552

LOCAL STRUCTURE OF FEASIBLE SETS
IN NONLINEAR PROGRAMMING, PART III:
STABILITY AND SENSITIVITY.

Stephen M. Robinson

ABSTRACT
This paper continues the Tocal analysis of nonlinear programming
problems begun in Parts I and II. In this part we exploit the tools
developed in the earlier parts to obtain detailed information about local
optimizers in the nondegenerate case. We show, for example, that these
optimizers obey a weak type of differentiability and we compute their

derjvatives in this weak sense.
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1. Introduction. This paper continues the Tocal analysis of nonlinear

programming probiems begun in [7] and [8]. There, we introduced a funda-
mental algebraic decomposition of the space around a feasible point of the

basic problem

minimize f(x,p)
subject to h(x,p) = 0 (1.1)(p)
x e C,

where f and h are €' functions (r>1) from @ xI to R and R"
respectively, @ and I are open subsets of R" and of a real Banach
space P respectively, and C 1is a convex subset of R". 1In[7] C was
not assumed to be closed; in [8] it was assumed closed and (for most of the
paper) polyhedral, and stronger results were thereby obtained. In this
paper we assume throughout that C is polyhedral. The parameter p is
used to study the behavior of the programming problem and its solutions
under perturbations of the functions appearing in the problem.

In [8] we studied the idea of nondegeneracy, defined as follows:
Suppose pOeII, and let Xg be a feasible point for (1.1) (po). Denote

the tangent cone to C at a point x eR" by TC(X), and the normal cone

by NC(X). The feasible point x, is said to be nondegenerate if
s _ o .
h, (x;s py) [Tin To(xg)l =R7, (1.2)

where 1in TC(XO) is the lineality space of the cone TC(XO) (the largest

subspace contained in it), and where hX denotes the partial Fréchet

derivative of h with respect to the x-variables. The property of




nondegeneracy is stronger than that of regularity, studied in [7]: X is

said to be regular if
|
hX(XO,PO)[TC(XO)] =R". (1.3)

In [7], we used regularity, together with the decomposition mentioned
earlier, to derive optimality conditions and to examine the structure of
the feasible set F(po) near Xps here F(p) 1is defined to be

{xeC| h{x,p) =0} =CNh(,p)7!

(0). In [8], we showed that under the
stronger hypothesis of nondegeneracy, considerably more could be done.
Since we shall use the results of [8] in what follows, we summarize them
here.

Given a point xje F(po), denote hx(XO’pO) by D. Let M be the
subspace of R" parallel to aff C, the affine hull of C. Let
K:= MNkerD, and let L and J be subspaces complementary to K in M
and in kerD respectively. The regularity hypothesis (1.3) implies that
R" = J®K®L. The stronger nondegeneracy hypothesis (1.2} implies that L
can be chosen to lie in 1inTC(xO), and we shall assume that this has been

p and P, be the projectors onto J, K, and L along,

J’ K’ L
in each case, the other two spaces, and let P0==PJ-+PK, the projector

done. Let P

onto kerD along L.
In [8, Th. 2.2] we showed that there were open neighborhoods U, of
the origin in R, V, of py in P, and W, of xg, such that for each

PeV, the function
0= Pol(+) = xg1 | W0 Flp)

was a ¢’ diffeomorphism of W,N F(p) onto UiNA, where A:= (C-xo)fWK.

We also exhibited the inverse wp of ep. This diffeomorphism property was



a key result of [8] since it implied that we could replace (1.1)(p), for

p near p, and X near Xgs by the probiem
minimize {6(y,p) | yell, (1.4)(p)

where ¢(y,p):= f[ep-1(y),p] . In replacing (1.1)(p) by (1.4)(p) we have
changed a problem whose feasible set is defined by nonlinear, parametrically
dependent functions into one whose feasible set is a fixed, polyhedral
convex set.

Note that the definition of $ just given makes sense only for argu-
ments yeU,NA, since wp is only defined there. This will be slightly
inconvenient, so we shall extend $ to a function ¢ defined for all small
ywsRn and all p near Py in P. To do so, we recall from [7] and [8]
the construction of ep and its inverse. We first define uniquely a

particular generalized inverse D- of D by the requirements
DD =1, D D=P . (1.5)
Next, we observe that the equation

0 = D"h[x(y,p),p] + (I-D"D)Lx(y»p) - (xg+y)] (1.6)

¥ function x(y.p).

defines, for y near 0 and p near Pg> @ C
When x(-,p) is restricted to U,NA it becomes a diffeomorphism of
U,NA onto U, NF(p) whose inverse is ep. Details of this construction
are in [7] and [8]. To obtain our desired function ¢ , we need only take
the composition f(-,p)ox(-,p)oPO.

It will be convenient for later use to record some of the first and

(if r > 2 ) second derivatives of x(y,p) with respect to y and/or p.




