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Abstracg

We say that a digraph D has the odd cycle property if there exists an
edge subset S such that every cycle of D has an odd number of edges from
S. We give necessary and sufficient conditions for a digraph to have the odd

cycle property. We also consider the analoguous problem for graphs.

1. Introduction

A signed digraph (D,S), is a digraph D whose edges are associated with

signs, positive or negative, where S is the set of negative edges. Several
problems related to the parity of the number of negative edges in the cycles
of signed graphs and digraphs have been studied. For instance, balanced
signed digraphs and graphs have been.studied extensively. See for example [2].
A signed digraph (graph) is balanced if all its cycles have an even (possibly
zero) number of negative edges. BAnother, more recent example is the study of
signed digraphs, all of whose cycles have an odd number of negative edges.

This problem has been considered in the study of qualitative matrices, see

for example [1,4,6,7]. 1et A = (aij) be a real n x n matrix with aii < 0.

We say that A is sign-nonsingular (or an L-matrix) if A is nonsingular

and every matrix B whose sign-pattern is the same as the sign-pattern of a4,



is nonsingular. We associate with A a signed digraph (D(a),S) with vertex
set {1,2,...,n} corresponding to the rows of A and with edge set
{(,3): aij # 0}. The set S of negative edges consists of those edges
(i,3) for which aij < 0. It has been shown that A is sign-nonsingular if
and only if every elementary cycle in D(A) has an odd number of negative
edges [1]. The time complexity of recognizing digraphs with the above property
is still open. However, the time-complexity of several related problems have
been determined in [4,5,8].

It seems natural to consider the following question: Given a digraph D,
is there a subset S of the edge set such that every cycle of D has an odd
number of edges from S? If such a set S exists, we say that D has the

odd cycle property. We study this question together with the analogous question

for graphs. Harary, Lundgren and Maybee [3] have independently considered this
question and have presented three families of digraphs with the odd cycle property.
They have however left open the problem of characterizing general digraphs with
the odd cycle property. We give here a necessary and sufficient condition for

a digraph to have the odd cycle property. We also consider the special class of
symmetric digraphs, which is one of the families treated in [3]. Our charac-
terization of symmetric digraph with the odd cycle property is essentially the

same as that of [3] but our method of proof is different.




2. Basic definitions.
As the term is used here, a walk in a digraph [resp. graphl is a sequence
i i ,i.,...1 th 4 i i .
W of vertices (10,11, lk) such that k > 1 an (lj—l'lj) (resp
[ij_l,ij]) is an edge, j = 1,...,k. The walk is a path if no vertex is
repeated. The sequence W is a closed walk if i = i and it is a cycle

0 k

if no other vertex is repeated. ILet P be the walk (u = x = v)

R RN

and let Q be the walk (v = yo,yl,...,ys). We denote by P U Q the

walk (xo,xl,...,xt,yl,...,ys). We say that two paths

P and Q from u to v are vertex disjoint if V(P) N V(Q) - {u,v} = ¢.

Here we use the common notation V(P) and E(P) to denote the vertex set

and edge set of P respectively. 1In a diagraph, every closed walk can be viewed
as a union of cycles. However, this is not the case for an undirected graph.

For example, if [u,v] 1is an edge of a graph, the closed walk (u,v,u) is not

a union of cycles. Let D be a digraph. The multiset of edges of a closed
walk W is written as a union of the edge sets of several cycles, where the
union is understood to be in the multiset sense; for example, {e} U {e} = {2-e}.
We say that a digraph has the unique parity property if for every closed walk

k 2

i = U = U i =
W in D, E(W) 91 E(Ci) and E(W) j=lE(Dj) imply that k = ¢ (mod 2),

where Ci and Di are cycles in D (i=1,...,k; j=l,...,2). In the remainder

il

of the paper we use the notation x =y to abbreviate x = y(mod 2). ILet D
be a digraph with the unique parity property. For every closed walk W we

define the parity of W, denoted by N(W), as follows

k
1 if EW) = U E(C.,) and k =1
i=1 i
N{(W) =
2
0 if EWM) = U E(D,) and 2 =0 R
=1 j



Since W has the unique parity property, N(W) is well defined. We observe

that Wl and W2 are two closed walkshaving a common vertex, then with

W=Ww UWw
1 2!

