. Let H(xy,...,x,) be a non-zero homogeneous polynomial with
integer coefficients. One can determine integers XAq, ..., A, such that

HMAp .- A1) # 0.

Proof . Now H (xy,....x,—1,1) # 0, and hence H (A x4,...,%, _1,1) reduces to
the zero polynomial for only finitely many AN€EL. Test
A =0,+1,-1,+2,-2,... until an integer A, is found such that
H(A{x25-%,—1,1) # 0. Similarly, find an integer A\, such that
H (A A2X 350X, 1,1) # 0. Continuing in this manner, obtain

Nys..-»Ap_g such that H(Ay, ..., A, ;1) # 0. O

Recall that a linear transformation T of IR" corresponds to an r Xr matrix
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(«;;)- We say that T is an integral linear transformation if every entry of the
corresponding matrix is an integer. If F(x 1s--»%;) is a real polynomial then
the transform of F by T, denoted F,T, is the polynomial F (T (xq,...,%, ))-
If A is a set of real polynomials then the transform of A by T, denoted

A,T,is the set of all F, T, with F €4 .

Theorem 5.12. Let A be a finite set of non-zero integral polynomials in
X1,---sX,. Then one can construct an invertible integral linear transformation

T of IR" such that the transform of A by T is vwo.

Proof . We proceed by inductionon r. If r = 1, then A is vwo. Assume
that the theorem is true for r —1. Let A ={F,,...,F,} be a set of non-zero
integral polynomials in xy,...,x,. Let d; be the total degree of F;, and let H;
be the homogeneous part of F; of degreé d;. Let d =3d; and let
H =]JH; . Then by Lemma 511, we can determine integers

R1, cee Xr_l such that H(hl, P ’Rr—l’l) # 0.
Let
S (Xpeees®r) = (K1 F N Zpy oo X1 FA 1%, X ) -

Then the transform of F; by S has the property that the degree in x, equals
d;. By induction hypothesis, we can construct an invertible integral linear
transformation T,_; of R" ! such that the transform of P (A,S)by T, is
vwo. With x = (xy,%r—1) , let Tpq(x %) = (T, )x), T, =S oTr1>
and A"=A,T, .

We shall now prove that A” is vwo. Let F € A”. Then F’ = F;,T,,

for some i . Now
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F ’(O,X,) = Fi (Tr (O,X,)) = Fi (S (Tr -—1(0)rxr ))
= Fl(s (Orxr)) = (Fi .,S)(O,x,) .
Hence the degree of F”in x, equals d;, (which is equal to the total degree
of F ) Hence condition (1) of the definition of vwo is satisfied. Suppose

that r >2. Now A,S consists entirely of primitive polynomials (as the

coefiicient of x;l' in F, ,S is a constant). Hence, where B is the coarsest
squarefree basis for 4,5, we have P (A,S)=P(B).As A" = (A,8) T, -1 »
B, f, _ is the coarsest squarefree basis for A”. Now a moment’s thought will
convince one that P(B),T,-.1=P(B, T,_1) - Therefore,
P(4,5),T,-1 =P(A") . Hence P(47) is vwo. This establishes condition (2)

of the definition of vwo. O

5.2 Cad computation in general

In case an input set of polynomials is known to be well-oriented, we
may use the algorithm CADRW from the previous section. What to do when
the input set is not known to be well-oriented? This section contains a cad
algorithm using the reduced projection that may be applied in the general

case.

Def inition. Let A be a set of r-variate integral polynomiais. The cell ¢ in
(r —1)-space is said to be a nullifying cell (for A) if some element of prim(A)

vanishes identically on c.

If a set A of r-variate polynomials is not known to be well-oriented,
then there could be a nullifying cell ¢ for A of positive-dimension in (r —1)-

space. If we wish to obtain a cad of r-space, sign -invariant with respect to
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the polynomials in A, then this situation presents no difficulties. However
our use of the reduced projection operator is based upon the construction of
order -invariant cad’s. Unfortunately, Theorem 323, with its hypothesis that
the cell in question is not a nullifying cell, is of no help in determining an

order-invariant decomposition of the cylinder over c.

The strategy of our general algorithm is to examine each polynomial of
prim(A) in turn, to determine whether the coefficients have only finitely-
many common zeros: we use the SAC-2 algorithm IPFZT for this purpose.
If a polynomial F could have a nullifying cell of positive dimension (as
determined by IPFZT ), then we enlarge the set A by adding to it all of the
non-constant partial derivatives of F of all positive orders. Let us denote
this enlarged set containing A by A. We form the reduced projection of A,
and inductively construct a cad D~ of (r —1)-space consisting of smooth cells,
order-invariant with respect to the projection. Let ¢ be a cell of D",
Theorem 323 implies that the cylinder over ¢ is partitioned by the zeros of
A into a finite number of disjoint smooth sections and sectors, in each of
which the polynomials in A are sign-invariant. By definition of A, this parti-
tioning of the cylinder over ¢ is sign-invariant with respect to the partial
derivatives of any F €prim(A) vanishing identically on ¢, and is hence

order-invariant with respect to any such F.

We now present our general cad algorithm that uses reduced projection.

CADR(r A kS F)

[Cylindrical algebraic decomposition, reduced projection. A is a finite set of

integral polynomials in r variables, r = 1. k satisfies O<sk=r.S isalist of




101

sample points for a smooth, A -order-invariant cad D of R'.Ifk=1F isa

list of defining formulas for the induced cad of IR¥, and if k =0, F is the

empty list.]

M

)

G)

[Initialize.] If r > 1 then, for each polynomial F in prim (A), apply the
test IPFZT to the coefficients of F and, if the test reports a zero,
enlarge A by adding to it all of the nonconstant partial derivatives of
positive order of F. Denote this enlargement of A byA. Set B -

the finest squarefree basis for prim (A). SetS « (Jand F - ().

[r =1] If r > 1 then go to 3. Isolate the real roots of B. Construct
sample points for the cells of D and add them to S. If k =1, then

construct defining formulas for the cells of D and add them to F . Exit.

[r>1] If k<r then set P - P(A) & k’« k; otherwise set
P - AP(A) and k"~ k—1. Call CADR recursively with inputs r -1,
P, and k~ to obtain lists S and F ~ which specify a smooth, P -order-
invariant cad D~ of IR ~1. For each cell ¢ of D’, let a denote the sam-
ple point for c, and carry out the following sequence of instructions:
set B» - the set of B;(a,x,) such that B;€B and B;(a,x,) is not the
zero polynomial; isolate the real roots of B*; use a and the isolating
intervals for the roots of B* to construct sample points for the B-
sections and B-sectors over ¢, adding them to §; if k¥ =r, then con-
struct defining formulas for the B-sections and B-sectors over c,

adding them to F, and if k < r, thenset F < F". Exit O

We mention a couple of refinements that one could make to this cad
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algorithm. First, an improvement that could be made to both the above
algorithm and the algorithm CADRW from the last section. Let A be a
squarefree basis of r -variate integral polynomials. In general, it is not neces-
sary to include in P (A) every coefficient of every polynomial in A. Suppose
that we discover using [PFZT that the first k coefficients of some F €A van-
ish simultaneously at only a finite number of points of IR” 1. Then the rest
of the coefficients of F can be excluded from P (A). Thus, in general, we
would expect to have to include in P (A) at most r—1 coefficients of each

polynomial in A.

Second, a refinement to the general algorithm CADR. We can some-
times do better than including in the set A the entire set of non-constant
partial derivatives of a polynomial likely to have a nullifying cell of positive
dimension. Suppose that F is such a polynomial, with nullifying cell ¢, and
that some partial derivative of F of order ¢ is a non-zero constant. Then it
suffices to place into A only those partial derivatives of F of order less than
t. For a decomposition of the cylinder over ¢ into sections and sectors that
are sign-invariant with respect to the partial derivatives of F of order less

than ¢ will be an F -order-invariant decomposition of this cylinder.

