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ABSTRACT

Several recent papers have discussed the convergence of the multigrid
V-cycle. In particular there are several results for the symmetric case:
where the number of smoothings before the fine-to-coarse transfer and after
the coarse-to-fine transfer are the same. In most instances, the smoother

Ho= (1-g7"

A) has been Timited to the case where E is positive definite
and the eigenvalues h of H satisfy 0 <h <1 . In this note we extend
these results to asymmetric V-cycles and the case where -b <h <1 with

0<b<1






1. Introduction

There have been several recent papers and reports [11, [2], [4], [5], [6],
[7], [8] giving proofs for the multigrid V-cycle. A careful reading shows
that the formulation of the problem and the basic results of Yserentant [8],
Bank and C. C. Douglas [1], and Braess and Hackbusch [2] are quite similar.

A1l of these authors deal with smoothing steps of the form

(1) H=1-¢£'a

where A is the positive definite matrix of the problem and E 1is a positive

definite matrix with

(2) (Au,u? < CEu,u? .

As a consequence all the eigenvalues, say hs’ of H satisfy
(3) 0<h <1.

However, other analyses (see [3]) of certain special cases, e.g., damped
Jacobi smoothing iterations, yield multigrid convergence results when the

eigenvalues of H satisfy

(4) -h.<h <1, 0<h,<T.

(which is all that we can say for undamped Jacobi) is not sufficient to

establish multigrid convergence. By multigrid convergence we mean:



there exists a constant p, 0 < p <1, independent of h, that bounds

some norm of the multigrid process, i.e.,

IMal] <p <1

When we say a method fails as a multigrid iterative method we mean

Lim || MG]| > 1 .
h>0

In this report we employ both the basic insights of S. McCormick (6], [7]
and a basic estimate of Yserentant [8] (which is essentially repeated in Bank

and C. C. Douglas [1]) to study a more general class of smoothers

(6a) H o= (I-wE"'A) ,
with
(6b) 0<w< 2.

The significance of this is that when 1 < w < 2 some of the eigenvalues of
H become negative. We obtain multigrid convergence for the V-cycle based

on these smoothers with bounds of the form

_ C-w
o= rameTy > O cests
(7)
__ c-(2-w)
= ¥ (2= (2m-T) ° T<w<2.
Note that p tends to 1 as w0+, 2-. When 0 < w <1 this is a

slight improvement of the results of Yserentant [8] which are a bit better

than the results of Bank and C. C. Douglas [1].



While the specific extensions of known results is interesting in
itself, it is our view that one should not lose sight of the importance
of employing the results of McCormick [6], [7] together with the estimates
of [8] and [1].

Finally, it should be mentioned that these results are not sharp. In
[3] Kamowitz and Parter computed the exact o, of McCormick's Theory (see
section 3). If that theory - as represented by Theorem 3.1 and Theorem 3.2

of section 3 - were sharp, we would obtain results of the form

=
(8a) % = TR

and

(8b) I s ol as §ve

However, the results of [3] indicate that neither (8a) nor (8b) hold.
Thus, there is still a need for a theory that yields sharp results for
particular multigrid schemes. On the other hand, it is comforting that
we now have theories which yield multigrid convergence theorems consistent
with computational experience.

In section 2 we describe the problem and prove a basic result relating

the three multigrid schemes M/j, M\j’ MV . In particular, we have
(92) w75l = gl

2
(9b) ” MVHA= “ M/jHA'



This is a result of McCormick [6]. We include our organization of the proof
only because it seems somewhat more transparent. In section 3 we collect
some basic facts from the papers mentioned above. Section 4 is devoted to

the multigrid convergence theorem.



2. The Problem

We consider a definite dimensional Tinear vector space

product €,? . Consider the problem

(2.1) At = £

where AM is a symmetric positive definite operator.

Consider a sequence of finite dimensional spaces

(2.2a) {Sj’ j=0,1,...,M}
with
(2.2b) dim Sj-] < dim Sj , Jj=1,2,...,M.

S

M

with inner

Consider linear operators Ig_], I%"] which enable us to communicate

between these spaces, where

(2.3a) Ig—]: Sj -> Sj-] (projection) ,
(2.3b) 13_]: S,y > Sy (interpolation) .

(2.3¢) 197 = (1))
For each space Sj we define

_d j+1
(2.4) Aj Ij+1Aj+]Ij

R j=0,1,...,(M-1).



Finally, we require "smoothing" operators Gj(u,f). In this note we
consider a special class of smoothing operators which are a slight extension
of the smoothing operators discussed in [1], [2], [8]. In particular Tet w

he a fixed constant with
(2.5) O<w<2.

Let Ej be a symmetric positive definite linear operator defined on Sj

which satisfies
(2.6a) (Av,v) < < Ejv,v> ; Yv e Sj'
Llet u,f € Sj’ Then
-1 -1
2.6b G.(u,f) = (I-wE, A, + wE. f .
( ) J(u) (wJAJ)u wE

We are now (as in [6]) in a position to define three multigrid iterative
schemes for the solution of (2.1). These schemes are defined recursively

as follows.