Standard calculus applied to (1.6) yields, for any r, seR" and qeP,
x, {ysp)(s) = A(y,p)']POS
and
x,(ysp)la) = -Aly.p) D7 h,Lx(y.p), plq,
where
Aly>p):= Py+D" h [x(y.p).pl.

Note that since Py =1 -D" D, we have A(O,po) = I. We then obtain

]

xyy(y,p)(r)(S) -A(y,p)'] D hxx[X(y,p),p][xy(y,p)r][xy(y,p)s], (1.7)

and

#ypl o) (1) ) Aly»p) ™" D7 th [x(y.p).pILx (y,p)allx, (y,p)r]

(1.8)
-hXPEX(y,p),p][xy(y,p)rl[q]}-

These formulas become considerably simpler when evaluated at (y,p) =

(0,pg) -
The reduced gradient g, for (1.1)(p0) at x, fis the derivative

of w(-,po) at 0: that is,
*
9oi= ¢ ,(0,pg) = Py, (xgsP) - (1.9)
The first-order optimality criterion for (1.1)(p0) is the inclusion

9p€ - NC(XO) [8, Prop. 3.1]. If we use (1.9) to write this as

£ (xgobg) - D07, (xgapg)T e = Nelxg)

OSPO)
-k
and if we write A(xo,po):= (D) fy (XO’pO) then we have

*
g = T {xgsPg) = D Alxg.pg) e = Nelxg) (1.10)



Note that the multipliers x(xo,po) are reversed in sign from those in
[8]. The purpose of the present sign convention is to facilitate the
following simple geometric interpretation of 99 if we recall that

(ker D)@ L = R" , we can see that also
(ker D)*® L = R". (1.11)

The projectors on (kerD)i‘ and Ll, along the other subspace in each

*

* *
case, are PL and P0 respectively, so since Pt + PO = ] we have

* *
PLf, (xgoPg) = Ty (xgsPg) = D2 (%g5Pg) = 9p-

1 under the

In other words, 99 is the component of fx(xo,po) in L
decomposition (1.11). If we take the rows of D as a basis for (ker D)7,
then the multipliers x(xo,po) are simply the coordinates, in that basis,
of the complementary component of fx(xo,po) in (ker'D)*. When we remove
this component from fx(xo,po), we are left with the reduced gradient g,-.
The optimality condition (1.10) implies that, for each ceC,

(9g> c-c0>:g:0. The set C, consisting of those ceCy for which this
inequality holds as an equation ((go, c—co) = 0) 1is a face of C. In
fact, this face has special relevance to local optimization. If we define

hy:= (Co—xo)fWK, then we showed in [8, Th. 3.4] that for y near O and

p near pgs the local minimizers of the problem
minimizey {4(y.p) | ye i} (1.12)(p)
are exactly the same as those of the more tightly constrained problem

minimizey {o(y,p) | y e Ayt (1.13)(p)




In fact, we can simplify (1.12)(p) and (1.13)(p) even more if we recall
that C and hence CO are polyhedral. Therefore, near Xg the sets
C-x, and C,-x

coincide with their tangent cones TC(XO) and T (xo),

0 0 "0 C

0
which we shall denote by T and TO respectively. It follows that A
and AO coincide, near Xqs with TNK and TOfWK respectively. The

cone TNK 1is actually T (xo), as shown in [7, Th. 3.1].

F(pg)

0
1t then follows from our earlier diffecmorphism result that if we

choose U,, ¥V, and W, to be small enough, W, NF(p) will be diffeomorphic

to U, NTNK via ep, and W, NF(p) mC0 will be differmorphic to

U, NT, NK. Thus, we may replace (1.12)(p) and (1.13)(p) by

0
min  {¢(y,p) | y e TOK} (1.14) (p)

and
min  {o(y,p) | ye'TO'WK} (1.15)(p)

respectively.
By this diffeomorphism technique we have replaced the problem of
studying local minimizers of (1.1)(p) by that of studying local minimizers

of the C" function ¢{(-,p) on the polyhedral convex cone TOrWK (which

does not depend on p ). We call TOrWK the critical cone for (1.1)(p0)

at Xg* We shall see that this transformation enables us to use simple
geometric properties of the critical cone to gain optimality and sensitivity
information about (1.1)(p) in an easy and natural way. In the process we
shall recover several criteria that have previously been proved for particu-

lar cases of (1.1)(p).



With the reduced gradient 99 defined in (1.9) we can associate the
cone (90):= {kgolhg;O} . Using this notation it is easy to show that
Tg = TFW(90)° . As the inner product <g0,-> is non-negative on T
because ("QOG”NC(XO) =T°), this also shows that T0 is the face of
T defined by TO = {te'Tl<gO,t)=:O}. We shall use these observations in
Section 2.

