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Abstract

The multiplicity and autonomy of resources in fully distributed processing systems make task
migration an attractive method for enhancing the response time of these systems. However,
the communication delays and processing overheads associated with the migration of a task
raises doubts as to the capability of load balancing methods to improve the performance of
distributed systems.

This thesis investigates the problem of load balancing in distributed systems. A
comparative performance study of several load balancing algorithms is presented. The
methodology used in this study is based on the idea that the load balancing problem,.like
many other problems related to distributed systems, is a two dimensional one. The first
dimension captures parameters that define the algorithm itself, while the second represents
the characteristics of the distributed system. An understanding of the interdependence
between the algorithm performance and the system’s attributes is essential for acquiring an
insight into the load balancing process. A number of new load balancing algorithms for both
broadcast and point-to-point systems are presented and analyzed. Performance models of
the various algorithms and systems are defined and solved. It is demonstrated that even
when the communication delays and processing overheads are non-trivial, load balancing can
significantly improve the response time of the system.

Different approaches are used for defining and solving the performance models of
the algorithms. Depending on the complexity of the model and the level of detail required,
analysis or discrete and continuous simulation are used. A method for modeling and simulat-
ing distributed systems is presented and used for deriving performance measures. The models
and simulation programs built according to this methodology reflect the loose coupling and
autonomy of the elements of the system. Comnsequently the models are endowed with the

modularity of the distributed system






Contents

Page
Chapter 1. Introduction. . . . . . . . . .. . ... .. . 1-1
1.1 Motivation . . . . . . .. L e e, 1-1
1.2 Distributed Systems. . . . . . . ... ... ... ..., 1--2
1.3 Load Balancing Algorithms . . . . . . .. ... ... ... ........ ... 14
1.4 Previous Work . . . . . . .. .. . ..., 1-5
1.5 Organization of Dissertation . . . . ... ... ................. 1-6
Chapter 2. The m*(M/M/1) Distributed System . . . . . ... ... . ......... 2-1
2.1 Definition of an m*(M/M/1) System . . . . ... ... ............. 2-2.
2.1.1 The Probability of a WIState . . . .. ... ... ... ......... 2-4
2.1.2 Balancing Distance . . . . . . . ... ... .. 2-6
2.1.3 Processing Overheads. . . . . . .. ... ..... ... ......... 2-7
2.2 M/G/1 and M/M/m Queueing Systems. . . . .. ... ... ... L. L., 2-8
2.2.1 Rate of Transfers in an M/M/m-Like:System. . . . .. ... ....... 2-9
2.2.1.1 Two policies for an M/M/2-like:system. . . . ... ... ... ... 2-12
2.3 Unbalance Factor . . . . . . .. ... ... ... ... . 2-13
2.3.1 Last-minute transfers. . . . . ... ... ... .............. 2-16
2.3.2 Anticipatory Transfers . . . . . . ... ... ... ... ... 2-16
Chapter 3. The BTSQSS System . . . . . . . . . . . v v vt e e s i, 3-1
3.1 Introduction . . . . . ... ..., 3-1
3.2 The BTSQSS System . . . . . . . . . . .. o v e e i . 3-2
3.3 The AT algorithm. . . . . . . . ... ... ... ... ... .. .. ... ... 34
3.4 TheModel . . . . . . ... . e 3-5
3.4.1 The NS-BTSQSS Model . ., . . ... .. .. ... . 3-6
3.4.2 The S-BTSQSS Model . . . . . . . . . . . v v i i i i i 3-7
3.5 Price and Benefit of a Transfer . . . . . . . . .. ... ... ... ...... . 3-8
3.5.1 The Priceofa Transfer. . . . . . ... .. ... ... ... .o..... 3-11
3.5.2 The Success Factor of a Transfer ....................... 3-12
353 CaseStudy . . . . . . . .. 3-13
3.6 Steady-State Behaviour. . . . . . . .. ... ... ..., 3-17
3.6.1 The Iterative Solution Method . . . . . . . ... ... ... ....... 3-18
3.7 Performance study . . . . . . . .. .. ... 3-19
3.7.1 Channel Utilization. . . . .. .. ... .. ........ e e e e e 3-20
3.7.2 The Migration Criterion . . . . . . . . . . .. .. ... . v ... 3-22
Chapter 4. Broadcast Distributed Systems . . . . . ... ... ............. 4-1
4.1 Introduction . . . . ... ..... ... N e e e e e e e e e e e e e e e e 4-1
4.2 The Broadcast Model . . . . . . .. . .. ... ... ... ... 4-1
4.21 ETHERNET PROTOCOL . . . . . . . . . v v v v v e i e . 4-3
4.3 Load Balancing Algorithms for Broadcast Systems . . . . . ... ... . .... 4-3
4.3.1 BST Algorithm . . . . . . . . . ... .. . 4-4
4.3.2 The BID Algorithm. . . . . . . . ... . ... .. ... ... ... 48
4.3.3 The PID Algorithm. . . . . . . . .. .. .. .. ... . .. 47
4.4 Simulation Study . . . . . .. ... ... . . 4-8
4.4.1 Algorithmic Parameters. . . . . . ... . ... .. ... ... . ..... 4-8
4.4.2 Numberof Nodes. . . . . .. . ... ... .. ... .. ......... 4-10
4.4.3 Processing Overhead . . . . . . ... ... ... ... ... ... .... 4-13



Chapter 5. Store and Forward Systems . . . . . . . ... .. .. ... .00 ... 5-1

5.1 Introduction . . . . . . . . . .. 5-1
5.1.1 The Store and Forward Model . . . . . . ... .. .. ... . ...... 5-2

5.2 Load Balancing Algorithms . . . . . . . ... ... ... ... ......... 5-3
5.2.1 The HO1 Algorithm . . . . . . . .. ... ... ... ... ....... 54

5.3 Effect of Interconnection Scheme . . . . . . . . . .. .. ... ... ... ... 5-5

5.4 Simulation Study . . . . . . . . ... ... 5-6
Chapter 6. DISS . . . . . . . . . . e e e e 8-1
6.1 Introduction . . . . . . . . . ... 8-1
6.1.1 Motivation . . . . . . . . ... e, 6-2

6.1.2 The World View of DISS. . . . . . . . . . . . o v o v v i . 8-3

6.1.3 Simulation Languages . . ... .. e e e e e e e e e e e e e e e .. 6-5

6.2 Modeling with DISS . . . . . . . . . . ... e 6-7
6.2.1 Nodal Interconnection . . . . . ... ... ... ... .. ... ... 6-8

6.2.2 The Node. . . . . . . . . . . . i i i i e e e e e e e e, 6-8

6.3 Simulating With DISS . . . . . . . . . .. .. .. i 6-9
6.3.1 The Executive Manager. . . . . . . . . . . .. .. ... ... 6-11

6.3.2 Wait UntilEvent . . . . . . . . . . . . . . . o e e 6-12

6.3.3 Allocation of Nodal Data-Structures . . . . . . . . .. ... ....... 6-13

6.3.4 Tracingand Debugging. . . . . . . . . . . .. .. .. v .. .. 8-15
Chapter 7. Conclusions and Directions for Further Research . . . . . .. .. ... ... 7-1
7.1 Conclusions. . . . . . . . . . .. e e e e e e e, 7-1

7.2 Directions for Further Research. . . . . . . . . . .. .. ... .. .. ..... 7-3
Appendix A . . . L L e e e e e e, A-1
Al TR for Look Ahead policy . . . . . . . .. . . . . . i v e i i A-1
A.2 TR for ‘Trouble Shooting’ Policy . . . . . . .. . .. .. .. ... v .... A-1
A.3 TDFy; for S-BTSQSS systems . . . . . ... .. ..... e e e e e e e e A-3
A4 TDF;j for NS-BTSQSS Systems . . . . . . . . v v v v v vt e e e an. A-b
A5 SF;; for S-BTSQSS system. . . . . . . . v v v v v e e e e e e A-5
Appendix B-DEVS Specification . . . . . .. . . .. . .. ... . B-1
B.1 DEVS specification . . . . . . . . . .. ... e e e B-1
Appendix C-Example . . . . . . . .. L C-1
C.1 Model Definition . . . . . . . . . .. . . . . e e, C-1
C.1.1 Structural Abstraction. . . . . . .. . .. ... . . .. . C-1

C.1.1.1 MappingtoaDirected Geaph . . . . . . . . .. ... .. .. ... c-2

C.1.1.2 Arcdefinition . . . . . . . .. . ... Cc-2

C.1.2 Behavioural Abstraction . . . . . .. ... ... ... ... ... .... Cc-3

Cl21 Thehost . . ... ... . ... i i i i . C-3

C.2 The Simulator . . . . . . . . . . .. . e e Cc-3
C.21 ThePreamble . . . . . . . . . . . . . . . C-3

C.22 TheHost. . . . . . . . . . . i it e e e e e C-4

C23 TheCP . . . . . . e e e e e C-8

C.2.4 The Executive Manager . . . . . . . . . . . . o v v v v v v .. C-9

C.25 Example of Output . . . . . .. .. ... .. ... ... .. C-9

C.2.6 Example of Tracing Report. . . . . . . . . . . . v v v v v i i, C-10

i




References

.

.

wm



Plates

Page
Table 1.1. . . L o o o e e e e e e e e e e e e e e e 1-3
Figure 2.1. An m*(M/M/1)System . . . . . . . . . . .. L i e 2-3
Figure 2.2. Py; vs. p for an m*(M/M/1) system with no task migration . ... ... .. 2-6
Table 2.1. Norm. Expected Waiting Time W, for Different Distributions . . . . . . . .. 2-8
Figure 2.3. W, vs. p for an M/M/msystem. . . ... .. it 2-10
Figure 2.4. BL vs. p for an M/M/m-likesystem . . ... .. .. ... ......... 2-12
Figure 2.5. Transfer Rate vs. p for M/M/2-like system . . . . . ... ... ....... 2-14
Figure 3.1. The BTSQSS systemn . . . . . . . . . . i v i i i i i e et e e e et e v o 33
Figure 3.2. state-transition-rate diagram for (3, 7,0) (NS-BTSQSS) . . . . . .. .. ... 3-7
Figure 3.3. state-transition-rate diagram for (3,4,1) (NS-BTSQSS) . . . . . .. ... .. 3-8
Figure 3.4. state-transition-rate diagram (S-BTSQSS). . . . . . . ... . ... .. ... 3-9
Figure 3.5. Pyi(i, j,%) for a BTSQSS system with no migration (A= .8) . ... ... .. 3-10
Figure 3.6. Pui(2,0,%:,1¢) for an NS-BTSQSS system A=.8). . . . . ... .. .. ... 3-11
Figure 3.7. TDF;; and SF;; for (3,7)=1(2,0). . . . . . . . . . v v v i oo 3-14
Figure 3.8. TDF;; and SF;; for (4,7)=1(3,56). . . . . . . . . . . . oo 3-15
Figure 3.9. TDF;; and SF;; for (3,5)=(5,%k). . . . . . . .« .« . oo o oo 3-16
Table 3.1. The iteration step for an S-BTSQSS model. . . . . . . . . . . . ... .. .. 3-19
Table 3.2. Attributes of the iterative method . . . . . e e e e e e e e e e e e e e 3-19
Figure 3.10. W, vs. p for a S-BTSQSS sytem (6 =0,4p =L, =0). . . . . .. ... .. 3-20
Figure 3.11. W, va. p for an NS-BTSQSS sytem (6 =10,Ap = Lp=1). . . . . ... .. 3-21
Table 3.3. W, of S-BTSQSS system (6§ =0,BDy,a=1,Ly=0) . . . . . ... ..... 3-21
Figure 3.12. Channel utilization vs p for S-BTSQSS system (6§ = 0,Ly = 0,BD;;2 =1). . 3-22
Figure 3.13. W, vs. Algorithm Parameters (dyja=1Lp=9) . . . ... ... ... ... 3-23
Figure 3.14. W, vs. Algorithm Parameters (dia=1L,p=.8) . . . .. ... .. ... ... 3-23
Figure 3.15. Wq vs. Algorithm Parameters (diga=1,p=.8) . . . . . . . . .. ... ... 3-24
Figure 3.16. Wq ve. Algorithm Parameters (dys=2,p=.8) . . . . . . . ... ... .. 3-24
Figure 3.17. Wq ve. Algorithm Parameters (dy2=.5,p=.8). . . . . . ... ... ... 3-24
Figure 4.1. The Broadcast m*(M/M/1)model. . . . . . . . . .. ... .. ... ..., 42
Table 4.1. Simulation parameters for study of broadcast m¥(M/M/1) systems. . . . . . . 4-8
Figure 4.2. The Directed Multigraph Presentation of the Model. . . . . . . .. .. ... 4-9
Figure 4.3. W, and 7 vs. BT for BST (p=.8). . . . . . ... ... ... .. ... .. 4-10
Figure 44. W, andgvs. RforPID(p=.8). . . . ... ... ... ... .. ..... 4-11
Figure 4.5. Wy and g vs. m (BD;; =.2,p=.8). . . . . . . . ..o it 411
Figure 4.6. Wy and g vs. m (BDs;=.1,p=.8). . . . . . . . ...t 4-12
Figure 4.7. Wy and g vs. m (BD;; =.05,p=8) . . . . . . .« v v v v v, 4-12
Figure 4.8. Wq and g vs. m (BDy;=.025,p=8). . . . . . . ... 4-13
Table 4.2. Wq for Different arrival rates (FE; =0,m=16,BD;; = .05) ... ... .. 4-14
Table 4.3. W, for Different arrival rates (FEi=1,m=16,BD;; =.05) . ... .. .. 4-14
Figure 5.1. A node of the store-and-forward m™*{ M/M/l) system . .. .. ........ 5-3
Figure 5.2. The toplogies and their distance-trees. . . . . . . . . .. .. ... ... .. 5-7
Table 5.1. RLi(n) for the different toplogies (m==24) . . . . .. ... ... ... .. .. 5-8
Table 5.2. W, for Rings of different sizes A =.9) . . . . ... ... ... ... ..... 5-8
Table 5.3. W, for toplogies with 4m links (A =.9). . . . ... ... ... ... .... 5-9

Table 5.4. Wq and Wq (1) for toplogies with 4m links (\1 = 3.2, i =81<i<m) .. 5-10
Table 5.5. W, and W, (1) for different numbers of links (A\; = 3.2,A\; = .8,1 < i < m) 5-10
Figure 6.1. Structure of Executive Manager Process. . . . . . . ... ... ....... 6-12
Figure 6.2. Typical Process Structure. . . . . . . . . . . ¢ . v i i i v v v et e e e 6-14
Figure C.1. The Distributed System. . . . . . . . . . .« i 0 v it it e e e e e C-1

0




Chapter 1
Introduction

§1.1 Motivation

What would have been your reaction if while joining the end of a seemingly endless lime-of
customers at the bank a soothsayer would have wispered in your ear: “Be aware of the idle
tellers at the branch on the nest block ! ”? Would you have decided to run across the block
hoping that you are the only one that heard the wisper, or would you have used some kind
of reasoning to justify a decision to stay. Whatever your decision would have been it might
have saved you time. By becoming aware of the state of the other branch you were faced
with the problem of load balancing in a multi-resource system. As a user of such a system
you have realized that while you were waiting for a resource at one location a resource which
belongs to the same system but is located at a different place was available. By selecting the
‘right’ resource to wait for (you can later change your mind) the amount of time that you
would have to wait could have been reduced considerably. However, due to the stochastic
properties of most users and systems it seems that one has to be a soothsayer in order to
know who is the ‘right’ server.

Various goals may motivate the construction of multi-resource systems. Omne of
the main motivations for such systems is the need for resource sharing. This need has
always existed as far as processing systems were concerned. The great progress in the field
of computer networks in the last decade made multi-resource processing a reality. The
primary goal of the projects in which the first computer networks were designed was to

developed means by which a large and widely spread community can share hardware and



software resources [Lawr70]. The computer to computer interconnections and commaunication
protocols that were developed gave the user the ability to access resources that they could
not use before since these resources were not part of the users’ local environment. By doing
so these networks gave an answer to the permanent resource avaslabslity problem. However
users of processing systems face an instantaneous resource avaslabilily problem whenever a
local resource is not accessible at a given instance due to resource contention. In such a case
the user may be willing to use any non-local resource although a resource with similar or
even superior properties is part of his local system. The need for resource sharing under such

circumstances is motivated by the desire to obtain a better response time.

When a given resource is permanently not available at the local system the selection
of the non-local resource to be used can be carried out by the user. But in the case
where resources are selected according to their instantaneous availability the assignment of
resources has to be executed by the system. Due to the frequent changes in the state of the
resources and the system load distribution, the binding between users and resources has to
be a dynamic process. By migrating tasks from one location to the other according to the
instantaneous system load the assignment algorithm may reduce the response time of: the
multi-resource system. The realization of the potentiality of the task migration process to
enhance the performance of such systems motivated this study of load balancing algorithms
for Distributed Processing Systems (DPSs). This study attempts to answer the questions of
how , under what condstions and to what extent the expected queueing time of a user of such

a system can be reduced by means of load balancing.

§1.2 Distributed Systems

The extensive experience that has been accumulated in the operation, mraintenance
and upgrading of centralized computer systems revealed the disadvantage of this type of
computer organizations. An analysis of these drawbacks led to the development of. the ideas:
that by distributing the resources and control of a processing system some of them may be
eliminated. A great many advantages are claimed for distributed systems [Ensl78], some of
which are listed in Table 1.1. The attractivity of distributed systems brought many scientists
and vendors to add the title “distributed”’ to any system with more than one processor. As a

result of this the term “Distributed processing” was left devoid of any substantive meaning.
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High Availability and Reliability

High System Performance

Ease of Modular and Incremental Growth
Automatic Load and Resource Sharing

Good Response to Temporary Overloads
Easy Expansion in Capacity and/or Function

Table 1.1.
Claimes for “benefits” provided by Distributed Processing systems:

Only few attempts have been made to establish a set of definitional criteria for a
Distributed Procesing System [Ensl78),[Jens78] and [Ensl81]. The DPSs that were analyzed
in this study posessed the five criteria of a Fully Distributed Processing System as defined by
Enslow in [Ensl81]. According to this definition a processing system has to meet the following
criteria in order to be considered as fully distributed:

i. Multiplicity of resources: The system should provide a number of assignable resources
for any type of service demand. The greater the degree of replication of resources, the
better the ability of the system to maintain high reliability and performance.

ii. Component interconnection: A Distributed System should include a communication
subnet which interconnects the elements of the system. The transfer of information via
the subnet should be controlled by a two-party, cooperative protocol (loose coupling).

iii. Unity of control: All the components of the system should be unified in their desire
to achieve a common goal. This goal will determine the rules according to which each
of these elements will be controlled.

iv. System transparency: from the users point of view the set of resources that constitutes
the DPS acts like a ‘single virtual system’. When requesting a service the user should
not be required to be aware of the physical location or the instantaneous lead of the
various resources.

v. Component autonomy: The components of the system, both the logical and physical,
should be autonomous and are thus afforded the ability to refuse a request for service
made by another element. However in order to achieve the system’s goals they have to
interact in a cooperative manner and thus adhere to a common set of policies. These
policies should be carried out by the control schemes of each element.

The salient characteristics of DPSs is the multiplicity and autonomy of its resources. Most
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of the advantages which DPSs provide depend on these two properties. However due to
multiplicity and autonomy of its resources a DPS may be in a Wait :while Idle (WI) state
which is a state in which a task is waiting for service while a resource that is capable of
serving it is idleing. Any system which aims at achieving minimal response time will consider
a WI state as undesired and thus attempt to minimize its duration. The WI state is a
fundamental phenomenon associated with distributed systems and may occur even when a
number of tasks are waiting for a single resource.l.In such a case the distribution of the access

control scheme is the cause for the WI state.

§1.3 Load Balancing Algorithms

A Load Balancing (LB) algorithm for a DPS is a distributed decision process that controls
the assignment of the system resources. The algorithm is motivated by the desire to achieve
better overall performance relative to some selected metric. The algorithm utilizes a fask
migration mechanism in order to place the tasks at the ‘right’ resources. This study focuses
on LB algorithms whose goal is to minimize the expected turnaround time of a task.

The nature of a DPS adds another dimension of complexity to the development of
decision processes. Because of the existence of more than one decision maker (controller)
in the system and the absence of information on the current system state at the point the
process takes place, the control problem of such systems is nonclassical [Scho78]. In such
control problems the selection and collection of information for the decision process - the
information rule - is almost as important as the decision rule - the conirol law.

The control law of a distributed LB algorithm determines when, from where and
to whom to transfer a waiting task. The decision is made according to the current available
information on the system’s load. It is the function of the information policy to collect the
data concerning the instantaneous load of the various resources. Each of these two element
has to reside at every resource and the communication system is used by both of them in
order to carry out their functions. The control element sends data messages that describe
tasks and the information element sends status messages that contain data concerning the
resource load.

Since the operation of the algorithm relies on an efficient exchange of information,

the balancing process faces a transmission dilemma because of the two opposing effects the

1in an ETHERNET network a number of stations may be in a *backoff’ state while the channel is free
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transmission of a message may have. On the one hand, the transmission of a message improves
the ability of the algorithm to level out the instantaneous system load and to mainmtain
an updated picture of the system load at different locations. On the other hand, it raises
the expected queueing time of a message due to the increase in chanmel utilization. Long

transmission delays lower the ability of the LB algorithm to achieve its goal.

§1.4 Previous Work

The problem of resource allocation in an environment of cooperating autonomous resources
and its relationship to system performance is a major issue associated with the design of
distributed systems [Echh78]. A number of studies of this issue have been reported. However,
most of these studies deal with processing systems that utilize central elements, such as a job
dispatcher, a shared memory or a main processor. In all these studies processing overhead
due to the balancing process are not included in the performance models.