1) The Symmetric Scheme: MV(j,uJ,fJ).

If j=0 then

(2.7a) m(o,u’,£0) = (Y
where UO is the solution of
(2.7b) a vl - £0

If 1<3<M perform the following:



(i) do m times:

(ii1) uj +'uj + Ig_]MV(j—T,uJ_],fJ_1)

Gj(uJ,fJ) >,

Return to step (i).
As McCormick [6] has pointed out, this MV(j,uJ,fJ) iterative scheme

is closely related to the following "one-sided" schemes.

2) The coarse-to-fine cycle: M/j(uJ,fJ).

Once more, if J = 0 then
M/O(u ) =U
the solution of (2.7b). If 1 < j <M perform the following:
(i) set: ry T Ajuj , 1"].—1 = I§_1rj , L
(1) e wd v 1m0 eh
(iii) do m times
Gj(uj,fj) > uj ,

return to step (i).



3) The fine-to-coarse cycle: M\j(jJ,fJ).

If j =0, then

the solution of (2.7b). If 1 < j <M perform the following:

(i) do m times

-3 j j j j—] j_]
(1ii) uY < u’ + Ij_1M\j_](u ,0)

Return to step (i).

lLet UJ be the solution of

(2.8a) aul - £
and let

(2.8b) ed oyl . uj’
(2.8c) ej = A%Ej.

Following Bank and C. C. Douglas [1] we describe the "error propogator" as

(3) be the error at the start of a multigrid cycle (for a

0
problem in Sj) and ng) be the error at the end of that multigrid cycle.

follows: Let €



We have

Lemma 2.1: Let

-1
. =1 - 2 E,
G wAJ i

L
AZ .
J J

Case 1: The symmetric multigrid scheme: MV(j,uJ,fJ)

Let

(2.9a) Q, = 0 .

For j = 1,2,...,M we set

_orropkd pH -k 3-1,.5%,
(2.9b) Cj {1 AjIj-1Aj-1(I Qj_])Aj_]Ij Aj}
m~ M
.9¢ .= G.C.G. .
(2.9¢) QJ J JGJ
Then
J . J
(2.10) ey = Qjeo.

Case 2: The coarse-to-fine cycle: M/j( J fJ)

Let

(2.17a) Q/0 =0 .

For j=1,2,...,M we set

i -5 13-
. .= {I-A7Ty LA, -Q/. . . b,
(2.11b) C/J {1 AJIJ__1 3-](I Q/J_])AJ_]IJ AJ}

_ M
(2.11c) Q/j = Gj(C/j) .
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Then

.

J - J
(2.12) E-l - (Q/j)EO

Case 3: The fine-to-coarse cycle: M\j(uJ,fJ)

Let
(2.13a) W, =0.
For j=1.,2,...,M we set
_ orropBrd -5 §j-1.%
(2.13b) C\j {1 AjIj-1Aj_1(I Q\j-1)Aj-]Ij Aj},
m
) .= (C\.)G, ,
(2.13c) Q\; ( \J) ;
then
J . J
(2.14) & (Q\j)eO X
Proof: Direct Computation.
A basic result of McCormick [6] is
Theorem 2.7: We have
2.15 C\. = C) . = Q*
(- ) \J— ,/j’ Q\J“Q/J

and

(2.16) Q5 = (Q/j o Q\j)-



11

Hence,

(2.17a) HQ\J-HQZ = HQ/J.HQ2

and

(2.17b) la.ll, = las 2 .
J %2 J %2

Note: Using the notation of [6] and section 3 we have
i 2 T4
(2.18) I 53;122 = eI -

Proof: Since

Q\y = 0/p = 0
and (2.3c) holds, then
C/y = (C\])* )
. * =
Since Gj Gj we have
* ..

A straightforward inductive argument then gives us (2.15). A direct compu-

tation yields (2.16).
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3. Background Results

In this section we collect some results of McCormick [6], [7], Bank and

C. C. Douglas [1] and Yserentant [8].

Let
.= J
(3.1) Rj' Range Ij-]’
(3.2) Nj:= Nullspace Ig-]Aj.

Let <,)A denote the "A inner product”, i.e.,
(3.3) (u,v>A = <Aju,v> , U,V € Sj'
Then, using (2.3c) we see that

. . = R. N.
(3.4) S5 RJ@ ;

and Rj and Nj are A-orthogonal. Llet

1

(3.5a) Tj:

.5b S.:
(3.5) ;

A-orthogonal projection onto Nj'

it

A-orthogonal projection onto Rj'

Let Q\gk) denote Q\j when G? is replaced by G§ , 1.e., "k" is the

number of smoothing steps - not "m".