The remainder of this paper is organized as follows: in Section 2, we
study the critical cone Toer. We show how to determine when this cone is
actually a subspace, and how to compute its affine hull even when it is not
a subspace. We also relate these results to particular criteria that have
appeared in the Titerature for special cases of (1.1)(p0). In Section 3,
we show that strong convexity of ¢(-,p0) on aff (TOfWK) ensures existence,
local uniqueness, and Lipschitz continuity of a minimizer of (1.1)(p) for
p near pg- We show that this criterion generalizes earlier work of
Kojima [2] and the author [4], and we provide a convenient test to determine
when this strong convexity holds. Finally, we show that the minimizer will
exhibit a weak kind of differentiability, which we call Bouligand differen-
tiability. This concept is explained, and some of its properties are derived,
in the Appendix. The final result of Section 3 shows how to compute the

Bouligand derivative of the minimizer.




2. Properties of the critical cone. In this section we study various

aspects of the critical cone TOFWK identified in Section 1. We show that
the problem (1.1)(p), for p near Pg and x near Xy behaves essen-
tially like an unconstrained minimization problem when TOFWK is a sub-
space, and we observe that in some familiar special cases of (1.1)(p) this
will occur precisely when certain well-known conditions (strict complementary
slackness or dual nondegeneracy) hold. Then we examine the more general
situation when TOfWK is not a subspace. We show that in a particular

case frequently seen in the literature, the critical cone TOfWK is the
linear image of a certain cone occurring in the second-order optimality
conditions. Finally, for this case we show how to compute the affine hull

of T.NK, since that subspace will play an important part in the results

0
of Section 3.

We have already observed that for all p near Po and for all vy
near 0, if y is to be a local minimizer of (1.12)(p), then y must Tie
in TOfWK, and that therefore we can restrict our attention to the problem
of minimizing ¢ on TOKWK. If TOfWK is a subspace, let k be its
dimension and let Q be an injective linear transformation from ]Rk onto
TOfWK. The problem of minimizing ¢(ysp) in y on TOfWK is then evi-
dently equivalent to that of minimizing ¢(-,p)°Q on Rk , so that in this
case our nonlinear programming problem has been reduced to a simpie uncon-
strained minimization. It is therefore of interest to be able to determine
whether in a particular problem TOIWK is in fact a subspace, and we show
in Proposition 2.2 how to do this. In order to prove that proposition, we

need the following lemma.
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LEMMA 2.1: Let W be a closed convex cone in R" and let WEIRn.

Then (w)° NW is a subspace if and only if -weriW®. In the latter case,

we actually have (w)° NW = Tin W.

Proof (only if): Suppose (w)° MW is a subspace. If -wériW®,
then by the proper separation theorem [9, Th. 11.3] there is some veR"
with (v,-w? >0 and (V,y> <0 for each ye W® (so that veW'’=W).
Further, either {(v,-w) > 0 or (v,y0> < 0 for some y,e We.

As veW with Cy,w) <0, it follows that ve (w)° NW. But the
latter set is a subspace by hypothesis, so -ve (W°) NW. Thus (-v,w» <0
so in fact {v,-w?» = 0, which implies <v,y0> < 0 for some yoe:W”. This
contradicts the fact that -veW and hence <-v,y0) < 0. Thus -weriW®.

(if): Designate by BO the intersection of the unit ball B with

aff W°. Since -w ri W, there is some e > 0 with -w+e BLCW®. Thus

0

EBO==W+(fw+eBO)C(w)+W

The right-hand side is a cone, so we actually have aff WoC(w) +W° .
However, (w)C-W° by hypothesis, so (w) +W°C aff W°, so in fact

(w)+W°® = aff W°. It follows that
(W) NW = [(w)+W°]° = (aff W®)° = 1in W,

as required. This completes the proof.
Using Lemma 2.1 we can now develop a convenient criterion for TOfWK
to be a subspace. In keeping with our convention for TC(XO) we write N
for NC(XO).
PROPOSITION 2.2: T.NK is a subspace if and only if -

0
and in that case one has TOfWK = lin (TNK).

9g € ri N,
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PROOF: We apply Lemma 2.1 with w = 9% and W =T0NK. As T0 =
TfW(go)°, we see that the statement that T,0K is a subspace is
equivalent to saying (w)° "W is a subspace. By Lemma 1, this is equiva-
lent to -weri W% that is, to -gje ri (TOK)? = (ri N)-FKL. Lemma 2.1
also tells us that then TOfWK = 1in (TNK). Hence the proof of the propo-
sition amounts to proving that -9g € (ri N) + Kl if and only if ~9g € ri N.
The "if" part is obvious. For the "only if" part, suppose —go==r4-v,
reri N, ve KL} We know L C1in T, so affN CZL‘l : hence r‘eLl
As gO==Pz fx(xo,po), 9 € iang =11 . 1t follows that both -9, and r
belong to L% : hence vek nit= (kL) =M =Tin N. But N=N+Tin N, so
ri N=ri N+1in N. As reri N and velin N, we have -9y € ri N, which
proves the proposition.

Proposition 2.2, and the discussion preceding it, makes precise the
idea that a nonlinear optimization problem may be "locally essentially
unconstrained," and it provides a test for determining just when this
property holds. In the rest of this section we show that in two familiar
special cases of (1.1)(p), this test reduces to properties already familiar

in the literature.

