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ABSTRACT

The MGR[v] algorithm of Ries, Trottenberg and Winter with v =0
and the Algorithm 2.1 of Braess are essentially the same multigrid algorithm
for the discrete Poisson equation: -AhU = £, In this report we consider
the extension to the general diffusion equation -V epvu = f,
p = p(x,y) > Py 0. 1In particular, for the two-grid scheme we reobtain
the basic result: Let EO be the error before a single multigrid cycle

and et ¢! be the error after this cycle. Then Ils]l‘L < %(1+Kh)}leollL .
h h

Computational results indicate that other constant coefficient results carry

over as well.



I. Introduction

Multigrid methods are proving themselves as (very) successful tools
for the solution of the algebraic equations associated with discretization
of E1liptic Boundary-Value problems - see [1], [4], [5], [6], [10]. Never-
theless, it seems we are just beginning to "understand" this powerful idea.
Hence, there is a need for continued probing, experimentation and new
proofs - less for the sake of proof and more for the sake of insight.

In [2] Braess proposed and analyzed a class of multigrid methods. 1In
particular, he considered a particular algorithm for the Poisson Equation -
“Algorithm 2.1". He shows that the contraction number p for a two-grid

method is given by

1

This result holds whenever £ 1is a polygonal domain whose sides have slope
*+ 1,0 or « and the discretization satisfies an additional condition

(see QI of section 2). 1In [9] Ries, Trottenberg and Winter discuss the
class of MGR[v] methods for the Poisson Equation in a square. Using Fourier
Analysis they obtain an explicit formula for the corresponding contraction

numbers p[v]. In particular, they obtain - for two grids

B _ 2 1w
1.2 0l =5, 1] =55, = 5
(1.2) pl0] =5, o[l =55, o] =5 201 ) 2

As it happens MGR[0] is the same as "Algorithm 2.1" and the results of
[2] and [9] are consistent. The results of [9] are more precise for more

restricted problems.




In this paper we consider the more general diffusion equation

f in O,

-V« p(x,y)vu

(1.3) u=0 on 230

p(x,y) > py; > 0 and

where Q may either be a general bounded piecewise smooth domain or £ s
a polygonal domain whose sides have slope + 1, 0, or «. We employ the
usual five-point difference analog of (1.3) and seek to solve the (large)
system of linear algebraic equations. We consider a class of linear multi-
grid methods which include the MGR[v] methods when p(x,y) =1 . Our basic

result is the following: Consider the two-grid method. Let e be the error

1

before a single multigrid cycle and let €' be the error after this cycle,

Then
ey s gl <l

where || denotes the energy norm and K 1is a constant determined by

p, and lvp]l_, the « norm of the gradient of p(x,y). Moreover, the

proof clearly indicates why one should expect improvement when further

smoothing steps are introduced — see the remark at the end of section 3.

This result, (Theorem 3.1) for the two-grid jterative scheme is valid

in quite general domains provided that we use a modification of "approxi-

mation of degree 0" (see [7]) to describe the boundary conditions. Thus

we extend the results of Braess [2], Ries, Trottenberg and Winter [9] to

include a variable diffusion coefficient p(x,y) and more general regions.
In section 2 we formulate the problem and the basic two-grid method of

solution. In section 3 we prove the basic estimate. The proof proceeds

from a fundamental insight of McCormick and Ruge [8]. Section 4 describes



the results of some computational experiments which lead one to believe
that the results of [9] are essentially correct for the variable co-
efficient case as well. These computations were carried out on the

CRAY I at the Los Alamos National Laboratory. Finally, an appendix gives

the basic "energy" estimate required in section 3.




2. The Problem

Given a (sma11) value h >0 Tet {(xk,yj) = (kh,jh); k,j = 0,

+1, +2,...} be the associated mesh points in the x -y plane. Let

(2.1a) Rp: = {(xk,yj); k+j = 0 (mod 2)},

i
i

(2.1b) Ry: = {(Xk,yj); (k+j) = 1 (mod 2)} .

let © be a bounded domain in the plane with a piecewise smooth boundary
30 . We define the set of "interior" mesh points, Qh . We assume that

h 1is less than % the length of each smooth section of 098 and that the
radius of curvature at each point of a smooth arc satisfies

R>10h.

These restrictions are required to avoid pathological geometric problems

which vanish as h = 0.

*
Definition:

(i) If (xk,yj) e Ry n & we say that (Xk’yj) e q if the four
ne'lgthY'S {(xk‘f'] a.yj)s (Xk_" a}’j), (Xk’yj"])’ (XkayJ+])}
and the line segments from (Xj ,yj) to each of its mneighbors
all lie in @, the closure of Q.

