DYNAMIC TASK ALLOCATION
IN A DISTRIBUTED DATABASE SYSTEM

by

Michael J. Carey
Miron Livny
Hongjun Lu

Computer Sciences Technical Report #556

September 1984

Dynamic Task Allocation
in a Distributed Database System

Michael J. Carey
Miron Livny
Hongjun Lu

Computer Sciences Department
University of Wisconsin
Madison. WI 53706

This research was supported by the Wisconsin Alumni Research Foundation, National Science Foundation Grant
Number DCR-8402818. and an IBM Facuity Development Award.

Dynamic Task Allocation
in a Distributed Database System

Michael J. Carey
Miron Livny
Hongjun Lu

Computer Sciences Department
University of Wisconsin
Madison. WI 53706

ABSTRACT

This paper addresses the problem of dynamically assigning queries to sites in a distributed da-
tabase system. This work. loosely related to work on load balancing in distributed operating sys-
tems. is unique in several ways. First. the system workload is comprised of several classes of tasks.
each with different processing requirements. Second, estimates of the processing requirements of
each task are available as a result of query optimization. Finally, *‘load”” is a two-dimensional
quantity in a distributed database svstem. as both the CPU and I/O loads of sites must be con-
sidered.

The dynamic query allocation problem is described. and the results of a study of optimal allo-
cations for queries in a two-class, four-site environment are presented. This study leads to the iden-
tification of performance criteria that are appropriate for use in a multi-class environment. Several
heuristic algorithms are given for achieving near-optimal query allocations dynamically. A simula-
tion model of a fully-replicated distributed database system is used to study these heuristic algo-
rithms and to compare them to an algorithm that simply balances the number of jobs at each site.

The results of this study indicate that knowledge about task processing requirements can be used ef-
fectively to improve overall system performance by dynamically allocating queries to sites.

1. INTRODUCTION

1.1. The Problem

In distributed relational database systems, queries are often decomposed into sequences of data moves
and subqueries [Aper83, Bern81, Epst78, Hevn79. Roth77, Sacc82, Seli80. Yu83]. Each subquery is a set
of database operations that can be performed together at a single site. If some single site contains all of the
data needed to execute an entire query. the query itself is the only subquery and no data moves are necessary.
If no one site holds all of the data required by the query. one or more data moves are required to transfer
subsets of the database from their storage sites to the selected execution sites for subqueries of the query. If

the distributed database includes replicated data. data stored at several sites. it may be possible to execute a

This research was supported by the Wisconsin Alumni Research Foundation, National Science Foundation Grant Number DCR-
8402818, and an IBM Facuity Development Award

given subquery at one of several sites containing the data which it references. In this case, it is necessary to

somehow select a site at which to execute the subquery. We call this problem the query allocation problem.

Some of the previous papers on distributed query processing have ignored the problem of choosing
from among several copies of the data of interest by assuming either that data is not replicated or else that one
copy of each piece of data needed by the query. called a materialization of the database. has already been
chosen [Aper83, Bern81, Epst78. Hevn79. Sacc82]. These papers then address the problem of selecting a
good query execution plan given this materialization. Other papers have suggested ways to select from among
several copies of a replicated relation by picking the one for which the estimated cost of executing the query is
minimized [Seli79] or for which a heuristic estimator for this cost is minimized [Yu83]. These solutions are
based upon the assumption that the database is partitioned in a way such that a “best’ copy of each relation R
exists. i.e.. that one copy of R has an access path that other copies do not have. or that one copy is stored at a
site that has some data needed to execute the query that is not available at other sites that hold copies of R. If

data partitioning is uniform. there may not be a best copy — all copies may be equally good.

Nearly all previous work on distributed query processing has focused on static allocation strategies.
Processing sites are selected without regard for the amount of other work that the sites have to do, i.e., ignor-
ing their dynamic load status. By ignoring the instantaneous load distribution of the system, a query might
be allocated to a heavily loaded site while other sites that are capable of serving it have a light load or are even
idle [Livn82, Livn83. McCo81]. A static allocation strategy may lead to unnecessary resource contention and
thus to poor performance. As an extreme example. if everyone were to submit the same query to the system,
it is possible (even likely) in most of the previous solutions that the same execution plan will be selected for
each query. and only the few sites chosen for this plan will be busy. Truly "optimal’ plans for query execu-
tion must consider the dynamic system state as well as the static costs of query execution. Alonso has studied
the relative performance of alternative query processing plans under various load distributions [Alon84]. His
work has shown that a plan which is optimal under one load distribution is not necessarily optimal for other

load distributions.

1.2. Dynamic Query Allocation

In this paper we present several dynamic query allocation strategies. The particular problem that we
address here is that of allocating read-only queries to sites in a fully replicated distributed database system' .
However. our results will also provide insight into how to go about allocating subqueries to one of a number

of candidate sites in a system with partially replicated data.

We should point out that other opportunities for making load-based query processing decisions (besides
selecting from among candidate copies of replicated data) do exist in distributed database systems. For exam-
ple. several options exist for joining a pair of relations A4 and B that reside at ditferent sites of the system —
two options are to send A to B's site and perform the join there or to send B to A’s site and perform the join
there. This decision is usually made (statically) so as to minimize a cost measure such as the amount of data
shipped over the communications subnet or the sum of the communications and local processing costs
[Aper83. Bern81. Epst78. Hevn79, Roth77. Sacc82. Seli80. Yu83). but the dvnamic state of the system
could make the static decision sub-optimal in some cases [Alon84]. We leave the extension of our ideas on

dynamic query allocation to this type of query allocation problem for later work.