Example I: Standard linear programming. Here we are concerned with

the problem
min  {c,x)|Ax=b, x > 0},

so we can set f(x)=(c,x?, h(x)=Ax-b, and C==R2 . We suppress the
perturbation parameter p since it plays no role in this example. If we

suppose that X0 is a basic feasible point corresponding to the basis B
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and the partition [B N] of A, then we pointed out in [8] that non-
degeneracy in the sense used here corresponds to the requirement that

Xg > 0 (that is, to primal nondegeneracy in the usual linear programming

sense). In this case we take L=1in TC(XO) =]RB><{0}N , where the
superscripts indicate that individual factors are to be taken to be R or

{0} according as the particular index is in B or N. We then have

1 BN o -B~'N

D = , P, = , and P0= . The multipliers
0 0 0 0 I

N 1% -
are A = (D) fX\XO) = [(B 1) 0lc = cg B ], and the reduced gradient is
0 0
=Py f (xg) = ¢ =[0 ,cy-cyB NI
9= o "x 0! 7 o BN °B ’
~(B"'N) I
where we have abused notation slightly in order to write the multipliers and
the reduced gradient in familiar forms.
In this case we have T=]RBx(]R+)N, S0 N={0}BX(R_)N. Hence,
-4 will belong to N whenever CN'CBB-]N=L 0, the familiar linear
programming optimality criterion. The problem will be "essentially
unconstrained" near X0 whenever —goevﬁ N: that is, when CN—CBB-1N > 0.

This is the criterion usually referred to in the linear programming literature
as "dual nondegeneracy."

It is of interest here to compute TOfWK to see what kind of subspace
we are dealing with. In this case aff C=1Rn, so J has dimension zero,

and thus K=J+K= 1im P0 . Using the expressions for PO and T given

above, we see that the cone TNK is given by




TNK = s>0
S

The cone TOfWK consists of those elements v of TNK for which

1

(gy»Vv) <03 that is, for which (Cy-CpB"'N,s) < 0. However, if

B

TOfWK is to be a subspace then as already pointed out we have
-1

CN~CBB

of standard linear programming, TDfWK is a subspace if and only if it is

just the origin. This should not come as any particular surprise, since

N>0, and as s > 0 this implies s =0. Hence in the case

we know from linear programming theory that dual nondegeneracy implies a
unique "corner solution," and the solution of an unconstrained minimization
problem with a linear objective function will be unique if and only if the
dimension of the space over which the minimization is done is actually zero.

Example II: Nonlinear programming with inequality and equality

constraints. We consider next the nonlinear optimization problem

minimize d(z)
subject to cE(Z) =0
(2.1)
CA(Z) <0
CI(Z) ; 0 3

where zeRS and d, cp» Cy» and cp are ¢” functions (r > 1)

from an open set 0 Cle into R, lRe, ]Ra, and R’ respectively. Let
zoesz and suppose that cE(zo)==0, cA(ZO)==0 and CI(ZO) < 0: thus cp
and Cq jdentify the inequality constraints that are respectively active

and inactive at zj. We shall write dZ for dz(zo).
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To convert (2.1) to the form (1.1)(p), we introduce slack variables

and s We Tet x:= (2, sps sI) and f(x):= d(z),

Sp [
ce(z)
h{x):= CA(z)-*sA

CI(Z)-FSI_J,

and C:=2Rk X Ri P Rl . Then an equivalent formulation of (2.1) is

minimize f(x)
subject to h(x)=0 (2.2)
xeC.

Note that we have suppressed the perturbation parameter in (2.1) and (2.2);
in the analysis that we shall do here it would simply remain constant, so
there is no point in writing it out.

Now suppose that x0==(zo,—cA(zo),~cE(zo)) is a nondegenerate
feasible point of (2.2). Write Gp for cé(zo) , and define G, and Gy
similarly. We shall determine the various elements of the reduced problem
at Z4 in terms of these matrices. In particular, we shall compute TOIWK
and its affine hull.

As provided out in [8], nondegeneracy of x, means that the matrix

has full row rank. Thus, we can write

[EE -[oRrRIQ,
A

where Q is a k x k orthogonal matrix and R 1is a nonsingular, upper
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triangular (e+a) x (e+a) matrix. If we now write Q=[Q, Q,], where Q
1 72 1

is k x (k-e-a) and 02 is k x (e+a), then

G

T
= RQZ
Gp

Referring to the definition of C in (2.2), we can see that

To(xg) =R xR* xR', and thus Tin To(xg) = RX x {0} xR'. Choose
L = (im QZ) x 1012 x R , so that L< 1in TC(XO). In this case aff C =
Rk+a+1, so J is the zero subspace and K = kerD, where

(‘GE 0 0]

D= GA 1 0
L_GI 0 I
. o _ mpktati
To show that the subspaces K and L satisfy K&L=R R

suppose first that yeKNL . Partition y as (y],,yz,y3) , With

y]ele, Yo € ]Ra, and y3eIR1. As yeker D, we have

GEy] =0
6y, * ¥, -0 (2.3)
Gryy ty; =0,

but as yel we also have y e im Q2 (so that, say, y]==Q2w) and y,=0.
Using y2==0 in (2.3) we find that
G
T
0 - v, = (RQD QM) = Ru,

| %
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since Qg Q2 =1. As R is nonsingular we must have w = 0 and thus
¥y = 0. Using this in (2.3) we find that ¥q = 0. Hence K and L are
independent.