(i1) If <Xk’yj) e Re n Q& we say that (Xk’yj) e Q if the eight
ne1ghbor‘s {(Xk+-] ,yj), (Xk_-] :Yj)a (xkst_])a (stYj+]): (Xk+'| s.yj_'_'])’
(ka ,yj_]), (Xk—l’yjﬂ)’ (Xk-1’yj-1)} and the line segments from

(Xj’y]') to each of its neighbors all lie in Q.

*
( )We must consider the line segments from (xk,y.) to the neighbors only
in the case of reentrant corners or cusps. J



When 92 has a cusp or a corner at a point (x,y) we require that

(X:Y) = (Xk:Yj) € RE .

are the boundary points of Qh . That is

The points (Xk’yj) € Q/Qh

BQh = {(xk,yj) € Q/Qh}.

A true multigrid scheme requires the use of many coarser grids. In such

general regions the treatment of the boundary conditions on succeeding coarser

grids gets complicated. In truth, the multigrid literature has barely

touched on this question. This description of Qh and th includes the

case studied by Braess [2] where © 1is a polygonal domain whose sides have

slope + 1, 0 or « and the corners all belong to the coarsest (and hence,

the finest) grid. For this case we note that (see Figure 1):

(R1.a) N, < AN

h

and

(RL.b) <f o 4s a side of § with slope + 1, then all the points of

R, which also lie on 3 belong to R

h E-

For any function F(x,y) defined on the (x,y) plane we write

(2.26) Fk,J E F(styJ) s

= 1
(Z.Zb) Fk‘*‘;i,\] . F((k+2)hs.y\]) ]
(2.2¢) P g 0= Flxo(3#a)h)

To obtain an approximate solution of (3.1) we seek a grid function
{Ukj} defined on the mesh points and satisfying the system of equations:

for (Xk’yj) € Qh
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(2.3a) <
-l - =
7 Pl 7 P anllio gl T R
and, for (Xk’yj) ¢ Qh

(2.3b) Ukj =0 .

We rewrite (2.3) as

(2.4b) Ukj =0, (Xk’yj) ¢ Qh.

When € 1is a polygonal domain whose sides have slope + 1, 0 or o« this
fine-difference discretization is an O(hz) scheme. Unfortunately, in

the general case, the error estimate is 0(h) .
We turn to the question of the solution of these Tinear algebraic

equations via a "two-grid" method. Let

(2.5) Q- = R n Q

OQur two grids are Qh and QE . Let S

and R

h and SE be the spaces of grid

functions defined on RE U RO

respectively. Our first step is to set up "communication" between these

E which vanish outside Qh and QE ,

two spaces. To be specific, we construct Tinear "interpolation" and

"projection” operators IE , IE so that




(2.6a) IE: S, > Sp (Projection),
h .
(2.6b) IE' SE > Sh . (Interpolation).

Define the interpolation operator IE by

h B .
(2.7a) [IEU]kj = Uk , if (Xk’yj) € RE ,

J
and, if (Xk’yj) € 9, then

hey L
e = 6 Promsienas P i

(2.7b)

P, 33K, 5-1 Pk, j0lk, g1
where
(2.7¢) ki = Pras, s *Pions 3 PP, 5oy TPk, T

Finally, if (xk,yj) e Ry/9y then (of course)

h -
(2.7d) [IEU]kj =0 .

h

Observe that (2.7a) implies that IE is of full rank, i.e.,

. h _ .
dim Range IE = dim SE.
The projection operator IE is defined by

1T
“Z(IE) .

(2.8) IE

(2.9) R := Range IE.



The choice of interpolation operator IE enables us to characterize R

as follows:

h
E

is in R if and only if

Lemma 2.1: Let I be defined by (2.7), Then a function U = U(h) ¢ S

h

(2.10) [Lhu]kj =0 ¥(k,j) with (xk,yj) e Q- |

To describe the two-grid method for solving (2.4), we consider a

smoothing operator G. That is, given uO € Sh we construct U via

(2.11a) i = 6’ =+ B(r-Lu”) = Gu° + BF

(2.11b) Gy = (I-BLh)

where B is a given matrix and

(2.11c) I Gonf - sup ‘EnB¥Gg¥’ < v,
h <thp,1p>

An important smoother G is the odd-even Gauss-Seidel scheme which
is defined in terms of two half-step operators HO and HE by G = HEHO.