The inclusion of partial derivatives in the set A in algorithm CADR
increases the size of the projection set of A. However, this inclusion of
"extra” polynomials may not in fact be necessary. It would seem plausible,
since the reduced projection P (A) suffices to determine an order-invariant
decomposition of R” with respect to A whenever A is well-oriented, that
P (A) should also suffice to produce such a decomposition in the non-well-

oriented case. The author had hoped for some time that the following
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conjecture (cf. Theorem 32.3) would be true, but it is now known to be

false:

Conjecture 1: Let A be a finite basis of r-variate integral polynomials,
r =2, and let S be a connected submanifold of IR" ~1, Suppose that each
element of P (A) is order-invariant in S. Then the cylinder over § can be
partitioned into a finite number of smooth sections and sectors over §, in

each of which every polynomial in A is order-invariant.

Note that this conjecture resembles Theorem 323 closely, but differs from
it in that the hypothesis that S not be a nullifying cell for A has been
relaxed. Unfortunately, the following counter-example disproves the conjec-

ture:

Counter-example to Conjecture 1: Let A consist of the single squarefree poly-
nomial in four variables F (x,y,z,w) =zw +xy —z. Let § be the x-axis in
IR3. Now P (A) consists of the polynomials z, and xy —z. Hence each ele-
ment of P(A) is order-invariant in §. However, the order of F throughout
the entire cylinder over S is equal to one, except at the point (0,0,0,1),
where the order of F is two. (This can be seen by writing down the partial
derivatives of F.) Hence no partitioning of the cylinder over S of the kind

asserted in Conjecture 1 can exist.

The set S in the above counter-example would not in fact be a cell con-
structed by the cad algorithm. The algorithm would yield the origin as a 0-
cell, and the positive and negative portions of the x-axis as 1-cells. We shall

state a modification of Conjecture 1 whose hypotheses exclude sets § of the
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kind used in the counter-example. First some terminology.

Def inition . Let S be a connected subset of R', order-invariant with respect
to a set of polynomials P. The order-variety of S with respect to P is the set
of all points of R” at which the order of each element of P is the same as it

isonsS.

Conjecture 2. Let A be a squarefree basis of r-variate integral polynomials,
r=2, and let S be a connected submanifold of IR ~1, Suppose that each
element of P(A) is order-invariant in S, and that the order-variety of §
with respect to P(A) is identical with S, near each point of §. Then the
cylinder over S can be partitioned into a finite number of smooth sections
and sectors over S, in each of which every polynomial in A is order-
invariant, and such that the order-variety of each section or sector s with

respect to A is locally identical with s .

5.3 Clustering cad algorithms

The original cad algorithm proposed by Collins did not yield the adja-
cency relationships between cells of a cad. Thus the original algorithm has
limited application to investigation of the topological properties of semi-
algebraic sets. Moreover, it was observed that the cad algorithm tends to
decompose a semi-algebraic set into a great deal more cells than seems to be
necessary. In 1980 cell adjacency algorithms for 2-space and 3-space were
devised by Arnon, Collins and McCallum. Arnon [ARNS81] subsequently
used these adjacency algorithms to develop what he termed the clustering

cad algorithm. The clustering algorithm attempts to combine adjacent cells
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that have the same sign pattern for elements of the input set A together to
form larger units that correspond to the A-invariant components of the

appropriate Euclidean space.

A cluster is a collection of cells of D whose union is connected. In this
section we give procedures based upon the algorithms and theorems from
Chapter 4 of [ARNSI] for producing smooth, A-order-invariant clusters in
2-space and 3-space (given an input set A). In 2-space the clusters produced
correspond to the maximal connected, smooth, A -order-invariant regions of
the plane. In 3-space, however, the clusters obtained are not necessarily

maximal.

The clustering algorithm for 2-space given here uses the order pattern
on adjacent cells, instead of the sign pattern, as a basis for combining cells.
Fortunately, the connected components of the A -order-invariant regions of

the plane are smooth:

Theorem 53.1. Let A be a set of bivariate polynomials with real
coefficients. Let § be a maximal connected, A -order-invariant subset of IR2.

Then S is a submanifold of R2,

Proof . Let F (x,y) be the product of the irreducible factors in IR[x,y] of
the elements of A (so F(x,y) has no repeated nonconstant factors in
IR[x,y]). Then S is a maximal connected, F -order-invariant subset of IRZ.
(For if T is a connected, F-order-invariant set containing S, then by
Lemma 322, each factor of F is order-invariant in T, hence each element
of A is order-invariant in T, again by Lemma 3.2.2. By maximality of S for

A, we must have T = S.) Now the set of points P in the plane for which
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ordp F =0 comprises an open subset, or a 2-submanifold, of the plane.
Also, the set of points P for which ordp F = 1 comprises a 1-submanifold of
the plane (see definition of 1-submanifold). The singular points of F (i.e.
the points P for which ordp F > 1) are isolated, as F is squarefree with
respect to x and y. Hence, the singular points of F comprise a 0-
submanifold of IRZ. The above observations imply that S is a connected
component of some submanifold of the plane. It follows that S is itself a

submanifold of IR2. O

We define some technical terms used in our 2-space clustering algo-
rithm. An adjacency of a cad D is a pair of cells of D that are adjacent. A
clustering of D is a partitioning of the cells of D into clusters. Let C be a
clustering of D. An adjacency (c ,d) of D is said to be an outer —adjacency
(with respect to C) if ¢ and d belong to different clusters of C. A
representative cell of a cluster of C is a cell of maximum dimension belong-
ing to the cluster. Every cluster manipulated by the algorithms given below

has a specially designated representative cell.

We now give the 2-space algorithm, CLCSO2.

CLCSO2A k;C IS ,F)
[Clustered cad of the plane, smooth, order-invariant clusters. A is a set of

bivariate integral polynomials. k satisfies 0=< k =< 2. C is a list of smooth,
A-order-invariant clusters for a smooth, A-order-invariant cad D of the
plane. I is the list of all adjacencies of D. § is a list of sample points for

certain cells of D, such that § contains a sample point for the representative
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cell of every cluster in C, and § contains a sample point for the lower-

dimensional cell of each outer-adjacency in I. If k = 1, then F is a list of

defining formulas for the cad of k-dimensional space induced by D. If

k =0, then F is the null list.]

ey
@)

€)

4

©)

[Initialize.] Set B — the finest squarefree basis for prim(A).

[Determine D°, the induced cad of 1-space.] If k <2 then set
P ~ P(A) and k"~ k; otherwise set P ~ AP(A) and k"~ k—1. Iso-
late the real roots of P. Construct sample points for the cells of D,
recording these in §°. If K~ = 1, then construct defining formulas for

the cells of D *, recording them in F ”; otherwise set F " - 0.

[Determine D and the order of each element of A on its cells.] For
each cell ¢ of D’, let a denote the sample point for ¢, and carry out
the following sequence of steps: set B» ~ the set of all B; (ae,x5) such
that B; € B and B; (a,x,) # 0; isolate the real roots of B=, thereby
determining the number of sections and sectors of A over ¢; determine
the order of each element of A on each section and sector and save for

use in Step 6 below.

[Construct defining formulas for D, if desired.] If k£ = 2 then for each
cell ¢ of D, construct defining formulas for the sections and sectors of
A over ¢ (using F *) and record them in F ; otherwise set F -~ F".

[Determine adjacencies of D.] For each pair ¢ ,d of adjacent cells in
D’, use the box adjacency algorithm SSADJ2 from [ACMB84b] to deter-
mine all adjacencies between (possibly infinite) sections of A over ¢

and (possibly infinite) sections of A over d. Infer all other adjacencies
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of D from these. Record the adjacencies in I.