As im Q2 has dimension e+a, we see that dimL = e+a+i. But
D has full row rank, so its kernel K has dimension (k+a+i) - (et+ta+i)
=k-e. As K and L are independent we have dim (K+L) = k+a+i,
and hence ]Rk+a+i =K®L.

To compute D~ we follow the procedure suggested in [7] , defining

a (k+a+i) x (e+ta+i) matrix E by

Q
E=10 o/,
0 1
so that
R0 R0
DE = . (pE)! =
-1
6,0, I ORI
Thus
- _
QR 0
D™ = E(DE)” = 0 0
-1

It follows that the multipliers at X, are

£, (xg)0” = [d,Q,R7,07 . (2.4)
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For future reference we partition R'1 into [ZE ZA] , Wwhere ZE is
(e+a) x e and ZA is (e+a) x a. With this partitioning we can display

the multipliers for each type of constraint by rewriting (2.4) as
fx(xo)D = [szZZE’szZZA’O] =1 (kE,xA,AI).

To find the projectors on L and on ker D, we compute

- _
00  Qfy O
P = DD - 0 o ol ,

T
| G040y 607y 1

A
T _ T -1 _
where we have used Q]Q] =1 -Q2Q2 and R ' = [ZE ZA].

Then

- _
U
Po=1-P = 0 1o,

;
61 G2y O

and the reduced gradient at Xq is
_ T
fX(XO)PO - [dZQ"Q] s —dZQZZA s 0] . (2.5)
Note that in the second position of the reduced gradient we have the
negatives of the multipliers for the active inequality constraints.
We can now compute the cones TONK and TOfWK . For TNK, recall

that TC(XO) = Rk X Ri x Ri and that (2.3) describes the vectors (y],yz,

y3) in ker D. Putting these together we see that

TNK = {(y15—GAy],—GIy1)l GEy1=O,GAy]§;O}. (2.6)
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Up to now we have_assumed only that Xy was a nondegenerate feasible

point. To find T, MK we assume that Xg is a stationary point, so that

0
the reduced gradient belongs to —Nc(xo) .  Recalling that NC(XO) =

{O}k X Ri x {0}' and using (2.5), we see that stationarity implies

40, =0, d0,Z, 0. (2.7)

The points y of TOfWK are those in TNK that make a non-positive
inner product with the reduced gradient. Using (2.5) and (2.6) we see that
this implies (-dZQZZA)(-GAy]) < 0. However, as dQ,Zy, =%, <0 by (2.7)
and  Gpyq <0 since yeTNK, we see that A, and  Gpy,; must have

complementary supports. Hence we have

oK | (Ug) s (2.8)

where we have defined the polyhedral convex cone UO‘ by

Ugi= Lyy «R¥ | Ggy; =0, Gyyy <0 and (6y))3 =0 4F ()i* 0} . (2.9)
This cone U0 is the familiar cone appearing in the second-order optimality
conditions (see, e.g., [3, §10.3]).

From Proposition 2.2 we know that TOfWK will be a subspace if and
only if the reduced gradient belongs to -ri NC(XO) : in this case, this
means precisely that every component of AA is negative. This property
is usually referred to as "strict complementary slackness" in the nonlinear

programming literature, so we have shown that the problem (2.1) reduces

locally to an essentially unconstrained minimization if at the stationary
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point Xg one has (1) strict complementary slackness and (2) Tinear
independence of the gradients of the active (binding) constraints.
As a final step in the analysis of (2.1) we compute the affine hull

of T.NK, since we shall need this information in the next section.

0
For this purpose, let us suppose that the rows of GA have been ordered

so that all of those corresponding to negative components of AA are
placed before all corresponding to zero components of AA . Then we can
G—
partition GA accordingly, as , and we can partition the component
G

0
matrix ZA of R—] as [Z_ ZOJ. Now recall that

S
1= RONQR = | 6| Q, [Z; 2 Zy].
B

G |
It follows that E_J (QZZO) =0 and GO(QZZO) = 1. Referring to (2.8)
G

we see that each column of -QZZO belongs to the cone UO defined earlier.