That is, define HO - relaxation on the odd points -

0 -
(2.12a) (H u)kj = Uy (xk,yj) e Rp U Ry/%q >

and

(2.12b) [Lh(HOU)]kj = fk , (Xk’yj) e G -

J
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Similarly define HE , relaxation on the even points, by

E
(2.13a) (H u)kj = Uy (xk,yj) € R0 v RE/QE .

(2.13b) [Lh(H u)]kj = fkj s (Xk’yj) € 9 -
Let v > 0 be an integer. We obtain the generalized MGR[v] two-grid
iterative scheme by choosing

(2.14) 6 = (HEHOYY .

Observe that the solutions of (2.12b) and (2.13b) are explicit. This
follows immediately from the odd-even structure of the difference

equations (2.4).

Algorithm 2.1:

Step 1: Given W0 e Sy» form u = au’ .
Step 2: Construct U via

0= 1.
Step 3: Set r=f- L, ro=Ir

Step 4: Solve LE¢ =re where LE is the "coarse grid operator" to be
described later.
Step 5: Set u] = U + Ih¢

. E .

Step 6: Set u1 > uO and return to step 1.

We now describe two choices of the coarse grid operator LE‘



Case 1: Let

(2.158) o P iPRe1uden |, PioioPkens, e
: k-3,3-% 2 C . C, - >
h k-1,3 k,j-1
1 Pk, iRy, -1 Prs, PR -k
(2.15b) by 53 =7 — + 2 X7 ,
? h k,j-1 k+1,J
(2.15¢) d, . = [ak_; j-%'+ak+%,j+%'+bk+%,j-%'kbk-%,j+%] .

Then, if (k+j) = 0 (mod 2),

(1) _
[Le U1 = - By, ka1, 341 7 3k, 3-40k-1,3-1

(2.16)

+d .U

- b U - b ki -

4,30k, 3-1 T Phedg, 3k, 41
Case 2: (The Standard Case): if k+j = 0 (mod 2) then

(2) _
- [Le™ U5 = P TPy, 3430k, 541 7 Phos, §-50K+T, 31
2.17a

P, 5101, 51 P, lke1, 541 Skl

where

(2070) S5 = Dopsy sy Phy, o Py, e P 3o
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2) is the skewed version of Lh on the QE

grid. The operator Lé] is a multiple of the part of tE = IELhIE

Remark: The operator Lé
)
which is based on the same skewed points. The reasons for studying

Lé]) will become clearer in section 3.
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3. Analysis of the Algorithm

We begin our analysis with an observation which is (by now) well-known

among multigrid theorists (see [8]). Let
~ _ E h
(3.1) LE 1= IthIE'
h

Note that with our choice of IE, IE the operator LE is essentially %

of L, restricted to R. Hence LE is nonsingular. An easier calcula-

h
tion shows that these choices imply that LE is positive definite. Con-

A

sider Steps 4-5 of the two-grid iteration. Suppose we replace LE by LE’

i.e., suppose we find the function ¢ which satisfies

Lgv = v s
and set
1 ~ h
u =u + IEw
We claim that
T _
Lhu "fg

i.e. u is the desired solution! To see this we set
(3.2a) e=U-u

where U 1is the exact solution of (2.4). Observe that Step 2 implies that

1 (mod 2), then

if k+J

.= (L U-L u)kj = (f—Lhu)k. =0.

(Lpedys hU-Ly i

Hence Lemma 2.1 asserts that there is a function V ¢ SE such that

(3.2b) e =1'.

m
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But
_ <E hyy - <E 2~ _
LV = Ih(LhIEV) = I Le=re
So that
=V
and, hence,
~ h_/\ ~
(3.3) U-TIpp=u-e-= ur!
Unfortunately we have chosen Step 4 with L. and not EE . This choice was

not merely pique on our part (or the part of Braes and Ries, Trottenberg and
Winter). The point is -- having chosen LE as a five point star we can now
proceed to replace Step 4 with a new two grid step -- i.e. we can build a
true multigrid scheme. Since EE involves a nine-point stencil this would
be more difficult with EE as our coarse grid operator.

In any case, the problem of Step 4 is just
Led = Lgv s

where, as we see from Lemma 2.1, IEW is the L~ projection of e =U-u

onto R . Hence,
(3.4a) 1el, = el < el -
h h h

We will give a complete description of EE in the appendix. For now, we

write

(3.5) L. =
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where L. 1is defined by this equation. Observe that both EE and LE

E
() (2)

(either E or Lg ) are symmetric, positive definite operators.