N(w) = N(Wl) + N(Wz) .

The digraph D. of Fig. 1 has the unique parity property and N(W) = 0 for

1

every closed walk of Dl' However, the digraph D2 does not have the unique

parity property since with w = 3,1,2,4,3,4,1,2,3, E(W is a multiset and

E (W)

i
]

E(cl) UE(C2) E(Dl) U E(D2) U E(D3) where

Q)
it

3,1,2,4,3:  C, =3,4,1,2,3 ;

D, = 1,2,3,1; D, = 1,2,4,1 and D, = 3,4,3

but 2 # 3. We also note that Dl has the odd cycle property while D

does not.

Figure 1



Denote by ¢ (D) the number of strongly connected components of the

digraph D. The condensation digraph of D is a multi-digraph whose

vertices are the strongly connected components of D and for every edge
(u,v) of D with uce Di and v € Dj there is an edge in the
condensation graph from Di to D,. The condensation digraph is clearly

J
acyeclic.



3. Digraphs with the odd cycle property

Theorem 3.1: let D = (V,E) be a strongly connected digraph. Then D has

the odd cycle property if and only if it has the unique parity property.

Proof: Suppose D has the odd cycle property. Then there exists a subset
S CE such that for every cycle C, [E(C)Ns| = 1. Let W be a closed walk
in D with E(W) = E(C)) U ... UE(Ck) and EW = E(D)) U ... U E(Dg)

where Ci and Dj are cycles of D (i=1,...,k; j=1,...,%2). ‘Then

E(W) N's (snE(Cl)) uU... Vv (smE(ck)) =

(SﬂE(Dl)) U...U (SﬂE(DZ)) .

Hence
k
lE@wns] = 1 |sne(c,)] =k
i=1 .
and
)
lEwNs| = & |sMEM@.)] =2 .
j=1 ]

Thus k = ¢ and D has the unique parity property.

Now let D have the unique parity property. Let e € E and De = (v,BE-{e}).
Harary et al [3, Theorem 7], have shown that if for every edge e, De is not
strongly connected then D has the odd cycle property. They refer to such
digraphs as ministrong. Thus ministrong digraphs have the odd cycle property
and this is independnet of the unique parity property. We may now assume there
exists an edge e = (u,v) such that D' = De is strongly connécted° We proceed
by induction on the number of edges in D. When IE! = 2, either D has no

cycles or D consists of a single cycle of length 2 and with S being any one




any one edge of D, we see that D has the odd cycle property. Since D
has the unique parity property, so does D'. Hence by induction there is a

subset 8' CE - {e} such that every cycle of D' has an odd number of

edges from S'. If every two paths Pl and P2 from v to u satisfy
|E(r)Ns'| = IE(PZ)F\s'], then let

s ie  |eepns| =1
(3.2) S =

stUle}  if  |E(®)Ns| =0 .

It follows that every cycle of D has an odd number of edges from S. We

show that indeed, if Pl and P2 are paths from v to u then

]E(Pl)ﬂs'! = IE(PZ)HS']. Since D' 1is strongly connected there exists a path

P from u to v in D'. Consider the walk W = Pl Upu P2 U (u,v) in D.

Then since both Pl U (u,v) and P2 U (u,v) are cycles, we have

i}
i

N (W) N(PUPl) + N(PZU{e}) N(PUPl) + 1

and

ll
il

N(W) = N(PUPZ) + N(PlU{e}) N(PUP2) + 1.

Hence N(PUPl) = N(PUPz). But since D' has the odd cycle property,

N(W) = |[EW)Ns'| for every closed walk W in D'. Hence

N(pUP)) = l(E(p)uE(pl)ms-l = |g(p)ns'| + [E(plms']
and

N(PUp,) = l(E(p)uE(Pz))ns'! = |[E(@)Ns'| + [E(pz)ns'l .
Thus lE(Pl)ﬂs'[ = IE(PZ)ﬂS'! and hence D has the odd cycle property.

Since every closed walk in a digraph is contained in one of its strongly

connected components, we get:



Corollary 3.3: A digraph D has the odd cycle property if and only if D

has the unique parity property.