Ge | 6]
However, these same columns form a basis for ker , SO ker -
G G
._GE
aff UO . However, it follows from (2.9) that UOC?ker , so actually
G
GE 7
aff U = ker = im (QZZU) . We then have
G
I
G
aff T.NK = | -G (ker ). (2.10)
-G -
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3. Stability and sensitivity analysis of an optimizer. In Section 2 we

studied the critical cone TOfWK associated with a Tocal minimizer Xg -
The results of that section made no use of the perturbation parameter p,
which remained fixed at Pg

Here we allow p to vary near pg. and we study the questions of
existence, uniqueness, and stability of a local minimizer near Xq when
the problem is pefturbed. We show that, under appropriate conditions, not
only does a local minimizer exist near Xg for each p near pg. but
when regarded as a function of p this optimizer is Lipschitzian. In
fact, it is almost differentiable in the sense that it can be well approxi-
mated by a simpler function that can, in principle, be computed using
information available at the solution. The "almost" results from the fact
that this approximating function is not affine (unless TOFWK is a sub-
space): 1in general, the portion of its graph near Po is a cone rather
than an affine set.

Recall that we have transformed the problem (1.1)(p) into the con-
siderably simpler problem (1.15)(p), whose feasible set is the polyhedral
convex cone TOfWK . 0Of course, without making some assumptions about the
functions involved in the problem we cannot expect to find any interesting
results about stability. Thus, we consider next what kinds of assumptions
we should make about (1.15)(p) in order to ensure that its minimizer is
unique and well behaved for p near p;. Then, of course, any information
we gain about that minimizer can be immediately translated into corresponding

information about a minimizer of (1.1)(p) near Xg -
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We shall use the concept of strong convexity in connection with (1.15)
(p). This idea is defined as follows:
DEFINITION 3.1: Let vy be a function from R" to (-, +=].

vy is strongly convex with modulus p > 0 if for each xO,.x]<sRn and

each e (0,1),

Y LAy +axy] < (=) v Grg) #2v(xg) =% 020D 1xg = xy 11

We say 7y 1s strongly convex on a subset U of R" if the function equal
to y on U and to +« off U is strongly convex.

The following lemma characterizes strong convexity when the function
in question is restricted to an affine set and when enough differentiability

is present.

vy be a C2 function from a neighborhood N of Xq

LEMMA 3.2: Let
Le

in R" to R. t A be an affine set containing X, and let S be

the subspace parallel to A. Then ¥y is strongly convex on a neighborhood

of Xq in A, if and only if y"(xD) is positive definite on the subspace

S.

PROOF (only if): Suppose Yy is strongly convex with modulus p on a
neighborhood of Xg in A. We can take this neighborhood to be MOA,
where M C N is a neighborhood of g in R". Llet seS; we can assume
with no loss of generality that s is small enough so that X0 + s and
Xg = S belong to M. As seS, these points also lie in A, hence in
MNA . Thus we have

yollsl? = o0 G 125117 < sv(xgrs) + sv(xgms) = v(xg) -
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But
Yxgts) = vlxg) + (xgds + (s (igds) + o lIsll®)
Ylxges) =7 (xg) = ¥" (xgds + (s, v (xg)s) + ollIsll®)
o
sollsl? < uCs"(xg)s) + olllsl®) -

Since this inequality holds for all small seS, it follows that for all
seS, (s,y"(xo)s> > pHSH2 .

(if): Suppose y“(xo) is positive definite on S, and let seS.
Since vy s C2 , there is an open convex neighborhood M of Xq in R"
such that if XeM then y"(x) is positive definite on s with modulus p .
Define an auxiliary function © from the neighborhood {t|w+tseMNA} of

the origin in R to R by
6(t) : y(wrts) -v'(w)(wtts) .

Then we have

t
v(wtts) -y(w) -y'(w)ts = 6(t) -0(0) = {0 6'(v)dv

]
1]

t rt v
[ [y (w+vs) -y'(w)]sdv J J (s,y"(wrys)s?) dy dv
0 0’0

v

t
oll sl j [0 ay dv = motdlsl? . (3.1)
0

Now let X1 and Xo be any two points in MNA, and let re (0,1).

Apply (3.1) with s = x;-X; and with w = (1~x)x]~fxx2 , taking the
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indicated choices for t to obtain the inequalities shown:
- [ 1 2 2
t= & zp(xg) = v(w) - Ay (W) (xq=xp) 2 02" Ibxg=xol 5 (3.2)

£ = AnT 5y (xp) —y (W) + (1=1)v* (W) (=) 5102 g0 l15 . (3.3)

v

Multiplying (3.2) by (1-3) and (3.2) by A and adding, we obtain
(1-2)v(xq) +av(xp) = vLOI-A)x ¥, ] 2 5 A (1) 1%y, 1%

which completes the proof.

Our approach to stability analysis of (1.15)(p) will be the following:
we consider a local minimizer Xq s and we make the assumption that ¢(-,p0)
js strongly convex on aff (TOIWK) . Since aff (TOfWK) is itself a sub-
space, we see from Lemma 3.2 that our assumption is equivalent to the
assumption that ¢yy(x0,p0) is positive definite on aff (TOfWK) . As we
shall see later, this latter assumption is well known in the special case
of nonlinear programming with inequality and equality constraints, being
exactly the "strong second order sufficient condition" used by Kojima [2]
and the author [4].