Hence the associated [E is a symmetric operator. Our main estimate is
Lemma 3.1: For LE =Lg or LE = Léz), there is a constant K, de-
pending only on || vp||_, the maximum norm of the first derivatives of the

diffusion coefficient p(x,y), and py such that, for all ¢ e S »

¢ ¥ 0 we have

_ (Letat)
(3.6) -Kh < < (1+Kh) .
<LE¢,¢>

Proof: See Theorem A of the Appendix. [ |
Consider the eigenvalue problem
(3.7) (ALE-EE)w =0, yto0.
Using (3.5) we see that this problem is equivalent to
(3.8) (-1 -L v =0, v+0.
From Lemma 3.1 we find
1-Kh
2

(3.9) <A < (T+Kh) .

Theorem 3.1: Let

then

(3.10) I e]HLh <+ (1) | EOHLh’
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Proof: We have

Using (2.11c) we see that
(3.11) lell, < el -
h h

From (3.2a), (3.3b) and Step 5 of the multigrid algorithm we have

1

1 _~ h, _ ;h
(3.12a) e =€ - Lpp = I(y-9)
But
(3.12b) Lo = Lgv .
So that

- -17

(3.13) Y -¢ = (I—LE LE)w .
Thus

(3.002)  CLpetiely = (L Ihu-0), 1 (b-0))y = 2T 100, (4-0)

]

~ _'IA __']A
2(LE(I-LE LE)w,(I—LE LE)u))E .

Hence
'] 2 _ /\;i _]A% A;i A;i __]A% AL
(3.14b) l| € 1|Lh = 2([I-LpLp LElL JI-LELp LEILR ;-
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Since the eigenvalues of L'1f are also the eigenvalues of the symmetric

E
b =0k . . . 1
operator L LE LE’ (3.9) implies that the eigenvalues u of the symmetric

P PR o 5
operator (I—LELE1EE) satisfy

-Kh g_u‘i-%(1+Kh).
Thus, (3.14b) implies

i

1,2 2,0k T 2
| H,_h < (LAp,Lhw )

~ h T
2u2 (Lop.wrp = 24 <LhIEw,(IE)

2

2 1 h, -h

2 A A _ 2 A~ 2
pelLeser, = n HEHLh-
This result, together with (3.4a) and (3.11) implies the Theorem. |

Remark: This analysis is based on (3.6), an estimate of the ratio of two

approximations to

J f p(x,y)!V¢}2dxdy .

One expects that, the smoother ¢ is, the nearer this ratio is to 1.
From (3.8) we see that: the nearer this ratio is to 1, the nearer A
is to 0. Thus, we expect that if more smoothing steps have been applied
to eo, IEV will be smoother. Hence V will be smoother and |A| will

be smaller.
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4. Experimental Results

We have developed an experimental program implementing Algorithm 2.1 on
the CRAY I at the Los Alamos National Laboratory. Our purpose was to verify
(a modified) formula (1.2) for the variable coefficient case. We were also
interested in the differences in the results which arise from the choice of

2)

L., i.e. Lé]) or Lé . The region © is the unit square.

E
The computer program runs in an interactive fashion and allows the

user to provide a number of parameters. These include N, the number

of points on a side of Qh’ the fine grid in the unit square, and v, the
number of smoothing iterations. Starting with a particular choice of
p(x,y) and u(x,y) we construct the right hand side of (1.3). Using the
initial guess UO with interior points of QE equal to 5 and interior
points of QO equal to -5, Algorithm 2.1 is repeated until the discrete

norm of the residual is less than 10'8.

Lo
Experiments were done with the coarse grid operator chosen to be Lé])
and Léz). The calculation of Lé1) was complicated by the fact that for

points of @ for which Lé]) refers to points of 9, formula (2.15c)
does not apply. The reason for this is because the computation of either

or b involves referring to points outside of Qh. of

At g k3 %35

course since Ukj =0 if Ukj

to zero when Uki]ji] and Uki1j¢1 are in BQh. However, we still need

€ th we may set aki%ji% and bki%j¥%

a value for dkj for the two nearest interior points. For the four corner
points, we set dkj to be the value of dkj of the nearest interior point.

As the mesh gets finer, this approximation to the true dkj improves.