[Determine clusters.] Let ¢y,...c,, be the cells of D~ in increasing
(left-to-right) order. Initialize C to the set of clusters each of which
consists of a single section or sector over c¢y. Fori = 1,...,m —1 do the
remaining actions of this step: add the (sets containing single) sections
and sectors over ¢;,; to C; for each adjacency (s,t) in I, where s is
over c; and ¢ is over c; 4, use the order information from Step 3 to
determine whether the polynomials in A have the same order on s as
they have on ¢; if so, then combine the cluster containing s with the

cluster containing ¢.

[Sample point construction.] Construct a sample point for the
representative cell of each cluster. Construct a sample point for the
lower-dimensional cell of any outer-adjacency of D . Record these sam-

ple points in S . Exit O

That CLCSO2 produce a sample point for the lower-dimensional cell
of each outer-adjacency of a cad of the plane is required by the 3-

space clustering algorithm, to which we now turn.

Let A be a set of trivariate polynomials, let P be the reduced projec-

tion P(A) of A, and let S be (the underlying region of) a smooth, P -order-

invariant, positive-dimensional cluster in the plane, as produced by the

above algorithm. Then, by Theorem 323, every element of prim(A) is

delineable on S, and moreover the sections and sectors of A over § are

smooth and A-order-invariant. Now the cad algorithm applied to A yields,

amongst the cells in 3-space that it produces, the sections and sectors of A




109

over each cell comprising the cluster S . Hence, the sections and sectors over
all the cells of S may be grouped into "large” sections and sectors extending
over the whole of S; and furthermore, these large sections and sectors are
smooth and order-invariant for A. The large sections and sectors over S are
known as the initial clusters over S . The question thus arises as to how the
initial clusters over adjacent clusters in the plane may be further combined,
ideally to form the largest possible smooth, order-invariant clusters in 3-

space.

Unfortunately, clustering on the basis of the same pattern of orders of
the elements of A (as was done for the plane) does not necessarily produce

smooth clusters in 3-space:

Example. Let A consist of the single polynomial

Fzy2) = 22-zy%
and let S be the union of the x -axis and the y-axis. Then S is the set of all
points at which the order of F equals 2. However § is not a submanifold of

R3.

The connected components of the nonsingular portion of the variety of the
product of the elements of A are smooth; strictly speaking, we have the fol-

lowing

Theorem 532. Let A be a set of trivariate polynomials with real
coefficients and let F be the product of the irreducible factors in Rix,y,z]
of the elements of A. Let S be a maximal connected, A -order-invariant sub-

set of R3, in which the order of F is 1. Then S is a 2-submanifold of R3.
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Proof . Straightforward.

We must be more careful in clustering the singular portions of the variety of
the product of elements of A. We do not have a general method for produc-
ing maximal smooth, order-invariant clusters within the singular set. How-
ever, we do have a method that appears to yield the maximal such clusters
in many special cases (including the case in which the variety of each ele-
ment of A has at worst isolated singularities, and intersects the variety of
every other element of A transversally). We give the definition and the
theorem underlying this method, and proceed to describe the 3-space clus-

tering algorithm.

Def inition. Let A be a set of trivariate polynomials with real coefficients
and let ¢ be either a O-cell or a l-cell in IR3. We say that ¢ is
A —Jacobian —regular if either ¢ is a 1-cell or, if ¢ is a O-cell, then there
exist exactly two distinct irreducible factors of elements of A,say G and H,
that vanish on ¢, and, where M (x,y,2) = (G(x,y2),H(x,y,z)) and ¢ = {P},

the Jacobian matrix of the map M at P, Jy (P), is non-singular.

Theorem 533. Let A be a set of trivariate polynomials with real coefficients
and let F be the product of the irreducible factors in R[x,y ,2] of the ele-
ments of A. Let S be a maximal connected, A -order-invariant, union of A-
Jacobian-regular O-cells and 1-cells of a smooth, A -order-invariant cad D of
IR3, such that the order of F is greater than 1 throughout S. Then § isal-

submanifold of IR3.

Proof . Let P be a point of S. Then P is either a O-cell, or P is contained
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in a 1-cell, say c. In the latter case, S is identical with ¢ in a neighborhood
of P, by the boundary property (see [ARN81]: Sec. 3.1 and Theorem 3.6.22).
Hence, in this case § is a l-submanifold near P (as c is). Suppose, on the
other hand, that P is a O-cell. Then, by the Jacobian-regularity at P, there
exist exactly two irreducible factors of elements of A which vanish at P, say
G and H ; moreover, the Jacobian matrix of G and H at P is non-singular.
Hence, by definition of submanifold, the variety of the two polynomials G
and H is a 1-submanifold near P . We shall show that S is identical with this
variety near P. Let 0 be a point of S. Then G(Q) =H({@)=0,s0Q
belongs to the variety of G and H. Let N be a neighborhood of P in which
every irreducible factor of the elements of A except for G and H is
nonzero, in which some first-order partial derivative of each of G and H is
nonzero, and which meets no other 0- or 1-cells of D except for those adja-
cent to P. Let 0 be a point (other than P) of the variety of G and H, con-
tained in N . Now the polynomials in A have the same order pattern at  as
they have at P (by definition of N); further, ordg F > 1. Thus Q belongs to
some 1-cell, say ¢, of the cad D; and further, ¢ is adjacent to P (by
definition of N). Hence, by definition of S, we must have ¢ CS. Therefore,
Q is a point of §. We have now shown that § (| N is identical with the por-
tion of the variety of G and H contained in N, and hence that S is a I-

submanifold near P. O

We now present the 3-space clustering algorithm.

CLCSO3(Ak;C IS F)
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[Clustered cad of 3-space, smooth, order-invariant clusters. A is a list of
trivariate integral polynomials. k satisfies 0=k =3.C is a list of smooth,
A -order-invariant clusters formed from a smooth, A -order-invariant cad D
of IR3. I is a list of certain of the adjacencies of D. S is a list of sample
points for certain cells of D, such that § contains a sample point for the
representative cell of every cluster in C. If k = 1, then F is a list of defining
formulas for the cad of k -dimensional space induced by D. If k =0, then

F is the null list.]
(1) [Initialize.] Set B ~ the finest squarefree basis for prim(A).

(2) [Determine D~ and a clustering for it.] If X < 3 then set P - P (A) and
k= k: otherwise set P « AP(A) and k” =k —1. Call CLCSO2 with
inputs P and k “ to obtain outputs C 1,8 ,and F~.

(3) [Determine the list L of cells of D.] Set L = (. For each cluster K of
C’, let ¢ denote the representative cell for K, and a the sample point
for ¢ ; perform the following sequence of instructions: set B « the set
of all B;(a,z), where B; €B and B;(a,z) # 0;if ¢ is a nullifying O-cell,
add additional elements of Q(a)[z] to B* as described in [ARN81],
Section 4.8, so that D will be "cylindricity- refined” (the 3-space adja-
cency algorithm, to be called in Step 6, requires D to have this pro-
perty); isolate the real roots of B*, thereby determining the number of
sections and sectors over ¢, and hence the number of sections and sec-
tors over any cell d in K. Add the set of all sections and sectors over

every cell of K to the list L.

(4) [Determine vanishing information for the cells of D J Let G(x,y,z) be
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the product of the elements of B, together with the nonconstant
irreducible factors in Z [x,y] of the elements of cont (A). For each clus-
ter K of C’, with representative cell say ¢, and each section or sector
s over c, do the following: determine the order of each element of A
on s; if some element of A vanishes on s, then determine whether or
not the order of G on s is 1; if the order of G on s is greater than
one, then determine whether s is A-Jacobian-regular. Save all this

information for use in Step 8 below.