Qur work is loosely related to some of the previous work on load balancing in the operating systems
area [Brya81, Livn83, Ni81, Ni82]. but the nature of our environment leads to several important differences.
These differences lie in our model of a site, what is known about tasks in our environment, the composition

of the workload. and the times at which a task may reasonably be transferred from one site to another.

1.2.1. Multi-Server Sites

Previous work on load balancing has been concerned with systems that consist of only one type of
resource (the CPU). Sites have been modeled as single server queuing systems with either First-Come-
First-Served (FCFS) or Processor Sharing (PS) service disciplines. Queries require iwo types of resources.
CPU and I/0 resources, so a single server model is not appropriate for describing the behavior of a sites in a
distributed database system. Thus. our work addresses the problem of load balancing in a system in which

each site consists of these two types of resources.

T
"The read-only assumption is not a major problem, as updates must be propagated to all sites regardless of the processing site.

-3-

1.2.2. Knowledge of Processing Demands

Query optimizers put a good deal of effort into computing good estimates of the costs of executing
queries in order to select the best execution plan [Seli79. DBE82]. We assume that estimates of the CPU and
1/0 needs of queries are ‘attached’ to the queries and available for use when selecting appropriate processing

sites. Most other work on load-balancing has assumed that such knowledge is not available.

1.2.3. Multiple Query Classes

Another salient aspect of our work is that we assume that the workload is comprised of multiple classes
of tasks. Queries can be CPU- or [/O-bound. and the amount of data that they reference can vary widely
depending upon both the nature of the requests and the access paths (index structures) available for retrieving
the desired data. Thus. in a distributed database environment. it is not appropriate to consider only work-
loads in which the characteristics of tasks are all drawn from a single distribution. Qur study considers
workloads comprised of two classes of tasks. CPU- and I/O-bound tasks. and each class has its own set of

task characteristics. (More will be said about these characteristics in Section 2.)

1.2.4. When to Transfer a Task

A final difference between our work and previous load balancing work is that. at least for now. we do
not consider moving a query once it begins executing at a site. Load balancing algorithms in operating sys-
tems. on the other hand. will usually consider moving tasks in any stage of execution. requiring a carefully
designed and programmed task migration mechanism. Such a general mechanism must deal with forwarding
messages, handling open I/O connections. and moving task state information (contents of registers. a task
control block. program and data segments, etc.) [Powe83]. By assigning queries to sites when they begin
running. we avoid the need for much of this complexity. Also, having a query access data remotely would be
too costly, and it is unreasonable to have a query stop what it's doing and pick up again on a different copy of

its data (due to active file scans and partially-written temporary files).

1.3. Outline

The remainder of this paper presents our results to date on developing and evaluating dynamic query
allocation algorithms. Section 2 describes the distributed database system model that is used in the remainder
of the paper. Section 3 describes a preliminary study of optimal allocations for queries in an environment
with four sites and two classes of queries. This section also addresses the problem of evaluating query alloca-
tion criteria in a multi-class environment. In section 4 we present several heuristic algorithms for dynamic
query allocation. and Section 5 describes a simulation study of these heuristics. The study compares our
heuristic algorithms both with each other and with an algorithm that simply attempts to keep the number of
tasks at each site balanced. Finally. Section 6 presents our conclusions and outlines our plans for future

work.

2. MODELING A DISTRIBUTED DATABASE SYSTEM

Figure | depicts our model of a distributed database system. The system consists of a collection of
database processing sites, or DB sites. each of which stores a copy of the database. The DB sites are con-
nected together by a communications subnetwork. (We will focus our attention on local networks in this

paper.) Each site has a collection of terminals from which queries originate and to which the results are

(=L

o000

DB Site DB Site DB Site

N

Commnmunications Subnet

Figure 1: Distributed Database System Model.

returned, so our model is a closed queuing model. We assume throughout this paper that the system is com-

pletely homogeneous. i.e., that all sites are configured identically and have the same workload characteristics.

Figure 2 shows our model of a DB site. Each site has a set of terminals. several disks, a CPU, and an
outgoing message queue. The diamonds in the figure depict decision points in the model. The decisions that
are made by the dynamic query allocation software are represented by the doubly-outlined diamonds. When
a query is initiated by a terminal, the query allocator looks at its processing requirements and decides whether
to process the query locally or to transfer it to another site. The query starts its execution at the disk service

center at its execution site. The query will be routed to this center either directly or via the communications

TERMINALS

m‘t< DB Site

local

000

(TO NETWORK) (FROM NETWORK)

Figure 2: DB Site Model.

subnet depending on whether it is to be executed locally or remotely. Once the query has begun execution, it
cycles through the disk and CPU service centers a number of times, reading and processing pages from the
database:.T The disks are modeled as FCFS servers, and the CPU is modeled as a PS server. Once finished,

the query is returned to its terminal of origin. In the case of a remotely executed query, this requires sending

the results of the query back to its home site.

Table 1 summarizes the parameters associated with each of the DB sites. The storage hardware at each
DB site is described by two parameters. The parameter num-disks is the number of disks at the site. and
disk -time is the mean time required to access a disk page. The workload at each site is characterized by three
parameters — mpl. the number of terminals or multiprogramming level for the site; class_prob. the class
distribution function that determines the probability that a newly generated query will be a class C query: and

think_time . the mean think time for the terminals.