(1)

However, in almost all the experiments the rate of convergence using LE

(2)

was not quite as good as the rate obtained using LE .
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The tables below 1ist the functions p(x,y) and the true solutions
u(x,y) used for the experiments. For each problem the numerical results
obtained using both Lé]) and Léz) are displayed. N corresponds to the
number of interior points on a side of Rh and v corresponds to the
number of smoothing iterations. The smoother used was the odd-even Gauss-
Seidel scheme as described in section 2. o(v) in the tables corresponds to
the theoretical rate given in equation (1.2) of section 1. The theoretical
rate has only been proven to be valid, when v > 0, 1in the constant coef-
ficient case. However, as can be seen from the numerical results it appears
to be valid in the variable coefficient case as well.

In conclusion, the numerical results demonstrate the validity of
Theorem 3.1 for the case v = 0 and support extending equation (1.2) of sec-

tion 1 to the variable coefficient case.
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Table I, Experimental Results

Problem 1, p(x,y) =1, u(x,y) =0
_ (1) _ ., (2)
Le = Lg Le = Lp
AN 0 1 2 3 N 0 1 2 3
15 4858 | .0646 | .0344 | .0200 15 .4858 | .0646 | .0344 | .0200
31 L4844 | .0696 | .0375 | .0252 31 4844 | 0696 | .0375 | .0252
63 .4836 | .0708 | .0386 | .0263 63 4836 | .0708 | .0386 | .0263
o(v) | .5000 | .0741 | .0410 | .0283 o(v) | .5000 | .0741 | .0410 | .0283
Problem 2, p(x,y) =1, u(x,y) = sin 7x sin my
_ o (1) _ . (2)
Le = Lg =L
AN 0 1 2 3 N 0 1 2 3
15 | .4858 | .0646 | .0344 | .0200 15 .4858 | 0696 | .0344 | .0200
31 .4844 | .0696 | .0375 | .0252 31 .4844 | .0696 | .0375 | .0252
63 | .4836 | .0708 | .0386 | .0263 63 | .4836 | .0708 | .0386 | .0263
o(v) | .5000 | .0741 | .0410 | .0283 o(v) | .5000 | .0741 | .0410 | .0283
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Problem 3, p(x,y) = 1, ulx,y) = x(1-x)y(1-y)
_ (1) _,(2)
Le = Lg =Ll
Vv . v
N 0 1 2 3 N 0 1 2 3
15 .4858 .0646 .0344 .0200 15 L4858 .0646 .0344 .0200
31 4844 .0696 .0375 .0252 31 .4844 .0696 .0375 .0252
63 .4836 0708 .0386 .0263 63 .4836 .0708 .0386 .0263
a(v) .5000 L0741 .0410 .0283 o(v) .5000 L0741 .0410 .0283
Problem 4, p(x,y) = ™, u(x,y) = xe® sin mx sin my
- (1) _ ., (2)
v v
N 0 1 2 3 N 0 1 2 3
15 .4863 0760 .0437 .0292 15 L4858 0643 .0342 .0199
31 L4841 0742 .0425 .0303 31 .4840 0697 .0373 .0252
63 .4842 .0720 L0401 .0283 63 .4841 0709 .0384 .0264
o(v) .5000 0741 .0410 .0283 a(v) .5000 .0741 .0410 .0283
Problem 5, p(x,y) = 1 u(x,y) = e®Y sin mx sin Ty
P = TEEyy e
_, (1) _,(2)
Le = Lg Le
vV \Y
N 0 1 2 3 N 0 1 2 3
15 L4841 .0708 .0393 .0270 15 .4839 .0643 .0339 .0199
3] L4819 .0713 .0398 0276 31 .4819 0694 .0373 .0250
63 .4820 0709 .0386 .0268 63 L4820 0706 .0381 L0261
g(v) .5000 L0741 L0410 .0283 a(v) .5000 L0741 L0410 .0283
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Problem 6, p(x,y) = (1 +% sin my), ulx,y) = e®Y sin mx sin Ty
- () _(2)
a3y e = Le
v v
N 0 1 2 3 N a 1 2 3
15 L4879 .1084 L0727 .0565 15 .4869 .0686 L0377 .0255
31 .4854 .0901 .0582 .0442 31 L4851 .0710 .0390 .0270
63 L4851 .0784 .0473 .0350 63 .4850 L0715 .0390 .0270
ag(v) .5000 .0741 .0410 .0283 a(v) .5000 .0741 .0410 .0283