[Construct defining formulas for D, if desired.] If £ = 3, then for each
cluster K of C~, with representative cell say ¢, construct defining for-
mulas for the sections and sectors over ¢ (using F ), and from these
infer the defining formulas for the sections and sectors over each cell
of K (as described in Section 4.7 of [ARNSI]); record these defining

formulas in F. Otherwise set F « F~,

[Determine the set of adjacencies of D .] Adjacencies within a cylinder
over (the underlying region of) a cluster are clear. Use the 3-space

adjacency algorithm from [ARNS81], SBAA3, to determine, for each

outer-adjacency (c,d) of I, with dim(c)< dim(d), the boundary of

every section over d in the extended cylinder over c. All adjacencies

of D can be inferred from this information.

[Determine smooth, A-order-invariant clusters, as large as possible.]
Initialize C «~ (). For each outer-adjacency (c,d) of " do the follow-
ing: if not previously done, add the initial clusters over J, K to C
(J K the cluster of C~ containing c,d resp.); for each adjacency (s,t)

from Step 6, with s a cell over ¢ and ¢ a cell over 4, determine
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whether the information saved from Step 4 is the same for s as for ¢;
if so, then combine the cluster containing s with the cluster containing
t.

[Sample point construction.] Construct a sample point for the

representative cell of each cluster in C. Exit O
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Chapter Six

Evaluation of the modified cad algorithms

We present in this chapter both theoretical analysis of and empirical obser-
vations about the cad algorithms from Chapter Five. An analysis of the algo-
rithm CADRW from Section 5.1 is the subject of the first section of this
chapter. Our analysis parallels that presented by Collins in [COL75]. We are
able to derive an improved computing time bound for the cad algorithm,

which nevertheless remains super-exponential in the number of variables r.

Both the two- and three-space clustering algorithms from Section 53
were implemented in the SAC —2 computer aigebra system. Several examples

of the application of these algorithms are presented in Section 6.2.

6.1 Algorithm analysis

We present here a fairly detailed analysis of the cad algorithm CADRW
from Section 5.1. We follow the basic structure of the analysis in Section 4
of [COL75] quite closely. The first step of CADRW calls for the construc-
tion of the finest squarefree basis of prim(A), where A is the (well-oriented)
input set of r-variate polynomials. To simplify the analysis, however, we
will assume that a coarsest squarefree basis is computed instead. The

theorems of Chapter Three which support the validity of CADRW remain
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true if one uses a coarsest, rather than a finest, squarefree basis in the
definition of the reduced projection P . (From a practical point of view, it is
advantageous to use the finest squarefree basis, even though more work is

required to compute it.)

A little terminology first of all. Recall that the norm of an integral
polynomial A in r variables, denoted by 14 I, is the sum of the absolute
values of the integer coefficients of A. The length of an integer a, denoted
by L(a), is the number of bits in the binary representation of a. We shall
make use of the basic properties L(ab)= L(a)+L(b), and L(a)=a (if
a > 0) in our analysis.

The three basic parameters used in Collins’ analysis are the number m
of polynomials contained in A, a bound » for the degree of each polynomial
in A in each variable, and a norm-length bound d for the elements of A.
Our analysis will be facilitated by assigning somewhat different meanings to
the parameters m and n. We shall say that a set A of r -variate polynomials
has the (m ,n)—property if the set A can be partitioned into at most m dis-
joint subsets, such that the product of the polynomials in each subset has
degree at most n (in any variable). It is clear that if A has the (m,;n)-

property then so does any squarefree basis B for prim(A).

Lemma 6.1.1: Let A be a finite set of integral polynomials, in r variables,
r =2, and let A» be the reduced projection P (A). Suppose that A has the
(m ,n)-property, and that d is a norm-length bound for the elements of A.

Then A * has the (m *,n*)-property, and norm-length bound d *, where

m* =< 2m?n , (6.1.1)
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ns =< 2n?, (6.12)

d» < Trn? + 2nd. (6.13)
Proof : Recall that A»* is equal to
cont(A) |J coef f (B) \J discr(B) ) res(B),

where B is the coarsest squarefree basis for prim(A). Now as A has the
(m ,n)-property, A can be partitioned into m disjoint subsets, §,...,S,, such
that the product of the elements of each subset has degree no more than n.
Let T, be the set of basis elements which divide some element of Sy; for
i > 1, let T; be the set of basis elements which divide some element of S;,
and which do not already occur in some T;, j <i. Then, where ldcf is
short for "leading coefficient”, we claim that the product of all elements of

the set
cont (S;) \J ldcf (T;) U discr(T;) \J res(T;) (6.1.4)

has degree no more than 222 (in any variable). For if ¢ is the product of the
elements of cont(S;), and T; = {F,,...,F,}, then the polynomial F := cF{..F,
divides the product of the elements of S;, and hence has degree less than or
equal to n. Hence the resultant of F and F “ has degree at most 2n? (in any
variable), as it is the determinant of a matrix with at most 2n rows and
columns, whose entries have degree at most n (in any variable). But this
resultant is equal to a power of ¢ multiplied by the following:

fI ldef (Fj)ﬂdiscr (Fj)T1res(F; Fi )%

i=1 ji=1 j<k

Our claim follows from this.
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There are at most m sets of the form (6.1.4). The remaining elements
of A» are of two kinds: coefficients of elements of B other than leading
coefficients, and resultants of the form res(F f ,Gy), with F; an element of
some T; and G, an element of some T,. The set of these remaining

coefficients of elements of B clearly has the (mn ,n)-property, while the set

2_
2 5 "-'-,an)-property. All

of all these remaining resultants clearly has the (

told, A= can be partitioned into no more than

2
m-—in m
2 2

m?

2

< 2m2n

sets, such that the degree of the product of all the elements from any set is

not greater than 2n2. This establishes (6.1.1) and (6.1.2).

Let ¢ be the maximum norm of the elements of B, and let e be the
length of ¢. Then e = 3rn +d, by Corollary 235 (to Gelfond’s theorem).
Let F and G be elements of B. Then, by Theorem 2 in [COH74],

lres(F,G)l; < IFIJIGI}= c¢* .
Now |F’l;=< nlIF|y. Hence, by Theorem 1 in [COH74], (recalling the
definition of discriminant,)
Idiscr(F) ;=< IF 1} Ia® IF 1} < n"c®1,

Therefore, if P is any element of P (B), then the length of the norm of P is

at most nL (n) +2ne , hence at most 7rn? +2nd . O

In the projection phase of algorithm CADRW we compute the successive
projections P (A), P(P(A)),... . We can obtain by induction, using Lermmma

6.1.1, corresponding bounds for all these projections.
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Lemma 6.12: Let A be as in Lemma 1, and assume that A has the (m,n)-
property, and has norm length bound 4. Let 4, = A and, forl=k <r, let
Ay 41 be the reduced projection P (4;) of A; . Then, for 1=k = r, A; has the

(my ,n )-property, and has norm-length bound d; , where

my < (2n)* 02 7m2 (6.1.5)
1 k-1

n = -5(271) R (6.1.6)

d, = r(2n)¥d. (6.1.7)

Proof : Inequalities (6.15) and (6.1.6) are easily established by induction.
Note that (6.1.7) holds for k = 1,2. Assuming (6.1.7) holds for k =2, we
have by (6.1.3) and (6.1.6)
dy 41 = Trnf? + 2n, d,
< 2@y + @y Gn)a
< 2r(2n)327d
< r(2n)%"d
As basis computation is an integral part of the projection process, we

need to know how long how long a basis computation takes.

Lemma 6.13: Let A be a set of r-variate integral polynomials which has the
(m ,n)-property and suppose that the factors of elements of A have norm-
length bound 3rn+d. Then the time to compute a coarsest squarefree basis

for A is dominated by rZm3n % 1642 .