We have decided to consider only two classes of queries in this study. Each query class Q; is charac-

terized by four parameters. page..cpu_fimcj. num_ruadsj. result_fraction; . and qucr_v_u'zvr Table 2 sum-

marizes these class parameters. The page_cpu_time parameter is the mean CPU time required to process

DB Site Parameters

num_disks | number of disks per site
disk_time mean access time for a disk page
mpl number of terminals per site
think _time mean terminal think time
class_prob | class distribution function

Table 1: DB site parameters.

Class Parameters

page_cpu_time | mean per-page CPU demand for the class
num..reads mean number of reads for the class
result_fraction mean fractional result size for the class
query_size query descriptor size (in bytes) for the class

Table 2: Class parameters.

fWe assume that the results of each query are accumulated in main memory as the query executes

one page of data read from the disk for queries of the class. The parameter num_reads is the mean number
of times that queries of the class cycle through the I/0 and CPU service centers, i.e.. the mean number of
disk pages that they read. The parameter result_fraction is the mean number of result pages produced for
queries of the class (expressed as a fraction of the total number of pages read). Finally. the parameter
query_size is the number of bytes required to describe a query of the class (i.e.. the amount of data that

would have to be transferred to initiate the query remotely).

Our model of the communications subnetwork is a simple token-ring style local network model. The
network has a single message buffer for each site, and sites are polled in a round-robin fashion for requests
to send messages. The cost of sending a message is a linear function of the length of the message. When the
network finds a site that is ready to send a message. it sends its message. delays for the appropriate amount of
time, and then continues on with the polling process. We assume that the overhead of the polling process is
negligible in this study. The parameters related to the communications costs are listed in Table 3. The
parameter msg_time is the time required to send one byte of data over the network. The parameter page._size
is the size of a disk page in bytes (which plays a role in determining the message size for query results). One
last assumption that should be mentioned is that we neglect the overhead associated with load status messages,
assuming for the purpose of this study that each site knows the current loads of all other sites in the system.

(We will discuss this assumption in more detail in a later section.)

3. OPTIMAL QUERY ALLOCATION

As described earlier, the execution of a query requires two types of resources. the CPU and I/O
resources. A query is a sequence of I/O and CPU requests that are generated one after another. Interleaving

the execution of a number of queries will lead to concurrent activity on both types of resources. in turn

Parameters Related to Communications Costs

msg_time | network transfer time for one byte of data
page.size | size of disk page in bytes

Table 3: Parameters related to communications costs.

reducing system response time. It is this fact that motivated the introduction of multiprogramming systems.
Shorter waiting time, however, is not the only reasonable goal for a scheduling mechanism for a timesharing
environment. Another important goal is to somehow provide an environment that will give users ‘fair’

response times by some definition.

Most users would agree that the expected waiting time (i.e., queuing time) of a task with a given execu-
tion time, W(x), can serve as a measure of fairness for a scheduling policy. Two users with service demands
x, and x; will consider the scheduling policy as being fair if the ratio of their respective expected waiting
times is equal to x,/x,. Another way of saying this is that if the normalized mean waiting time of a user,
W(x). is defined as the ratio of W(x) to x. then all users would like to have the same W(x) regardless of the
number of units that are needed to fulfill their tasks. Thus, the difference between the normalized mean wait-
ing times of two tasks gives a quantitative indication of the degree to which a system is biased towards a par-

ticular type of service demand.

In order to reduce variation in the normalized mean waiting times for different users. round-robin (RR)
scheduling schemes are often used for resources that can support a preemptive resume scheme with a
minimal amount of overhead. If the time quanta of the RR algorithm shrinks to zero, which leads to proces-
sor sharing (PS). then all tasks have the same normalized response time on a M/G/1 system [Klei75}]. How-
ever. this property of the PS scheduling strategy does not necessarily hold when a number of PS servers are
combined into one integrated system. A difference in the utilization of the system resources will lead to
discrimination against those users that depend more heavily on the highly utilized resources for service.

Thus, biased response time is not necessarily due to a biased allocation strategy.

As described in Section |, the goal of this paper is to investigate the extent to which the load balancing
process can benefit from estimates of query resource demands that a query optimizer can provide. In order to
get a quantitative indication of this, we have studied the effect of a single allocation decision on the perfor-
mance of a group of the DB sites in the model of Section 2 under a static load distribution. A four-site sys-
tem with two classes of queries is assumed. The values that have been assigned to the relevant model param-

eters are summarized in Table 4. Note that both the number of cycles and the thinking time are assumed to

System Parameters
aum_sites 4

DB Site Parameters
num_ disks 2
disk_time l
think_time large
Class Parameters | I/O Bound | CPU Bound
page _cpu_time 0.05-0.5 1 L.00-0.25
num_reads large large
msg_time 0 0

Table 4: Parameter settings for optimal allocation study.

be large since only static (or steady-state) load distributions are addressed here. Message time is also ignored
for the purpose of this part of the study. All service times used in this section are assumed to have an

exponential distribution.

The load distribution of the system is defined by the matrix L=[/ j1. where [; ; is the number of class
i queries being served by site j. We denote an arrival of a class / query at a system with a load distribution
L by A(L.,i). The Mean Value algorithm [Reis78] has been used for deriving the various performance
measures in this study. The values obtained reflect the performance of the system during a time period begin-
ning after the new query has begun service at the selected site and ending upon the first departure or arrival

of a query; we assume that this period is long enough for steady-state behavior to be achieved.