Stone in [Ston77] presents a centralized resource allocation algorithm for multi-
processor systems. The algorithm assumes that the cost (including communication costs) of
each assigment is given. Under this assumption the optimal assignment problem is transferred
to the problem of finding the minimum cutset of a graph.

A homogeneous two-server system with a central job dispatcher has been studied
by Chow and Kohler [Chow?77]. A load balancing algorithm that aspires to minimize the
difference between the queue length of the two servers has been presented. The system
has been modeled as a two-dimensional Markov process and has been solved by means of a
recursive method.

The complexity of the load leveling problem has been analyzed by Kratzer and
Hammerstrom [Krat80]. In their study they have shown that the CPU load leveling problem is
NP complete. A stable decentralized algorithm has been defined for a uniformally structured
network.

Bryant and Finkel [Brya81] have presented a preemptive stable load balancing
algorithm for homogeneous distributed systems. The service discipline of the processors is:
assumed to be processor sharing and they are interconnected in a point-to-point fashion. The
preformance of the algorithm for a given topology and different operating conditions has been
investigated through simulation.

A number of load balancing strategies for a class of local area networks have been

defined by Ni and Abani in [Ni 81]. In their performance models they have assumed that
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the communication delays due to job routing are very small compared with the job:execution
time. Both analysis and discrete event simulation have been employed for obtaining the

desired performance measures.

§1.5 Organization of Dissertation

This thesis takes a tree structure approach in describing the study of load balancing algo-
rithms for DPSs. Chapter 2 is the root of the structure and chapters 3 to 5 are the leaves.
In each of the later chapters interaction between the load balancing process and a different
type of distributed system is analized. These three chapters describe three parallel investiga-
tions of different aspects of the task migration phenomenon. The factors that unify these
investigations are discussed in the ‘root’ chapter.

In chapter 2 the m*(M/M/1) family of distributed system models is defined and a
taxonomy of load balancing is proposed. Some of the properties of multi-resource systems
and the balancing process are demonstrated by means of simple analytical models.

Load balancing in a two-server distributed system is the subject of the third chapter.
A LB algorithm with a parameterized and state dependent threshold is presented. Both the
steady-state and the transient behaviour of the algorithm are analyzed and guidelines for the
design of LB algorithms are concluded.

Chapter 4 focuses on broadcast distributed systems. Three load balancing algo-
rithms which utilize the advantages of a broadeast communication media are presented and
their performance analyzed. The performance models of the broadcast systems include a
detailed description of the ETHERNET communication protocol.

In Chapter 5 a LB algorithm for store-and-forward distributed systems is defined.
The chapter focuses on the interdependency between the topology of the system and the load
balancing phenomenon. Performance models of DPSs with various topologies are simulated
and their performance analyzed.

Performance predication is a cohesive element of an investigation of the load balanc-
ing phenomenon. Due to the characteristics of distributed processing systems performance
prediction of such a system almost always entails a simulation study. A novel approach
for modeling and simulating distributed processing systems is presented and discussed in
Chapter 6. An example of a model and a simulator which were developed according to this

methodology are included in Appendix C.
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Chapter 2

The m*(M/M/1) Distributed System

The problem of load balancing in DPSs, like other problems related.to the performance of this
type of systems, is a two dimensional one. The first dimension represents the characteristics
of the distributed system, while the second captures parameters that define the LB algorithm
itself. There is a great variety in both the structure and the intended usage of DPSs. Various
communication systems as well as processing elements are used for building DPSs and different
approaches are employed when designing them to meet the needs of various users. Because
of this variety a quantitative analysis of the interdependence between the performance of
LB algorithms and the characteristics of the DPS is essential for acquiring an insight of
the task migration. phenomenon. A sensitivity analysis performed along the first d'uneilsio.n,
the system axis, will provide means for determining which of the system’s attributes are
detrimental and which are edvantageous to the load balancing process. A similar analysis
along the second dimension, the algorithm axis, will point at ways in which the task migration
process can take advantage of certain properties of the system, and how obstacles caused by
other attributes can be overcome.

In order to carry out the above analysis, various performance models of DPSs which
are controlled by different LB algorithms must be defined and solved. The performance
‘measures obtained from the solution will give a quantitative description of the relation
between the algorithms and the systems. The family of DPSs models selected for this analysis
has a major impact on the scope and nature of the study of the LB problem. On the one hand,
the conclusions drawn from a study based on complex and detailed models will be applicable
to a particular implementation but, in most cases, will have a limited significance as far as the

basic characteristics of the phenomenon are concerned. Omn the other hand, results obtained




from solving simple and abstract models reflect the basic characteristics of the problem. but
in the model itself some important characteristics of DPSs.may be overlooked. The stochastic
properties and complexity of the models determine which methods can be employed for solving
them and thus they define the nature of the study. When the model meets the assumptions
of the numerical methods which have been developed for solving performance models the
study will be ‘analytical’. However, the investigation will turn into a ‘simulation study’ when

these methods fail to solve the model.

§2.1 Definition of an m*(M/M/1) System

The family of distributed system models selected for this study are the m*(M/M/1) systems.
An m*(M/M/1) system consists of m processing elements that are interconnected by a
communication subnet (Fig 2.1). The family is characterized by the structure of its processors
and the profile of the workload. The specification of the family does not impose any
restriction upon the structure or the protocol of the communication subnet. Kvery node
"of an m*(M/M/1) system can serve it’s own users autonomously and therefore the operation
of the system does not rely on communication. The processing elements were integrated
into one system in order to provide their users with a better response time. The system is
controlled by a load balancing algorithm which tends to reduce the expected queueing time
of a task by means of task migration. This algorithm is the sole user of the communication
system.

The specification of the m*(M/M/1) is the following:

1. Processors- Each of the m processing elements consists of a processor, P; , and.an
infinite queue. The queueing discipline is First Come First Serve (FCFS) and all the
processors provide the same functional capabilities.

2. Work-Load Profile. Tasks arrive independently at each node and join the queue. The
inter-arrival time has a negative exponential distribution and thus the task arrival process
of the entire system consists of m independent Poisson processes. The service demand
of the tasks is exponentially distributed and the structure of the nodes and tasks is such
that every processor can serve any task. When a task has not been served by the node
at which it had arrived, that is its entrance siie, the results of its execution have to be
transferred from the node at which it has been executed, back to the entrance node. The

node which has served the task is called the ezecution site of the task.
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Figure 2.1. An m*(M/M/1) System

The operating conditions of the processing elements and the workload of an
m*(M/M/1) system are defined by the structure

() =< (I“l, M Il’m)l ()\1) MRS >\m)’ (all M | am)) ’ (’7{! b ] ’Y{n,)! (’7107 e | ’73) >

where

B¢ — s the service rate of processor ¢ given in Ezecution Units (eu) per Time Unit
(tu).

A; — is the rate at which tasks arrive at processor 4.

@; — is the expected execution demand, in eus, of the tasks that arrive at node 3.

qf — s the expected number of Data Units (du) a processor needs in order to identify
and serve a task that has arrived at node <.

7 — is the expected number of dus required to describe the results of a task that

has arrived at node 1.




As indicated by the above specifications the m*(M /M/1) systems, are in a way, the simplest
models of a distributed systems. They have simple processing elements, their tasks have
nice - memoryless - stochastic behaviour-and they do not perform any distributed processing
except for the LB process. Nevertheless, despite their simplicity, these models capture the
main properties of a distributed system. They have resource multiplicity, their resources are
loosely coupled and autonomous, and all the processing elements cooperate in the achievement
of a common goal.

In this study only models with khomogeneous processors and tasks will be considered.
The processing elements of an m*(M/M/1) system will be defined as homogeneous processors
if u; = p for every 0 < ¢ < m. The tasks will be defined as homogeneous if a; = a, Al = AT
and ¢ = A9 for 0 < i < m. The effeciive service rate of a system with homogenous
processors and users will be defined by the ratio ﬁé g The system will be homogeneously

loaded if both the processors and tasks are homogeneous and \; = X for 0 < ¢ < m.

2.1.1 The Probability of a WI State

The load balancing process aspires to improve the response time of the distributed system
by minimizing the probability that the system will be in a WI state. The value of that
probability for a system in which no task migration takes place, will point at the potential
capability of the load balancing process to enhance the performance of the system. The
extent to which this probability can be reduced by means of task migration and the net
impact of the balancing process on the expected response time of the system, depend on the
characteristics of both the system and the algorithm.

Assume a homogeneously loaded m*(M/M/1) system in which no task migration
takes place and let Pyi(n) be defined as!

Pwi(n) = Plat least n tasks are waiting and af least n processors idle] (1)

then from the uniformity and the independency of the nodes it follows that

P = 5 (7)1 W) ®

==n

IThe notation P[E] denotes the ‘probability of event E.
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where
(':‘) is the number of different ways a set of ¢ processors can be selected from the m
processors of the system.
L=(01- p)? is the probability that a given set of ¢ processors will be idle.
Wj(n) is the probability that a given set of j processors will be busy and at least n
tasks will be waiting for service in their queues.
p = 2 is the utilization of the processors.

I
Because each of the nodes is an independent M/M/1 queueing system it follows that

Plk tasks in o given distribution wait for service

A 3
in a given set of j busy processors] = P} pitk )
where Py = (1 — p) is the probability that an M/M/1 system is empty. From (3) it follows
that

n—1 ,.
wim=p -3 (*7 4P (@

where

p* is the probability that j processors are busy.

(j "'}c""k) is the number of ways in which k tasks can be distributed among j queues.
From (2) , (3) and (4) it follows

m—1 n—1 . ’

Pt = 3 ()it o= 2 (M) )
i=n k=0

When the system is in a WI state, at least one task is waiting and at least one processor is

idle. Therefore the probability that a homogeneously loaded m*(M/M/1) will be observed in

o WI state if no task migration takes place, Py;, is given by Py(1). Thus from (5) it follows

that

m—1
A m . - e

Pwi=Pwl'(1)= Z (2)P6(pm ‘_(Pop)m’ ') (6)

i=1

=1—(1—P)™(1— P§)— P52 —Fo)™

Fig. 2.2 presents Py for different values of m with processor utilizations, p, as a parameter.
The curves of the figure indicate that for practical values of p, the probability of a WI state
is remarkably high and that in systems with more than ten processors there is almost always

a task waiting for service while a processor is idling. P, reaches its maximum value when
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Figure 2.2. Py vs. p for an m*(M/M/1)-system with no task migration

the processors are utilized during 65%, of the time. As the utilization of the processors
increases past the level of 656% P,; decreases. This property of Py indicates that a ‘good’
load balancing algorithm should perform less work when the system.is heavily utilized. It is

clear that the same holds true for systems that are idle most of the time.

2.1.2 Balancing Distance

In various areas the distance between two objects is measured in #ime: units. Years, hours
and minutes are used for describing the distance between stars, towns and houses. Time is
also used as a measure for the distance between elements of a DPS but in a different way.
From the point of view of a scheduling or resource allocation algorithm for such a system,
the distance between resource A and B is the time required for moving a given amount of
data from A to B, whereas in the other examples the distance is the time it takes to go from
A to B at a given velocity. Unlike the other cases the measure used for a DPS has no relation
to the physical distance between the resources. It reflects the capacity of the communication

link through which the resources are connected and the processing overheads associated with
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the communication process. Thus two processors which are located at different contiments
may be ‘closer’ than two computers situated in the same room.

The degree to which task migration ca.n reduce the probability of a WI: state in a
multi-resource system depends mainly on the ratio of the transfer time to execution time2
of a tagsk. Therefore from the point of view of the LB process the distance between two
resources is determined by this ratio. Let TJ;;(z) be the transmission time of a task of
length z dus from resource ¢ to j than the balancing distance between i and 7 is defined

pp,; & Hisld)es )

B
The resources will be considered as being close to one another when the expected transmission
time is negligible relative to the mean execution time, i.e. a small BD, and as distant when
the time required for transferring a task is much longer than the time required for executing
it, i.e. a large BD. The balancing diameter of an m*(M/M/1) system will be defined as the

largest balancing distance between two of its processors.

2.1.3 Processing Overheads

In addition to communication resources, the LB process requires processing resources. The
execution of both the control element of the algorithm and the various functions of the com-
munication protocol require processing capacity [Tane81]. The processing capacity. utilized by
the LB process is the overkead which the distributed system has to pay in order to achieve a
reduction in Pyp;. As a result of this overhead the LB process reduces the amount of process-
ing capacity available to the users. The effect of this reduction on the expected response time
of the system is the opposite of the effect of the reduction in P,;.

The protocols of communication systems that meet the requirements of a ‘reliable
network’ are complex and require a considerable amount of bookkeeping whereas the control
laws of LB algorithms are relativly simple. Therefore, only processing overheads due to
activities of the different layers of the communication protocol will be considered in this
study. The manner in which these overheads will be introduced into the m*(M/M/1) model
will depend on the characterestics of the communication subnet.

Pyi can be reduced to zero only if the balancing diameter and overhead of the

system are zero. In such a case the system can be viewed as a single queue multiple processor

2t;he execution and transmission times are the actual service times and do not include queueing delays.
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distribution p=J3lp=05p=08p=.Tp= Blp=29
Determinestic (Ch=0) | .214 500 .750| 1.166| 2.000| 4.500
Ezponential (Cy=1) | .428 1.000| 1.500| 2.8588| 4.000| 9.000
Gamma(k=2)  (Cy = 2) |1.071| 2.500] 8.750| 5.833| 10.00) 22.500
Hyperezponential (Cy = 3) | 2.142| 5.000 7.500| 11.667| 20.00|45.000

Table 2.1. Norm. Expected Waiting Time ﬁ’q for Different Distributions

queueing system where the queue consists of m cells. Each cell has an independent stream
of tasks and a processor that serves tasks that were allocated to this cell according to an
FCFS discipline. Tasks are moved instantaneously from one cell to the other according to the
migration criterion of the LB algorithm..An m*(M/M/1) system with no balancing overhead
and where BD;; =0forall 0 < 3,5, <m will be called an M/M/m-like system.

§2.2 M/G/1 and M/M/m Queueing Systems

Processing systems are usually shared by several users. The stochastic behaviour of the tasks
submitted by these users - their arrival times and service demands - cause regource contention
that leads to the establishment of queues and consequently the tasks have to waste time while
waiting for service. The factor by which the system inconveniences the users due to the fact
that they are sharing the same resources is fepresented by the mean normalized queueing
time of the system ,Wq , which is the ratio of average time a task spends in a queue to average
service time required by the task.

The Wq of a single processor system that serves a Poisson stream of customers
according to an FOFS discipline, an M/G/1 queueing system, is given by

W, = (1+C})

= Pm (8)

which is the Pollaczek-Khinchin (P-K) mean value formula and where Oy is the coefficient of
variation for service time demand distribution. It follows from (8) that 17Vq is an unbounded
monotonic increasing function of the variance of the service time demand distribution.
Therefore a system with a moderate utilization might have a large Wq when the standard
deviation of the the service time is large. Table 2.1. presents some numerical values of W'q
for systems with different p and Cp. Note that the coefficient of variation for CPU service
time distributions is assumed to be greater than one [Cofi73]. Samples of these times form,

in most cases, a hyperezponential distribution.
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The service time demand distribution in an m*(M/M/1) system is exponential and
therefore the mean normalized queueing time of such a system, in which the balancing
distance between any two resources is infinite, without load balancing, is given by

5 4

W=t UM/ ©)
(9) is the upper bound for the W, of an m*(M/M/1) system and serves as a means for
evaluating the improvement in performance due to the LB process. The best mean normalized
queueing time that m Poisson streams of customers3 can obtain from m exponential processors

is given by

A ((mnﬂm)(m (11— p)“’) (M/M/m)

W, = ("5_: (mo)* (‘m,,’;ﬁ’”)(l—l-ﬂ))

which is the mean normalized queueing time of an M/M /m system [Klei75]. Eq. (10) can
cerve as a lower bound on the Wy of an m*(M/M/1). It follows from (10) that the lower

bound on W is a monotonic decreasing function of the number of processors.

(10)

The greater the number of M/M/1 systems which are integrated into one M/M/m-like system,
the smaller the expected queueing time of a task is. Fig 2.3. shows the value of Wq for an

M/M/m system as a function of m for different values of p.

2.2.1 Rate of Transfers in an M/M/m-Like System

The rate at which tasks must be transferred from one queue to the other in order to minimize
the probability of a WI state in an m*(M/M/1) system, is a major argument in justifying a
study of task migration criteria for such systems. Only when a significant percentage of tasks
are transferred, a change in the control law of the LB algorithm will affect the utilization of
the communication system and thus change the performance of the system. In this section a
lower bound on the transfer rate for a M/M/m-like system is derived and used for evaluating
the amount of transfers required for minimizing the mean queueing time of a task in an

m*(M/M/1) system.

3m poisson streams can be considered as one Poisson stream with a rate equal to the sum of the rates of the
individual streams.
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Figure 2.8. VVq vs. p for an-M/M/m system

Assume a homogeneously loaded M/M/m-like system and let TR be the rate in
which task transfers are initiated by the LB algorithm. Since the probability of a WI state
in_such a system is zero, a task must be transferred whenever one? of the following events
occures:
EL A task arrives at a busy processor while at least one of the processors is idling.
E2 A processor completes the service of a task, no other tasks are waiting in its queue

and there is at least one task waiting in another queue.

From the above it follows that
Ptransfer in (t,t + At)] < P[E1 in (t,t + At)] + P[E2 in (¢, + Af)] (11)
The number of busy processors at time ¢ is min(n(t), m) where n(t) is the number of tasks in

the system at time ¢{. When k processors are busy at time ¢, the probability that a task will
arrive at a busy processor in (¢, ¢ + At) is kXAt and therefore

4Because the system is a birth and death system [Klei75] multiple events are prohibited.
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m—1 oo
Plarrival at a busy processor in (£, + At)]| = )\(Z i Pi(t)At + Z mP,-.(t)At) (12)
f==1 f==m
where Pi(t) is the probability that n(f) = 1. In order that an arrival will meet the conditions
of E1, at least one of the processors has to be idle. Since the number of idling processors at
time ¢ is m — min(n(t), m) it follows from (12} that
m—1
P[E1 in (t,t + Af)| =\ 3 i Pi(t)At (13)
s=1
The number of tasks waiting for service at time t is maz(n(t) —m, 0) and therefore when
m < n(t) < 2m all processors are busy, and in at least 2m — n(t) nodes no task is waiting
to be served. The probability that one of the busy processors which has only one task in its
queue will complete the service of that task in the interval (t,t + Atf) is (2m — n(t)) AL So
it follows that
m—1
P[E2in (Lt + A > § D (m —i)Pmtilt) At (14)
i=1
The system is assumed to be in a steady state, i%t(—t— — 0. By replacing F(t) by P; =
limy—co Pi(t) and integrating over a time unit interval it follows from (13) and (14) that
m—1
TR > Y [N P+ fi(m —9) P (15)
i=1
by replacing P; by the expression for the probability of having 7 tasks in an M/M/m system
it can concluded from (13) that

m—1 i m Mt

A\mp - mp
(g™ )
BL = =L

(35 ek (227 25)

is a lower bound on TR.

(M/M/m) (16)

In many cases it is natural to use the expected excution time of a task , ;'2—1, as
a time unit when analyzing a queueing system. Fig. 2.4 presents the lower bound on the
normalized transfer rate per node, BALé %’i ji, as a function of p for systems with different

numbers of processors. Note that a considerable number of tasks have to be transferred in
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order to achieve the performance of an M/M/m system. For systems with more than ten
processors almost one oub of A\~! tasks are transferred.

These results indicate that in an m*(M /M/1) system where task transmission time
is not negligible the load balancing process might utilize a large portion of the capacity of
the communication system. The utilization of the communication system will determine the
delays associated with the transmission of a task or any other message. These delays will
cause an increase in Py and therefore an increase in Wq. The amount of traffic generated by
the balancing algorithm has a major effect on its ability to improve the performance of the
system. Fig. 2.4 shows that in order to achieve the optimal performance, P,; = 0, a large

portion of the tasks have to be transferred.

9.9.1.1 Two policies for an M/M/2-like system

In order to demonstrate the effect of a change in the migration criterion on the expected
pumber of task transfers initiated by an LB algorithm, assume an M/M/2-like system (zero

balancing distance) and consider the following two migration policies:
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1. ‘Look shead’ policy- A transfer is initiated whenever the difference between the
number of tasks in the two queues is greater than one and the channel is idle.

9. “Trouble shooting’ policy- According to this policy a task that is waiting to be served
at one queue will be transferred to the other queue only when the other processor is not
busy.

Under the above assumption the mean normalized queueing time of a task, in both cases,

will be the same as in an M/M/2 queueing system since the probability of a WI state is zero.

Let TRy and TRy be the expected rates at which transfers are initiated by the ‘look ahead’

and “trouble shooting’ migration policies respectivly. It is shown in Appendix A that TR, is

given by
2
TRy = 2Py ——— 17
and that TRy is bounded by
. 1+ ‘
TRy 2 5(1- o - B+ Aoln(122) - 1 (18)
and
TRy < 2fiPop[p —2(p +In(1 — p))] (17)

where Py = 2p + p2(1—£7) is the probability that an M/M/2 system will be empty.

Fig. 2.5 presents the value of TRy (the dashed line) and the two bounds of TRq
(the cross-hatched line) as a function of p for ji = 1. The curves presented in the figure
demonstrate the wide range of values which the transfer rate of the balancing algorithm
can receive and points at the harmful effect that a balancing algorithm with a too iberal’
migration criterion may have on the performance of the system.

The interdependency between the performance of the m*(M/M/1) system and the
migration criteria of the LB algorithm will be discussed in the course of the presentation of
the results obtained from the solution of the performance model of these systems. It is clear
that the optimal policy depends on the balancing distance between the systems’ resources

and the penalties associated with the transfer of a task.