The unique parity property is not easy to check. However, for some
special classes of digraphs, the odd cycle property can be more easily checked.
For example the class of ministrong digraphs can be recognized in polynomial
time. More information on the structure of ministrong digraph is given in the

next proposition.

Proposition 3.4: Let D = (V,E) be a ministrong digraph and let e ¢ E.

Then the condensation digraph of De (v,E-{e}) is a directed path.

Proof: First we show that the condensation digraph is simple, namely it has
no multiple edges. For suppose Gi and Gj are two connected components

of De and (x,y) # (x',y') are edges of De with x%,x' € Gi and v,y' € Gj.

Then D(x ) is strongly connected, a contradiction. Now choose e = (u,v) € E
, ‘

such that m = c(De) < c(Df) for every £ € E. Let Gl,...,Gm be the

strongly connected components of De where G contains v and Gm contains u.

1

Then Gl # Gm. Note that since D 1is strongly connected, there is a path in

the condensation digraph of De from Gl to every component Gj' and there is

no path from Gm to any other component. Let P be a path in the condensation

digraph from G1 to Gm. Suppose that for some Gi in P (1 si<m) and for

Gj not in P there exists an edge e' = (u',v'}) € E - {e} - E(P) with u' € Gi

and v' € Gj. Since e is an edge of De" the vertices belonging to the same
strongly connected components in P, all belong to the same connected component
of De" Since Gl # Gm it follows that C(De') < c(De), a contradiction to

the minimality of c(De). Thus the vertices of P are all the strongly connected

components of De and we may assume P = (Gl,G ,...,Gm). Moreover, if there

2

exists an edge f ¢ E - {e} joining a vertex of Gi to a vertex of Gj with




3 # i+ 1 then Gf is strongly connected, a contradiction. It follows that
the condensation digraph of De is a path P = (Gl'GZ""’Gm)'

We conclude this section with a more structural characterization of
another special class of digraphs. BAs noted before, Harary et al [3] have
independently considered this class of digraphs. A digraph D = (V,E) is
symmetric if (u,v) € E implies (v,u) € E. The graph G obtained by iden-
tifying the edges (u,v) and (v,u) to form an unordered pair [u,v] is
the underlying graph of D. We denote by DG the symmetric digraph whose

underlying graph is G.

Let G be a graph and C a cylce in G. A diagonal path of C is an

(elementary) path P = (xl,...,xk) such that X, 0%, € V(C) and X, £ V(Cc)y i # 1,k.

We start with two Lemmas.

Lemma 3.5: Let G be a graph and suppose DG has the odd cycle property

with the edge subset S. If P, and P, are two vertex disjoint directed

1
paths of odd length from u to v in D,- ZThen ]E(Pl)nSIEEIE(Pz)ﬂSI.
+
. Let the di t t! = ..o =
Proof Pi be e directed path f(u Xil'xi2' ,xiki v) and let Pi
<+
be the directed pat = = i= . v i
e directed path (v xik{ 1E v), (i=1,2) Then p, VP, isa
<+
cycle in D, and hence !E@f@?ﬂSIEl. Since P, has odd length
P
]E(piUPims[ =1 for i=1,2. It follows that [E(P)Ns| = |E(p,)0s].

Let P be the directed path (xl,xz,...xk), let x = x, € v(p) and

y = xj €ev(p) with i < j. We denote by =xPy the directed path

Il

-+~
x x,,xi+l,...,xj = y) and by yPx the directed path (y = xj,x,_l,...,x, = x).