With this assumption, we consider the nonlinear generalized equation

which expresses the condition for a stationary point of (1.15)(p) to exist.
We can use (3.4)(p) since our assumption will guarantee that not only
¢(f,p0) ., but also ¢(-,p) for p near pg. is strongly convex. Hence
the stationary-point condition (3.4)(p) is equivalent to the minimization

condition in (1.15)(p).
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Applying to (3.4)(p) the analytical machinery devised in [4], we can
prove that for each p near p, there is a unique minimizer Y(p) of
(1.15)(p) near 0, and that the function Y is Lipschitzian. Of course,
this immediately implies the existence of a Lipschitzian function X(p)
yielding the unique local minimizer of (1.1)(p) near Xg -

Finally, we shall use some additional results about generalized
equations to show that the functions Y and X are almost differentiable,
in the sense that they can be well approximated near Pg by relatively
simple functions that are in principle computable. However, the graphs of
these simple functions are not subspaces (as would be the case with deriva-
tives) but rather cones.

To begin the detailed analysis we make the assumption, for the
remainder of this section, that Xg is a nondegenerate local minimizer of
(].1)(p0) and that f and h are 'C2 on a neighborhood of (XO’pO) . Of
course, this then implies that 0 is a local minimizer of (1.15)(p0), and
that ¢ s C2 on a neighborhood of (O,po) . We also assume that
¢(',p0) is strongly convex on a neighborhood of 0 in aff (TOfWK) . By
Lemma 3.2, this is equivalent to assuming that ¢yy(0,p0) is positive
definite on aff (TOfWK). Since ¢ is C2 , there are neighborhoods U0
of 0 in R" (open and convex) and Vo of py in w, such that if
(y,p)e:UOXV0 , than ¢yy(y,p) is positive definite on aff (TOfWK) with,
say, constant p>0: i.e., for each se aff (TOfWK) R (s,¢yy(y,p)s) >
pHsH2 . Now Lemma 3.2 (in particular, the proof of the "if" direction)
implies that for each pe’V0 , ¢(=,p) 1is strongly convex on U0 . This
tells us that ¢(+,p) has a local minimizer Y(p) on UOfW(TOfWK) if and
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only if the stationary point condition (3.4)(p) holds for y = Y(p);
further, if such a minimizer exists it is the unique global minimizer of
o(+,p) on UOfW(TOfWK) . Thus we have now to investigate the solvability
of (3.4)(p).

Fortunately, quite a lot is known about inclusions like (3.4)(p):

these generalized equations exhibit solvability and regularity properties

analogous to those of conventional nonlinear equations. A survey of this
area is given in [6], and many details and proofs are in [4].
From results in [4] and [6] we can see that the key to analyzing the

behavior of (3.4)(p) is the linearization given by
0<9(0,py) +¢W(O,p0)y+NTODK(y) - (3.5)

For example, [6, Th. 4.4] or [4, Th. 2.1, Cor. 2.2] show that if the inverse
of the operator on the right in (3.5) is (locally) single-valued and
Lipschitzian near 0, then for any p near p, (3.4)(p) will have a
locally unique solution Y(p) that is Lipschitzian in p. In fact, under
our assumptions such a solution will even be globally unique.

To investigate the inverse of the operator in (3.5), note that y solves
we o, (0.p)) +¢yy(0,p0)y+NTomK(y) (3.6)
if and only if y solves the convex quadratic programming problem
minimize -{<¢y(0,p0)—w,y) +!5(y,¢yy(0,po)y>l ye:TOf\K} . (3.7)

Since ¢yy(0,p0) is positive definite on aff (TOfWK) , we can see that
for each we R" (3.7) has a unique global optimizer y(w) , and such an

optimizer is then also the unique solution of (3.6). Further, if Wy and
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W, are two points in R" , then

Wi =,(0.pg) - ¢y, (0,pg)y(wy) GNTOHK(Y(Wi))’ i=1.2.

The definition of normal cone then yields

<W'| = q)y(,ospo) 'q)yy(oapo)y(w]) ) )’(W]) ‘y(wz)) __>__ 0 s

-

Gy - 0,(0.pg) - ¢y, (00 )y(wy) s ylwy) -y(wy)) < 0.

A

Subtracting the second inequality from the first, we find that
(w'l "W25 .Y(w‘l) -y(W2)> ; (¢yy(0,P0)[Y(W1)~Y(W2)]a .Y(w'l) - (W2)>

o llytug) - y(w) 17,

v

so that we have
yGug) =yl < 07 vy - wyll
and therefore the inverse operator we are considering is in fact Lipschitzian.
(Another way to reach this conclusion would have been to show that the
operator in (3.6) is strongly monotone and then to use general results
about such operators. In this case the direct argument seemed simpler.)
We are now able to prove the following theorem about minimizers of

(1.1)(p) and (1.15)(p):

THEOREM 3.3: Suppose that X0 is a nondegenerate local minimizer of

(1.1)(p0), that f and h are c? on a neighborhood of (xO,pO) , and

. " . A
that ¢yy(0,p0) is positive definite on aff (T0 K) .