§2.3 Unbalance Factor

The LB algorithm is déstributed among the processing elements of the system. Kvery processor

has its own local LB control element which governs the migraﬁion of tasks into and out of
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Figure 2.5. Transfer Rate vs. p for M/M/2-like system

its queue. The decisions made by this control element are based on the information supplied
to it by the LB information elements which reside at other processors. The control scheme
of the algorithm is usually based on a comparison between the load of the processor and
the load of other processors which are included in a subset of processors called the balancing
region of the processor. This region consists of those processors which the owner of the region
considers as candidates for receiving one of its tasks. The region can be defined statically ,

changed randomly or adapted dynamically to the instantaneous state of the system.

The migration criterion is basically a comparison between the degree to which the
load distribution of the balancing region is unbalanced, and a predefined threshold. The
evaluation of the load distribution is made according to the information available to the
processor at that instance. Although the evaluation method may differ from one LB algorithm
to the other a scheme for scaling the degree to which a load distribution is unbalanced has

to be established in order to enable the characterization of task migration criteria.

In an m*(M/M/1) system the degree to which a load distribution is unbalanced
should be measured according to the effect which an instantaneous task transfer has on the
probability that the system will reach a WI state in the future. The likelihood that at least
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one processor will become idle depends on the load level of the least loaded processor, whereas.
the probability that a task will be waiting is affected mainly by the number of tasks at the
most loaded processor. Therefore in an m*(M/M/1) system with homogeneous tasks and
processors the evaluation of a load distribution can be based on the minimal number of tasks
resident at one processor and the difference between this number and the queue length of the
most loaded processor.

The migration of a task is a binary operation between the source and the target
nodes. Therefore, although the probability that a WI state will be reached is not determined
only by the maximal and minimal queue length of the system, a scaling scheme based on the
extreme loads of the system was selected. Let A be a subset of processors of an m*(M/M/1)
system with homogeneous tasks and processors and n(t) the number of tasks at processor ¢
at time t then the unbalance factor of A at time ¢ is defined as

00 (AL(4,2) > 1) A (minjea(n;(t)) =0)
UBF(4,t)= ;i% (AL(A, 1) > 1) A (minjea(ns()) > 0) (20)
0 otherwise

where AL(A, ) £ maxg jea(nk(t) — nj(t)) is the load-difference of A at time ¢.

The above definition is based on a global point of view. All processors of A are
considered as potential sources or targets for a migration operation. However the control
element of a given processor evaluates the load distribution of the balancing region in order
to decide whether to send out one of its tasks. Therefore an unbalance factor of the load of
a given processor relative to its balancing region, is required. Let BR,(t) be the balancing
region of processor 1 at time ¢ and m; ;(t) be the number of tasks at processor j as known to

processor 4 at time ¢, then the relative unbalance factor of ¢ at time t is defined as

A 00 (AL(E, t) > 1) A (minjepr,()(nii(t)) =0)
BF(i,t) = AL(i, ) . .
UBF(i,t) = ) . 3 | (21)
minJeBR‘.(t)(n,-,j(t)) (AL(%’t) > 1) A (manEBR'-(t)(nt,J(t)) > 0)
0 otherwise

where AL(i,t) =3 maxkepR;(¢)(Mi,i(t) — mik(t)) is the relative load-difference of 1 at time &.
Note that only when a task is waiting for service at processor 2 and one of the processors
of BR;(t) is idling, according to the information available to i,5 UBF (i, t) becomes infinite.

Sfrom this point on, unless stated explicitly otherwise, when the load distribution of BR;(t) is considered it
is the distribution as known to processor ¢ at time t.
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In all other cases where no task is waiting at processor i or no processor is idle in BE;(Z)
the relative unbalance factor of ¢ is finite. When the factor is zero, the load distribution is
such that there is no processor whose queue length is smaller by two or more than the queue
length of processor 4, and thus a task transfer should not be executed.

According to the value of the relative unbalance factor of the source of a migration
at the time it has been initiated, task transfers can be classified into two types - last-minute

and anticipatory transfers.

2.3.1 Last-minute transfers

A transfer initiated when the UBF(i,t) is infinite will be classified as a.lest-minute transfer.
Although the infinite value of the factor indicates that the balancing region is in a WI state,
it is not always advantageous to initiate a transfer under such conditions. The beneficial
effect of such a transfer depends on both the balancing distance between the two processors

and the relative load-difference of the source processor.

2.3.2 Anticipatory Transfers

A transfer initiated by processor ¢ when U BF(i, t) is greater than zero but finiterwill be called
an anticipatory transfer. When 0 < U.B.F(‘i, ) < co BRi(t)is not in a WI state. Howerver,
an instantaneous transfer of a task from ¢ to the.processor with the minimal number of tasks
in BR;(t) decreases the probability that the region will reach a WI state in the future. A
transfer initiated under such conditions can be considered as a preparative step taken to
prevent the occurrence of a WI state. The advantage of such a transfer depends on the
balance distance between the source and target of the transfer. The effect of the distance
is not monotonic. When the distance is very small or too big the beneficial effect of an
anticipatory transfer is limited. In the case of a big distance the load distribution of the
system at the time the task arrives at the target might be considerably different than the
distribution at the initiation time of the transfer. Consequently a decrease in the distance
increases the power of such a transfer. However when the distance is very small there is no
need for anticipatory transfers. Last-minute transfers are sufficient when the transfer time
of a task is much smaller than its execution time. Therefore in such a case an increase in the

distance will increase the beneficial effect of this type of transfer.
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Chapter 3

The BTSQSS System

§3.1 Introduction

In order to be considered as a distributed system, a processing system should include at least
two processors. Although two is the minimal number of processors, a 2%(M/M/1) system
is sufficiently large to serve as a vehicle for studying the basic characteristies of the Load
Balancing pfocess. The interaction between the two processors due to the migration of
tasks captures fundamental aspects of the LB phenomenon. By analyzing the performance
of 2*(M/M/1) systems which are controlled by different LB algorithms, an insight of this
phenomenon may be acquired. On the basis of the results obtained from such a performance
study a range of acceptable balancing distances can be determined and the break-even point at
which the overheads of the algorithm diminishes the advantages of the reduction in Py¢ can
be located. The manner in which such a system operates under various operating conditions,
offers answers to questions like “can processor i take advantage of processor j when BD, ;
is 2 ?”, or “what happens when the communication activities require 10% of the systems
processing capacity?”. These answers may guide the design of LB algorithms for larger and
more complex systems. The study of task migration in a two processor distributed system is
the first step towards the development of an intuition for the LB phenomena.

This chapter presents a study of task migration criteria for 2*(M/M/1) distributed
systems. An analysis of both the ¢ransient and steady state behaviour of the system and
algorithms is included in the study. Since this study is the first step of an investigation of the

LB process it was decided to use numerical methods (as opposed to discrete event simulation)



to derive the performance measures. It was assumed that by using stochastic models a better
understanding of the dynamic properties of the migration phenomena may be obtained. The
system is modeled by a multi dimensional birth and death process [Klei75]. The desire to use
analytical methods for solving the performance models of the system motivated the selection
of the communication system and the specification of the algorithm. Continuous simulation
(numerical integration) is used for obtaining the time-dependent behaviour whereas the steady
state performance models are solved by means of an iterative solution scheme. An analysis
of the characteristics of a single task transfer, based on the system’s transient behaviour, is

presented.

§3.2 The BTSQSS System

The Balanced Two Single Queue Single Server (BTSQSS) system consists of two
servers and a communication chanmel (Fig. 3.1). The system is a 2*%(M/M/1) distributed
system with homogeneous users and processors. The chanmel interconnects the two queues
and is capable of transferring one task at a time (half duplex link). The data rate of the
channel is 8 du/tu. and the amount of data that has to be transferred when a task is migrated
from one queue to the other, is a random variable with a negative exponential distribution
and expectation AT, Tt is assumed that the expected number of dus that describe the results
of a task (7©) is much smaller than AT and thus the transmission of the results back to the
entrance site is neglected.

The operation of the channel can either be controlled by the processors or be
autonomous. In the first case the transmission of a task can be stopped in the middle and
the system is thus defined as a stop system (S-BTSQSS), while in the latter case the system
is defined as a no-stop system (NS-BTSQSS). In a no-stop system the initiation of a transfer
will always result in a transfer of a task from one queue to the other. Regardless of the type
of the system, the communication process may require processing capacity. It is assumed
that when the chanmel is active the service rate of the processors, A, is degraded by §%.
This degradation represents the processing overhead associated with the transfer of a task.
The overhead is proportional to the duration of the transfer and is spread evenly along the
transmission period. Therefore the service rate of each processor is p(l — dy) during the
channel busy periods, where i = -1—‘35 is the degradation factor of the system.

The task distribution of the system at time ¢, TD(t), is defined by the ordered pair

(n1(2), n2(t)), where ny(t) and 7g () are the number of tasks in the first and second queue
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Figure 8.1. The BTSQSS system

respectivly. In an S-BTSQSS system a task which is being transferred remains in the queue
of the source processor during the transmission period, whereas in an NS-BTSQSS system
the task is removed from the source queue when the transfer is initiated and is placed in the

channel. The task will remain in the channel for the duration of the transmission.

The penalties associated with the LB process in S-BTSQSS systems are smaller
than in equivalent no-stop systems. When the activity of the channel is controlled by the
processors, the algorithm can intervene and stop a transfer in the middle. Thus a decision
made at an earlier stage can be reconsidered and cancelled. Due to this capability, the number
of ‘wrong’ transfers can be reduced. Although in most cases the communication system is
autonomous (most probably a reliable network), stop systems were considered in this study.
Their performance was studied in order to evaluate the degree to which the ability to stop
a transfer assists the task migration process. The results of the study give an indication

of the conditions under which an attempt should be made to implement 2 stop system!

1In special purpose systems, control lines may be added to support such a facility.

3-8




because of the superiority of its performance.

The LB algorithms defined for the BTSQSS system do not include an information
policy. Introducing the exchange of state-information into the model would have caused a
considerable increase in its complexity and would have imposed the usage of simulation as a
solution technique. In light of the motivation and focus of the study it was decided to assume
that both processors are aware of the current task distribution of the system and thus there
is no exchange of state-information in the model. Systems that utilize special control lines
for controlling the migration process or system where the amount of state information is

negligible relative to 47, meet this assumption.

§3.3 The AT algorithm

An anticipatory approach towards the load balancing process has influenced the definition of
the Adaptive Threshold (AT) LB algorithm for BTSQSS systems. The migration criterion
of the algorithm is based on a parameterized state dependent threshold. Inspite of its
anticipatory nature the algorithm attempts to reduce the amount of communication capacity
which it utilizes. The motivation for such efforts result from the assumption that the usage
of the communication system has a price. Such an assumption is especially valid when the
LB algorithm is not the sole user of communication resources. Since the system has only
two processors each balancing region includes both of them. The migration criterion of the
algorithm is evaluated according to the current task distribution of the system. The ‘load

history’ of the processors is not considered by the control element of the AT algorithm.
ALGORITHM AT (adapiive threshold)

Control Law: Upon the arrival or departure of a task or when a task transfer terminates
the control element is evoked at both servers. Processor ¢ will initiate a transfer to its ‘buddy’
processor at time t if the channel is idle and the instantaneous task distribution meets the

following criterion:
(AL(i,) — 1 > L,) A (UBF(i,t) > Ap)

where L, and A, are the 9ast-minute’ and enitcipatory parameters of the algorithm. If
the system has a stop channel, the control element will stop a transmission in the middle
whenever the system enters a state which does not fulfill the above criterion while the channel

is busy.



The degree to which the algorithm initiates anticipatory transfers depends'mainlty on
the value of its anticipatory parameter. A large positive value for A, will prevent almost any
transfer when the system is not in a WI state. Since UBF(3,t) is infinite when the system is
in such a state, the initiation of ‘last-minute’ transfers is controlled by the second parameter,
L,. When L, = 0 a migration will be initiated whenever UBﬁ'(t, i) = oo. However, when
L, > 0 a ‘last-minute’ transfer will be initiated only when at least I, tasks wait for service
at the .non-idling processor.

Chow and Kohler in [Chow77] have suggested and analyzed an LB algorithm for
an S-BTSQSS system. The algorithm defined there is a private case of the AT algorithm
(Ap = Ly = 0). There where no penalties associated with the migration of a task in their
model. Tt was assumed that the transmission process does not affect the service rate of the
processors (6§ = 0) and that the processors posess full control of the channel activity (stop
system). A simulation study of the expected turnaround time of a task as a function of the

utilization of the servers and the transmission rate of the channel was presented in [Chow77].

§3.4 The Model

Markov chains are widely employed for modeling the performance of queueing systems. Most
of the studies in the area of Queueing Theory are based on this type of stochastics process.
When a queueing system does not meet the assumptions of a Markov Process a common
approach for analyzing the system is first to imbedit on a Markov chain and only then solve
it, [Klei75].

The BTSQSS system with the AT load balancing algorithm. forms a continuous
multi-dimensional markov chain. The system and algorithm meet the assumption of this type
of stochastic process since all the system state-time distributions are exponential (memoryless)
and the decisions made by the algorithm are based only on the current state of the system.
None of the system attributes are time dependent and therefore the chain which describes the
behaviour of the system and algorithm, is homogeneous. Due to the exponential distribution
of state-times - inter-arrival, service and transfer time - the probability of multiple events
in a small time interval At is of the order of O(At), and thus simultaneous events do not
oceur. Each of the chain events - task arrival, task departure and trunsfer terminaiion -
relate to a particular processor. Because of this property of the system and since the chain is
homogeneous the stochastic model of the system meets the assumptions of a birth-and-death

process.




The dimensionality of the process depends on the characteristics of the communica-
tion channel. A three dimensional chain is required in order to describe the behaviour of an
NS-BTSQSS system, whereas a two dimensional state space is sufficient for describing a stop
system. In order to simplify the notations and expressions used in the study it is assumed
from this point on that service and transfer rates of the system are normalized according
to the execution and data demands of a task respectively, i.e o = Al = 1. The balancing

distance of the two processors assuming the above normalization is BDy 2 = %

3.4.1 The NS-BTSQSS Model
The state of the NS-BTSQSS at time ¢ is described by the ordered triplet (n, m, k) where n

and m are the number of tasks in the first and second queue respectivly, and k is the state of
the channel. k = 0 means no transmission at time ¢ and k > 0 indicates that a transmission

from processor k to the other one is currently on its way.
Let p(i, 7, k,t) denote the probability that the state of an NS-BTSQSS system will
be (1,7, k) at time £, then transition equations of the NS-BTSQSS model are the following:

a .. . .

”é't'p(zxji OJ t) = —[2>‘ + N’(ei + ej)] P(?',,’],O, t)
+ (1 - zi,j) {I"’ [P(’L + 17.7.107 t) -+ p(iJj +1, O:t)]
+ A [p("’ - 11.7';0:t) + p('i)j - 1101 t)]
+ Blp(t,5 = 1,1,8) +p(t — 1,7, 2,t)1}

'é—t"p("';:]) 1; t) - —'[2>‘ + ,u,(e,- + ej)(l - 6f) =+ ﬁ]p(%f/: 17t)
+ “{(1 - 5f)[p(7'1.7 + 17 ]wt) -+ p(i + 11.7.1 11 t)] + u,-+1,jp(i + I)j + 11 Oyt)}
-+ >\{P(Z - 1: j: 17 t) + p(”‘; .7. - 1) 11Wt) + ‘ll«g'+1,jp(7:, .7‘7 O) t)}
+ ﬂ ui+1,j{p(7: + 11.7' - 1: 1’t) + P(i,j, 2Jt)}

a .. a ,..

é‘tp('l':];z)t) = 'é'ip(J;"'; lyt)

(1)
where
u,-,jf-—-{ 1 (—j—1>L,A(E—7>754p)
0 otherwise
and
e 2 min(t, 1) , 245 éu;,j + u;; and p(—1,7, k,t) ép(i, —1,k,t) L0fori>0,k=01,2.

The state-transition-rate diagrams for the state (4,7,0) and (4,7, 1) are presented in Fig. 3.2
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Figure 3.2. state-transition-rate diagram for (4, 7,0) (NS-BTSQSS)

and Fig. 3.3 respectively. Note that for (,7,1) there is a flow from (¢,7,1) to (4,7,2) and
vice versa. These flows represent the positive probability that a task will be migrated back,

upon the termination of its previous migration.

3.4.2 The S-BTSQSS Model

Although the implementation of a stop system is more complex than that of a no-stop system,
a two-dimensional state space is sufficient for modeling an S-BTSQSS system. The state of
the channel in such a system can be derived at any instance & from T'D(t) and the migration
criterion of the algorithm.

Let p(4, 7, ) denote the probability that T D(t) = (¢, 7), then the transition equa’(';ions
of the NS-BTSQSS model are the following:
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Figure 8.8. state-transition-rate diagram for (3, 7,1) (NS-BTSQSS)

a ... ..
*é—ip(‘b, 7rt) = —(2N + (1 — b5z; j(e: + e;) + u; ;8) p(4, 5, 1)
+ p{(1 = 67 ziv1,5)p(1 + 1,5, 1) + (1 — 05 2, 5+1)p(3, 7 + 1, £)}

+Mp(E - 1,5,8) +p(t, 5 — L, 4)}
+ Bltir1,j—1 p(E+ 1,7 — 1,8) + thjq1 s—1p(¢ — 1,7 + 1,8)}

where u; ; and e; are as defined in (1), and p(—1,7, t)ép(j, —-1,1) 2.0 for all i,7 > 0.
The state-transition-rate diagram for the S-BTSQSS model is presented in Fig. 3.4.

§3.5 Price and Benefit of a Transfer

Whenever a control element of the LB algorithm is evoked the ‘transmission dilemma’ is faced

and a decision whether to transfer a task has to be made. Since the LB algorithm aspires
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Figure 3;4. state-transition-rate diagram (S-BTSQSS)
to minimize the response time of the system, the algorithm is evaluated according to the
net impact these decisions have on the expected queueing time of a task. This performance
measure, which is a long-range steady-state measure, is affected by each individual migration.
Therefore in order to establish an understanding for the relation between the control law of
the algorithm and the performance of the system the properties of a transfer ought to be
scrutinized. In this section a study of the ‘price’ and ‘benefit’ of a transfer are presented. The
study is based on the transient behaviour of the BTSQSS, and all the performance measures
were obtained from the differential difference equations of the model by means of continuous

simulation.

By migrating a task from one queue to the other the LB process reduces the
probability of a WI state, Py:(t), in the future. Fig. 3.5 presents P2, 7,t) which is defined

as:
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Figure 8.5. Pyi(i,7,t) for a BTSQSS system with no migration (A = .8)

Puié, 5,8) = Plof ¢ WI state at time ¢ | TD(0) = (5, 7) and )
no transfers in the interval (0,1) |
for different initial task distributions and with ¢ as an argument. The curves of Fig 3.5
demonstrate the effect that a single task transfer may have on P,(t). Note that by changing
the system task distribution from (3,1) to (2,2) the probability of a WI state is considerably
reduced.
However, the migration of a task has penalties associated with it. Omne of them

is an increase in the probability of a WI state during the transmission period (only in an
NS-BTSQSS system). Fig. 3.6 presents Py(2,0,t:,t) which is defined as:

Puilt, 7,1, 1) éP[of a WI state at time t | TD(0)=(1i,j) and
a transfer was instiated at t = 0 and terminated at t, |

(4)

for different values of #;. From the figure one my conclude that when the transfer time is
‘oo long’ a task transfer should not be initiated when TD(t)=(2,0) because the price of
the transfer is higher than its benefits. These two figures demonstrate some aspects of the

dilemma which the lpad balancing process is faced with. For every T.D(¢) the ‘price’ and the
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Figure 3.6. Pyi(2,0,t:,t) for an NS-BTSQSS system (A= .8)
‘benefit’ of a transfer have to be evaluated and weighted one against the other. In order to
assists this process two factors which quantitively define these two aspects of a transfer, were
defined.

3.5.1 The Price of a Transfer

The transmission of a task may reduce the throughput of the system during the transmission

period. This degradation is caused by either one or both of the following factors:

1. At least one task is being served when a transfer is initiated. Because of the reduction
in the service rate caused by the transmission process this task will stay in the system a
longer period then it would has stayed if the transfer was not initiated. The system time
of other tasks that have been in the system when the transfer was initiated or that have
arrived during the transfer period may be affected in a similar way.

2. In an NS-BTSGQSS system a task that is being transmitted can not be served. Therefore
it might happen that the server that initiated the transfer becomes idle while the task is

still being transferred. In such a case the task could have been served during this period
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if it had not been decided to migrate it. An NS-BTSQSS system might reach a state
in which both processors are idle while a task is being transferred and thus can not be
served by either one of them.
The snstantaneous throughput degradation factor, TDF;; of a transfer initiated when
TD(0) = (¢,7) is given by:

TDF;,; = /0 (Li 5 () — Li i) fers.5) (Bt (5)

where:

L;;(t)  is the expectation of number of tasks in the system at time ¢, (N(£)), given that a
transfer has been initiated at £ = 0 when T'D(0) = (4,7) and has not terminated
in (0, t).

Lij(f)  is the expectation of N(t) given that TD(0) = (£, 7) and no transfer was initiated
in [0, ).

fer(i,)(2) is the probability density function (p.d.f) of the length of a transmission initiated
at t = 0 when TD(0) = (3, 7).

The expressions for L.-,,-(t),i.-,,-(t) and fie(;,;)(f) are given in Appendix A. TDF; ; will be

considered as the ‘price’ of the transfer and will be used for deriving guidelines for the

development of migration criteria.