Proof : Now A can be partitioned into m subsets §;, such that the degree of
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the product of the elements of S; in any variable is at most n. We can com-
pute a coarsest squarefree basis for A in two stages. In the first stage we
compute a squarefree basis for each of the subsets S;. We use an algorithm
due to Loos that is described on page 147 of [COL75]. This algorithm
requires polynomial greatest common divisor computation, the time for
which [LOO82b] is e¥*1]2 (¢ a degree bound, ! a norm-length bound for
the r-variate input polynomials). As described on page 147 of [COL75], we
employ Loos’ algorithm and Musser’s squarefree factorization algorithm
[MUS71] alternately, at most n times each. In each of the (at most) n appli-
cations of Loos algorithm, each input set will contain at most n polynomi-
als, with degrees and norm-lengths bounded by n and 3rn +d respectively.
Thus the time for all applications of Loos’ algorithm will be dominated by
nn?n¥ *1(3rn +d)? , hence by r2n¥*642  As the time for squarefree fac-
torization of a polynomial P is eZ*412 (¢ a degree bound for P, 3re+l a
norm-length bound for the factors of P), the time for the (at most) n
squarefree factorizations is dominated by n¥*342 . The total time to com-

pute bases for each of S,....S,, is thus r2a% *Sm d?.

In the second stage, we successively combine, using Loos’ algorithm, the
bases obtained for the §; to obtain, finally, a basis for A. In each of the m
applications of Loos’ algorithm, each input basis set will contain at most mn
polynomials, with degrees bounded by n, and norm-lengths by 3rn+d.
Hence, the time for the second stage is dominated by
m (mn)2n% *1(2rn+d)? , hence by r2n¥***m3d?. The theorem now fol-

lows. O
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Using the previous two lemmas we can now bound the total time spent in

the projection phase of the algorithm.

Theorem 6.1.4: The total time spent in the projection phase of algorithm

CADRW is dominated by (21)"Z "m? d2.

Proof . The resultant of two polynomials in r variables, with degrees not
greater than e, and with norms of length ! or less can be computed in time
e *2|2 (see [COL71]). Let Ay, 1=k =<r, be as in Lemma 6.12. Now the
norm-length of any polynomial in a basis for the set 4, is at most 3rn; +d;;
and the norm-length of the derivative of any such polynomial is at most
4rn, +d, . Since the elements of Ay have r —k +1 variables, a resultant or a
discriminant of A, ., can be computed in time m2"#*2(4rn, +d;)*, and
there are no more than nkzmkz such resultants and discriminants to be com-
puted. Thus the time to compute all resultants and discriminants of A; 41 is
dominated by r2m 32" %)m24d?  hence by (2r)" 2?77 42 (using the
inequality 2(r —k)= 2’ ~k). It follows that the total time spent on resultant
and discriminant computation in the projection phase is dominated by
(2n)"2'ﬂm g2,

Before calculating the resultants and discriminants of A; ., we compute
a coarsest squarefree basis for prim(A;). By Lemma 6.13, the time for this
is rimd n 2k 642 This  expression is dominated by
r2n 1020 %) 342 | hence by r4(2n)"?7"m? d2. Thus the time for r

such basis computations is dominated by (2r)" 2P g2

We can neglect the relatively insignificant time to compute contents,

coefficients and derivatives. The theorem now follows. O
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Let D be the cad of R* computed by CADRW and let D; be the cad of
IR* induced by D, for 1=k =<r. Let ¢, be the number of cells in D;. We

can establish the following bound for ¢ :
Theorem 6.15: For 1=k = r, ¢, is less than 2n)-?m? .

Proof : The cells of D, are determined by the real roots of not more than
m, groups of polynomials, such that the product of the elements of each
group has degree at most n,. There are thus at most m,n, such roots, and
hence ¢, =< 2m_n, +1. For each value of k, 2=k = r, and each cell ¢ of
D,, Step 3 of CADRW substitutes the k —1 coordinates of the sample point
for ¢ for the first kK —1 variables of the k-variable polynomials in A,_; 41,
thereby obtaining a set of univariate polynomials with real algebraic number
coefficients, which has the  (m,_;+17, - +1)-Property. Hence
¢ < ¢;—1(2m, _p 411 —x+1 +1). Now the inequalities for ¢; and ¢, we have

derived imply that ¢, =< 4m.n, and c; < 4m,_; .10, 41Ct -1, fOT 2k =r.

i r
By induction on k, we thus have ¢, = J] 4m;n;, hence ¢, = [J4m;n;.
i=r—k+1 i=1

Now 4m;n; < 2(2n )¢ —127+27, 270 Therefore, o =271 (2n ) “H2THY 2

=< (2n)*m?, where a = (r DR +D+2 =r.2". O

We next bound the time to compute the cad D of the real line, invari-

ant with respect to the polynomials in A, .

Theorem 6.1.6: The time spent in the base phase of the algorithm is dom-

inated by (2n)"% “m¥d2.
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Proof : The time to compute a coarsest squarefree basis of the set A, is
dominated by m3n3d2 (setting r = 1 in Lemma 6.1.3). Now the time to iso-
late the real roots of a set of p squarefree, pairwise relatively prime polyno-
mials, with a degree bound of e and a norm-length bound of [ is dominated
by pe® + p’e’13 (see p 165 of [COL75]). There are at most m,n, polynomials
in the basis for 4, , each having degree at most n,, and norm-length at most
n, +d, (by Mignotte’s theorem). Hence the time to isolate the real roots of

the basis polynomials is dominated by
(mr nr )nrs + (mf nr )7(nf +dl' )3’

hence by m,'n,'’d3. By Lemma 6.12, this expression is less than or equal to

(2n )ambd3, where a =7(r-1)2" =2 417271 432"

< por+lyoridor—l4or+2< , or+d apd p =727 1< 27%2 O

We now discuss the extension phase of the algorithm. In this last phase
of the algorithm, computations with real algebraic numbers are performed.
These computations are expensive, and it will turn out that the time for the

last phase dominates the time for the preceding phases.

We need to have a measure of the sizes of the algebraic numbers that
arise in the algorithm. As two different representations of real algebraic
numbers are used, there are two different characterizations of size.
Regarded as an element of the field of all real algebraic numbers, a real
algebraic number « is represented by its integral minimal polynomial M (x)
and an interval I with rational endpoints such that « is the unique root of
M in I. As discussed on pages 165 and 166 of [COL75], the size of a can be

characterized by the degree of M and the norm-length of M.
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Regarded as an element of the real algebraic number field 0 (a), the
real algebraic number B is represented by a polynomial B(x)€ Q[x], with
the degree of B less than that of M. The rational polynomial B(x) is itself
represented in the form B(x) = b~1B(x), where b is an integer, B(x) is an
integral polynomial, and b and B are relatively prime. In this case the size

of B is characterized by the length of b and the norm-length of B.

For each cell ¢ in the cad D, of IRY, there is computed a real algebraic
number a that is a primitive element for the sample point of c: that is, if
B = (By . ..,B;) is the sample point of ¢, then Q(By, . . - Br)=0(a). A
pair (M ,[) which represents « is also computed. Let A,* be the set of all
such polynomials M. Let n* be the maximum degree of the elements of

A, * and let d; » be the maximum norm-length of the elements of A, *.

For each coordinate B; of a sample point B in IR*, CADRW computes a
rational polynomial B; = b;”'B; which represents B; as an element of Q (a).
Let B, be the set of all such rational polynomials B; associated in this way
with sample points B in IR¥, and let d, ~ be the maximum of the set of all b-

lengths and B-norm-lengths, taken over all B = b~1B € B,".