When no information is available about query service demands. the allocation decision can rely only on
the instantaneous query distribution of the system as given by the vector N=[n,....,h n,} where
ni=1y ;+1, ;. Under these circumstances, the goal of the allocation policy will most likely be to minimize
the query-difference (QD) of the system, defined as the maximum of | nj—n; | for i,j=1,....4. Such a stra-
tegy, where the goal is simply to balance the number of queries at each site, is clearly not an optimal one. In a
multi-class environment. the expected waiting time of a query can be reduced if the allocation mechanism
relies on the instantaneous load distribution of the system. For a given arrival, A(L,i), a quantitative meas-
ure of how much better can a query allocation do if it can use the instantaneous load distribution of the sys-

tem for its decisions instead of just the current query distribution is given by the Waiting Improvement

- 10 -

Factor:

Wano (L .i)= Wopr(L)
Wang (L)

WBNQ(LJ) in this expression is the expected waiting time per cycle when the ‘minimal QD’ strategy is

WIF(L.i)=

applied for A(L,i), and WOPT(LJ) is the minimum of the expected waiting time per cycle over all possible

allocations of A(L.i) (i.e.. the expected waiting time for the optimal allocation).

Table 5 presents WIF (L .i) for different arrival conditions and class mixtures. L in the table is the load
distribution matrix prior to the new query’s arrival (i.e., the number of queries of each class at each of the
four sites); i is the class of the newly arriving query. One parameter varied is the ratio of the mean CPU
demands of the two classes. In most of the cases that were studied, the improvement in the expected waiting
time of a query exceeds 10%. For some arrivals. waiting time can be reduced by more than 30% if the class
of the queries is known. Note that in the case of the first four class mixtures. an increase in the ratio of the
mean CPU demands of the classes produces an increase in the Waiting Improvement Factor. However. there
are cases (the two last mixtures) where an increase in the ratio causes a decrease in W/F. Another parameter
varied in Table 5 is the total number of queries in the system (which increases from left to right in the table).
From the results obtained we can conclude that an increase in the number of queries, and thus an increase in

system utilization. decreases the beneficial impact that resource demand estimates may have on the allocation

process.
L 1100 1110 2100 2110 2120 2110
0011 0001 0011 0001 0001 0112
[1 2 1 2 l 2 1 2 l 2 1 2
cpul cpuy

.05/0.5 41 .01 1 .08] 01 .05 .00 | .10 .0L] .0t} .09 .05} .05
.05/1.0 24 | 13| .14 18| 09| .07 | .16 | .04 | .09 | .04 | .11 | .04
.10/1.0 20 12 .11 | .16 .07 .06 | .13 | .03 | .08 .03} .09 .03
10/2.0 AU 31 9| 40 48 | 20 1O L1 09) 09} LIS
.50/2.0 00| .22 .00 .30} .00 .16 .01} .09 .0l} .09 .05 .05
.50/2.5 02 17 .o 230 010 .11] .01) .06 | .01] .06] .03] .04

Table 5: Waiting Improvement Factor WIF(L.i).

11 -

Table 5 clearly shows that the use of additional information can have an advantageous impact on the
expected waiting time of the system. However. since fairness is also an important aspect of the scheduling
process, and because the desires for fair response time and for minimal waiting time may conflict, we have
analyzed the extent to which different allocation decisions discriminate against one of the query classes. We
use the difference in the normalized expected waiting time of the two classes as a measure of the fairness of a
given allocation. We have defined a Fairness Improvement Factor of an arrival 4(L.i) in a manner analo-

gous to the Waiting Improvement Factor. We define this measure of fairness improvement to be:

FBNQ(L‘[.)N- FOPI(L'[)

FIF(L.i)= :
FBNQ(LJ)

Fgng(L.i) in this expression is the absolute value of the difference between the normalized expected waiting
time of the two classes when the “minimal QD’ strategy is applied for A(L.i). and Fypy (L ,i) is the minimum
of the absolute value of this difference for all possible allocations of A(L .i). The values of FIF(L.i) for the
same arrivals that were used in the analysis of WIF(L.i) are summarized in Table 6. The results presented
in the table show that in all cases a significant improvement in the fairness of the system can be achieved.
However, no clear relationship between the arrival conditions and values of FIF(L ,i) is apparent from the

table.

This study of the properties of a single allocation was motivated by a desire to explore the potential of

using resource demand estimators. The results obtained indicate that information on the load distribution of

L 1100 1110 2100 2110 2120 2110

0011 0001 0011 0001 0001 0112

[1 2 1 2 | 2 | 2 | 2 1 2
cpuy fcpuy

.05/.50 69 | 60 | 64 | 11| 42 | 48 | 69 | 20 | .89 | .79 | .72 | .87
[05/1.0 7571701 .70 | 01| 38| .60 | .89 | .07 | .70 | 93 | .68 | .67
10/1.0 721 69 67| 02 39772 .79 .05 | .77 | .74 | 52 | .55
.10/2.0 78 | .81 1 .73 | 30 | 36 | 60| 99 | .22 | .60 | 25 | .48 | .69
.50/2.0 341 95 88| 35| .75 | .14 | .1l | .83 | 40| 55| .84 | .77
.50/2.5 601 741 56 | 07 | 50 | .15 40| .55 1 .75 1 .25 | .47 | 95

Table 6: Fairness Improvement Factor FIF(L.i).