3.5.2 The Success Factor of a Transfer

Tasks are migrated in order to reduce the queueing time of tasks that reside in the system
and of those that will arrive at it in the future. The benefit of a transfer is its effect on
the system’s behaviour after it was successfully completed. No method has been found by
which the contribution of a single transmission to the overall performance of the system can
be evaluated. In the absence of such a measure the only way to evaluate the contribution of
a transfer is to study its effect on the unbalance factor of the system.

Not all transmissions result in a reduction in this factor. In an S-BTSQSS system a
transmission may be stopped in the middle and thus have no effect on the load distribution
of the system. In an NS-BTSQSS a transfer may even cause an increase in the unbalance
factor of the system when the load of the sender at the end of the transfer is smaller than
the load of the receiver. The probability that a transmission initiated when TD(t) = (,7)

will cause a reduction in the unbalance factor of the system, is defined as the success factor,
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SF.; , of 2 transmission. The expression for this factor for the two types of systems is given
in Appendix A.

Note that the probability that a transfer will cause an increase in the load-difference
of the system should be included in the ‘price’ of the transfer. However, since no way was
found to evaluate the effect of such a ‘wrong’ transfer on the future behaviour of the system

it was not included in the definition of the ‘price’.

3.5.3 Case Study

The impact of the initial conditions and the parameters of the AT algorithm on TDF, ; and
SF; ; have been analized. The transition equation for the probability functions included in
the expressions for the two factors and the expressions themselves (see A.4) were solved by
means of numerical integration. The time dependent model defined by these equations and
expressions was translated into a C-SIMSCRIPT I1.52 program.

Some of the results obtained from these solutions are given in Figures 3.7, 3.8 and

3.9. Each figure consists of four graphs which present TDF; ; and SF; ;, for both types of

systems, with # as a parameter. The first two figures demonstrate the properties of two

transmissions whose initial task distributions were (2,0) and (5,3) respectivly. The third
graph presents the relation between the A, factor of the AT algorithm and the TDF;; and

SF; ; of a transfer which was initiated by a processor with 5 tasks in its queue. The number of

tasks in the other queue is the maximal number which permits the initiation of a transmission

for the given value of the anticipatory factor.

From these three graphs the following can be concluded:

1. In a no-stop system with § < 2, a transfer should not be initiated by a processor with
less than three tasks. TDFj ¢ for this type of systems is considerably high and SFs g is
less than .6. As can be seen from Fig. 3.8, TDF5 3 is relativly low and SFs 3 is about
7. Therefore it is suggested that under such conditions a processor will wait until more
than two tasks will be waiting in its queue before shipping out one of them. Note that
since TDF; ¢ is almost independent of §, the cause for throughput reduction in this case
is the increase in P,(t) (see Fig. 3.6). TDFy for § = 0 is almost the same as TDFs 3
for 6 = 10.

20.SIMSCRIPT [CACI76] is a combined (continuous & discrete event) simulation language. The continuous
part of the language is based on the Runge - Kuita [Rals85] method for numerical integration.
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Figure 8.7. TDF, ; and SF;; for (4,7) = (2,0)
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Figure 8.8. TDF; ; and SF; ; for (7,7) = (3,5)
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2. Since for § < 1. SF4,7 is less than .4 for stop systems, in an S-BTSQSS system with
§ > 3% a transfer should not be executed when TD(f) = (2,0). Note that in such
systems most transfers that are initiated when the load-difference of the system is 2, are
stopped in the middle. This observation indicates that the rate of transfer initations in
stop systems, is high.

3. SF;; is independent of the service rate degradation factor. This observation indicates
that the probability that a transmission will terminate successfully is independent of the
ratio —:i

4. In NS-BTSQSS systems the value of the success factor of an anticipatory transfer depends
strongly on the value of the load-difference of the task distribution at which it has been
initiated. Fig. 3.9 demonstrates the reduction in TDF; ; and an increase in SF; ; which
an increase in the anticipatory factor causes. For such systems when § is not negligible
transfers should not be initiated when the unbalance factor of the system is small.

Although the data presented in this case study gives a quantitative description of some of the

task transfer properties, most of the conclusions are qualitative. However in spite of their

qualitative nature these conclusions point at some of the transient characteristics of the task

migration process and thus can serve as guidelines for the development of control laws for
LB algorithms.

§3.6 Steady-State Behaviour

The previous section has demonstrated the dependency between the system state probability
at ¢ > 0 and the task distribution of the system at ¢ = 0. However after a long enough period
of operation these probabilities are no longer affected by the initial state of the system. At
this stage when the time derivatives of the state probabilities are zero, the system reaches its
steady-state. Under steady-state conditions the differential difference equations (1) and (2)
are transformed to sets of linear equations.

The steady state probability distributions of multi-dimensional birth and death
processes are, at the present, an open problem [Fayo80]. A number of solution methods for
special cases of such processes have been developed [Klei75],[Herz75],[Chan77], and success-
fully used for solving various queueing systems. Unfortunately the models of the BTSQSS
systems as defined above do not meet the assumptions of these methods. In the absence

of an exact solution scheme an iterative method was used for solving the birth-and-death
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models. The method is discussed in the coming section, and a performance study based on

the performance measures that were obtained is presented in the following sections.

3.6.1 The Iterative Solution Method

The coeflicients matrix of the linear transition equations which define the model. falls into
the category that is commonly solved by iterative methods. A number of such methods
for general linear equations [Rals65] and transition equations [Gave76] have been developed.
Brandwajn in [Bran79] has presented the “always converging scheme” for solving the balance
equations of two-dimensional birth and death processes. As indicated by its name the method
has an unconditional convergence and does not require normalization steps. Because of these
properties and due to the low computational complexity of its iteration this method has been
selected for solving the BTSQSS models.

The method has been extended for three-dimensional processes and has been imple-
mented in PASCAL.3 Table 3.1 presents the iterative step for the S-BTSQSS model. The
conversion criterion used for both models is based on the difference between two consecutive
iterations, of the value of the conditional probability of having n; tasks in the first server,
given that there are ng tasks in the second, p(nl | n2).* The maximal value of the above
difference for all feasible values of nl and n2 for the iterations ¢ and 7 — 1 will be denoted
by dcon;. In the implementation of the two dimensional model the iterative process will
terminate after the first iteration for which dcon; < 1078, As a result of the non-monotonic
behaviour of dcon; in the case of the three dimensional model it was decided to terminate
the iterative process only when dcon; was smaller than 10~ for the last 100 iterations. The
thresholds used in the conversion test were selected empirically on the basis of a number of
case studies.

Iterative solution schemes for a birth and death process assume a finite space-state.
The value at which the state variables of the BTSQSS model are truncated affect the quality
of the derived approximated solution. This truncation causes a degradation of the arrival
rate due to customers’ rejection and thus may distort the probability distributions. Since
the size of the state-space affects the computation time of each iteration and their number,

a space that causes a marginal degradation of the arrival rate and keeps the computation

$Two programs were written - one for each model.

4For the sake of this definition a task being transferred belengs to the source processor in both models.
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Table 8.1. The iteration step for an S-BTSQSS model

Attribute | N=20 | N=25 |N=30 | N=32 | N=235 | N=37 | N=48
W, 562 | 595 | 6.00 | 6.03 | 6.06 8.07 | 6.08
p 090 | 090 | 0.90 | 090 | 0.90 0.90 | 0.90
Plreject] | 3103 | 6104 [ 310~% | 210~* | 110~ | 410~° | 110™°
# iter. 591 899 | 1029 | 1114 | 1239 | 1442 | 1676
time(sec) | 17.0 | 45.7 | 64.2 | 78.8 | 104.1 | 157.0 | 239.7

f=.05,Ap =1L, =0
Table 8.2. Attributes of the iterative method

time at a practical level, has to be selected. Table 3.2 presents the various attributes of the
solution process with space size as an argument. Using the data presented in the table and
information which was derived from similar case studies, a space-state of 35 has been selected
for each processor. It was found that for all cases that where solved in the course of the study

the rejection probability was less than 1073,

§3.7 Performance study

The expected normalized queueing time of a task in both types of systems and under various
operating conditions are shown in Fig. 3.10 and 3.11. The curves of the figures demonstrate
the impact of the migration process on the response time of the system. The upper curves
in the two figures represent the Wq of the system if no task migration takes place (BD; o =
00). The lower bound for Wq is given by the curve for BD; s = 0. The two figures are a
clear display of the significant gain that can be achieved by migrating tasks in a distributed
system. Even when § = 10% and BDy o = 2 the LB algorithm considerably improves the
performance of the system. Note that when BD; o = 1., the response time of the system

is almost as good as the response time of an M/M/2 system. Therefore when the expected

8-19



8.00 | BDyg=o
/\U‘ I
<E /
N’
o !
£ /
i 6.00 /
ab
c /
pt
P} £
-y
o BD, ;=1
= /BDL2= 125
g 4007 BD, ;=0.0
)
N
-
:
1o
0
=z 2.00-
o
o
[
=
0.00 : | ! i
0.20 0.40 0.80 0.80 1.00

Server Utilization (p)

Figure 3.10. W, vs. p for a S-BTSQSS sytem (6=0,4p, = L, =0)

transfer time of a task is less then half, its expected execution time of the two servers can
be considered as a single M/M/2 system. The relation between the balancing distance of
the system and its performance, as demonstrated by the figures, lead to the conclusion that
systems with balancing distances in range of .5 to 2., had to be used in the study of the

migration criteria.

3.7.1 Channel Utilization

It was shown in 2.2.1 that the load balancing process may require a high rate of task transfers.
By limiting the rate at which anticipatory transfers are initiated this rate can be significantly
reduced. However, such a reduction may cause an increase in the Py; and thus an increa
in the response time of the system. The degree to which the AT algorithm initiates such
transfers is controlled by the A4, parameter.

The effect of the value of A, on the utilization of the channel and Wq for a stop
system with § = 0 is shown in Fig. 3.12 and Table 3.3. Note that at the price of a

small increase in the expected queueing time of a task, the utilization of the channel can
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Ay p=9p=285| p=8| p=T|p=06|p=5|p=14 p==3
0. 4.67 | 3.04 2.19 1.82 0.87 | 0.59 0.89 0.25
0.5 | 4.69 | 8.04 2.19 1.82 0.87 | 0.59 0.89 0.25
1.0 | 4.75 | 8.09 2.22 1.88 0.87 | 0.59 0.89 0.25
1.5 | 4.78| 8.12 2.24 1.84 0.88 | 0.59 0.39 0.25
2.0 | 487 8.19 2.80 1.88 0.90 | 0.60 0.40 0.25
25 | 490 8.21 2.81 1.88 0.90 | 0.60 0.40 0.25
3.0 | 4.97| 8.27 2.86 1.41 0.92 | 0.61 0.40 0.25

Table 8.8. W, of S-BTSQSS system (6 = 0, BDy,2 = 1., L, = 0)

be considerably reduced. For highly utilized systems an increase in the arrival rate causes a
decrease in the channel utilization when A, > 0. This property of the AT algorithm might
be eritical when the transmission process reduces the service rate of the processors (6§ > 0).

The optimal value for A, depends on the cost function which is assigned to the waiting time

of a task and the usage of the channel.
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Figure 8.12. Channel utilization vs p for S-BTSQSS system (§ = 0,L, = 0,BD12 = 1)
3.7.2 The Migration Criterion

The effect of the migration policy on the normalized expected queueing time of a task, Wq,
is demonstrated by Fig. 3.13, 3.14 and 3.15. The figures present Wq of the two systems with
Ap and L, as parameters for different server utilization and service degradation factors. The
values presented in these figures indicate the strong impact that the values assigned to A,
and L, have on the expected turnaround time of a task. Note that for no-stop systems with
p=.9andé§ = 10%, Wq is greater than that of an equivalent M/M/1 system if the *wrong’
migration criterion, (4, = 0, L, = 0), is selected, whereas the Wq of the same system with
the ’correct’ criterion (4, = 2) will be 30% smaller than in an M/M/1.

For most values of Ap and L, a stop system has a smaller Wq then an equivalent
no-stop system. In some cases the difference between the performance of the two systems
with the same migration criterion may be considerably large. However, when each of the
systems is controlled by a migration policy that is best suited to the system’s attributes, the
difference will, in most cases, be less than 5% . From the above observation it follows that the
ability of the server to control the operation of the channel does not considerably improve the

efficiency of the balancing process although the penalties associated with the transmission of
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a task are higher in an NS-BTSQSS system.

Results obtained for systems with different balancing distances are presented in Figs.

3.16 and 3.17. These two figures together with Fig. 3.14 demonstrate the relation between

the balancing distance between the ‘two processors and the manner in which a migration

policy affects the performance of the system. Note that even when the distance is 2 (the
expected transmission time of a task is twice as long as it’s expected service time) and when

6 = 10% , as in Fig 3.16, the Wq is reduced by 20% relative to an M/M/1 system.

From all the results presented above the following guidelines for the selection of a
migration criterion can be concluded:

1. When BD;; < 1 by selecting Ap =1 the changes in Wq due to an increase in § (up
to 10%) can be kept low. For all the cases that where analyzed it was found that this
difference can be kept below 10%.

2. In a stop system ‘last-minute’ transfers should be initiated regardless of the queue size
of the initiator. In all cases (except when A, is too small Fig. 3.13) assigning a non-zero
value to L, caused an increase in W

3. Tor all no-stop systems with 8Dy, > .5, the last-minute parameter should be greater

than zero. In such systems a ‘last-minute’ transfer should be initiated only when there
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are more than two tasks in the system.
In systems where § > 3 and BD; o > .5, ‘anticipatory transfers’ should be initiated only

when the load-difference of the system is large compared to the total number of tasks in

the system. Therefore the anticipatory parameter for such systems has to be non-zero.
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Chapter 4

Broadcast Distributed Systems

§4.1 Introduction

Broadcast communication subnets are widely used for interconnecting processing elements.
A broadcast subnet consists of a single communication channel which is shared by all the
switching elements of the system. An arbitration mechanism, centralized or distributed, is
required for resolving conflicts when two or more stations attempt to transmit simultaneously.
Although cities or even continents are linked together by broadecast channels [Abra77], in
most cases the elements that communicate via a broadcast medium are less than a few
kilometers apart. The processing units are usually located in the same room, same building
or at the same institute and thus establish a local network. The increasihg demand for
office automation and distributed processing motivated the development of various protocols
and high bandwidth channels for this type of networks. High communication capacity is a
distinguishing feature of local networks. The bit rate of their communication channels is in
the range of .1-30 Mbit/sec. Amn erlier version of these algorithms has been presented in
[Livn82].

In this chapter three load balancing algorithms for broadcast m*(M/M/1) systems

are defined and the results of a simulation study of their performance is presented.

§4.2 The Broadcast Model

The model describes a broadcast m*(M/M/1) distributed system with homogeneous proces-

sors and users (Fig. 4.1). The communication subnet of the model is a passive broadcast
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Figure 4.1. The Broadcast m*(M/M/1) model

medium with the ETHERNET [Metc76] communication protocol. The communication ac-
tivities of a node are controlled either by the processor or by a dedicated Communication
Processor, CP, that serves as a front-end for the node. Each node maintains an input and an
output message queue in which arriving and departing messages are placed respectivly. It is
assumed that the buffering space available at each node is unlimited.

The processing time required for the transmission or reception of a balancing mes-
sage is determined by the OVerHead parameter of the node, OV H; = (ovh{, ovh§, ovhj).
The processing time, at node 7, required by a message whose transmission time is T ms is,
ovhi + T ovh} ms, where k = 1 for a data message and k = 2 for a conirol message. A data
message is a message that carries a description of a task or the results of its execution. The
information needed for controlling the migration process is exchanged via control messages.

Each node has a front-end boolean parameter, # £;, which determines whether the

node has a CP. In a node that has no CP, #E; = 0, the arrival or departure of a message
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interruptes the nodal processing element. If the processor is not occupied by another message
the current task is preempied and is resumed only after all processing demands made by
the communication protocol or balancing algorithm are fulfilled. However when a front-end
procéssor is part of the node, F'E; = 1, messages are served by this processor and none of

the processing capacity of the node is utilized by the balancing process.

4.2.1 ETHERNET PROTOCOL

The communication protocol selected for the broadcast subnet is the ETHERNET. The
ETHERNET is based on a Carrier Sense Multiple Access with Collision Detection (CSMA-
CD) access method and was first described by Metcalfe and Boggs in [Metc75]. After being
in use for several years the protocol was recently given a detailed specification [Digi80] which
establishes a standard for the protocol. The specification gives a detailed definition of the
Physical and Data-Link layers of the protocol which are the lowest two layers of the Open
Systems Interconnection (OSI) reference model [Tane81]. Several vendors have developed
hardware to realize the ETHERNET [Hind82], [Elli82]and a considerable amount of effort
has been devoted to the analysis of its performance [Stuc83].

The Physical Layer is a coaxial cable with base-band signalling. Its bit rate is
10Mbit/sec and up to 1024 stations which are less than 2.5K m apart can be interconnected
by one ETHERNET network. The Data Link Layer senses the state of the cable by means of
the carrier sense signal. This signal is controled by the Physical Layer and indicates whether
a packet is or is not present on the cable. Each Data Link defers transmission as long as
the carrier is set and during an inierframe spacing gap of 9.6psec after the carrier drops.
Simultaneous transmissions by two or more stations cause a collision which is detected by
the Physical Layer. Following the detection of a collision the colliston detected signal is set
by the Physical layer for each station that has participated in the collision. The contending
Data Link Layers respond to the setting of this signal by transmitting a 48 bit jem message
and by suspending any further transmission attempts for a backoff period. The duration of

this period is determined according the binary ezponential backoff scheme.

§4.3 Load Balancing Algorithms for Broadcast Systems

From the point of view of the load balancing process, broadcast communication system have

two advantageous properties. The first one is the uniformity of balancing distance and the
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second is the message broadcast property. The time required for transferring a message from
one node to the other via a broadcast system is the same! for all pairs of nodes. Therefore the
balancing distance between all nodes is equal to the balancing diameter of the system. Due
to the uniformity of distance, all nodes whose load is the same are equal-priority candidates
for receiving a waiting task. The control element of the LB algorithm resident at the node
has to consider only the load distribution of the balancing region, which may include the
entire set of processors. A large nodal balancing region provides the control law a broad view
of the instantaneous system load and thus improves the ability of the algorithm to minimize
the probability of a WI state.

The message broadcast facility of this type of communication system supports the
information component of the algorithm in providing globael and updated information about
the instantaneous load distribution of the system to the control element. By sending one
message a node can inform the entire system about its current state or to describe a balancing
dicision it has made. The information policy is free of routing and flow-control considerations.
However the broadcast property is actually a double-edge sword because it indicates that
the system has only a single communication resource. A broadcast commlinication system
can not transfer a number of messages simultaneously.? Simultaneous transmission attempts
by any subset of station leads to contention and thus to queueing delays that increase the
turnaround time of a message.

Using the above analysis of the characteristics of a broadcast system as a guideline
three different load balancing algorithms for this type of system have been developed. An
attempt was made to encapture in the three algorithms the various aspects of the task migra-
tion phenomena in broadcast systems. The algorithms differ in their information and task
migration policies and each of them represents a different approach to the balancing prob-
lem. All the LB algorithms defined are for broadeast m*(M/M/1) with uniform processors

and users.

4.3.1 BST Algorithm

The Broadeast STatus (BST) load balancing algorithm is a natural extention of the task

1propaga.f;ion delays are negligible for such systems and thus the geographical location does not affect the
transmission fime.

2A npumber of messages can be transferred over the same medium if frequency modulation techniques are
used. However in such 2 case the communication system is no more a single system.
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migration criterion of the BTSQSS system (see Chap. 3.). The algorithm is anticipatory in its
nature, and has a liberal information policy that provides each node with a complete picture
of the instantaneous load distribution of the system. The control-law of the algorithm aspires
to keep the unbalance factor of the system below a given value. This value is a parameter
of the algorithm and can be adapted to the properties of the system. The algorithm takes
advantage of both the uniformity of the balancing distance and the broadcast facility of the

communication network.

ALGORITHM BST (Broadcast every change tn state)

Information Policy: Whenever the length of its queue changes the node broadcasts a status
message that describes the new size of the queue. Each node records the information it
receives via this messages in its Load Distribution, LD;, vector. The information stored in
this vector describes the instantaneous load distribution of the system as seen by node i. The
node updates the element in LD; which describes its current load, ld¢, upon the successful

completion of the transmission of a status messag.

Balancing Region: The balancing region of a node is the entire system.

Control Law: Whenever LD; = (Id}, ..., 1d},) is updated and the output message queue is
empty the nodal LB control element is invoked. The algorithm will initiate the migration of
a task from node ¢ to node j if all the following conditions are fulfilled:

1. (i > Idi) v (Idi = ldi A& > k) for 0<k<m. {mazimal)

i has to be the node with the longest queue. When two or more have the

maximal load, ties are broken according to node numbers.
2. 1dt < ldj, for 0<k<m.  (minimal)

7 has to be the node with the shortest queue. When more than one node has
a minimal number of waiting tasks the selection of the target node for the

migrated task is done randomly.
3. UéF(i, t) > BT (threshold)

the unalance factor of BR;(t) has to be greater than BT which is a parameter
of the algorithm.
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Note that since the control element of the BST algorithm -will consider a.task
migration only after all previous messages have been transferred, all the nodes will .base
their migration decisions on the same information. The BST algorithm wutilizes the broadcast
media as a means for synchronizing the distributed control process as far as the information
on the instantaneous load distribution is concerned. The messages are analized by all the
nodes in the same order and therefore at each stage all nodes have the same picture of the

system load.

4.3.2 The BID Algorithm

The Broadeast when IDle (BID) load balancing algorithm is based on Last Minute task
transfers. The control element of the algorithm is invoked only when one of the systems’
nodes becomes idle. The information policy of the BID algorithm is less liberal than the
previous one and utilizes three types of messages. like the BST algorithm this: algorithm
takes advantage of the two advantageous properties of the broadcast medium.