We will be able to improve the bounds for n,*, dy*, and d,” given in
Theorems 14 and 15 of [COL75]. Our present goal is to set down recurrence
relations for these quantities. We extract bounds for the case & = 1 directly

from [COL75] (see equations 8,9 and 10):

n:=n, (6.1.8)

dp =< n, +d, (6.1.9)
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dy < 4m?*n?(n, +d,). (6.1.10)

Let B = (B4, - - . ,B;) be a sample point in R*, with primitive element
a. Let C(xq,....x;+1) be a polynomial in the basis for A,_;, and let B, 4 be
a root of C(By, - - -, Br & +1) =: C*(x;41). We apply the algorithm SIMPLE
described in [LOOS82a] to « and B;4,, producing a” such that
0 (a,Bi+1) = @(a?). Now the degree of the field Q(a) over Q is at most
n;», and the degree of By, over @ («) is at most n, _; . Heace the degree of

Q (a”) over Q is at most n; *n, _; . We have shown that
Mp41* = Myt (6.1.11)

This improves the recurrence relation for n,* given in [COL75] (see equa-
tion 11). The improvement stems from our use of the minimal polynomial to
represent an algebraic number: Collins was not able to use the minimal poly-
nomial as no polynomial-time polynomial factorization algorithm was avail-

able in 1975.

We extract from [COL75] (equations 12 and 13) the recurrence relations
for d, » and d; ~ (there is a small error in equation 12, which does not affect

any subsequent results, which we correct):

dyi* S (dpwn g )mes+Gnly +d, g +dp»thn, i dyYm# +
(k +2)n, _y dy=my >

dsy” < dp” + 2mp*my 22 + Smomg qedy e +
26k n,_ydy +n_gd,_ +(k+)mernt, distmaim?,

We can now prove a counterpart to Theorems 14 and 15 in [COL75].

Theorem 6.1.7: With n, %, d, » and 4, " as defined above,
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mr= (2n)¥, (6.1.14)
dp»,d,” = n)E2 7 (@) T m? . (6.1.15)

Thus,
dy*,dy” = 2n)" T m?¥"d . (6.1.16)

Proof : Using induction, we can establish by (6.1.8), (6.1.11), and (6.1.6) that
ngs= (2n)*, where s, =271+ - +277F L As 5, <27, (6.1.14) follows.
We can now use (6.1.14) to simplify the recurrence relation (6.1.12).

Now k +2= 22, from which it follows by (6.1.6) that (k +2)n, _; = -12-(211 .

Using this inequality, and (6.1.6), (6.1.7) and (6.1.14), we can then derive the

following:

2 +2

dpy* = r (2n)F 7 (d +dg»+d,). (6.1.17)

Similarly, we can simplify (6.1.13) using (6.1.5), (6.1.6), (6.1.7) and (6.1.14),

obtaining:
dyy = @27 @)Y ¥ (rd +dyr +dp g2 +dy ). (61.18)
Substituting (6.1.17) into (6.1.18), and simplifying, yields:
dp oy’ = 2r @n)27 @) T (d +dyr+d ). (6.1.19)
Let D, =d +d,*»+d, . Using (6.1.17) and (6.1.19) we find that
Dysr = (2)77(@n)" ¥ m ¥ Dy, (6.120)
From (6.1.9) and (6.1.10) we obtain the following bound for D;.

D= 2n)¥ 7 @n) ¥ " m¥ d . (6.121)
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Using (6.121) and the recurrence relation (6.120), it is then clear by induc-

tion that
D, = @n)*T"@2n) " m* d, (6.122)

where s, =27 + - - - +2"7%*1, The inequalities (6.1.15) and (6.1.16) follow

immediately. O

The main subalgorithms used in the extension phase of CADRW are
ABASIS (univariate algebraic polynomial coarsest squarefree basis), ISOL
(algebraic polynomial real root isolation), NORMAL , SIMPLE , and IPFAC
(univariate integral polynomial factorization). Specifications for the first
four of these algorithms are given in Sec. 2 of [COL75] (pp 147-149). A
polynomial factorization algorithm was not used in [COL7S), as no polyno-
mial time algorithm for polynomial factorization was known in 1975. IPFAC
is used in our scheme to determine the minimal polynomial of each primi-

tive element computed by SIMPLE .

It is shown in [COL75] (p 168) that one can in fact use the basis and
root isolation algorithms for integral polynomials (/PBASIS and IPRRI
respectively) in place of ABASIS and ISOL respectively. This alternative
strategy requires an algorithm APGCD (algebraic polynomial ged). We shall

henceforth assume that this alternative method is adopted.

Let us assume that the computing time of each of the subalgorithms
used in the extension phase is dominated by
'.l.‘, K aL ,

where p. is the number of input polynomials, and v and 3 are the maximum
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degree and maximum norm-length respectively of the input polynomials.
(Integer values of J, K and L exist since all the subalgorithms used have

polynomial computing time bounds [LOO82a], [KALS82)).

We shall find bounds B, B,, and Bj for ., v, and 8 respectively. Let us
consider the extension from R¥ to R¥*1. A study of page 168 of [COL75]
reveals that the number of polynomials input to the root isolation algorithm

is at most

(M, g 7 ny #n, -k) .

In fact this bound also applies to the other algorithms, hence serves as a
bound for p. Using (6.15), (6.1.6), and the derivation of (6.1.14), we thus

obtain the following bound B(r ;m,n) for p:
By(rmn)=@n) T m¥"

It can be seen that the right-hand sides of equations (11) and (13) from
[COL75] bound v and & respectively. It follows that we have the following

bounds B,(r ,n), and B3(r ,m ,n ,d ) for v and 3 respectively:
By(r.,n) = (2n)¥"
Byrmmd)=@2n) T " m?¥"d

The time for one application of any of the algorithms in the extension phase

is dominated by

hence by

(2n)r.2'+"(f '*'K+8L)'nZ"'x (J +4L)dL .
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The basis and root isolation algorithms are each applied c; times (dur-
ing the extension from R* to R¥*1), and SIMPLE and IPFAC are each
applied at most ¢,y times. NORMAL is applied at most ¢ (m,_; n, )
times. Hence, using Theorem 6.1.5 (and its proof), it is straightforward to
show that the total number of applications of each subalgorithm during the

extension phase is at most
(2n)r.2r+lm 2 .
Hence the total time for the extension phase is dominated by

n )r.z'“(l +K +8L+1) (I +4L+2) 4L

Let E and F be the lengths of 2(J +K +8L +1) and (the ceiling of)
% (J +4L +2) respectively. We thus have:

Theorem 6.1.8: The total time for the extension phase of CADRW is dom-
inated by

(2")'.'2'4-8 m 2r+’ dl' .
As J, K, and L are positive integers, E = 5 and F = 3. Hence, comparing

Theorem 6.1.8 with Theorems 6.1.4 and 6.1.6, we obtain the following:

Theorem 6.19: The total time for CADRW is dominated by
(2")"2'+E m 2r+r dL .

What can be said about the values of J, K, and L? Table 6.1.1 lists
computing time bounds for the main subalgorithms used in the extension
phase of CADRW . A reference is provided for every bound listed, except
for the bounds for NORMAL and SIMPLE (derived by the author). Our
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algorithm NORMAL is based upon the algorithm outlined on p. 168 of
[COL75], and does not correspend exactly with the algorithm NORMAL in
[LOOB82a]. The major component of our NORMAL algorithm is a resultant
computation. The bound given for SIMPLE [LOO82a] is actually a bound
for Step 4 of the algorithm only. However, it is stated in [LOOB82a] that

empirical evidence suggests Step 4 is the most time-consuming step.

Theorem 6.1.10: Assume J =7, K =21 ,and L = 3. Then the total time for

the extension phase of CADRW is dominated by
(2n)"2'+7m erd3 .

Theorem 6.1.11: Assume J =7, K =21, and L = 3. Then the total time for
CADRW is dominated by

(zn)r_zn‘ﬂmzrﬂds .