S 12-

the system can significantly improve both the performance and the fairness ot the aliocation process. How-
ever, minimal expected waiting time and maximal fairness may not be achieved together, and thus a decision
has to be made about which goal is more important. Wypp(L,i) and Fopr(L,i) were achieved by different
allocations in about half of the cases that were examined in this study. In the next section we will present
three allocation strategies that aspire to minimize the expected waiting time of queries. and in Section 5 we

will evaluate their impact on the performance of the system.

4. HEURISTICS FOR DYNAMIC QUERY ALLOCATION

The previous section has shown that knowledge about the CPU and I/0O demands of tasks can. in
theory, be used to reduce waiting time and thus improve response time for queries. In this section we present
two heuristic algorithms for choosing the processing site for an arriving task — the goal of each is to dynami-
cally achieve good query allocations. Before we describe these heuristics, though. we describe an allocation
algorithm that simply tries to balance the number of tasks at the sites (i.e.. that tries to minimize the query
difference QD defined in the previous section). This balancing goal is similar to the approach that several
previous load balancing algorithms have used [Livn82, Livn83, Ni81, Ni82], and it will provide a non-
information-based query allocation algorithm with which to compare the performance of our heuristics later
on. All of the allocation algorithms presented here can be viewed as choosing the processing site with the
minimum estimated processing cost, where the cost estimation procedure varies from algorithm to algorithm.
Figure 3 describes the selection process in this manner. (One detail not shown in the figure is that the

‘foreach’ loop that examines possible remote execution sites should scan these sites in a round-robin fashion.)

4.1. Balance the Number of Queries

As mentioned above, one simple heuristic for dynamic query allocation is to try and keep the number of
queries at each site evenly balanced. We call this approach the BNQ (‘Balance the Number of Queries")
algorithm. Each site knows the current query distribution of the system. Then, when a new query is ini-
tiated from a terminal at some site, that site routes the query to the site with the smallest number of queries

for processing. Figure 4 gives the site cost function for the BNQ heuristic.

- 13-

function SelectSite(q: query; arrival_site: site): site;
var
cur_cost. min_cost: real;
remote_site. best_site: site;
begin
best_site : = arrival_site:
min_cost : = SiteCost(q, arrival_site):
foreach remote_site in {sites} - arrival_site do begin
cur_cost ;= SiteCost(q. remote_site):
if cur_cost < min_cost then begin
min_cost : = cur_cost;
best_site : = remote_site:
end:
end:
SelectSite : = best_site:
end:

Figure 3: Function to select processing site for query.

function SiteCost(q: query; s: site): integer:
begin

SiteCost ;= Num_Queries(s):
end;

Figure 4: Cost function for BNQ aigorithm.

4.2. Balance the Number of Queries by Resource Demands

Our first information-based heuristic is a simple extension of the BNQ algorithm. This heuristic.
called the BNQRD (‘Balance the Number of Queries by Resource Demands’) algorithm. requires that each
site knows the number of CPU-bound queries and the number of I/O-bound queries at every site in the sys-
tem. When a new query is initiated from a terminal at some site, this query is classified as being either an
[/0-bound or a CPU-bound query based on the knowledge of its resource demands. The query is then

routed to the site with the smallest number of queries of the same type (i.e., I/O-bound or CPU-bound).

To classify a query as being I/0- or CPU-bound when each site has just one disk. the I/O and CPU
demands of the query (based on the output of the query optimizer) are compared. If the I/O demand is
greater, it is an I/O-bound query: otherwise it is CPU-bound. In the case of multiple disks per site, the I/O

demand per disk, defined as the disk access time divided by the number of disks per site, is first computed.

- 14 -

This per-disk I/O demand is then compared with the CPU demand of the query. as before, to classify it as an

I/0O- or CPU-bound query. Figure 5 gives the site cost function for BNQRD.

4.3. Least Estimated Response Time

Our second information-based heuristic. LERT (for ‘Least Estimated Response Time’), uses the I/0O
and CPU demand information for a newly arrived query to estimate the response time of the query at each site
in the system and then to route the query to the site with the least estimated response time. This approach is
related to the work of Bryant and Finkel [Brya81]. As in the BNQRD algorithm. each site must know the

number of CPU- and I/O-bound queries at ali sites in the system.

function SiteCost(q: query; s: site): integer:
begin
if (disk_time / num_disks) > Page_ CPU_Time(q) then begin
SiteCost : = Num_IO_Queries(s):
end else begin
SiteCost : = Num_CPU_Queries(s):
end:
end;

Figure 5: Cost function for BNQRD algorithm.

function SiteCost(q: query; s: site): real;
var
cpu-time, io_time, net_time: real;
cpu..wait, io_wait: real;
begin
cpu_time := Num.Reads(q) * Page_CPU_Time(q);
io.time : = Num_Reads(q) * disk time;
if s = arrival_site then begin
net_time := 0.0;
end else begin
net_time : = Transfer_Time(q) + Return_Time(q);

end;

cpu_wait 1= cpu_time * Num_CPU_Queries(s):

io_wait ;= io_time * (Num_IQ_Queries(s) / num_disks);

SiteCost : = cpu_time + cpu_wait + io_time + io_wait + net_time:
end;

Figure 6: Cost function for LERT algorithm.