ALGORITHM BID(broadcast when idle)

Information Policy: A node broadcasts an idle message whenever it enters an idle state.
Following the transmission of such a message the node receives reservation messages to whom

it replies with accept/reject messages.

Control Law: The control element of the BID algorithm consists of the two components -

the loaded and the idle component. The first one is invoked when an idle message arrives

and consists of the following steps (for node ¢ whose queue length is n;):

i. If n; > 1 go to step ii, else terminate the algorithm.

ii. Wait Dn;'1 units of time. D is a parameter of the algorithm and its value depends on
the characteristics of the communication medium (proporgation and round-trip delays).

iii. Send a reservation message to the node that has been declared idle.

iv. Wait for a reply message from the idling node.

v. If the reply is an accept message and n; > 1, initiate a task transfer to the node which
has accepted the reservation, else terminate the algorithm.

The purpose of the state-dependent time-out period in step ii is to give nodes with more

tasks higher priority in sending reservation messages and thus to give them a better chance

to migrate a task to the idle node. Note however, that due to the backoff algorithm of

the ETHERNET it is not guarantied that the node whose message has arrived first will be

transmitted first.
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The idle component of the control law is invoked whenever a reservation message
arrives at the node that has broadcasted an idle message. If the node is still idle and no
previous reservation has been accepted, an accept message is sent as a response to the reser-

vation request. In all other cases a reject message is transmitted.

Balancing Region: The Balancing Region of node 7 at time ¢, BR;(t), includes all those
nodes that have sent an idle message ,¢ has sent them a reservation message and they have

not yet replied.

4.3.3 The PID Algorithm

Unlike the two previous algorithms the Poll when IDle (PID) load balancing algorithm does
not utilize the broadcast capability of the communication system. The algorithm is based on
a polling strategy and its migration criteria initiates only ‘last-minute’ transfers. The Polling

procedure takes advantage of the uniformity of the balancing distance of the system.

ALGORITHM PID(Poll when idle)

Information Policy: An idling node sends request messages by which it notifies the nodes
_to whom the messages are directed that it is willing to receive a task. The node receives as

a reply a data message which contains the description of a task or an empty message.

Control Law: Two components constitute the control element of the PID algorithm - the
" poll and reply components. As a node enters an idle state it invokes the poll component that

consist of the following sequence of steps:

i.  Randomly select a set of R nodes (ay, ..., ar), and set the counter 7 to 1. R is a parameter

of the algorithm that determines the size of the Polled set.

ii. Send a request message to node a; and wait for a reply message.

iii. Receive the reply message. Node a; will either send back 2 task or an empty reply.

iv. If the node is still idle and j < R , increment ;5 and go to step ii., else terminate the

polling.
The reply element of the control law is executed when a request message arrives. If the node
has more than one task in its queue, one of the waiting tasks is migrated to the node that

has sent the request. An empty message is sent back if no task is waiting in the queue.
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fcharmel transmission rate (B) 10 Mbit/sec
slot time 51.2 psec
transmission time of control message 102.4 psec
ezpected task service time($) 50 msec
BT parameter of STB algorithm ! 2.1
D parameter of BID algorithm 1 maec
R parameter of PID algorithm 2 5
balancing distance(BD; ;) .025,.05,.1,.2
BD; ; = .025 means 7; ~ 1.5 Kbyte
overhead (OVH}? {0.,0.,0.)
stmulation length m > 8 40 sec
simulation length m < 8 80 sec

Legcept in 4.8.1,2 ezcept in 4.9.1,% ezcept for 4.8.3
Table 4.1. Simulation parameters for study of broadeast m*(M/M/ 1) systems
§4.4 Simulation Study

A simulator for the broadcast m*(M/M/1) system has been developed using the DISS
simulation language (see chapter 8). The system is mapped onto a star topology with the
ETHERNET subnet as a center (Fig. 4.2). Each of the system nodes is modeled by 2 DISS
process and there are three types of such processes - one for each algorithm. The ETHERNET
node is a realization of the ETHERNET subnet model, as is described in [Mel83b], and includes
both the Physical and Data-Link Layers of the protocol. Due to this mapping none of the
communication protocol elements is included in the nodal process. Therefore by replacing
the central node of the simulator, broadeast m*(M/M/1) distributed systems with different
communication subnets can be simulated. In the coming subsections a performance study
of the three algorithms will be presented. The study focuses on the effect which the three
algorithms have on the expected normalized queueing time of a task, Wq . Table 4.1 lists
the numerical values of the simulation parameters. In all the cases it was assumed that the
amount of data units needed to describe the results of a task is equal to the amount needed
to define the task, i.e. 41 =°.

4.4.1 Algorithmic Parameters

The behaviour of both the BST and PID algorithm is determined by the wvalues of their

parameters. The selection of the values to be assigned to the BT and R parameters should
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Figure 4.2. The Directed Multigraph Presentation of the Model

be guidgd by the properties of the system for which the algorithms are intended. The main
factors to be considered are the balancing distance between the system processors and their

number.

Fig. 4.3 presents Wq and channel utilization (%) for systems with different balancing
distances and number of processors (m) with BT as parameter. Note that an increase in BT,
i.e less anticipatory transfers, causes a decrease in Wq in most of the cases. This improvement

in the response time of the system is due to the reduction in the number of ‘unnecessary’
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Figure 4.8. Wq and % vs. BT for BST (p = .8)
transfers. In a highly utilized ETHERNET a small reduction in the load has a significant

effect on the turnaround time of a message But there is a point where any further reduction
in the rate of anticipatory transfers causes an increase Wq . The location of this ‘turning
point’ is system dependent.

The communication activity of the PID algorithm can be easily controlled by the
value of the R parameter. Fig. 4.4 shows how 5 and Wq depend on the size of the polling
set. when the balancing distance is small (BD;; = .025) W, is a monotonic decreasing
function of R. However, when BD; ; = .2 and R> 5 an increase in the size of the set causes
a degradation in the performance of the system. Note that even when R = 3, Wq is reduced
due to the balancing process from 4 to® 1.7 for BD;; = .2 and to .75 for BD;; = .025.

4.4.2 Number of Nodes

The Wq of an M/M/m queueing system with a task arrival rate of mX is a monotonic
decreasing function of m (see 2.2). Although the addition of another server increases the rate
at which tasks arrive at the system the supplemental node decreases the expected queueing
time of a task.

The effect of the number of nodes, m, on the Wq of a broadcast m*(M/M/1)
system is demonstrated by Fig. 4.5, 4.6 ,4.7 and 4.8. The figures present the Wq of the

34 is the expected normalized queueing time of a task in an M/M/1 system with a utilization of .8.
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Figure 4.5. Wq and n vs. m (BD; ; =.2,p= 8)

three algorithms for four different balancing distances (BD; ;). In all the cases the balanced
system has a considerably better Wq than the unbalanced system, M/M/1.

For a system with BDi,j = .2 the expected waiting time of a task is decreased
by at least 70%. The degree to which the balancing algorithm approaches the optimal Wq
of an m server system (M/M/N) depends both on the balancing distance of the system and
on the number of nodes. The curves show that an increase in the number of nodes in 2
balanced distributed system has two counteracting effects. On the one han

probability that a waiting task will be transferred to an idle server, as in an M /M/m system.
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Figure 4.7. Wq and 5 vs. m (BD; ; = .05,p = .8)

But on the other hand, it raises the utilization of the communication channel. Higher channel
atilization causes a slow-down in the balancing process resulting from an increase in message
queueing delays. The net result of these two effects will determine whether the increase in
m improves, does not affect, or deteriorates the expected turnaround time of a task. Every
algorithm reaches a point, my, at which an addition of another server will cause an increase
in Wq . The value of m,, depends on the algorithm and balancing rate of the system. Note
that in all cases when m is less than the my, of the BST algorithm the Wq of this algorithm is

the smallest. After it reaches its minimal value the Wq of the STB algorithm increases until
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Figure 4.8. W, and n vs. m (BD;; = .025,p = .8)

it becomes greater than the Wq of the PID algorithm. The degradation in the performance
of the STB algorithm is caused by the increase in transmission delays.

Both the BST and BID algorithms are sensitive to changes in the transmission delay
of 2 message. By waiting for all previous messages to be transferred before a new migration is
considered, The BST algorithm adaptes its activity dynamically to the load on the channel.
Therefore even when the channel is highly utilized the algorithm succeeds to enhance the
response time of the system. Whereas the BID algorithm may reach a point where it becomes
a cause for performance degradation as a result of its attempts to make a reservation at any
idling node reaches a point where it turns to be a cause of performance degradation.

The PID algorithm is less sensitive to the utilization of the channel. As demonstrated
by the four curves of Wq for this algorithm, there is a wide range of m values for which the
algorithm has almost the same performance. The ‘hand shaking’ mechanism of this.algorithm
minimizes the number of ‘wrong transfers’. For low and moderated channel utilizations the
PID and BID algorithm have similar W, .

4.4.3 Processing Overhead

In all previous cases it was assumed that the load balancing process has mo processing
overheads. Table 4.2 demonstrates how processing overheads affect the W, of the BST

and PID algorithm for three different arrival rates.
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ia OVH-0,0,00VH-1,0,q OVH-1,.5,4 OVH-5,0,0 OVH-5,.5,0
85  PID 9 1.18 1438 2.32 2.58
BST 79 1.24 o0 3.02 o0
70 PID 46 60 68 1.08 1.20
BST 85 .58 4.04 1.80 0
60  PID 3 42 47 57 85
BST 19 .29 1.28 77 2.7

Table 4.2. W, for Different arrival rates (FE; =0,m =16, BD;; = .05)

Ra OVH-0,0,00VH-1,0,0 OVH-1,.5,4 OVH-5,0,0 OVH-5,.5,
85  PID 9 1.02 1.02 1.64 1.5
BST 79 .88 85 1.10 1.18
70  PID 46 57 .59 75 77
BST 95 .89 48 .61 67
60  PID 84 41 42 58 .60
BST 19 2 .28 48 A5

Table 4.8. W, for Different arrival rates (FE; = 1,m = 16, BD; ; = .05)

An increase in the task arrival rate, A, has opposite effects on the activity of the
BST and PID algorithms. The information exchange activity of the BST algorithm increases
due to an increase in X, since more tasks per time unit mean more state changes. The
BST algorithm broadcasts at least 2 control messages per station per time unit. The PID
algorithm reacts in an opposite manner to an increase in \. Due to the increase in server
utilization, the length of the nodal busy periods increases and thus the rate at which the
polling element of the algorithm is invoked, decreases. Nevertheless, the expected number
of stations which a node has to poll each time, decreases, as well, due to the increase in p.

There is a higher probability that the first nodes to be polled are willing to migrate a task.

The values presented in Table 4.2 reflect these characteristics of the two algorithms.
Note that the effect of the increase in the information exchange activity of the BST algorithm
is amplified because all the control messages are broadcast messages. So that every time a
message is transmitted every processor has to devote some processing capacity in order to

receive and decode the message.

Table 4.3 demonstrates the advantageous effect with the addition of a communica-
tion processor to every node. The Wq of the BST algorithm is considerably improved due

to the increase in the processing power of the node. As far as the PID algorithm is con-
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cerned, this increase does not significantly improve its performance. Since in most of the

cases this algorithm utilizes processing capacities when the node is idling, the reduction in

the utilization of the processor does not reduce its W, .

4-15




Chapter 5
Store and Forward Systems

§5.1 Introduction

Following the development of the need for resource sharing and teleprocessing at the early
1960s stand-alone computers were integrated into computer networks at the end of that
decade [Robe70],[Puzi73]. Most of these networks are operational ever since and some of them
have grown subsequently.! The communication subnets of these networks consist of switching
elements, commonly called IMPs,? that are connected in pairs by cables or leased telephone
lines to form a point to point subnet. These subnets embodied a mesh-connected back-bone
network with a packet switching strategy‘[TaneSI]. The success of the ttme-sharing approach
in sharing the resources of one computer among many users and the burstly nature of the inter
computer traffic aspired the selection of this switching strategy. The peer interconnection
approach used in these subnets allowed flexibility in their operation mode and topology.
Packet switching imposes a store-and-Forward pattern on the transmission process
of a message in a point-to-point subnet. When a message has to be transmitted from a source
IMP to a destination IMP which is not directly connected to the source the message has to
go via intermediate switching elements. At each intermediate IMP the message has to be

stored until the desired link is free, and only then forwarded.

I7he ARPANET interconnects today more than 100 computers which are spread over half of the globe.
2pvp (Interface Message Processor) is the name of the switching elements of the ARPANET.



The data rate of the communication lines used in store-and-forward subnets is in
most cases, less than .1 Mbit/sec. Although attempts are made to utilize fiber-optic tech-
nology in point-to-point subnets there is no such operational subnet yet and all commercial
networks are based on leased lines. Because of the low bandwidth of the communication lines
and the requirement for intermediate buffering space, store-and-forward protocols require
procedures for routing management, for buffer allocation and for the detection or prevention
of deadlocks. Due to the complexity of these issues and the urgent need for efficient protocols
for point-to-point networks, a considerable amount of effort has been devoted to the develop-
ment and analysis of protocols for this type of networks [Klei80], [Schw80]. Various protocols
have been implemented and their characteristics analyzed. Most of these protocols utilize
complex flow control algorithms that require a high level of control activities [MaQu80].

One of the main issues associated with the design of point-to-point subnets is their
topology. This chapter focuses on the interdependency between the topology of the system
and the load balancing phenomena. An LB algorithms for store-and-forward m*(M/M/1)
distributed systems with homogeneous processors and users is defined. The results of a
simulation study of the performance of these algorithms for systems with different topologies
are presented. These results shed light on the way load balancing consideration should affect

the topology selection procedure.

5.1.1 The Store and Forward Model

The topology of the communication subnet of the store and forward model is defined by a
reqular® graph, G = (V, E). The nodes of the graph, V, are switching processors and the
edges, E, are full-duplez communication links. Every processor of the m*(M/M/1) system is
attached to a different IMP Fig. 5.1. The IMP and the processor share the same data storage
facilities. The processing elements and users of the system are homogeneous and all links
have the same data rate, # du/tu. Each link has a queue in which messages that are waiting
to be transmitted are placed. It is assumed that each node has an unlimited buffering space.

In the view of the motivation of this study and the characteristics of the model
a ‘simple’ communication protocol for the store and forward m*(M/M/1) model has been
selected. The protocol implements a message switching strategy which does not impose any

limitation on the size of the transmitted data blocks. The routing scheme of the protocol

8The Graph Theory terminology used in this chapter followes the definitions given in [Tanes81] (Chap. 2.).
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Figure 5.1. A node of the store-and-forward m*(M/M/1) system

is static. Messages are routed along the shortest pass, the geodesic, between the source and
the destination. When several geodesics exist between two nodes one of them is selected at
the time the system is established. The messages are transmitted according to an FCFS3
discipline. Due to the unlimited buffering space available at each node no buffer reservation
or deadlock detection/prevention mechanisms are required. Transient messages are directed
upon arrival at the input queue of their next link. It is assumed that the processing time of

the protocol is much smaller than the transmission time of a message and thus negligible.

§5.2 Load Balancing Algorithms

Unless the graph G = (E,V) that defines the interconmection scheme of the model is a
complete graph, the balancing distance between the processors in a store and forward system
is not the same for all pairs of nodes. The balancing distance between processor ¢ and j of
the system is d;, _,-fyl ﬂ——"'& , with, d; ; being the length of the geodesic between the two processors
in G. The non-uniformity of the balancing distances together with the lack of a broadcast
facility in this type of system imposes locality on the load balancing process. The difficulty in
maintaining a global up-to-date picture of the instantaneous load distribution of the system at
every node and the need to consider balancing distances, prohibit the establishment of large

balancing regions. Unlike broadcast systems, not all the processors with the same load have
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equal priority as candidates for being a target for a migration operation. Those processors
which are closer, have higher priority. A natural criterion for including a processor in a
balancing region will be its balancing distance from the owner of the region. The region of a
processor will, most probobly, include only those nodes which are edjacent to the processor.
In such a case the control element which resides at node 1 has to consider only the load
distribution of BR;(t) and is free of topological considerations.

An algorithm for store-and-forward m*(M/M/1) systems with homogeneous users,
processors and subnet? is defined in this section. The algorithm is based on an adjacent
balancing region. Performance models of systems with various topologies are defined and

solved.

5.2.1 The HO1 Algorithm

The control law of the Hop One (HO1L) algorithm aspires to keep the load distribution of
BR;(t) balanced at all times. The algorithm is anticipatory in its nature and a user might

be migrated several times before being executed.

ALGORITHM HO1(migrate one hop)
Information Policy: The load of a processor is n; + rc; where, n; is the length of its
queue and re; is the reservation counter. This counter is incremented when a reservation is
accepted and decremented upon the arrival of the task for which the reservation has been
made. Whenever the load of the node changes the processor sends all its adjacent processors
a status message that describes the new load. Each node records the information it obtains
from these messages in a Load Distribution vector, LD;. Before a task is migrated from one
processor to the other a reservation message is sent to the target processor.
Balancing Region: The balancing region of node i at time t consists of the following
Processors:

BR;(t)é {j €V | (%,7) € Eand no data

message at input queve of (1,5) at time i}.

The above definition for balancing region is motivated by the desire to prevent

unsuccessful task transfers (see 3.3). In order to minimize the probability that due

A point-to-point subnet is defined as homogeneous if G is a regular graph and all its links have the same
capacity.
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to long communication queueing time such a transfer will take place, an adjacent
node to which the link is currently occupied by a data message is not included
in the balancing region. Note that the load of a node is defined according to its
current state and does not reflect its ability to ‘fan-out’ additional load. This
ability depends on the load of the nodes which constitute the balancing region
of the node. The algorithm is motivated by a ‘one step at a time’ approach and
therefore does not consider the ability of the target node to ship the migrated
task one step further.
Control Law: the control element of the HO1 algorithm is invoked whenever a status or
reservation message arrives. Processor ¢ with LD; = (ld§, .., ldt,) will initiate a user transfer

to processor j € BRy(t) when all the following conditions hold true:

1. ng > 2 (wasting)

Due to the high throughput degradation factor of last minute transfers initiated
when only one task is waiting in systems with long balancing distances (see
3.5.3), the algorithm initiates transfers only when at least two tasks are waiting

for service.
2. ldi > Id; for all k € BR{(t)  (minimal)

7 has to be the node with the minimal load in the balancing region of 2. When

several processors have the minimal load, one of them is randomly selected.

3. rc,-+n;—ld§- >1 (threshold)

The load-difference of the BR;(t) has to be greater than one.

§5.3 Effect of Interconnection Scheme

The expected turnaround time of a task in a store-and-forward m*(M/M/1) system depends
on the expected queueing length of the processors and the length of the geodesic between the
execution and entrance sites of the task. The expected number of tasks in a queue depends

on the ability of the node at which the queue resides to distribute its load among the other
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processors of the system. This ability depends on the structure of the Distance Tree, DT; =
(E V), E C E, of the processor. DT; is a spanning tree of G such that ¢ is its root and for
all eV, dij= di i, where d; ; and d; ; are the length of the geodesic between ¢ and j in
G and DT; respectivly. A quantitative description of the ability of the processor to ‘fan-out’

its load can be given by means of the following function

n—2
RLin) =Y (n—5)U}
J==0
where U; is the number of nodes at the jth level of DT;.5 The value of RL;(n) is the minimal
number of tasks that ought to be in the system so that a load distribution with n; =n will
be a no-migrate distribution. The system is defined to be in a no-migrate distribution if a)
the queues of all links are empty b) (| ni —n; |< 1V n; < 2) for all (4,7) € E. A processor
with 7 tasks at its queue would ‘prefer’ that the system would be in a balanced state only if
nj >n—1forj=1,j5€V,i e that RLin) = n(n— 1)(| V | =1) for all n. The function
RL; will have the above form only if the out degree of server ¢ is | V' | —1 which means that
the graph G has to be a complete graph.

§5.4 Simulation Study

The DISS (see chapter 6) methodology and simulation language have been used for developing
a simulator for the store-and-forward m*(M/M/1) system with the HO1 LB algorithm. Each
of the model nodes describes the behaviour of a processor and its adjacent IMP. The specific
properties of DISS have made the comstruction of simulators for systems with different
toplogies, an easy task. In the course of this simulation study five different system topologies
have been analyzed. These topologies and the corresponding nodal distance-trees are shown
in Fig. 5.2. Note that for all the topologies which were selected all the nodes have the same
distance tree. In Table 5.1 the values of the RL;(n) function for the different topologies are
displayed. The table demonstrates the interdependency between the values of the function
and the interconnection scheme of the communication subsystem.

In this study it was assumed that the length of the control messages is much smaller
than that of the data messages. Consequently, the transmission time of these messages was

neglected and a control message is considered to be transferred instantaneously. However,

5The root of the tree is at level zero.
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topology n=3 | n= 1= n = n = n=2§8
Ring 7 14 23 34 47 62
Tring 9 21 37 57 81 109
Fring 11 24 41 62 87 114
Ringl 11 30 56 88 108 182
Ring3 11 32 59 87 111 185
Table 5.1. RL(n) for the different toplogies (m=24)
A, A° m = 4 m =8 m=12 m = 24
1, 0. 2.4 1.4 1.2 - 1.2
1, 1. 3.8 2.6 2.5 2.6
1.,0. 3.8 2.6 2.5 2.5
1, 1. 3.9 3.2 3.1 3.2

Teble 5.2. W, for Rings of different sizes (A = .9)

the communication link has to be free when such a transfer is executed. One time unit,
tu, in the simulation runs was equal to the expected execution time of a task (') and the
length of each run was 2500 tus. The various systems were analyzed under two different
task-arrival patterns - the Hom9 and Lol9 patterns. According to the Hom9 pattern, the
system is homogeneously loaded and X = .9, i.e the utilization of all servers is .9. When the
tasks arrive according to the Lol9 pattern, the system is not homogeneously loaded. The
arrival rate of processor 1 is 3.2 and the arrival rates for all the others is .8. Note that the
sum of all arrival rates for the two patterns is the same.