XY uxy) = (1-€¥) (x-1)y cos =

Problem 7, p(x,y) = e ,
2 (1) _, (2)
Lp = Lg Le = Lg
15 | .4857 | .0797 | .0482 | .0351 15 4853 | .0650 | .0347 | .0207
31 4842 | .0739 | .0431 | .0312 31 4841 | .0697 | .0376 | .0253
63 | .4836 | .0714 | .0399 | .0278 63 .4835 | .0708 | .0386 | .0263
o(v) | .5000 | .0741 | .0410 | .0283 o(v) | .5000 | .0741 | .0410 | .0283
. TX
problem 8, plx,y) = elSTN 7 €S ™) y(y vy = ey (x-1)y(y-1)
(M) _ (M)
be = Lg be = Lg
N v 0 1 ? 3 N v 0 1 2 3
15 4849 | .0772 | .0451 | .0296 15 4843 | .0645 | .0342 | .0202
31 4839 | .0751 | .0437 | .0313 31 4837 | .0697 | .0373 | .0253
63 | .4842 | .0721 | .0404 | .0289 63 4842 | .0710 | .0385 | .0264
o(v) | .5000 | .0741 | .0410 | .0283 o(v) | .5000 | .0741 | .0410 | .0283
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Appendix
In this section we determine EE and the quadratic forms
<LE¢3W), <LE¢:W)a (LEWaw) .
Further, in Lemmas A.4, A.5, and A,6 we establish the local estimates which

enable us to prove Theorem A.

Let u e Sg and (xk,yj) € Qe Then
(A.1) [foul, . =+ [L.1M]

) E"kj 2 h"E"-kj
For any Vv ¢ Sh, [th]kj involves the four values Vkil,j’ Vk,ji1
Therefore we consider the four squares I, II, III, IV (see fig. 2) with
vertices
(A.2a)  Li Llxoys)s (GqaYyn)s (Xpapo¥3)s Rpara¥yg)d s
(A.Zb) II: {(Xk,yj), (Xk+1syj+]): (Xk:yj+2): (Xk-]’yj+])} s
(A.2c) III: {(xk,yj), (xk_],yj+1), (xk_z,yj), (xk_],yj_l)} .

(A.2d) Iv: {(xk,yj), (xk_],yj_1), (xk,yj-z), (xk+],yj_1)} .

In each square the value of [Igu] at the center point is a weighted
average (given by (2.7b), (2.7¢)) of the values of u at the corners.
Thus, in general tE is a 9-point operator based on the 9 vertices of

these four squares. Since EE is a symmetric operator it takes the form

[Leulis = Byg¥kg ~ %ket,3%ke2,5 7 %k-1,3"k-2,3
By, 541k, 542 T B, -1Yk,5-2
Y iasg, k1, 541 T Yk, 53 k-1, 31

Oy, 540k-1, 541 T Ok, i k41,3-1




24

N\,
VAV
AN

N

j+2
Jj+1
j-2

k+2

k+1

k-1

k-2

Figure 2



Lemma A.1: Let
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(A.4a) EkJ = Ekj 4 ki
where

E0 = 0 + 0 +B + B + oy

ki © %Kk+1,d T %=1, 7 PKLI-T T Pka gl T Tk, i
(A.4b)

R e N R S N
Then
o) = T ogr Dby, -t :1°

E k+1,3 Yk+2,5 ~ Yk

(A.5) N N TR ¢ RPN TR L [ _p, .12
’ k,j+1-"k,j+2  "kJ ks, j+5-Tk+1, 541 7 TkJ
+]o [v T L
k+¥,j-%""k+1,3-1 kJj kitkj "

Proof: This follows from summation by parts. [ |

Similar calculations yield

Lemma A.2: Using the definitions (2.15), (2.17) we have

(A.6)

and

(1) i} 2
<LE Wﬂl}) = Z ak+l§,j+;§[wk+15j+] —lpk\]]

4

2
L P, gt g1 gl

1
2n?

(2)
<LE Yo1?

2
L P, 34V, 51 kg

1 2

o7 L P 5B 5o g
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We now compute the contribution of each square to [LEu]ki and the
quadratic forms. In evaluating [thgu]kj we have five terms. The four
terms

h h
Pz, s TE ke, 50 P e o

are clearly associated with squares (I%I) and (%6), respectively. It

is convenient to agree that

. . I
Pty Y 1S associated with square (III)’
and
. . . I1
pk,ji%ukj is associated with square (IV) .

Let E S(R), oy 5(R), B 5¢1(R)s Yitsy, jti(R)s Opay, sz (R) - denote the
contributions of square R to the corresponding coefficients Ekj’ RE
Br,ge® Vi, o, Ol gen 7 L

Consider square I. We must distinguish two cases, either (xk+1,yj) € Qh
or (Xk+1’yj) ¢ Qh . The following geometric lemma is essential to under-

standing the computations in the latter case.