We can compare our computing time bound for CADRW with that
obtained for the algorithm DECOMP of [COL75] (see Theorem 16 of this
reference). The exponents of m and 4 are (almost) the same in both cases,
but the exponent of 2n in regard to CADRW is r.2"*7, compared with an
exponent of 22 *8 in regard to DECOMP . Setting u = 2" and ignoring con-

stant factors, the former exponent is u logu, while the latter is u2.
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Algorithm  Bound Source
APGCD vI52 [RUBT73], Sec. 52
IPBASIS p3v83?  Lemma 6.13
IPFAC v1253  [KALS2]

IPRRI pTv88% [COL75], p. 165
NORMAL v8 52

SIMPLE v21 52

Table 6.1.1. Computing time bounds
for algebraic algorithms

6.2 Empirical observations

In this section we discuss the performance of the new clustering cad
algorithms presented in Section 53. The modified clustering cad algorithms
for the plane and for three-space, CLCSO 2 and CLCSO 3, have been imple-
mented in the SAC-2 computer algebra system. We have applied the SAC-2
versions of CLCSO 2 and CLCSO 3to a number of examples, and present here
some observations relating to four of the more interesting examples. The
four subsections A to D that follow each contain a discussion of one exam-

ple.

The computing times reported in this section were measured on a VAX
11/780 computer running the UNIX operating system. For convenience, we
will not distinguish, throughout this section, between an algorithm and its

SAC-2 implementation.
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A. The tacnode
The following equation defines a facnode (IWALS50], p.58):
F(x,y)=y4—2y3+y2-3x2y + 24 =0.

Figure 62.1 is a sketch of the curve. Figure 3.1.1 illustrates a cad D of the
plane which is sign-invariant with respect to F. Arnon [ARNBSI1] reports
that the ordinary cad algorithm (i.e. the algorithm CAD from Section 3.1 of
this thesis) takes 1508 seconds to conmstruct D, whereas the sign-invariant
clustering cad algorithm (i.e. the algorithm CLCAD 2 of [ARNSI1]) takes 107
seconds to construct D and to form sign-invariant clusters. The clustering
algorithm takes less time than the ordinary algorithm because it does not
construct a sample point for every cell of D. The sign-invariant clusters pro-
duced by the clustering algorithm are the curve itself and the connected

components of its complement (Fig. 62.1).

Fig. 6.2.1. Tacnode.
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Fig. 6.2.2. Smooth, order-invariant clusters
for tacnode.

The order-invariant clustering cad algorithm CLCSO2 takes approxi-
mately 156 seconds (on average) to construct D and to form smooth, order-
invariant clusters. The clusters produced by this algorithm are depicted in

Figure 62.2.

B. The Whitney umbrella

The equation F(x,y,z) = z2 — xy2 =0 defines a surface in 3-space
known as the Whitney umbrella. Figure 623 is a sketch of the surface. Note
that the entire x -axis is contained in the surface: the negative portion of the

x-axis forms the "handle” of the umbrella.

The order-invariant clustering algorithm CLCSO3 takes approximately
24 seconds to construct smooth, order-invariant clusters in 3-space. These

clusters are depicted in Figure 62.4: there is one O-cluster, two l-<clusters,
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two 2-clusters, and three 3-clusters, a total of eight clusters. Note that these
clusters are not maximal, as the entire x -axis is a smooth, connected set in

which the order of F is everywhere two.

Arnon’s algorithm takes about 17 seconds to comstruct sign-invariant
clusters in 3-space. The entire surface is such a cluster: thus, the number of
sign-invariant clusters is four. As the full projection of the input set {F} is
essentially the same as the reduced projection of {F}, it is not surprising

that the order-invariant clustering algorithm runs no faster than Arnon’s

clustering algorithm.

Fig. 6.2.3. Whitney umbrella.

C. Catastrophe surf ace and sphere
Two well-known surfaces are the unit sphere
(F(xys2z) = 22 +y2+x2-1=0) and the catastrophe surface

(G(x,y,z) = z3 + xz +y = 0). Each surface by itself would present a quite
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Fig. 6.2.4. Smooth, order-invariant clusters
for Whitney umbrella.

trivial application of the cad algorithm. However, we can make an interest-

ing example for the algorithm by taking the two surfaces together (that is,

taking the input set to be A = {F ,G}).

The reduced projection of A consists of the following bivariate polyno-
mials: the discriminant of F (a quadratic polynomial), the discriminant of G
(a cubic), and the resultant of F and G (a sextic). The three curves defined
by these equations are depicted in Figure 625 (curve 1 is discr (F)=0,
curve 2 is discr (G) = 0, and curve 3 is res(F ,G) = 0; note that curve 3 has
an isolated point on the x-axis). The order-invariant clustering algorithm
takes 1,170 seconds, or about 20 minutes, to construct a smooth, order-
invariant cad of the plane, and to form smooth, order-invariant clusters in
the plane. The clusters formed are depicted in Figure 6.2.6: there are 11 0-

clusters, 20 1-clusters, and 11 2-clusters, a total of 42. The O-clusters are
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presisely the singular points of the product of the bivariate polynomials

(which defines the union of the curves 1,2 and 3).

Fig. 6235.

Let F(x,y,z) = z22+y2+x2-1
and G(x,y,z) = z3+xz +y. Then:
curve 1 is discr (F) =0,

curve 2 is discr (G) = 0,

curve 3 is res(F ,G) = 0.
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Fig. 6.2.6. Smooth, order-invariant clusters
for curves of Fig. 6.2.5.
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The algorithm takes just under 9 hours in total to compute a smooth,
A-order-invariant cad of 3-space, together with smooth, A-order-invariant
clusters. There are 9 clusters altogether: a 1-cluster corresponding to the
intersection of the sphere and the catastrophe surface, two 2-clusters
comprising the rest of the sphere, two 2-clusters comprising the rest of the
catastrophe surface, and four 3-clusters. These clusters are maximal, as
expected (see remarks preceding Theorem 533). We can infer from the
information provided by the algorithm that the intersection of the two sur-
faces is a compact, connected, 1-dimensional submanifold of IR* whose pro-
jection onto the x.y-plane (i.e., the 1-dimensional part of curve 3) is (topo-

logically) a figure eight.

About 8 hours is spent on adjacency calculations in 3-space. This is
perhaps not too surprising, when one considers that there are actually about
1,000 cells in the decomposition of 3-space (these cells are partitioned by
the algorithm into just 9 clusters), and that an essentially complete list of all
adjacencies between cells in 3-space is determined. We believe that there
are at least two ways in which the time for the adjacency determination can
be reduced. The first way is to reduce the number of pieces in the 3-space
decomposition. It is plausible that one way this could be accomplished is by
using sections and sectors over clusters in 2-space, as opposed to cells in 2-
space, as the components of the clusters in 3-space. The second way is to
use a more efficient 3-space adjacency algorithm. There is an adjacency
algorithm in [MCC79] which only works over non-nullifying cells in the
plane, but which we believe would run faster than the algorithm in use at

the present time.
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D. Random trivariate polynomial

The following trivariate polynomial of degree 4 in the main variable z,
degree 1 in each of the variables x and y, and random integer coefficients

between -2 and +2 was generated:
F(xyz)= (y-1z* + xz3 +x(1-y)? + G—x-1)z +y.

The set A = {F} was supplied as input to each of the algorithms CLCAD3
and CLCSO 3. The full projection of A, as computed by CLCAD 3, is the set

P, = {ldcf (F)discr (F ),subdiscr {(F ),subdiscr o(F ),ldcf (G).discr (G)},

where G is the reductum of F. The characteristics of these polynomials are
summarized in Table 62.1. CLCAD3 forms the univariate projection of P,
and then performs a squarefree basis computation. The set U, of univariate
basis polynomials obtained is described in Table 622. Note that U cont:;ins
17 polynomials, the "worst” of which has degree 22, and maximum

coefficient length (in decimal digits) 16:

22 21 20
4096 X -356096 X + 14041856 X

19 18
- 330249664 X + 5114803328 X

17 16
- 54149113904 X + 390611881536 X + ...