The manner in which the number of processors affect the ability of the HO1 algo-
rithm to reduce the response time of the system is demonstrated by Table 5.2. For all four
combinations of 77 and 7© that where simulated when m goes from 4 to 8, W, improves
considerably. However, any further increase in the system’s size does not affect Wq . Note
that even in a 4%(M/M/1) system with Al =170 =1, W, is reduced due to the LB process
from 9 to% 3.9.

The results presented in Table 5.3 show that when a store-and-forward m*(M/M/1)
system is homogeneously loaded, a change in the interconnection scheme of the communica-
tion subnet has only a marginal effect on Wq . Although the distance tree of a node defined
by the Ring3 topology has better properties than the one defined by the Ringl and Fring

89 is the W, of an M/M/1 system with a utilization of .9.
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L, ~O Ringl Fring Ring8
1,0 70 63 62
1,1 1.67 1.69 1.67
1., 0. 2.20 2.17 216
i, 1 2.94 2.96 2.9

Table 5.8. Wq for toplogies with 4 m links (A = .9)

topologies, these differences in the structure of TD; do not affect W, when tasks arrive
according to the Hom9 pattern. However, when the arrival pattern of the tasks is Lol9 these
differences do affect Wq . Table 5.4 clearly displays the interdependency between the RL;(n)
function of a topology and the performance of the system. When the arrival rate of one
node is higher than the arrival rate of the other, the structure of its distance tree plays an
important role in determining Wq . The table presents the expected normalized queueing

time of a task which has arrived at node 1, Wq (1), and Wq for different values of 4/ and
0

9.
The results displayed at the second row of the Table 5.4 demonstrate an important
aspect of the HO1 algorithm. When 4/ is small (.1) the algorithm may migrate a task several
times and thus the execution site of a task might be several hops away from its entrance site.
Therefore if 4 is not negligible the task might be considerably delayed on its way back to
the node at which it had entered the system. In the case represented by the second row of
Table 5.4, tasks are transferred without any delay ‘down the stream’ to their execution site
but are queued up on their way back. Note that due to this behavior of the HO1 algorithm
the response time of the system is better for ¥/ = 4© = 1. than for 41 = .1, 49 = 1.
This property of the algorithm is also demonstrated by Table 5.5. This table shows the inter-
dependency between the number of communication links and the performance of the system
for the HL19 arrival pattern. When each node has only two links the system is ‘choked-up*
under such conditions unless 47 is small and 4 is negligible. However, when the system has
three or four links per node it can serve all tasks and even provide them with better response

time than an M/M/1 system which is busy 90% of the time.



Ringl Fring Ring8
3, 7 Wq (1) Wq Wq (1) Wq Wq (1) Wq
.1, 0. 1.0 75 .80 .68 77 .68
1,1 18.2 4.4 34.0 7.0 12.5 3.8
1.,0. 3.2 2.8 2.9 2.2 2.8 2.2
1,1 5.4 8.4 5.1 8.2 4.75 3.2

Table 5.4. W, and W, (1) for toplogies with 4m links (A = 3.2, = 81 <4 < m)

Ring Tring Ring8
1, 7 Wq (1) Wq Wq (1) Wq Wq (1) Wq
A1, 0. 2.5 1.4 1.2 .80 7 .68
1, 1. 00 60. 11.8 12.5 8.8
1.,0 00 4.2 2.5 2.8 2.2
1.,1. co 9.4 3.9 4.75 3.2

Table 5.5. W, and W, (1) for different numbers of links (i =32,N\=281<i<m)




Chapter 6

DISS

§6.1 Introduction

Performance prediction is an essential step in the process of system design and system
upgrading. When different alternatives are examined by a designer or manager their relative
performance may constitute a cardinal argument for regarding one as superior to the other.
In order to predict the performance of a non-existing system under an estimated -workload,
a performance model of the devised system has to be defined and solved for the foreseen
load. A quantitative description of the desired performance measures is then derived from
the solution. The characteristics of the model and the performance measures considered,
determine whether analysis can be used as a solution scheme or whether simulation is
the only means by which the measures can be derived. A considerable amount of effort
has been devoted to the study of analytic solution schemes for performance models and
several methods for solving queueing network models have been developed and implemented
[Bask75],[Chan80]. Although these methods are remarkably general and useful in system
modeling, there are many interesting models that do not meet their assumptions and thus
have no known traceable numerical solution. In order to release some of the constrains of
these methods, approzimation schemes for solving performance models have been developed
[Saue80]. The main shortcoming of this approach is its inability to bound the error in the
results.

Because of the limited scope of numerical solution schemes, simulation, in spite of

its drawbacks, is widely used for predicting system performance. Simulation is a technique



which can predict the characteristics of a model by following the state changes it undergoes
over a period of time. When simulated, the evolution of the model under stimuli that model
its inputs is observed, and the desired behavioural measures are derived. In most cases
simulation is a repetitive process and is, thus, executed, most likely, by a computer. The
computer simulates the model according to a behavioural description, a stmulator, written in
a programming language. Languages that address themselves to such descriptions are called
simulation languages.

Simulation is computationally expensive and requires a considerable amount of
programming effort. In order to assist the programmer in writing simulation programs, a
number of simulation languages have been designed. The various languages differ in their
programming approach and simulation strategy. In this chapter the Distributed System
Simulation (DISS) approach for modeling and simulating distributed systems is defined.
DISS views both the model and the simulation program as modular structures which consist
of self-contained building blocks. The language is a macro extention of the SIMSCRIPT II.5

simulation language and implements a process interaction simulation strategy.

8.1.1 Motivation

The continuous growth in the size and complexity of Distributed Processing Systems
(DPS) increases the need for efficient methods for predicting their performance. The com-
plexity of these systems and the variety of services they provide prohibit the usage of intuition
as a design tool. In most cases analytical solution schemes can not be used for solving the
performance models of this type of system, mainly because of the strong interdependency
between the components of the system [Wong78]. Due to this interdependency, the models
do not satisfy the local balance property and thus have no product-form solution [Chan77].
Interdependency between system elements is a cohesive attribute of DPS because of the
cooperative nature of its elements [Ensl81]. Therefore performance prediction of a DPS al-
most always entails a simulation study of the system.

Distributed processing systems consist of loosely coupled autonomous elements which
endow this type of system with the qualities of modularity and eztensibility [Enslow81]. Since
the replacement of a component or the integration of a new one is a simple operation in
a DPS an analysis of the impact of topological changes on the systems’ performance will
undoubtedly be included in a performance study of such a system. Therefore it is desired

that the simulation program used in such a study will also be modular and extensible. The
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efficiency of the study will depend on the degree to which internal logical and structural
changes in one module impose modification on others. In a simulation program where one
module has direct access to a variable of another module (tightly coupled modules) or a single
module may imperativly schedule an event for another one (rnon-autonomous modules) a
local change in one element may effect other modules. Changes of this type may require a
major modification of the entire program unless it is composed of loosely coupled autonomous
modules.

The importance of modularity and extensibility of simulation programs for the study
of performance issues of DPS and the lack of a simulation language that provides means for
building such programs motivated the development of the DISS methodology for modeling
Distributed Processing Systems and the design and implementation of the DISS language.
DISS provides the modeler and the programmer with a comprehensive approach to modeling
and simulating this type of system. Although the development of the methodology and the
language was guided by the characteristics of DPS, the world view of DISS is also applicable

to simulation studies of other types of systems.

6.1.2 The World View of DISS

DISS is based on a comprehensive view of the two components of a simulation study - the
model and the simulator. Each of these components is considered as a network of loosely
coupled and autonomous modules that interact via a well-defined interface. Two modules of
a model or simulator are loosely coupled when they can exchange information but there is no
direct access from one module to the variables of the other. The information is exchanged via
a ‘mail box’ that can be accessed by the two coupled modules but which does not constitute
an integral part of either one of them. Receiving information and sending out information is
an input/output operation for such modules and is executed via ports.

In a discrete event environment an element is autonomous if no other element can
imperatively schedule an event for it. Autonomy does not mean isolation: an autonomous
module interacts with the other modules by receiving events scheduled by them. Yet such a
module exercises control over the events it is willing to accept at a given instance by means of
an interrogative mechanism. The loose coupling and autonomy of the modules guaranty that
a change in the structure or logic of one module does not impose changes on other modules

and thus, endow the model or simulation program with modularity.
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Each module of the network is a Discrete Event System (DEVS) described as 2
model or presented as a component of a simulation program. Discrete Event Systems were
first formally defined by Zeigler [Zeig76]. This definition has been extended so that a DEVS
can be specified as an autonomous module and can be loosely coupled with other DEVSs (see
A.2 for a formal definition of a DEVS specification). According to the world view of DISS
input and output ports, masks (for external events) and input variables are cohesive attributes
of a DEVS and thus should be part of its specification. Since a DEVS exchanges information
with others through ports, each external event or input variable is associated with an input

port, and an output variable with an output port.

By interconnecting an output port of one DEVS with an input port of another,
individual systems can be integrated into a network. Such a conmnection is created via a
mapping process from the output variables of the source port, onto the input variables and
external events of the target. The topology and interconnection scheme of a DEVS network
can be represented by a directed multigraph where the nodes are DEVS and the arcs are the

output port to input port connections.

When a model, described by a network of DEVS specification, is mapped to a
DISS program its structure is preserved. A DEVS is realized by a DISS process and the
interconnection by a DISS arc. It is not only the graph presentation of the model that is
preserved by the DISS program but also the autonomy of its modules and the looseness
of the interconnections. Consequently the program is endowed with the modularity and

extensibility of the modeled system.

The DISS methodology imposes a structural similarity between the system , the
model and the simulation program, which assists the designer, the modeler and the progam-
mer in communicating with each other. Effective communication is an important aspect of
a simulation study. The ability to relate changes in the specification of the system to the
model and the extent to which the modeler can become acquainted with the realization of
his model, are major factors in determining the efficiency and quality of a simulation study.
The DISS methodology and simulation language assist progammers and modelers to learn
about each others work. In addition, it efficiently supports sharing models and simulation
programs. Because a DISS process is self-contained, libraries consisting of various DISS
realizations of DEVS models can be gradually constructed. Members of such libraries can

then be selected for incorporation in simulators of different systems.
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6.1.3 Simulation Languages

A considerable amount of programming effort is required for constructing a simulator for a
system. In order to simplify the routine tasks associated with such a process and in order
to assist the programmer in writing and debugging the simulator, a number of simulation
languages have been designed. The design of these languages was motivated not only by the
need for programming convenience but also by the desire to erticulate the modeling concepts
[Kivi67]. Therefore the design of a simulation language is based on both a programming
approach and a modeling philosophy. The modeling phase of the simulation study is mainly
effected by the simulation strategy of the language. Various strategies of this kind - event
scheduling, activity scanning and process interaction [Zeig76] - are implemented by the
different languages. Each of these approaches to discrete event simulation imposes a different
structure on the model and on the simulator. Most of the simulation languages are supersets
of general purpose language, like FORTRAN, PL/1 and ALGOL, and therefore combine
the flexibility and richness of the base language with the special-purpose features needed to

simulate discrete event systems.

The first steps in the design of specialized computer simulation languages were
made during the latter part of the 1950-s. The first discrete simulation languages - GASP
[Prit69], SIMSCRIPT [Dimsb4], GPSS [Gree72] and others (see [Teic66]) were introduced in
the early 1960-s. Most of these languages where event oriented and had no facilities for
nested declarations of variables or program structures. A behavioral description of a discrete
event system given in an event oriented language is composed of a set of subroutines, each
of which describes the activity of an event. Individual events may be related one to another,
like all the internal events of a DEVS. However none of the above languages provides means
by which a structural binding between events can be established. Therefore in all these event

oriented languages modules of related events can not be constructed.

The progress in programming methodology which was brought about by the intro-
duction of ALGOLS0, together with the continuous increase in the usage of simulation as a
means for solving performance models, motivated the design of process oriented languages
[Fran78]. Several languages based on this simulation strategy - SIMULA [Dahl66], ASPOL
[MacD73], SIMSCRIPT 151 [Russ83]- were introduced during the later 1960-s and the early
1970-s. Both SIMULA and ASPOL are block structure languages and provide facilities for

1SIMSCRIPT IL5 processes were added to the language in 1975.
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nested-scope definitions.

A process is a dynamic entity that consists of a set of related activities. Each activity
is associated with an event and defines the change of states the system undergoes because of
that event. Upon the completion of the execution of such an activity the process is suspended
until a future resumption. This resumption represents the occurrence of an event, whether
internal or external. Once resumed the process proceeds its execution from the point at which

it has been suspended.

The entire process represents a sequence of events and thus can be considered as a
realization of a DEVS. However, due to the limitation of the above process-oriented languages,
there are many DEVS specifications that can not be realized by a single process. In all
these languages different statements have to be used when the process is suspended until
an internal event occurs or when it is suspended untill the occurrence of an external event.
Therefore a process can not be suspended until either an external or internal event will occur.
Nevertheless the hold , wait? or work and suspend® mechanisms of these languages do not
support a process suspension until the first out of a number of internal events ‘will oecur.
Therefore only DEVS that do not posess simultaneous internal delays can be realized by one

process in the above process-oriented langauges.

ASPOL is the only simulation language that provides means by which a process
can autonomously control the set of external events that it is willing to accept - the waitfe)
statement. But the language does not provide a mechanism to be used following a wast{e)
statment for locating the event which caused the resumption. In all other languages a process

has no control whatsoever on the external event that may resume it.

SIMSCRIPT IL.5 is a general purpose language with a rich varity of data structures
and features that support discrete event simulation. The language has served the author in
many simulation studies and is widely available and commonly used. These properties of the-
language together with the acquaintes with its internal structures? turned SIMSCRIPT II.5
into a natural candidate for constituting a base language for the simulation language that

will support and complement the DISS modeling methodology.

2fn SIMULA and ASPOL
3In SIMSCRIPT IL5
4A1) the internal structures of the timing mechanism of the language are accessable
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§6.2 Modeling with DISS

Modeling is the second step which a simulation study involves, and is the least well understood
step of such a study. A system can be modeled only after its salient components and
interactions have been isolated by means of an analysis of the system and of the ezperimental
frame of the the study. Modeling can be defined as

the process of developing an internal representation and set of transformation

rules which can be used to predict the behaviour and relationships between the

set of entities composing the system [Fran77.
The internal presentation, formulated by means of state variables and the iransformational
rules, is an abstract description of the behaviour of the system. The DISS modeling
methodology views the abstraction of the behaviour of a DPS as a two stage procedure.
First, the system is mapped to a directed multigraph where each node is 2 DEVS. Then
each node is modeled individually. The former stage of the modeling process is mainly
a structural abstraction of the system, whereas at the latter the behaviour of the system
clements is modeled. Every node of the graph presentation of the system stands for one®
or more of the system elements, and is a well defined autonomous area of activity. Every
system element, including communication channels is related to a DEVS whose input [output
variables and ports are defined at this stage. The selection of the mapping scheme depends
on both the structure of the system and the requirements of the experimental frame [Mel83b].

6.2.1 Nodal Interconnection

The interconnection scheme of the multigraph represents the coupling between the
modules of the model. A directed arc that goes from the source node to another node, the
target, represents the ability of the source to transfer information to the target. The data
transferred describes a change in the internal state of the source that the target might be
interested in. These changes are reflected by corresponding changes in the output variables
of the source so that they can been ‘een’ from the outside. A DEVS receives external
information via input ports. Thus in order for the target node to become aware of a change
that has taken place at the source, either an input variable of the target has to be modified

or an external event has to be scheduled for the target.

SFractions of elements can be also mapped to different nodes but in such a case it is suggested to consider
each part as an element of the system.



An are of a DEVS network is a mapping from the output variables of an output
port of the source, onto the input variables and external events of an input port of the target
node. The mapping depends on the way the target node reacts to changes in the output
variables of the source. When the target might consider such a change as an event, i.e. the
node might be waiting for it, the output variable should be related to an external event at
the input port. However, if the value of the output variable has an effect only on the internal
state transition function of the target DEVS, the mapping is to an input variable.

A mapping from an output variable to an external event establishes an inter-node
event. Such an event is triggered by the output function of the source when the variable
is assigned a value and appears as an external event at the input port of the target. An
inter-node event represents an active transfer of information that is based on an attempt
made by the source to alert the target. By relating an output variable to an input variable
an inter-node state variable is established. The variable is written by the source and read by
the state transition function of the target. Such a variable represents a passive exchange of
data. The first opportunity at which the target will be able to use the information that was

stored in the variable will be at the time of occurrence of the following event.

8.2.2 The Node

Once the mapping of the system onto a directed multigraph has been completed,
the modeling process may proceed to its second stage - the nodal abstraction. At this stage
a Discrete Event System specification is established for each of the nodes that constitute the
multigraph. Since the input/output structures of the nodes have been defined at the previous
stage each node can be modeled individually. However similar nodes will most likely, be
treated in the same manner and thus their DEVS specification is defined simultaneously.
Throughout the modeling process the node is considered as the atomic building block of the
model. Although it is the smallest component of the mode, a node is self-contained in both
its logic and structure and therefore has an autonomous existence.

The internal presentation of a DEVS is given by its state variables. There are two
types of state variables - the piecewise constant and countdown clock variables [Zeig76]. The
variables of the first type describe the current state of the system, whereas the clock times at
which internal events are scheduled to occur, are given by the the second type. These times
are internally determined and controlled by the node. Each countdown variable is associated

with a different event and thus the set of these variables represents the internal events of the

6-38




DEVS. Scheduling such an event means an assignment of a positive value to a :countdown
clock. Once the variable is assigned it will decay linearly, as a function of time, until it
reaches zero. Precisely when it reaches zero, the internal event associated with the variable
occurs.

The piecewise constant variables change only when an internal or external event
takes place. Such an event means that the system undergoes a change in state. As a result
of a state transition, the state, the output and the mask variables of the system may change.
The changes in these variables due to a particular event are defined by the state transition,
the output and the masking functions (see A.2 for a detailed description of the elements of
a DEVS specification structure). Although each of these functions is defined formally as a
single relation, it is actually composed of several functions, each of which defines the reaction
of the DEVS to a given event. All the functions associated with the same event form the
activity of the event. The activity is a mapping into the range § M« KM % OPM andis a
natural way to describe the transformational rules of the node.

Some of the DEVS specification of the various nodes obtained at this stage may
be similar or even identical. In order to limit the number of realizations required, the
specifications may be grouped into disjoint sets such that every set represents one iype of
DEVS. All members of the same set will be considered as different tnstences of the same type

of DEVS and each node will get its individual characteristics by means of input parameters.

§6.3 Simulating With DISS

DISS is a high level simulation language which is a macro eztention of the
SIMSCRIPT II.5 simulation language. The extention is based on the define to mean and
substitute mechanisms of the base language. All the routines that support the DISS lan-
guage have been written in SIMSCRIPT IL5. As a result DISS is compatible to the same
systems as SIMSCRIPT I1.5.8 The desire to save the programming effort which the implemen-
tation of a pre-processor entails, motivated the macro extention approach. However, due to
this approach the statements of DISS had to be structured according to the syntactical
constrains of the base language.

The DISS language was designed to provide a tool for building modular discrete

event simulation programs with well-defined interfaces between their modules. The design

6S]I\/ISCRIP’I.‘ 11.5 is available for CDC, Honeywell, IBM, NCR, PRIME, UNIVAC and VAX computers.
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was guided by the idea that the smallest self-contained element of a discrete event model is
a DEVS, and thus the simulation program should be constructed as a network of modules,
each of which is a realization of a DEVS. Every module should be an autonomous and self-
contained unit that interacts with the other units by means of a well-defined mechanism.

The DISS simulation language is process-oriented. A simulator written in DISS
consists of a preamble, the Ezecutive Manager of the experiment and a set of process
descriptions. Each process is a realization of a DEVS specification type. The simulator is
viewed as a directed multigraph whose nodes are instances of these processes. The language
provides tools for the description of the behaviour of a DEVS by a self-contained autonomous
process. The statements and data structures of the language constitute a mechanism for
synchronizing the activities of the processes. This mechanism is based on an arc structure
that interconnects the processes. Each arc is capable of capturing the inter-node events and
variables defined by the output to input mapping which is represented by the are.

All process types are named in the preamble of the DISS program. along with
the external events and the inter-node state variables of the simulator. The inter-node state
variables defined for the needs of the simulator are appended to the DISS arc structure. All
the definitions of global variables and data structures should be included in the preamble. In
most cases only those structures that are passed from one node to the other will be declared
in the preamble. All other data structures that are needed for describing the model are the
state-variables of the individual DEVSs and are Qeﬁned locally by the processes.

The world view of DISS imposes a network structure for the simulator and defines
the mechanism by which the nodes interact. Therefore the language can provide various
services that are common to these types of simulators. These services reduce the amount of
code needed for a behavioural description of the model and thus enable the the designer of
the simulator to concentrate on the particular needs of his model.

In the following sections the salient properties and features of the DISS language
will be deseribed. This chapter is not intended to serve as a user guide or manual for the
language. All the information needed for writing and running DISS programs can be found
in the DISS user guide [Mel83a]

6.3.1 The Executive Manager

The execution of a DISS program is considered as a simulation EXPERIMENT that may

consist of several runs. An experiment is characterized by the topology of the simulated
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model, whereas the node type and the actual values of their input parameters specify a
run. The experiment is established and controlled by the Executive Manager process of the
simulator. All the activities of the Executive Manager are associated with the management
of the simulation experiment and are not related to the logic of the model. Both the topology
and the characteristics of the nodes are given as input data to the simulator. The Executive
Manager reads in a weighted neighbor list which represents the directed multigraph and the
types of the various nodes. The input parameter values for each individual node are read in
by the node itself.