i 3j i

Lemma 3.6. Let G = (V,E) be a bipartite graph in which every diagonal

path of every cycle has odd length. ILet e = [u,v] be an edge of G and
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Ge = (V,E-{e}). Suppose P and Q are two directed paths from u to v

in DG - Then there exist t > 0 and vertices

xll'x21""xtl such that

e
with XOl = u and xt+l,l = v (3.7) holds.
t £
3.7 P = Ux . ; = U .
(3.7) 120117 (14117 27 120 F11%¥ (1411

a o .
an xilPX(i+l)l and XilQX(i+l)l are vertex disjoint directed paths of odd

1 h .
ength from xil to X(i+l)l

Proof: Let P be a directed path. We use the notation x <p y 1if both x and vy

are vertices of P and x precedes y on P. Let xll # u be the first in-

tersection of P and Q along P, and let y be the next intersection along P.
That is vy >p Xoq- If vy >Q X, as well, we denote y by X5 otherwise

we denote vy by X1,e Using this scheme we label all vertices in V() N V(Q)

to obtain the following

< < X < soe

Xll <p Xl2 <p © oo p Xlnl <p X21 <p cae p 2n p

< % < ... < % , where t >0 and n, > 1.
p tlL p - -

P tnt i

] = 2,...,0, e ig. 3
Moreover, X1 <Q X a1 but X1 zgxij for 3 , n, (see Fig )

Figure 3

(The path P 1is a straight line, and the other path is Q) .
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it is possible that

14

Note that with 3§ > i 2<k<n, and 1 < ¢ < n,
=72y = i

X.. < x, but iy > .. i
5k o Fig’ le o X We show that with xll’x21’°"’xtl (3.6)
is satisfied Since x < X fo i 0 t 6
. ) . r = .e = .
il “p Fien1 PE et PE 00 F1PF e 1

Similarl inc X., < ) i = e =
Y ORRRCE Fp fg ¥spy For 1 =0t P= U xo0x 0y

Next we note that x._pPpx

= U
117 411 T 5P ) ee Y

xiniPx (i+1)1 2nd

It follows that XilPx(i+l)1 and XilQX(i+l)1

are vertex disjoint. It remains to show that both have odd length. For

*i9 "o ®i1 o ¥+

i=1,...,t, let Ci be a cycle in the undirected graph G defined by

Ci = (uPXil) U (Xile) U (v,u) i=0,...,8 .
Clearly quil and Xile are paths in G. Moreover, since for
j<i-1 and k i.nj, xjk iQ le <Q xil’ the vertex Xjk is not a vertex

of any segment xngx for & > i. It follows that the above two paths

(e+1)1

are vertex disjoint and hence Ci is a cycle. Tt also follows that
xilpx(i+l)l is a diagonal path of Ci and hence is of odd length. But

x s . e
XilQ (i+1)1 and X PX L)1 are vertex disjoint paths joining X1

and x in G and hence (x..Px,.

(i+1)1 i1 GAJ)Q (x(i+1)lei) is a cycle

in G. since G is bipartite, the path xilQ has odd length.

X411

Theorem 3.7: Iet G = (V,E) be a graph. Then DG has the odd cycle pro-

perty if and only if G is bipartite and every diagonal path of every cycle

in G has odd length.

Proof: Suppose first that DG has the odd cycle property. Iet

C =(Vl,...,V ,vf be a cycle in G. Then the edge set of the closed walk

k

DC in DG can be written both as a union of k cycles of length 2 and as
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a union of 2 cycles of length k. It follows from Corollary 3.3 that k = 2

and hence G is bipartite. Now let P = (u .,u ) be a diagonal path,

1’°" s+1

of C; that is u, = v and u = v, for some i, 2 < i < k. Denote by
1 1 s+1 i - -

> > .
C the directed cycle (vl,...yk,vl) and by P the directed path (ul'°"’us+l)°

Consider the following directed paths in DG

" —-
Then with W= Q U Q2 Uup U P2,
W) = U + =
N (W) N(Ql Q2) N(P1UP2) = s +1

and

N(W) = N(91UP2) + N(QZUPl) =

1
N
L]

Hence s = 1; that is, every diagonal path in G has odd length.
Conversely, suppose G 1is bipartite and every diagonal path in G has
odd length. Then the same holds for every subgraph of G. We proceed by
induction on the number of edges in G. When ]El = 2 then DG has at most
one cycle which is of length 2 and hence DG has the odd cycle property.
Let e = [u,v] € E and let Ge = (V,E - {e}). By the inductive hypotheses,