Lemma A.3: Suppose (xk+1,yj) RURE Then either (Xk+2’yj) ¢ Q or the

1ine segment from (xk+],yj) to (Xk+2’yj) is not entirely in Q. Further

(XpaqsY5m)s (pppsys) 4 9

Proof: (see Figure 3). Since (Xk’yj) e Qp the points (Xk+1’yj+1)’

(xk+1,yj), (xk+1,yj_]) e & . On the other hand, (Xk+1’yj) £ 9 implies that

either ) or the line segment from (Xk+1’yj) to (Xk+2’yj) ¢ 0

(Xk+2’yj



Figure 3
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Because of our assumptions on the length of a smooth side of Q and the
lower bound on the radius of curvature, if (Xk+2’yj) ¢ @ then clearly
(Xk+1’yj+1) and (Xk+1’yj-1) ¢ Qp . If (xk+2,yj) e . then a portion

of 99 crosses the line segment X1 < X < Xk+2’ y = yj . If that portion
of the boundary continues smoothly near (Xk+1’yj)’ then the 1ine segments
from (xk+],yj+]) to (Xk+2’yj) are not entirely in Q . Finally, if
there is a non-convex corner (Xx,y) near (xk+],yj) that corner (x,y) € R -
Hence that corner must be (xk+1,yj+1) or (Xk+1’yj-1) which is therefore
not in QE . The other one is not in QE because h 1is less than %— the

length of smooth segments of 3% . B

We return to the calculation of Ekj(I)’ ak+1,j(I)’ Yk+%,j+%(1)’ and

Ok+%,j—%(1)‘ Square I does not contribute to the other coefficients.

Case 1: (Xk+1’yj) €

A straight forward calculation yields

.od . = -—5 |p - 23 ,
kj on2 |k, ] Che1, i
p . P .
(A.8b) o,y (1) = 72 kt,3 "k+%,J ,
> 2h Cr+1, 3
P, i Pr+1, 545
(A.8c) Vyup sap (1) = —p K3 kAT JHs
k43, j+s 2h2 Ck+.| .
Prar s P .
(A.8d) 0. s o (1) = T Tktk,5 "k41,3-% .
L
k+2’\] 2 2h2 Ck_H ,j
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Case 2: (xk+],yj) ¢ Qh:

In this case we have

1
(A.9a) EkJ(I) = “th pk’*';i,\] s
1 P, i P, 4y
(A.9b) Yy s, (1) = 22 ? ,
ktts, 4+ 2h2 Ck_H .

1 Pra,g Prel,ies

(.9c) T, gt ) T2 T O
(R-9d) oy 5000 = B0 = Vi gD = O (1)

Observe that ak+1,j > 0, and since uk+2,j = uk+1,j+1 = uk+1,j-1 = {,

the choices of oy (1), Yk+%,j+%(1) and Ok+%,j—%(1) do not effect

+1,]
the value of EE‘

Consider Square II.

Case 1: (Xk,yj+1) € 0

In this case we obtain

- L P e 1

(A.10b) By, 541 (11) =
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1 Pk, it Prrs, g+

(A.10¢) Yy, s 1) = 2h? Cx, 3+
1 Pt Prexg,in
(A.10d) O, sa (1T -2 e ,

Case 2: (Xk’yj+1) ¢

Using arguments similar to those used in case 2 of square I we have

1
(A.11a) Ekj(II) == pk,j+%'
2h
For Yk+%,j+%(11) and Ok-%,j+%(11) we may use the formulae of (A.10c)

and (A.10d). Finally

(A11b) By g (1) = Ey(1D) = Yy 5u (TD) = oy 54, (TT)

»J+1

”~

Because LE is symmetric it is not necessary to compute the contributions

from squares III and IV. We now make a similar decomposition of the coefficients

of L(]) . We set

E

(A.12a) ak+%,j+%(l) } ?%4Pk+%éi+:%;1,j+% i
(A.12b) s, g1 = ?%'pk’g:?ji:+%’j+1 ,
(A.12¢) by, 551 = ;% Pk+%éi+:f;1,j-% ’
(A.12d) Byes, g (11) = ak Pi, 3t Pk, g+

h Ck,j+1
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(A.13) dis (D) = 8y, (1) * by,

From (A.8c), (A.8d), (A.12a) and (A.12c) we have

1

(A.14a) 7 Ay, 45T = Ve, (1)
1 -

From (A.10c), (A.10d), (A.12b), (A.12d) we see that

1 -
1
(A.14d) E’bk+%,j_%(1) = OK+%,j‘%(I) .