CLCAD 3 isolates the real roots of the polynomials in U,. A total of 31

real roots is found, yielding an induced decomposition of the real line into
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2x31+1 =63 cells. The computing times for the various subtasks of

CLCAD 3 discussed so far are given in Table 6.2.3.

The reduced projection of A, as computed by CLCSO3 is the set
P, = {ldcf (F)discr (F),ldcf (G )}.

After formation of the univariate projection of P, a univariate basis U is
formed. U, contains only 6 polynomials, the "worst” of which has degree 10
and maximum coefficient length 6 decimal digits:

10 9 8 7 6
X -36X +540X -4212X +16875X

5 4 3
-23679 X - 43659 X + 114669 X

2
+ 96228 X - 58320 X - 46656

The rest of the set U, is described in Table 6.2.2.

CLCSO3 determines that the polynomials in U, have a total of 11 real
roots. Thus the induced decomosition of the real line constructed by
CLCSO3 has 2 X 11 +1 = 23 cells. The computing times for the various sub-
tasks of CLCSO3 are included in Table 623, for comparison with those of
CLCAD 3.

Neither CLCAD3 nor CLCSO3 has yet run long enough to complete
construction of the induced cad of the plane. CLCSO3 used at least 13%

hours of CPU time on this computation before a system failure occurred.
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The algorithm had almost finished determining the number of sections and
sectors over each cell in 1-space, and was thus probably quite near finishing

when it stopped.

The most expensive calculations appear to be those involving the two
real algebraic numbers which are roots of the unique ten-ic T(x) in U,

(T (x) is given above). In particular, where a; is the unique root of T (x) in

the interval (—-i—,-——z-), the time t, to isolate the real roots of the algebraic

polynomials D (ajy,y), with D an element of the basis for P,, is about 6
hours (this includes the time to compute a squarefree basis for the set of
algebraic polynomials D (aj,y)). This compares with a time r; of approxi-
mately 20 minutes for a similar computation for the real algebraic number

ay, the unique root of the polynomial Q (x) = 16x4 — 95x3 +24x2 +704x +512

(an element of U) in the interval (—2,——;—).

Theory and experience with the algorithm suggest that the remaining
algebraic number calculations (primitive element computations, for exam-
ple) in CLCSO3 run quite quickly (see introduction to Chapter 6 of
[ARNS1]). The adjacency computations in the plane do not involve any alge-
braic number calculations and hence should proceed quite rapidly. Hence,
we estimate that the total time for CLCSO3 to compute the induced cad of

the plane is about 14 hours.

As a comparison, we shall attempt to estimate the total time for
CLCAD 3 to compute the induced cad of the plane. Now the univariate basis
U, contains a polynomial V (x) of degree 21, whose norm-length L(1V 1) is

at least 39. Let aj; be a real root of V (x), and let ¢ be the time to isolate
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the roots of the set of D (a,y), such that D is an element of the basis for P;.

Let us assume that the root isolation for the polynomials D (« ¥ ), with
D a basis polynomial for P,, takes time proportional to (n*) (d*)?, where
n» and d * are respectively the degree and norm-length of the minimal poly-
nomial for a. For the ten-ic T (x), the values of n* and d » are roughly dou-
ble their values for the quartic Q(x). For the 21-ic V(x), the values of n=
and d » are roughly double their values for the tenic T (x). Hence, we might
expect the ratios 13/t; and 1,/t; to be roughly the same. Thus, as ¢,/t, is
about 18, 15 would be roughly 100. As there are at least 7 real roots defined
by the 21-ic V (x) or by the even "worse” 22-ic, the total time for CLCAD 3 to

compute the induced cad of the plane would be about 700 hours.

It is very likely that most of the time taken for the root isolation of
algebraic polynomials was spent on algebraic polynomial greatest common
divisor computations. A monic prs algorithm ([RUB73}, Sec. 53) was used
for the gcd computations. It seems likely, however, that use of some
modification of Rubald’s modular subresultant gcd algorithm ([RUB73], Sec.
5.2), or some modular gcd algorithm based on the theory in [WRO76], could

substantially reduce the time for root isolation of algebraic polynomials.




Composition of P,

poly

ldef (F)
discr (F)
subdiscr {(F)
subdiscr o(F )
ldef (G)
discr (G)

degin x

N e O

st

deginy total deg

10

2O N PR e
N e W N

max coeff length

N W A e

Table 6.2.1. Composition of P;.
(coefficient length in decimal digits)
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Composition of U1 and U,

U, U,
degree | # polys max coeff length | # polys max coeff length

22 1 16 0
21 1 12 0
15 1 8 0
11 1 10 0

10 1 6 1 6

6 2 7 1 1

4 3 3 2 3
3 3 2 0

2 1 2 1 2

1 3 1 1 1
17 6

Table 6.2.2. Composition of U, and U ,.

(coefficient length in decimal digits)




Computing times in seconds for subtasks

computation of basis for input
construction of bivariate proj

computation of bivariate basis
construction of univariate proj

computation of univariate basis

real root isolation

total

CLCAD3 CLCSO3
109 109
303 4.83

114 275
246 114
131 245

282 3.10
730 160

Table 6.2.3. Computing times in seconds for subtasks.
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Chapter Seven

Conclusion

Let us summarize the work reported in this thesis. The work centers on the pro-
jection operation in the cylindrical algebraic decomposition algorithm. It is
shown that in constructing a cad of Euclidean space, one can us¢ a substantially
reduced projection operation in place of that proposed originally. The validity of
the simpler projection method rests upon a theorem on real polynomials and
discriminants which is called the lifting theorem. This theorem is an adaptation to
real n-space of a theorem due to Zariski pertaining to complex n-space. An
exposition of Zariski's theorem, which is tailored to our application, is presented

in the thesis.

A number of cad construction algorithms using the reduced projection are
developed. The reduced projection operation finds its most staightforward use in
the algorithm CADRW to construct a cad invariant with respect to a set of well-
oriented polynomials. It is also shown how to use the reduced projection to con-
struct a cad for a general set of polynomials. Clustering cad algorithms for the

plane and 3-space using reduced projection are formulated.

The algorithm CADRW is subjected to a detailed theoretical analysis, from

which an improved computing time bound is derived. SAC—2 implementations
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of the clustering cad algorithms are applied to several examples, and empirical
computing times reported.

What can be concluded from the theoretical and empirical analysis of the
cad algorithms that use reduced projection? The theoretical computing time
bound derived for CADRW is not as great as that obtained in [COL75] for the
original cad algorithm. (The improvement in the bound consists essentially in a
reduction of the exponent of n. the maximum degree of the input polynomials.
from 227+8 to r2r+7. where r is the number of variables.) The bound remains.
however. doubly-exponential in r. (It seems likely that a bound of this kind is the
best achievable for the cad algorithm - see p. 135 of [COL75]). For small values
of r. the bound obtained for CADRW (as well as the bound in [COL75}) is likely

far too pessimistic.

A worst-case analysis of CADR (applicable in the non-well-oriented case)
could not be expected to yield a lower bound than that in [COL75). Although the
reduced projection is used by CADR. the advantage is offset somewhat by the

need to include additional polynomials in the input set.

The empirical computing times reported suggest that there is a (possibly
considerable) advantage to be gained in using the reduced projection to compute
a clustered cad of 3-space. Nevertheless. the cost of computing non-trivial exam-
ples remains high. Further reduction in computing time for the clustering cad
algorithm would seem to hinge upon the development of a modular greatest com-
mon divisor algorithm for algebraic polynomials. and of a method by which the

number of cells or pieces in the decomposition of 3-space could be reduced.
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