Dg has the odd cycle property with some s' CE - {e}. Let P and @
e

be two directed paths in DG from uw to v. Then by ILemma (3.6), there
e

exist vertice X X eee X
is rtices 11 %217 R

of P such that (3.7) is satisfied. More-

-over, by Lemma (3.5), the two vertex disjoint paths Pi = xilPX and

(i+1)1

= i Ng'| = ns'|.
Q =%, 0 X a1 satisfy lE(Pi) s' | IE(Qi) s'|. It now follows that

]E(PWS')I = lE(QﬂS')]. Similarly, if P and ¢ are two directed paths
from v to u in D then |E(pNs')| = |E(QNS')|. Let P be a directed

G
e
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path from u to v in DG and Q a directed path from v to u in DG .
e e

Since G is bipartite and [u,v] is an edge of G both P and Q have odd
P
length. Hence PUP is the union of an odd number of cycles of length 2 in DG .

e
“
Moreover since D, has the odd cycle property |E(p)Ns'| = |E(@)Ns'| . But
e

since as shown above |E(®)NS'| = |E(QNs'| we get E(@Ns'| Z |E(QNS'

-

Now let

s'*' U (v,u) if k is even (2 is odd)

s* U (u,v) if k is odd (& is even)

Then with S as above, DG has the odd cycle property and the proof is

complete.
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4. Graphs with the odd cycle property.

A graph G has the odd cycle property if there is an edge subset S

such that every cycle of G has an odd number of edges in S. Harary et al
[ 2] have shown that if a signed-graph has a block with more than one cycle
then this block contains a cycle with an even number of negative edges. This
provides a structural characterization of graphs with the odd cycle property.
We show here that an undirected graph with the odd cycle property can also be
characterized by an analogue to the unique parity property of digraphs.

We have noted before that a closed cycle in an undirected graph is not
always a union of cycles. However, it is true that the edge set of every

closed walk W in a graph can be written as

ye-eg2n, e, 1,

E(W) = E(Cl) u... U E(Ck) U {2nl-el £ %%

where Cl’°'°’ck are cycles, el,..,.,,ei are edges and nl,...,nt are non-

negative integers. We say that a graph has the unique parity property if for

) = U __U U ° U...U N "
every closed walk W, E(W) E(Cl) . E(Ck) {2nl el} {2nt et}
a = U...u U el U ..U e’} i
and E(W) E(D,) E(D%) {2ml el} {2mS e }  imply that

k=4,

Theorem 4.1: Iet G be a graph. Then the following are equivalent:

(1) G has the odd cycle property.

(i1) G has the unique parity property.

(iii) ©No cycle of G has a diagonal path,

(iv) Every block G 1is either an edge or a single cycle.

Proof: (i) = (ii) Suppose S 1is an edge subset so that every cycle of G

has an odd number of edges from S. Let W be a walk such that

EW) = E(Cl) u... u E(Ck) U {2n1‘el} U... U{2nt°et}




E W = E I) L/ “ e L—‘ E D i [21[1 e hadi 3 RS L" 21". e -

Then lE(W)ﬂS{ =k and IE(W)“SI = ¢ and hence %k = 2.

(ii) = (iii). Iet G be a graph with the unique parity property. Let
C be acycle in G and suppose P is a diagonal path of C Jjoining the
vertices u and v of C. Iet P, = uCv, P. =vCu and E(P) = {el,...,et}.

1 2
Then W=pP, UPUP UP is a closed walk in G. Moreover

1 2

E(W) = E(C) U {2-el} U...u {2~et} and EW) = E(P,UP) U E(P,UP) where
c, Pl Upr and P2 UP are cycles, but 1 # 2, a contradiction.

(iii) = (iv) Suppose no cycle of G has a diagonal path. Let B be
a block of G with more than one edge. Then B has a cycle C. If B # C
then there exists an edge [u,v]l = e in B but not in C with ue V(Q).
et e' = [x,y] be any edge of C. Since B is a block e and e' are
contained in a cycle C'= (u,v,...,u) in B. Tet =z $# u be the first vertex
of C' which is in €, then uC'z is a diagonal path of C, a contradiction.

(iv) = (1) Since every cycle lies in some block and every block con-

sists of at most one cycle, we construct S as follows. For every cycle Ci

of G choose any edge e of Ci and let g = Q{ei}.
i



1.
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