- 15-

The response time computation itself, given as a cost function in Figure 6. is based on several simplify-
ing approximations: First. it is assumed that competition for a given resource type at a site is only with those
queries at the site that rely more heavily on this type of resource. (That is, a query will compete only with
[/0-bound queries for I/O service at a site, and it will compete only with CPU-bound queries for CPU ser-
vice at the site.) Second, it is assumed that both the CPU and the disks at each site have PS service discip-
lines. This is accurate for the CPU. but it is only a rough approximation for the disks. The disks actually
have more of a round-robin flavor — requests for page accesses are served on an FCFS basis. and each
query cycles through the disk queue a number of times making page access requests. Third. it is assumed
(for lack of better information) that the number of CPU- and I/O-bound jobs at each site will not change dur-
ing the execution of the newly-arrived query. Thus. the cost of executing a query at a site is the sum of its
service demands at the site. the message costs for sending the query to the site and returning its results to the
site of origin (if the execution site is not the site of origin). and the waiting time tor CPU and /O service

based on the number of competing jobs at the site.

4.4. Discussion

The three algorithms described in this section represent three different approaches to dynamic query
allocation. The BNQ approach is based only on the query distribution. whereas the BNQRD and LERT
approaches are based on more load distribution information. Thus, only the latter two approaches use infor-
mation about the resource demands ot queries. The reader has probably noticed that we have not yet said
anything about how site state information is to be exchanged among the sites — this is intentional. Our
attention in this study is focused solely on the issue of how such information can be used and the extent to
which performance can be improved through its use. A good information exchange policy will not overbur-
den either the sites or the communications subnetwork, and yet it will provide the sites with information that
is sufficiently current so that performance improvements offered by the heuristics are not lost: we leave the

design and analysis of such a policy for future work.

- 16 -

5. A SIMULATION STUDY

We saw in Section 3 that using information about loads and the resource demands of queries can poten-
tially lead to improved performance. Since the BNQRD and LERT algorithms use more information than the
BNQ algorithm. we expect BNQRD and LERT to outperform the BNQ aigorithm. Also, only the LERT
algorithm takes the cost of sending a query to a remote site, i.e.. the message costs for sending the query
elsewhere returning its results to the site of origin, into account. We expect that the inclusion of these costs
will make the LERT algorithm less likely to call for unprofitable query transters than the other algorithms.
Thus. LERT should outperform BNQRD. and BNQRD should outperform BNQ. We will investigate the
degree to which this is true in this section. where we report the results of a studv of the performance ot the

three dynamic query allocation algorithms.

5.1. Simulation Details

In order to evaluate our algorithms. we have developed a simulation mode! of a distributed database sys-
tem and its workload. Our model for a fully-replicated distributed database system is an implementation of
the model described in Section 2 of this paper. This model has been implemented in the DISS simulation

language [Melm84] and runs on an IBM 4341.

System Parameters
nume_sites 2-10
DB Site Parameters
num_disks 2
disk_time 1
disk_time _dev 20%
mpl 15 - 30
think_time 150 - 450
class;,.prob 0.3-0.8
Class Parameters | /O Bound | CPU Bound
page_cpu_time 0.01 -04 1] 1.04-0.65
num_reads 20 20
msg_length 1 1

Table 7: Parameter settings for the simulations.

17 -

In the experiments reported here. the model parameters from Section 2 are set to the values listed in
Table 7. The probability that a query is an [/O-bound query is class;,_prob; the other class of query is
CPU-bound. The number of reads for queries has an exponential distribution with a mean of num_reads.
Disk service times (to access a page of data) are uniformly distributed on the range
disk_time = disk_time_dev. CPU service times have an exponential distribution with page_cpu_time as the
mean. Think times at the terminals are exponentially distributed with mean think_time . The model parame-
ters resuli_fraction, query_size and msg_time are currently combined into a single parameter. msg_lengith .
which is a constant value representing the number of time units needed to send (or return) a query to (or
from) a remote site. For the parameters which are shown in Table 7 as varying over some range. their

values when not being varied are as follows: num_sites = 6. mpl = 20. class; _prob = 0.5. think_time =

o

350. and page_cpu_mean = 0.05 and 1.0 (for the two query classes).

5.2. Simulation Results

As discussed in section 3. the performance metrics of interest in this paper are the mean waiting time of
a query, W. and the diference in normalized waiting times between query classes | and 2. the fairness meas-
ure F. We have performed several experiments to investigate how our dynamic query allocation algorithms

affect performance in terms of these metrics.

We first investigated the effects of the different algorithms on W under different system load situations.

One way to obtain different system loads is to vary the think_time of queries. Table 8 presents the results of

o — AWy ocar’Wiocar (%) || AWy pno/Weng (%)
think-time | pc | Wiocat ["5NO " BNORD LERT || BNORD LERT
150 0.85 || 72.71 | 4.89 17.03 1484 | 12.76 10.46
200 0.77 | 48.61 | 1030 23.08 24.61 | 14.25 15.96
250 0.68 | 3571 | 23.55 3230 32.67 || 11.44 11.92
300 059 | 26.82 | 26.54 38.43 37.43 | 16.19 14.82
350 053 || 2271 | 3853 4196 4354 | 5.57 9.58
400 0.48 | 1837 | 38.02 4084 4272 | 455 7.58
450 043 || 1560 | 41.13 4427 4650 | 5.33 9.12

Table 8: Waiting time versus think time.