The course of a run is directed by the Executive Manager by means of control events.
By scheduling such an event for a particular node the node is alerted imperatively and the
activity of the given event is executed. Control events may be used for simulating faulty
elements, for obtaining status reports at selected instances and for terminating the run.

Fig. 6.1 presents the basic structure of the Executive Manager. The process consists
of two main elements - the ezperiment and the run manager. The main task of the first
element is to establish all the data structures required for nodal interaction as determined
by the topology of the experiment. This element is executed only once and thus most of the
data structures which it establishes are permanent. The process instances that represent the
nodes are activated by the run manager that is executed once for each run. Once activated,
the processes can be controlled via control events. Such an event is also used for terminating
the run and consequently eliminates all process instances. Before proceeding to the next run
the manager must release all structures that were established by the run. Most of the tasks
to be accomplished by these two elements are executed by the powerful DISS statements

init.the.network, init.the.nodes and terminate.run

6.3.2 Wait Until Event

The realization of a Discrete Event System by a DISS process is based on the unique
wait.until.event scheduling mechanism of the language. The mechanism enables a process
to wait until one out of a dynamically selected set of events takes place. Once resumed, the
process undergoes a two-phase decoding procedure at the end of which the activity area of
the event that caused the resumption is reached and executed. The process manages the set
of acceptable events by means of a masking system. With the exception of Control events,

there is no way by which an event can cause a resumption of a process when the process
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process exec.manager

' ’experiment manager

init.the.network

while run.v < =runs.v, do

*’run manager

init.the.nodes

terminate.the.run

loop °’‘’of ever=ever
' 'experiment tremination
end ’’of process server

Figure 6.1. Structure of Executive Manager Process

considers this event unacceptable. The wait.until.event approach defines an inierrogative

scheduling mechanism that supports the autonomy of the process.

1.

This scheduling mechanism is composed of the following three elements:

Management on internal events - Each countdown clock of the DEVS specification
is related to an internal event in the process realization of the system. These events
are defined, scheduled and manipulated internally by the process. DISS provides a wide
variety of statements for managing internal events. Statements for scheduling, cancelling,
updating, suspending and resuming such events are part of the language and assist the
implementation of complex scheduling algorithms.

Inter node alerts - The mapping from an output variable to an input variable or
external event is executed implicitly at the source process of the arc. When an output
variable is mapped to an external event at the target process, the set.alert statement is
used for assigning a new value to the variable. The statement , when executed, informs
the scheduling system of DISS that an inter-node event has occured and thus an attempt
is made to alert the target process. The number of the output ports, the new value of the
output variable and the name of the external event are the attributes by which the source
process identifies an inter-node event and are thus part of the syntax of the set.alert
statement.

Masking - Whenever an event occures the scheduler of DISS consults the process masks
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in order to determine whether the process is waiting for this particular event. If the mask
is set, the event will be placed in a pending state until its mask is reset. The mask,
unmask and mask.priority statements provide a flexible tool for managing the masks
of anode. A mask is defined per event and per input port, and can be controlled according
to the priority levels of the ports.

The internal structure of the process is strongly affected by the properties of the
wait.until.event scheduling mechanism. The cyclic execution of the wait statement and the
two phase decoding procedure of events imposes a well-defined structure on the process. A
typical DISS process structure is shown in Fig. 6.2. Note that because of the structural
isolation of the event activities, the simulator is endowed with a second level of modularity.
An activity can be easily removed and replaced by another. This quality of the nodal structure
assists the programmer in merging two processes into one.

Each event, internal, external or control, has two attributes associated with it - a
value and port number. For an external event the first attribute holds the value of the output
variable of the source node that is mapped to this event. The second attribute is the number
of the event input port. The attributes of an internal event are assigned when the event is

scheduled and can be used for binding an event to a given port or entity.

6.3.3 Allocation of Nodal Data-Structures

The degree to which a process can be self-contained depends mainly on its ability
to declare variable and data structures locally. When a process uses global variables their
definition becomes a part of the process although it is not included in the process. A DISS
process can locally define a wide variety of data structures. In addition to variables and
arrays,” a DISS process can locally define sets, random variables, and statistics recording
probes. The three latter structures are defined by the establish statement. This statement,
in addition to its declarative role, leads to the establishment of an instance, represented by
a temporary entity, of the structure. The name of the structure, as given in the statement,
serves as a pointer to this entity.

Two types of sets - fifo and ranked by high value - can be defined by the establish
statement. All the set operations associated with these sets are executed by using SIMSCRIPT

I1.5 statements.

"In SIMSCRIPT IL5 only variables and arrays can be defined locally.
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process server

*'node intialization

while ever==ever,do

wait.until.event
select.event.type

select.int.event

‘namey’ * *activity of INTERNAL event name;

‘name;’ ' 7activity of INTERNAL event name;

select.ext.event

‘namey’ ' 2 activity of EXTERNAL event name;
*name;’ **activity of EXTERNAL event name;
select.con.event

‘name ’ * 2activity of CONTROL event name;
‘namey,’ * *activity of CONTROL event nameg,

loop ’’of ever==ever

* *node tremination

end ’’of process server

Figure 6.2. Typical Process Structure

By establishing a probe the process builds a tool for sampling a phenomenon and
for obtaining a set of statistical quantities for the sample. The probe structure together with
the measure statement constitute a mechanism for deriving the average, standard deviation,
mazimuin, and mintmum of a selected measure. The statistical computation method used for

deriving these quantities is determined by the type assigned to the probe when established.

6-1/




Two methods are available - the tally and accumulate methods [Russ83]. In the second method
a sample is weighted by the duration that measured phenomena remained unchanged with
the value that was sampled.

Due to the statistical properties of simulation experiments, confidence: intervals are
widely used for evaluating the quality of the results obtained from simulation runs. In order
to facilitate this evaluation process, a batch probe has been included in DISS. The probe
operates according to the batch mean method for statistical analysis|Gord78]. The size of
each batch into which the sample is divided is controlled by a global variable. The confidence
interval for a selected level of a batch probe is retrieved by using the conf.int function. In
order to evaluate the randomness of the batch means DISS provides a function for computing

the auto-correlation of these means[Law 79].

6.3.4 Tracing and Debugging

In the design of the DISS language special attention has been devoted to the development
of tracing and debugging utilities. Traces are a useful tool for relating the behaviour of
the simulator to the specification of the model. By following the sequence of state changes
the simulator undergoes, one can decide whether the implementation follows the transition
rules of the model. Due to the complexity and size of DPS simulators it is difficult to follow
their activities over a period of time, and to see how their various elements interact. A
considerable amount of data is required for describing the behaviour of such a simulator and '
- thus the handling of trace information might be an involved process.

The trace reporting utility of DISS is based on the snap statement and is controlled
by input parameters. At those program locations where a report is desired a snap statement
has to be inserted. The statement generates a report - a four letter literal and two integer
values - that is displayed in columns on the output device (see example in Appendix C). Each
column is associated with a node so that by following the data presented at a given column
the activities of a selected node can be traced. The lines of the tracing report are related to
simulation time, in increasing order. An attempt is made to place as many reports as possible
on the same line.

The four letter literal identifies a tracing report and relates it to the activity that
caused the report. By means of input parameters a subset of reports can be selected or

excluded according to their literals so that only reports that belong to this subset will be
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displayed. This facility together with a global tracing level mechanism® constitute a flexible
tracing utility. “

The debugging utility of DISS assist the programmer in isolating the cause of a run-
time error. The utility is based on a detailed event report that describes the current state of
the simulator. The report details the attributes of the active event and all immediaie, pending
and scheduled events. This information complements the data provided by the standard
trace-back report of SIMSCRIPT II.5 when a run-time error occurs. The status report can
be invoked by the programmer at selected locations by using the report.events statement.

The amount of data presented is controlled by two global DISS variables.

SDISS has a global variable named TRACE.L whose value changes in time according to a pattern controlled
by input parameters.




Chopter 1
Conclusions and Directions for Further Research

Since the early days of mankind the primary motivation for the establishment of communities
has been the idea that by being part of an organized group the capabilities of an. individual
are improved. The great progress in the area of inter-computer communication led to the
development of means by which stand-alone processing sub-systems can be integrated into
multi-computer ‘communities’. The major object of this investigation has been to define
methods by which a processing sub-system which belongs to such a community can take
advantage of the other members of this community in order to enhance its response time
and at the same time to assist the others in achieving the same goal. By doing so, a ‘small’

sub-system can provide the services of a ‘large’ one.

§7.1 Conclusions

The results obtained from the study of the LB algorithms which were defined in this thesis
have demonstrated the ability of the task migration process to reduce the response time of
a DPS. In the opening analysis it was shown that in a multi-resource system which does not
employ an LB mechanism, there is a high probability that a task will be waiting for service
while at the same time a server which is capable of serving it, is idling. The different load
balancing algorithms which were defined, establish a set of distributed decision processes
which DPSs of various kinds may use in order to take advantage of the multiplicity of their
resources. The performance measures obtained in the study point at the ability of the task
migration process to reduce the systems’ response time even when the communication and the

processing overheads associated with this process are none trivial. This ability indicates that



task migration is a ‘practical’ approach and thus should be part of any distributed processing

environment

Reduction in the expected waiting time of a task due to load balancing is one of the
benefits which a number of stand-alone systems may achive by establishing a multi-computer
community. Although in some cases a larger community does not mean better performance,
an individual sub-system can improve the quality of services it provides by joining 2 multi-
computer environment. However, in order to achieve the desired improvement, the LB
algorithm has to be adjusted to the size as well as to the other properties of the system. The
taxonomy of load balancing which was presented in chapter 2 was used throughout the study
for describing and characterizing the different LB algorithms that were discussed in the thesis.
In the various case-studies which were analyzed in the course of this investigation it was shown
that under a given set of operating conditions and for a system with given characteristics,
different balancing algorithms might have opposing effects on the system’s performance.
Nevertheless, when a ‘wrong’ migration criterion is selected or a too ‘liberal’ information

policy is employed, the LB process may become a cause of performance degradation.

It was shown that for a broadcast DPS, higher resource multiplicity does not neces-
sarily result in better response time. Each of the LB algorithms which were defined for this
type of systems reaches a point at which an increase in the number of servers decreases the
performance of the system. Therefore when a number of processing systems is given it mmight
be better, as far as the W'q is concerned, to assemble them into two or more multi-resource
systems than to integrate them into one system. It was found that when an LB algorithm
which utilizes the broadcast capabilities of the communication subnet is used, a front-end
communication processor has to be attatched to each system. The processing capacity which

this type of message requires should not be taken from the main processor.

Since the addition of a node to a store-and-forward system means an increase in the
number of communication links, an increase in the size of such a system does not cause a
degradation in the performance of the system. However, the manner in which the sub-systems
which constitute such a system are interconnected, i.e. the topology of the communication
subnet, does effect the ability of the LB process to enhance the system response time. This
interdependency between the topology and the behaviour of the LB process should be taken

into consideration when a store-and-forward system is designed.

The strong interdependence between the DPS characteristics and the preformance of

the LB algorithm demonstrate the importance of performance prediction as a design tool for
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such decision processess. It was found that when simulation is used as a solution-method fora
DPS model the DISS methodology and simulation language assist the design, the realization
and the execution of the simulation study. The modularity of the simulators and the utilities
provided by DISS have enhanced the construction process of the simulators which were
needed for this thesis. These advantages of the DISS approach have been demonstrated by
a number of other studies which have analyzed various aspects of the performance of DPSs
[Levi82],[Camp83],[Kant83].

§7.2 Directions for Further Research
All the studies of the load balancing problem in DPS systems have considered the task migra-

tion process as an isolated phenomenon. Now as a better understanding of the properties
of this process has been acquired, the interaction between the load balancing process and
other phenomena associated with DPSs should be investigated. Methods for incorporating
load balancing considerations into distributed database management systems and distributed
computing mechanisms, should be developed and their performance studied. The information
which has been accumulated on the basic characteristics of load balancing algorithms should
be used as a basis for studies which focus on more specific aspects of the problem.

Another area for research should be to try to develop a framework for a comparative
evaluation of control processes for DPS. The dependency between the behaviour of these
algorithms and the system parameters deters from any attempt to select the ultimately
‘best’ algorithm. For distributed routing, concurrency control and LB algorithms there is no
absolute answer to the question ‘ss algorithm A better then B #° (see [Mcqu80] and [Gali82]).
Therefore a systematic scheme together with a set of well defined criteria for evaluating such
algorithms has to be established.

Performance prediction will be the main tool such a scheme would employ. More
effort has to be devoted to the development of numerical, iterative and simulation. methods for
solving performance models of DPSs. An attempt should be made to use advanced iterative
solution schemes for solving multi-dimensional birth and death processes. The framwork
for modeling and simulating DPSs that has been defined by DISS is not yet a complete
structure. Additional utilities should be added to the language and a better understanding of

the process in which a system specification is transformed into a model should be acquired.



Appendix A

§A.1 TR for Look Ahead policy

Assume an M/M/2-like system with a ‘look ahead’ migration .policy and let A.=
{P;, P>} be the set of the system processors. Due to the migration policy and the properties
of an M/M/m-like system, AL{4,t) can be one or zero and the probability that the system
will be in a WI state is zero. A transfer will be initiated whenever the AL(A,t) is one, and
a task has arrived at the longer queue or departed from the shorter one. Thus the transfer

rate of this policy is given by
TRy = (\ + i) P[AL(A,t) = 1] — jiP[1 task in the system| (1)

Since P, is zero, the above equation can be rewritten as

TRy = (\+}) Z Pyipy — BPy (@)
=0
where P; is the probability of having ¢ tasks in an M/M/2 system. Replacing F; by P, 2¢°
[Klei75] and factorizing the following can be derived

TR = 2Pooln+ 1) S 0 — ®)

t==0
By using the equation for the sum of a geometric series the final equation for TR, is obtained:

2
TR, = 2iiPy (i—’i_—ﬁ (4)

§A.2 TR for “Trouble Shooting’ Policy

Assume an M/M/2-like system which is controlled by the ‘trouble shooting’ migra-
tion policy. In such a system a task is transferred from one queue to another whenever one
of the following events occurs:

Bl A task has arrived at 2 non-empty queue when there is only one task in the system.
w2 A server has completed the service of a task, no other tasks are waiting in its queue

and there are two or more tasks in the system.
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Therefore the transfer rate of the system is given by

TRy = ) P|one task in the system] -+
ji P[one task in one server and two or more in the other]

(1)

By defining
P; -éP[nl = { and ng = j] (2)
and
Py=Y (Pij+ Pji) (3)
>
Eq. (1) can be rewritten as
TRy = )\Po -+ ﬁi’l (4)

and the following set of equations can be derived
AP; = f[Pi1 + 2Pit1,i41] i2>1 (5)
Summing Eq. (5) for all applicable ¢ yields
xZP,-:ﬁ(Z P;+2ZP;,5) (6)
i=1 =2 =2

Since 3572, P+ Py = 1 and by factorizing the following equation for Py can be derived

P=(@1-p(1—-Po—Poo)+2) Pis (7)

=2
In an M/M/2-like system in which no tasks are transferred, all task distributions with the
same total number of tasks are equally probable. Therefore because of the properties of the

‘migration policy of the system the following inequalities can be concluded:

P;; > ﬁP[% tasks in the system] i>1 (8)
1_.. . .
P;1 < ;P[z+1 tasks in the system)] i2>1 (9)
A 1
Py = §[P01 + P10] (10)

A-2



From (8),(9),(10) and since Py; is zero the following lower bound for P;is obtained
. = 1
P> (—p)(1—pr—P)+2 ), i e (11)
§==9 (27"'— 1)

where P; is the probability of having i tasks in an equivalent M/M/2 system. From (1) and
(11) and by replacing P; by 2P p* the following lower bound for TR is derived

TRy > il —p+Po(1+0)lp ln(—}é—j}) 1) (12)

On the other hand from the definition of P; and Eq. (9) it follows that

P1=2§:P;,1§2i%ﬂ+1 (13)

1=2 =2

By the same reasoning used for deriving Eq. (12) the following upper bound for TRy is
derived from (5) and Eq. (13)

TR, < ji2Poplp — 2[p-+ 10— )]] (13)

5A.3 TDF;; for S-BTSQSS systems

Assume two independent M/M/1 systems. the service rate of each system is (1 — &¢)i and
task arrive at each queue at a rate of A tasks per time unit. Let ¢y () and go(t) be their queue

sizes at time ¢ respectively and let i (k. L, t) be defined as

ﬁi,j(li k, t) éP[(Ql(t)) Q2(t)) = (k) l) eU l (Q1(0)1 QZ(O) = (7:1 .7) € U and (1)
(a1(2), @2(=)) € U for = € (0, 1)

where U = {(n,m) | n,m >0A(n—m—1> Ly) A (n—m > mAp)}
From the properties of an M/M/1 system it follows that

a o -~ A
""pz',j(l; kat) = —'[2>‘ + (1 - 5f)[.t(6k -+ el)]pi,j(l: k, t)

at
+ (L= 6)R[p; (b +1,0,8) + Dy gk, L+ L)  forallk,leU  (2)
+ >‘[ﬁi,j(’c - 1) l) t) -+ ﬁ:',j(]cn L— 11 t)]
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where §; ;(n, m,t):A—-O for n,m¢U.
From the definition of the AT algorithm for a S-BTSQSS system it can be shown that for

such a system

Drar(i, () 2 Pltransfer initiated at t=0 with TD(0)={(1,j) will terminate in (f,t + Af) |
+ (1 — 87)itDrde(s,5)(E) + )‘ﬁTar(:',j)v(t)) As

it had not terminated in [0,t]] = | £ -
0,1 ( Pun(i,j)(®)
(3)
with
ol A A
Dup(i,)(E}= Z p; ;(k, L, t)
(k)€U

R A R
Prari, )= E i (ks L)
(k. DEV

, A .
Prae(i,5)(t)= > bk L)
(k)EW

VA {(n,m)|(n,m) €U A (n,m=+1) ¢ U}
W2 {(n,m) | (n,m)€U A (n—1,m)¢ U}

From (1) and (3) the following expression for L; () in a S-BTSQSS system can be-derived

Li i) = {PTar(c, DY (ﬂ S (U BBy ik, 1, t)

LkeU

+ {Pup(i 5 OF (L = 59)BPTde(s ) () > (k+Dpi (kL0 @)
(kDEW

+ >‘pTar(i,j) (t) E (k + l)ﬁi,j(k: l: t)))

(kv
By similar reasoning it can be shown that for S-BTSQSS systems the p.d.f of the length of
o transfer which was initiated at ¢ = 0 with TD(0) = 1,3, fer(i,5) (), is given by

ftr(i,j)(t) = e—ﬂt{ﬂpub(i.j) (t)(l - 6.f)ﬁ Z i)i,j(kl 2 t) + A Z ﬁi,j(k) L t)} (5)

(k,)EW (k,1)EV

Since in the definition of L; ;(£) it is assumed that transfers do not terminate in the interval
[0,¢], L; ;(2) is given by:
L) =D (k+Dpilk, sl ) ©)

k,i>0
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with pi(k, t) being the probability that an M/M/1 system with service rate ji and arrival rate
\ will have k customers at time ¢ given that there were ¢ customers at ¢ = 0. According to
the definition given in 3.5.1 by computing (4), (5) and (6) the throughput degradation factor

of a transmission in an S-BTSQSS system can be derived.

§A.4 TDF;; for NS-BTSQSS Systems

The computation of the throughput degradation factor for a NS-BTSQSS is much simrpler
than in the case of a stop system. Assume an M/M/1 system with service rate (1— ds) and
arrival rate \ and let p,(k,t) be the probability that the system will have k customers at time
t given that there were i customers at £ = 0 then it follows that NS-BTSQSS L; ;(t) is given
by

L'.'J.(t) = Z (k + l)ﬁ,'_l(k:t)f’j(l) t) +1 (1)
k>0

The p.d.f of the duration of a transfer for such a system is the following:
fertivi)(8) = B (2)

Li j(#) is the same as for the S-BTSQSS system and thus from (1) (2) and Eq. (5) im the

previous section TDF; ; for a nostop system can be derived.

§A.5 SF;; for S-BTSQSS system

A transfer of duration ¢ will not be stopped in the middle if during the transfer.period the
task distribution meet the criterion of the migration policy. The probability that this will
happen for a transfer that was initiated at ¢ = 0 with DT(0) = (4, 5) is:

¢

Pltransfer of length t was not stopped in the middle | TD(0) = (3,5)] =1 - f Pub(s,5) (E)dE
0

(1)

Since the duration of a transfer has a negative exponential distribution the following expres-

sion for SF; ; can be obtained:

oo ©opt
SF;J:/(; ﬁe_ﬂt(l—/o pub(,-,j)(:c)dz)dt (3)
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Appendix B-DEVS Specification

§B.1 DEVS specification

A defipition of a Discrete event system specification is presented in this:section. The
definition extends the specification structure as has been defined by Ziegler in [Zeig76], so
that masks and tnput/output ports are included in it. The world view of DISS that considers
DEVS as autonomous elements that can be loosely coupled one to the other, motivated
this extention. This extended structure provides the means for describing the behaviour
of autonomous DEVS. Due to the port structures included in the specification definitions of
DEVS network should not include elements from the state sets of the individual systems. The
definition of the network then reflects the looseness of the coupling between its components.