Let (LEU,U)I and (L(])U,U> denote the contribution of square I

E I

to the quadratic forms (LEU,U> and <Lé])U,U> respectively. Then, using

Lemma A.1 and (A,14) we see that
(Lp,0) = oy (1w R
EV°7 1 k+1,J k+2,5 7k,J
B, .. (1) -y 1% + 2a (1) [y —y, 18
k+] sj k+] sj+1 k+] 5\]."‘1 k+;§sj+;5 k+] =j+] k:J
(A.15a) A

2 . 2
* 2y 5N W, 3013 * P 5D g1 V!

2
+ 2bk+3/2’j+;§(1)[¢k+]’j+] 'Wk+2’j] ’

.
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and

;

(1) _ 2
<LE 11”1”)1 - ak+%,j+%(1)[wk+1,j+1 'wkj]

2 2
(A150) 3+ 2y 5o 5 =V, 50+ B gD g1 )

2
* Bt N g0 ez,

\

Lemma A.4: Let ¥ e S¢ then

2 2 2
Dt 591 1,310 % Doz, 70,57 = Do 5 Pz, 37

2 2 2
(A-16a) + [wk+2’j 'wk+1’j_]] + [wk+],j+] 'wk,j] + [wk’j ‘wk+1’j_1]

2
= Do 501 70,5 P, 541 V2,3

Hence

2 2 2
e, 341~k 3-13 * Doz, 5 Vg < Dz g =W 31

(A.16b)

2 2 2
P00 V) D, Ve, -3 Do gor 7

Proof: One can verify (A.16a) by a direct computation. A detailed proof is
given in Braess [3, p. 512] .

Lemma A.5: Suppose (Xk+1 yj) € Qh .  Then there is a constant K depending

only on |[vp|[_ and p, such that

(A.17) 0 <<EMy, < aem) awlMyp,
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Proof: Note that
1.1 -0 T )

Therefore, using (A.15) we see that

~(1) _ 2
CLp twawdp = 2oy g (DD, 5 5]

(A.19)
2
+ 281 3D 501 Y, 51

Thus, we have established the left hand inequality of (A.17). Using (p.12),
i.e., the definitions of ak+%,j+%(l)’ bk+%,j-%(1) etc. and (A.8b), the

definition of o (1), and (A.10b), the definition of Bk+1 j(I)’ we see

+1,]
that there is a constant K, depending only on || Vp||_ and p, such that

o (1)
(A.20a) ~5i%;l—~——5u%»(1+Kh)
I
8 (1)
(A.20b) k1,377 o 1 (14kn)
aI — 2
where

(A.206) a2y = any of (A i By, 5o Do, i Pkt

Therefore (A.19) and (A.16b) and (A.15b) yield the right hand inequality
of (A.17). B
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Corollary:
1,,(1) r (1)
(A.21) 5L o <CLpwydp < (T4KR) (L Thpdy -
Lemma A.6: Suppose (Xk+1 yj) ¢ Qh . Then the conclusion of Lemma A.5 and

its corollary hold.

Proof: Calculations similar to those of Lemma A.5 now yield

~(-]) _ 2__ e
(A.22) O §_<LE lP"">1 - O‘k+1,j[l’l’k+2,j 'wkj] h ak+1,j[wkjj

Thus, as before, the left hand inequality of (A.17) holds. In this case

(A.9), the definition of U4, 57 implies
o .
(A.23) _EglL; < (1+kh) .
I

Using Lemma A.3 we see that

Ueez,5 = Vit 541 T Vkar,5o1 S 0

Using (A.15b), we see that

(1) -
Lp o)y = lagy,

2
st b s (D10 517

hence (A.22) and (A.23) imply the right-hand side of (A.17). Thus, the

lemma is proven. B

Theorem A: In either case, L. = Lé1) or Lé and with the associated

~

L there is a constant K, depending only on || vp||_  and p, such

E >
that, if ¢ # 0 and ¢ « Sg we have



35

~r

Ledsd
-Kh < -(—qu),(b)

~~

< (1+Kh) .

Proof: The arguments which give Lemma A.5 and Lemma A.6 extend to all the
squares, II, III and IV. Thus, those lemmas imply that the theorem holds
for L =Ll The case of Lg = L82) fo1lous from (3.5) and the ob-
servation that

(1-Kh) (Lé”w,wf_(Léz)w,w) < (1+Kh) <Lé”¢,xp> . [ |
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