- 18 -

such an experiment. WLOCAL is the mean waiting time when queries are always processed locally (i.e.. at
their arrival site). The performance of the dvnamic query allocation algorithms is expressed in terms of per-
centage improvements with respect to both the local case and to the BNQ algorithm. AWX'LOCAL/ WLOCM,
where X = {BNQ. BNQRD. LERT}, is the improvement obtained via dynamic allocation for each of the
algorithms. The improvement obtained by using load information instead of simply using the query distribu-
tion is AWX,BNQ/ WBNQ, where X = {BNQRD. LERT}. We can see from the table that each dynamic allo-
cation algorithm leads to a significant decrease in W with respect to local processing. More improvement is
achieved when system utilization is lower since then there is a better chance of being able to ailocate a newly
arrived query to a lightly loaded or perhaps even idle DB site. Also. as we expected, BNQRD and LERT out-
perform BNQ by using the information about query resource demands and the distribution of the query
classes at each site. LERT performs a bit better than BNQRD in most cases. but the difference is not
tremendous. A possible explanation for this is that the message transfer time is small (1.0) as compared with
execution time (30.5) in this case. When we tried changing msy_length to 2.0. the values of
AWy gno/ Wang changed to 16.43 and 24.12 for X = BNQRD and LERT. respectively. when think_iime =
350. That is. a larger diference was observed with a larger message time. This is because LERT considers

this time when selecting a site, but BNQRD does not.

Various system loads can also be obtained by varying the number of terminals (mpl) at each DB site.
Table 9 shows the effects of mp/ on W for the different allocation algorithms. The trends observed in this

experiment are similar to those observed previously. From a multiprogramming level viewpoint, the effect of

- AWy rocar’Wiocar (%) || AWy gno/Weno (%)

mpl | p. Wiocac

BNQ BNQRD LERT || BNQRD LERT
15 0.41 13.81 36.86 44 .20 43.10 11.63 9.88
20 0.53 22.71 38.53 41.96 43.54 5.57 9.58
25 0.65 33.90 30.68 36.55 37.15 8.46 9.33
30 0.75 50.97 23.12 33.83 34.56 13.96 14.88
35 0.83 73.72 10.97 24.21 26.32 14.87 17.24

Table 9: Waiting time versus mp!.

- 19 -

Expected Maximum mpl
Response Time || LOCAL LERT
=< 40.0 10 17
= 50.0 18 23
< 60.0 21 28
= 70.0 27 31
= 80.0 29 34

Table 10: Maximum mp/ versus response time.

dynamic query allocation is that the multiprogramming level of each of the DB sites can be increased without
decreasing the mean query response time. In other words, the capacity of the system can be increased
through dynamic query allocation. This point is illustrated by Table 10, which shows the maximum number
of terminals for which the given expected response time can be provided using two different allocation algo-
rithms (local processing versus LERT). Using LERT. we can increase the number of terminals at each site
by 20-50 percent while providing the same response time as the system with fewer terminals when queries are

simply processed locally.

Table 11 is the result of another experiment which examines the effect of the number of DB sites in the
system (num_sites) on W. The waiting time reduction due to dynamic allocation reaches a maximum and
then decreases as num_sites is varied from 2 to 10. This is expected since increasing the number of DB sites
in a distributed database system has two competing effects: On one hand, it improves the probability that a
query will be allocated to an idle or a lightly loaded site. On the other hand, however. it increases competi-

tion for the commmunication channel and thus increases the waiting time for messages. To illustrate this

vmsies | 7 AWy 1 ocar’Wooca (%) || Subnet Utilization (%)
B LocaL 1 gNQ LERT Local | BNQ LERT
2 15.19 26.82 6.35 6.49
4 27.10 33.54 21.38 20.90
6 21.53 | 34.18 39.18 0.0 | 37.07 36.04
8 32.17 39.23 54.41 52.07
10 26.13 36.27 72.70 68.83

Table 11: Waiting time and subnet utilization versus number of sites.

-20 -

— AW, /W (%) AF /F, %
classy,—prob | py/p. || Woocar BNYQLOOL Ifgl?lf Frocar BI:YIC;OCAL LE;/;'T()
0.3 0.70 33.01 33.90 37.55 -0.377 76.66 73.74
0.4 0.81 28.63 39.78 42.71 -0.228 100.00 78.51
0.5 0.95 22.71 38.53 43.54 -0.042 -42 .85 88.10
0.6 1.16 19.17 38.54 43.32 0.047 -76.60 -57.45
0.7 1.49 16.28 38.08 42.05 0.153 37.91 38.56
0.8 2.08 15.17 39.04 42 98 0.224 40.18 42 .86

Table 12: W and F versus class;,

_prob.

phenomenon. the subnet utilization at each num_sites setting is included in the table. This illustrates an
important design consideration for distributed database systems — from the viewpoint of dynamic query allo-
cation, there is an optimal value for the number of copies of data items. This value is in the range of 6-8

copies for the parameter settings used in this study.

To investigate the effect of dynamic allocation algorithm on the fairness of the system. a final experi-
ment was performed in which the parameter class;,_prob was varied from 0.3 to 0.8 (which makes the sys-
tem without dynamic allocation favor one or the other of the query classes). The results are given in Table
12. Along with a significant waiting time improvement, an improvement in ‘fairness’ (measured in terms of
AFy 1ocar!Frocar) is also evident. It is interesting that, no matter which class of query the system favors in

the local case, dynamic query allocation tends to decrease the difference in normalized waiting times between

the two classes.

6. CONCLUSIONS

6.1. Our Results

In this paper we have studied the problem of allocating queries to sites in a distributed database system.
The particular environment that was studied was a fully-replicated distributed database system running two
classes of queries. We have shown that significant decreases in the average waiting time for queries can be
obtained when queries are allocated to sites based on load information. Another important result of this study

is that the use of information about query resource demands leads to significantly better performance than a

.21 -

simple ‘balance the number of queries’ approach. This was shown in two ways, first through a simple
analytical study, and then through a simulation study of several heuristic algorithms for assigning queries to
sites. In addition, it was found that the overall fairness of the system can be improved as a result of dynamic

query allocation.