Definition: A DEVS specification is a structure!
- M -
M =< 1M sM oPM KM §M ¢M \M ¢
where
PY = {IPM,..,IPM} is a structure - the input ports structure. Each of the indivdual
input ports is a structure:
P = {x¥, 1M}
with the first element of the structure being the set of external events of the input port
1
X?’I = (x?f,...,xf-f’)
and the second element being the set of input variables of port 1:

x¥=(pY,...8))

SM s a set - the set of sequential states. §M is the cross product of the range of the state

variables, ay,..., k.
dPM= {OP{M )y OPf\n'[ } is a structure - the output port structure. Each output port is a.

set of output variables:

OPM =(yM,....7}¥)

1an attempt was made in the definition to use the same notation used in [Zeig76)as much as possible.
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EM

— {KM,..,KM} is a structure - the mask structure. The elements of the structure

are sets of masks

M __ (.M M
K; == (K"-l,...,ﬂ.-‘.

n{-‘f is the mask of the external event x,-“f . The masks serve as a means by which
the system communicates with its surrounding. By setting a mask the system declares
whether it consideres a given change in the state of the universe around it as an event.
Therefore an external event may occur at time ¢ only if its mask is set at that time.

is a function - the quasitransition function. Let @™ = {(s,¢) |8 € S Mo<e< t(s)}
be the state space of the system and ® ¢ UX M 3 symbol that denotes the ‘nonevent’

then §™ is a mapping:
§M . QM x (X MU{®}) X INPUTS — §M

where INPUTS is the cross product of the range of all input variables and £(s) is the
duration of state 8 when no external events occur.

is a function - the masking function. The masking function maps from QM XINPUTS
onto K M .

is a function - the output function which maps from QM x INPUTS onto 6PM

is 2 function - the time advance function. f is a mapping from S into to the nonnegative

reals:
1:85— R;‘:w

The value of (s) is defined to be min {o;} where {o;} is the set of countdown-clock
state variables of the system M. Therefore £(s) can be interpreted as the duration of

state 8 when the system is isolated (no external events).
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Figure C.1. The Distributed System
Appendix C-Example

Assume that a simulation study of the distributed processing system presented in Fig C.1.
has to be performed. In this example the main elements of the modeling phase of the
study are described and the listing of a simulator (written in DISS) that realizes the model,
is presented. The system consists of a number of hosts that are interconnected by a
message switching store-and-forward communication system. The subnet is made up of
communication processors, ep, that are connected by full-duplex communication lines. Each
cp has a finite buffer space in which the messages are stored. Therefore the communication
protocol must perform a ‘space reservation’ step before a message is transmitted. Each host
receives an independent stream of tasks. Every task is assigned an execution site at which
it will be served. This assignment is performed by the resource allocation algorithm of the

distributed system. The task departs from the system via the host of entry into the system.

§C.1 Model Definition

C.1.1 Structural Abstraction



C.1.1.1 Mapping to 2 Directed Graph

The elements of the above system may be grouped into nodes in a number of ways
three of which are listed below:

1.  Each element of the system defines a node. The model will include two types of nodes.
9. The host and the ep are grouped into one node so that the model has only one type of
node. An input parameter will determine whether the node is a host, a ep or both.

3. A host defines one type of node whereas all the communication processors of the network

are grouped into a second node type. This second node will represent the entire network.

In this case the topology of the network will be represented internally by this node.
The selection of a mapping scheme depends strongly on the experimental frame of the
study(see [Mel83b] for a detailed discussion). Each of the above schemes can be considered as
being the best in keeping with the requirements of different studies. One scheme may be more
modular whereas another may have a more efficient implementation. A detailed .analysis of
the above schemes is beyond the scope of this example. For the purpose of this example it

will be assumed that the first scheme has been selected.

C.1.1.2 Arc definition

The inter-node state variables of the model are the following:

INV1 - buffer.full indicates the state of the message buffer of a cp.

INV?2 - wait will be set whenever the node wants to transfer a message along the arc and the
buffer of the target node is full.

The inter-node events of the model are the following:

INE1 - start.trans form a host or a cp to a ep. Indicates that the source node has started
to send data into a buffer at the target.

INE2 - end.trans between every pair of interconnected podes. The occurrence of this event
indicates that the last data unit of the message has arrived at the buffer.

INES - buffer.avail this event takes place when a ep whose buffer state has changed from
full to available, assigns a buffer to a node which is in a wait state. Such an event
may be caused only by a ep but should be accepted by both types.

Note that due to this approach to the inter-nodal information exchange the ep-is given full

autonomy in allocating available buffer space. The algorithm used by the ep is transparent

to the node that sends the message. In this example it is assumed that each ep supports

a dedicated buffer space for each input port. By means of the buffer.full variable and
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the buffer.avail event it can select which waiting node will be given a buffer:space that
has become available. In addition to the dedicated buffers, a number of spare buffers are
provided, and determined as an input parameter. Before each node can be implemented as

a process the Internal Events of each node has to be defined.

C.1.2 Behavioural Abstraction

Only the internal events of the host will be listed here. All the other details of the
behavioural description of the two DEVS can be derived from the listing of the simulator
which is appended to the example. All the reserved names of DISS appear in the listings in

capital laters.

C.1.2.1 The host

The host node includes the following Internal Events:

HIV1 - end.message This event represents the delay associated with the transfer of a mes-
sage.

HIV2 - end.task The end of the execution period of a task is represented by this-event.

HIV3 - task.arrival The arrival procedure of the tasks is modeled by this event. The arrival

of one task causes the scheduling of the next arrival.

§C.2 The Simulator

C.2.1 The Preamble
309 ’’preamble for point-to-point simulator

310 define VALUE.E to mean address.e **21:30:13 83/08/03
311

312

313 DECLAREF. end.trans X.EVENT(1)

314 DECLARE buffer.avail X.EVENT (2)

316 DECLARE start.trans X.EVENT (3)

316

317 DECLARE termination C.EVENT (1)

318

319 processes include host, communication.processor
320 ’=zmzooTm¢s

321

322 temporary entities



323
324
326

326
327

328
329

330

331
332
333

334
336

336
3s7

338

every ARC has a buffer.full, 2 walt
define buffer.full , wait as integer variables

every task may belong to a diss.set and has a 1d,
a destination, a length, 2 arrival.time, an entrance.gite, a buf.n
and an exec.time

define destination . id, task.counter, emtrance.site, buf.mo.
as integer variables
define arrival.time, lenmgth, exec.time as double variables

define n.hosts as integer variables

end '’ of point-to-peint simulator preamble

C.2.2 The Host

i
2
3
4
6
-]
7
8

TS ol ol ol e =
m~NoOMNn kxWor OD

32
33
34
36

process host *222:50:41  83/07/29
DECLARE end.message I.EVENT(1)
DECLARE end.execution I.EVENT(2)
DECLARE arrival 1.EVERT(3)

ESTABLISH taskq T0.BE fifo.set
ESTABLISH outq T0.BE fifo.set
ESTABLISH sys.time TO.BE t.r.probe

define 1, arr.seed, exec.seed, trans.seed, task.counter as intsger va

let arr.seed NODE.V

let exec.seed N.NODE+NODE.V

let trans.seed 2+N.NODE+NODE.V

define int.arrival, low.exec, high.exec, low.trans, high.trans

as double wvariables

read int.arrival start new card
read low.exec, high.exec, low.trans, high.trans gtart. new card

write NUDE.V,int.arrival,low.exec.high.axec.1ow.trana.high.trzns as
i3,564de,1), /. /

EST.PORTs

define port.util as 1-dim integer array
reserve port.util(*) as 0UT.DEGREE (NODE. V)
for i = 1 to OUT.DEGREE(NODE.V) by 2, do
ESTABLISH port.util(i) T0.BE a.i.probe
loop
SET.TIMER axponential.f(int.arrival.arr.sead) FOR.E arrival

while ever = ever , do
WAIT.UNTIL.EVENT
SELECT.EVENT. TYPE
SELECT.EXT.EVENT
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39

‘end.trans’ ’’a message has arrived

AT 3 if TRACE.L>2 SNAP ®eota®,0,id (VALUE.E) always
if entrance.site(VALUE.E)= HODE.V '’a local task has arrived
Vizzhe MEASURE time.v-arrival.time(VALUE.E) WITH.PROBE sys.time
destroy the task called VALUE.E
else ''an external task has arrived

file the VALUE.E in SET(taskq)
if n.SET(taskg) = 1  ’’start to execute the new task

SET.TIMER exec.time(VALUE.E) FOR.E end.execution
always **of n.SET(taskq)

always "*of entrance.site(VALUE.E)
cycle ''of ever = aver

'buffer.avail’ ''a wvanted cp has an available buffer

subtract 1 from PORI.E ’’switch to transmission port

let wait (OUT.ARC(PORTI.E)) = 0 '’reset inter node variable
TraEd? if TRACE.L>2 SNAP °bfav®,destination(f.SET(outq)),PORT.E a
go to beg.trans '*intiate a message transmission

SELECT. INT.EVENT

'end.message’ °'‘end of transmission delay
remove first task from SET (outq)

A R MEASURE O WITH.PROBE port.util(PORT.E)
SET.ALERT PORT.E FOR.E end.trans, task ’'‘’an inter node even
AL T R if TRACE.L>2 SHAP ®eott"®,destination(task),id(task) always
if n.SET(outq) > 0 go to beg.trans always
cycle '’'of ever = ever
'end.execution’ '’end of task execution

remove the first task from SET(taskq)
YrkE>T? if TRACE.L>2 SNAP "eote®,0,id(task) always
if n.SET(taskq) 4=0 ' 'more tasks to process
SET.TIMER exec.time(f.SET(taskq)) FOR.E end.execution
always **of n.SET(taskq)
if entrance.site(task) = NODE.V °’was it a local task
Prz=> MEASURE time.v-arrival.time(task) ¥ITH.PROBE sys.time
destroy the task

else '*return task to arr.host
let destination(task) = entrance.site(task)
file task in SET (outq)

if n.SET(outq) = 1 go to beg.trams always

always '’ of entrance.site(task)
cycle '’of ever = ever
‘arrival’

SET.TIMER exponential.f(int.arrival,arr.seed) FOR.E arrival

create & ’'’new’’ task
let arrival.time(task) = time.v

C-5



89 add 1 to task.counter

90 let id(task) = NODE.V#100000 + task.counter

g1 let exec.time(task) = uniform.f(low.exec,high.exec,exec.seed
92 let entrance.site(task) = NODE.V

93 let destination(task)=randi.f(1,n.hosts,arr.seed)

94 CER>’ if TRACE.L>2 SNAP "tarr®,destination(task),id(task) always
96 if destination(task) = NODE.V '’execute the task localy

96 file task in SET(taskq)

97 if n.SET(taskq) = 1 '’is it the only task

08 SET.TIMER exec.time(task) FOR.E end.execution

99 always ''of n.SET(taskq)

100 else ''execute task at a remote host

101 let length(task) = uniform.f(low.trans,high.trans,trans.s
102 file task in SET(outq)

103 if n.SET(outq) = 1 go to beg.trans always

104 always ''of destination(task)

106 cycle '*of ever = ever

106

107 *beg.trans’ ''try to intiate a message transmission

108

109 let PORT.E = SEL.PORT(destination(f.SET(outq)))

110 if buffer.full(IN.ARC(PORT.E)) = O ’’the target buffer is av
111 SET.TIMER length(f.SET(outq)) FOR.E end.message, 0, port
112 ==t MEASURE 1 WITH.PROBE port.util(PURT.E)

113 SET.ALERT PORT.E FOR.E start.trans ’’inmter node event
114 else *'pbuffer is not available

116 let wait (OUT.ARC(PORT.E)) = 1 '’set inter node variable
116 always ’'’'of buffer.full(IN.ARC(PORT.E))

117 cycle ‘'ever = ever

118

1;8 SELECT.CON.EVENT

1

121 *termination’ ’’print statistics and terminate

122 write NODE.V, AVG.P(sys.time) as 1 4,d (10,3)

123 for i = 1 to OUT.DEGREE(NODE.V) by 2

124 write NUM.P(port.util(i))/2,AVG.P(port.util(1)) as i B,d(7
125 leave

126

127 loop

128 for each task in SET(outg) , do

129 remove the task from SET(outq) ’’and’’ destroy the task loop
130 for each task in SET(taskq) , do

131 remove the task from SET(taskq) ’’and’® destroy the task loop
132

133 DISPOSE.NOFE

134 end ’'’'of process host

C.2.3 The CP

1 process communication.processor
2 DECLARE end.message I.EVENT(1)
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10

12
i3
14
15
16
17
i8
19

21
22
23
24
26
26
27
28
29
30
31
32
33
34
3B
36
37
38

40
41
42
43
44
45
46
47

48
49

50
51
52
53
54
55

&7

define ever as an integer variable

define i, outb, des.port, rund.buff, spb.ctr, act.message, available
as integer variables

define buf.vec, out.port, port.util as i-dim integer arrays

EST.PORTs

read outdb start new card
write NODE.V, outb as i 3,b 37,1 2,/,/
reserve out.port(*), port.util(*) as OUT.DEGREE(NODE.V)
reserve buf.vec(*) as in.degree(NODE.V) + outb
for i = 1 to OUT.DEGREE(NODE.V) by 2, do
ESTABLISH out.port(i) TO.BE fifo.set
ESTABLISH port.util(i) TO0.BE a.i.probe

loop

let rund.buff = 2

wvhile ever = ever, do
¥AIT.UNTIL.EVENT
SELECT.EVENT.TYPE

’I**)Il

Il**)’l

’l**)’l

SELECT .EXT.EVERT

*gtart.trans’ ’’a neighbor has intiated a tramsfer
let buffer.full(OUT.ARC(PORT.E)) = i ’’set inter node-variab
if TRACE.L>2 SNAP ®sota®, PORT.E, O always
cycle ’’of ever = ever

'end.trans’ ''a message has arrived
if TRACE.L>2 SNAP ®"eota®”, 0,1d (VALUE.E) always
if spb.ctr < outb ’’there is a free s - buffer
let buf.no(VALUE.E) = 0
add 1 to spb.ctr ''move the message to a s-buffer
let buffer.full(OUT.ARC(PORT.E)) = O
if wait (IN.ARC(PORT.E)) = 1 **the source has a nothe

SET.ALERT PORT.E+i FOR.E buffer.avail **inter node @
always ’''of buffer.full
else ''no s-buffer is avialble
let buf.no(VALUE.E) = PORT.E+i
let buf.vec (PORT.E+1) = VALUE.E
always °'’of sbp.ctr

let PORT.E = SEL.PORT(destination (VALUE.E))
file VALUE.E in SET(out.port (PORI.E))

if n.SET(out.port(PORT.E)) = 1 go to beg.trans always
cycle

‘buffer.avail’ ’’input buffer via output PORT.E is avall.

subtract 1 from PORI.E
if TRACE.L >2 SNAP ®bufa®, PORT.E,O always

let wait(OUT.ARC(PORT.E)) = 0
go to beg.trans

SELECT.INT.EVENT



100
101

102
103
104
106
106

107
108

109
110

'end .message’

[ = A if TRACE.L > 2 SNAP "entt®, 0,id(VALUE.E) always
vrzzpr MEASURE O WITH.PROBE port.util (PORT.E)
remove the VALUE.E from SET(out.port(PORI.E))
SET.ALERT PORT.E FOR.E end.trans, VALUE.E
let available = O
if buf.no(VALUE.E) = O '’it is located in a spare buffer
subtract 1 from spb.ctr
for i = 0 to in.degree(NODE.V)-2 by 2 with
buf . vec (mod . £ (rund.buff+i,in.degree (NODE.V))+2) 4= 0
find the first case if found
let rund.buff=mod.f (rund.buff+i,in.degree(NODE.V))+2
add 1 to spb.ctr
let buf.no(buf.vec(rund.buff)) =0
let buf.vec(rund.buff) = 0
let buffer.full(OUT.ARC(rund.buff-1)) = 0

let available = rund.buff
always
elge ’’in the in.port buifers
let buffer.full(0UT.ARC(buf.no(VALUE.E)-1))=0
let buf.vec(buf.no(VALUE.E)) = O
let available = buf.no(VALUE.E)
alvays
if available 4=0 and wait(IN.ARC(available-1)) = 1
SET.ALERT available FOR.E buffer.avall
always

if SET(out.port(PORT.E)) is empty cycle always

‘beg.trans’

if buffer.full(IN.ARC(PORT.E))=0
let act.message = f.SET(out.port(PORT.E))

TrAR>’ if TRACE.L>2 SNAP ®"bgtr®,0,id(act.message) always
Prz=> MEASURE 1 WITH.PROBE port.util(PORT.E)
SET.TIMER length(act.message) FOR.E
end.message, act.message, PORI.E
if routing.matrix(NODE.V,destination(act.message))
i= destination(act.message)

SET.ALERT PORT.E FOR.E gtart.trans
always

else

let wait(OUT.ARC(PORT.E)) =1
alvays
cycle

SELECT.CON.EVENT

'termination’
write NODE.V as i 3,8 11

for i = 1 to OUT.DEGREE(NODE.V) by 2
write NUM.P(port.util(i))/2,AVG.P(port.util(i)) as i 5,

write as /,/
leave




111
112

113
114
115
116

loop
for i = 1 to OUT.DEGREE(NODE.V) by 2
for each task in SET(out.port(i)) , do
remove task from SET(out.port(i)) '‘and’’destroy the task.loo
dispose.nofe

117 end °’’of process communication.processor

C.2.4 The Executive Manager

1 process to EXEC.MANAGER

2 define 1 , j , node as integer variables

3

4 use 15 for input

b INIT.THE.NETWORK

6

7 use b for input

8 print.neighbor.matrix 6 , 1

9

10 read n.hosts , SIM.TIME start new card

11 INIT.TRACING

12 INIT.SEEDS 100 , O

13

14 write as °node parameters®,/ for 1 = 1 to 15 write as ®*=" write
iB write as ‘®node i.a.t 1.x.t h.x.t 1.t.t h.t.t spr imput output®,/,
i6 " no. sec. Bec. sec. Bsec. sec. buf ports ports®,/
17 for 1 = 1 to 53 write as "=® write as /

18

19 init.the.nodes

20

21 work SIM.TIME units

22

23 for node = 1 to N.HODE SET.CORTROL node FOR.E termination

24

25 write as "results®,/ for i = 1 to 6 write as "=" write as /,/
26 write as "node avg t port no. 1 port no. 3 port no. &%,
27 ® port no. 7 port no. 9°,/,

28 " po. exec tim. megs util. msgs util. msgs util.®,
29 * msgs util. megs util.®,/

30 for i = 1 to 80 write as =" write as /,/

31

32 TERMINATE.RUN

33

34 end '’ of process EXEC.MANAGER

C.2.5 Example of Output



point-to-point network for example

neighbor list (to (from , weight, count))
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C.2.6 Example of Tracing Report
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file- 1 run # 1 distributed system simulator 07/29/88 20:58:15
time 1 2 8 4 5 8 7 8 9 10 11 12
500.4048 tarr( 1, 800017) pota( 3, 0)
500.65498 esote{ 0, BO0015) sota( 8, 0)

£00.8781 entt( O, 500018)
£00.8781 eota( 0, B00013)
500.8781 bgtr{ 0, 500013)
501.08456 eott( 1, 800017) eota( 0O, B0OOO17)
501.0645 gota( 9, 0) bgtr{ 0, 800017)
501.2622 bfav( 3, 300018) entt( 0, 400018)

301.2622 sotng 3, 0)

S0t 44 entt( 0, 400019)

501.4144 eota( 0, 400019)

B01.4144 bgtr( 0, 400019)

B01.4769 ecte( 0, 800016)

501.5106 eott( 8, 800015) eota( 0, 800015)

501.5106 bgtr( 0, 800015) sota( B, 0)
501.5848 tarr( 6, 300018) not;( 1, 0)

501.7244 ectal 0, B00017) entt{ 0, 8§00017)
502.3815 entt( 0, 500013)
502.4715 antt( 0, B0001E) eota( O, 60001B)
502.4716 bgtr( 0, B800016)
502.8082 eott{ 8, 3006018) eota( 0, 300018)

502.8082 bgtr( 0, 300018)

503.0218 entt( 0, 400019)

503.0218 bgtr( O, 800017)

503.1229 eott{ &, 300018) eota( 0, 300019)

503.1229 bgtr( 0, 300019)

508.1229 sota( 7, 0)
£03.4324 entt{ O, B0001E)
503.68817 entt( 0, 800017)

503.9641 entt( O, 300018)

B04.4324 escte( 0, 800011) sots{ 1, 0)
504.8611 entt( 0, 300019)

504.6611 eota( 0, 300019)
504.8611 bgtr( 0, 300019)
504.9890 sote( 0, 100019) sota( 3, 0)
5065.9161 eott( 6, 800011) eota( O, 800011)
B0B6.9181 bgtr( 0, 600011)
505.9181 sota( 9, o)
506.1992 entt( 0, 300019)
508.2182 eote{ 0, 200021)

506.4010 tarr( 2, 100022) sotal 1, 0)

506.8840 eott( 1, 100019) eota( O, 100018)
508.6840 sotal( 9, 0) bgtr( 0, 100019)
508.9870 eott( 2, 100022) aotaé 0, 100022)

508.9870 bgtr( 0, 100022)

507.3998 entt( O, 600011)
507.3998 eota( 0, 800011)
507.3998 bgtr( 0, 800011)
507.5330 entt( 0, 100022)

508.3789 eota( 0, 100019) entt( 0, 100019)
508.3789 bgtr( 0, 100019)

508.7733 eote( 0, 400018) sota{ 1, 0)

508.8638 entt( 0, 600011)
510.073% entt{ 0, 100019)

510.3807 eott( 4, 400019) eota( 0, 400019)

510.8807 bgtr( 0, 400019)

510.3807 uota( 5, 0)

£10.7470 eote( O, 300019) sots( .38, 0)

..........................................................................................

»fav - buffer available

eota - e.o.task.arrival
tarr - task arrival

bgtr - begin transfer
eote ~ a.0.task execution

buta - buffer avaiiabie
sott ~ e.0.task transfer

C-11

...............

enta - end of task arrivai
sota - g.o.task arrival
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