Let

(3.6) k) o a7

k.5
AL,
J J GJ

J

A basic result of McCormick [6], [7] is
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Theorem 3.1: Let o » 0 < oy < 1 be a fixed number which satisfies
2 2 k .
(3.7) a Tl s suld > u! Dall o 3= 12,00
Then
k 5
IIQ 6'1 f,ak -

Thus the "coarse-to-fine" multigrid V-cycle M/gk) with k smoothing

steps in each cycle satisfies

(3.8a) HM/gk)|lA j_at ,
(3.8b) el < ofll e, -

Corollary: Let (3.7) hold. Then

(3.92) 0 < of
and
(3.9b) IlMV(j,...)HA <oy

Proof: Apply Theorem 2.1.

Another result of McCormick (see Theorem 3.4 of [7]) is

Theorem 3.2: Let o, be the smallest number satisfying (3.7) with "k"

o
replaced by "1". Llet ¢ = 7 so that
..u-l
= _C_
(3.10a) A = ST -

Then (3.7) holds for k > 1 with oy given by

= _C_
(3.10b) o = o -
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1
In words, if af is an upper bound for l[Q\gl)H, then @E is an upper

bound for || ng)H .

Following Bank and C. C. Douglas [1] and Yserentant [8] we consider the

generalized eigenvalue problem

(k) (k)
3. VY = LELUY
(3.11) AJ J k,j JJ

(we will sometimes dispense with the subscript "j"). We order the eigen-

values

(3.12a) 0 <A

1 - 2 M dim s,
J

and normalize the eigenvectors U(k) so that

(k) ap(s)y .
(3.12b) R

k S _
(3.12c) (U™L,EU® )Y = Sks‘

For u « Sj let

1
(3.13) l]uIIE:= (u,Eju) .

With this notation we see that: if u ¢ Sj and

(3.14) u=JeU°

then
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(3.15a) Au = ZCSASUS

(3.15b) FullZ = Elegl?

(3.15¢) lulls = Slegl?a,

(3.16a) ng = zcsu-ms)"us
(3.16b) HH?qu\ = Tleg1?1-wn |50 .

Note: 1In (3.16a) and (3.16b) the exponent o may be any non-negative number.

The basic assumption of [7] and [8] is

Assumption A: There is a constant ¢ > 0, independent of j, such that,

for every u e Sj

2 2 .
(3.17) ][T&ul]E j‘cIITju||A, i=1,2,...,M.

We close this section with a basic estimate due to Yserentant (see

Lemma of [8]).

Theorem 3.3: Let Assumption A hold. Let

(3.18) O<w<T1.
Then

i 2 c ? L 2
(3.19) ITulld <€ dlully - el

Remark: Yserentant [8] proves this estimate within the finite element setting.
However, a quick check of his proof shows that it applies in our setting as

well.



16

4. Convergence Theorems

In this section we use the results of section 3 to obtain the following

basic convergence theorem:
Theorem 4.1: Assume Assumption A holds with constant c. let

[&—1], 0<w< 1,

(4.7) ¢ =
‘[”2‘%3‘”’ T<wc<2,
Then
(4.2a) 1%/ 12 « =<
JU Ttk
That is
(4.2b) ARG <=,
(k)2 c
(4.2c) LS I Sravnil
(4.24) Iy, < =S
c +2m

As might be expected from the form of c¢', the proof is slightly

different for the two cases, 0<w<1, T <w<2.

Proof for the case 0 < w<x 1.

In this we merely rewrite (3.19). Since

2 2 2
lull? = HTul? + sl
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the inequality (3.19) can be written as

¢’ 2 2 L 2
e AL R P

Thus, we think of H? or G? as our basic smoother. Then, applying
Theorem 3.1 and Theorem 3.2 we obtain (4.2a) and (4.2b). Applying Theorem 2.1
we obtain (4.2¢) and (4.2d).

The proof in the remaining case follows from the same argument and the

next result.

Lemma 4.71: let T <w<2 and let

£ =_C
(4.3) C =5
Then
2 _ - AR
(4.4) IT5ully < etllully -l Hullgd

- L
Proof: Let H denote H; with w=1. Then

2 A 2.2
2 5 12 2
(4.50) Folld - 102 = Tle, 12,0 - 1))

Let s be the value of s so that

(4.6a) [T-wd | =1 -wx , 1<s<s
S S - -

i

(4.6b) ll—wksl wig -1, s <s .
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Then
2 A
lully - 16502 =3, + L,
where
2 2.2 2.2
(4.7a) L= Ll ITA (-1 ]) = w ] Jc_|“ > Ve A
1 ng S S S 555 S s = S S
and
(4.7b) by = ) |c512xs(1-|1-msj) =) |c ]ZA (2-wr_) .
5<s s<s S S S
Since
2-—(&))\
S
AS h 2-w
we have
(4.8) 1 )
2-w Z2 2.§§SICS| As -
Hence
2 - 2 1 2 X o2
lully = IRl <525 Clully - 12u) 2

and the Temma follows from Theorem 3.3 with w = 1.
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