6.2. Future Work

This study represents a first step towards incorporating load balancing techniques into a distributed
database system. Our plans for the near future lie in two directions. First. we intend to investigate the possi-
bility of moving partially executed queries from site to site at certain critical times. which will require deter-
mining when a query can be economically moved (probably between its primitive relational operations) and
identifying the information that has to be transferred along with a query. This will lead to query allocation
algorithms of a more dynamic nature. Second. we intend to address the general problem of dvnamically allo-
cating subqueries of distributed queries to sites in an environment with only partially replicated data. Qur
eventual goal is to integrate these ideas into an actual distributed query processing algorithm in order to

demonstrate their feasibility.

We have seen that the benefits of dynamic task allocation are greater when the resource demands of
tasks are considered. Database systems are not the only application in which I/Q as well as CPU useage is
important, nor is knowledge of the relative CPU and I/O needs of tasks restricted to the database environ-
ment. Many standard system utilities, such as compilers, text formatters. and file systems, have resource
demands which could be characterized either statically or dynamically. This information could be used by a
distributed operating system to make more informed load balancing decisions, as in our environment. The
work reported in this paper is one stage of an ongoing study of how dynamic allocation strategies and task

information can be used to improve the performance of distributed systems in general.
REFERENCES
[Aper83] Apers, P.. Hevner. A., and Yao. S.. "‘Optimization Algorithms for Distributed Queries’’.

[EEE Transactions on Sofiware Engineering 9(1), January 1983.

[Alon84] Alonso, R., Query Optimization in Distributed Database Management Sysiems Through Load
Balancing, colloquium presented at the University of Wisconsin. Madison. April 1984.

222

[Bern81)
[Brya81]
[DBES2]
[Epst78]

[Hevn79]

[Klei75]
[Livn82]

(Livn83]
[McCo81]
[Melm84]
[Ni81]
[Ni82]
[Powe83]
[Reis78]

[Roth77]

[Sacc82]
[Seli79]

[Seli80]

[Yu83}

Bernstein. P.. et al. "*Query Processing in a System for Distributed Databases’’. ACM Transac-
tions on Database Systems 6(4). December 1981.

Bryant. R.. and Finkel. R.. A Stable Distributed Scheduling Algorithm™ . Proceedings of the
Second International Conference on Distributed Compuiing Systems, April 1981.

Special Issue on Query Optimization, Darabase Engineering 5(3), September. 1982,

Epstein. R.. Stonebraker, M., and Wong, E., “‘Distributed Query Processing in a Relational
Database System’’. Proceedings of the ACM-SIGMOD Conference on Management of Data. June
1978.

Hevner. A.. and Yao, S.. “*Query Processing in Distributed Database Systems™ . [EEE Tran-
sactions on Software Engineering 5(3), May 1979.

Kleinrock L.. Queuing Sysiems Volume II: Computer Applications. Wiley. New York, 1976.

Livny M., and Melman M.. **Load Balancing in Homogeneous Broadcast Distributed Sys-
tems’’, Proceedings of the ACM Computer Network Performance Symposium. April 1982.

Livny, M., The Swudy of Load Balancing Algorithms for Decentralized Distribuied Processing Sys-
tems, Ph.D. Thesis. Weizmann Institute of Science. August 1983

McCord. R.. ""Sizing and Data Distribution for a Distributed Database Machine'" . Proceedings
of the ACM-SIGMOD Internaiional Conference on Management of Dara. May 1981,

Melman. M.. and Livny. M .. “The DISS Methodology of Distributed System Simulation®”.
Simularion. April 1984.

Ni. L.. and Abani. K., "*Nonpreemptive Load Balancing in a Class of Local Area Networks™'.
Proceedings of the 1981 Computer Networking Symposium. December 1981 .

Ni. L.. A Distributed Load Balancing Algorithm for Point-to-Point Local Computer Net-
works™". P’roceedings of COMPCON '82. Fall 1982.

Powell. M., and Miller, B., ‘*Process Migration in DEMOS/MP"". Proceedings of the 9th
ACM Symposium on Operating Systems Principles, October 1983.

Reiser M., and Lavenberg S.S., ‘‘Mean Value Analysis of Closed Multichain Queuing Net-
works™", JACM 27(2), April 1980.

Rothnie. J.. and Goodman, N., **A Survey of Research and Development in Distributed Data-
base Systems'', Proceedings of the 3rd International Conference on Very Large Databases.
October 1977.

Sacco. G., and Yao, S.. **Query Optimization in Distributed Database Systems™’, in Advances
in Computer Systems, Volume 21, Academic Press. New York. 1982.

Selinger, P., et al. “*Access Path Selection in a Relational Database Management System’’,
Proceedings of the ACM-SIGMOD International Conference on Management of Data, June 1979,

Selinger, P.. and Adiba. M.. “‘Access Path Selection in Distributed Database Management
Systems’’, Proceedings of the First International Conference Conference on Disiributed Data
Bases, Aberdeen, 1980.

Yu, C., and Chang, C.. **On the Design of a Query Processing Strategy in a Distributed Data-
base Environment'’, Proceedings of the ACM-SIGMOD International Conference on Management
of Data, May 1983.