Then there exist neighborhoods U of 0 in R", V of py in P,

and w of x4 jQ‘IRn , and Lipschitzian functions Y:V~-U and X:V—>W,

such that for each peV, Y(p) is the unique minimizer of (1.15)(p) in

U, and X(p) is the unique minimizer of (1.1)(p) in W.
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PROOF: Our analysis just prior to the statement of the theorem showed
that the generalized equation (3.4)(p0) was regular at the origin in the
sense of [6] (i.e., its linearization has a Lipschitzian inverse). Applying
[6, Th. 4.4], we see that there are neighborhoods U of 0 in R" and V
of py in P (which we can take to be contained in U,Nl, and Vo MV
respectively), and a Lipschitzian function Y:V =~ U such that, for each
peV, Y(p) is the unique solution of (3.4)(p) in U. However, our
previous remarks show that this is equivalent to saying that Y(p) is the
unique minimizer of (1.15)(p) on U. Finally, we set X = wpoY ; since
Y(p) remains in Ui NA we know frem our earlier diffeomorphism results
that X(p) will then be the unique minimizer of (1.1)(p) on MW:= wp(U).

As W 1is a neighborhood of Xq s We have completed the proof.

At this point two remarks are in order. First, the review in Section 1
showed that the multipliers A Qere ¢” functions of x: thus, as
X(p) varies with p the corresponding multipliers will be Lipschitzian in
p, and possibly smoother: in fact they will share whatever smoothness
properties X may have (up to Cr) . Second, there is indeed a situation
in which X will be at least C2 : it is precisely the case that we
studied in Section 2, in which TOfWK is a subspace. We saw that this
case would arise whenever -9 belonged to the relative interior of NC(XO)'

To see why X 1is in fact ¢’ in this case, we return to the generalized
equation (3.4)(p). If TOIWK is a subspace, say of dimension k, we can
write (3.4)(p) equivalently as

8, (y>p) « (Tg NK)*
Ye ToﬂK .

(3.8)
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If we let Q be an injective linear transformation from Rk to Rn with

TOFWK = im Q , then we can reformulate (3.8) as

QT¢y(Q2,p) -0, (3.9)

where we have replaced y by Qz. The expression (3.9) is a system of
non1inear equations, and we can analyze its selution using the implicit-
function theorem. To do so, we examine its first derivative in z at

z =0 (hence y = 0), which is QT¢yy(0,p0)Q . This is a positive
definite (hence nonsingular) linear transformation from Rk to Rk , since
we have assumed that ¢yy(0,p0) is positive definite on aff (TOfWK) = im Q.
The implicit-function theorem then tells us that there is a c" solution
z(p) of (3.9) for p near Py which is unique in some neighborhood of
the origin 1in R¥ Putting Y(p) = Qz(p) , we obtain a ¢” solution of
the minimization problem (1.15)(p) and thence a ¢’ solution X(p) of (1.1)
(p). Derivatives of X and Y can then be computed, using Q and the
derivatives of ¢ .

Returning to the general case, we investigate the positive definiteness
condition on ¢yy(0,p0) in the special case of nonlinear inequality and
equality constraints. This case was dealt with in detail in Section 2.
There, we found that

I

— 6
(ker ). (2.10)

A G-
81

aff (TOfWK) =1 -G
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Since we are interested only in ¢yy(0,p0) » we shall suppress the pertur-
bation parameter p in writing the problem functions. Using the notation

of Section 2 we have

(CE)ZZ(ZO)PZSZ
fxx(xo)rs = dZZ(_zO)rZsZ ; hxx(xo)rs = (cA)ZZ(zO)rZsZ (3.10)

_(CI)zz(Zo)rzSz

where r, and s, denote the portions of r and s corresponding to z
(the first k components). Incidentally, the form of (3.10) shows that the
introduction of slack variables to convert (2.1) to (2.2) made no essential
difference in the derivatives of the problem functions; this point is of
interest when considering the computational effectiveness of such a procedure.

Using the derivative formulas from Section 1, one finds
¢yy(0)rs = fxx(xo)(POr)(POs) -fx(xo)D hxx(xo)(POr)(Pos) . (3.11)

Recalling that fx(xo)D' = (AE,AA,AI) » and using (3.10), one obtains from
(3.11) an expression in the original problem functions from (2.1) , namely

cbyy(O)rs =d,,(z2)(Pyr) (Pys), =ps(ep),, (zg) (Pyr) ,(Pys)

(3.12)
- (AA’(CA)ZZ(ZO)(POr)Z(POS)Z> H

since we know AI =0.

Now if r and s 1lie in aff (TOIWK) they surely lie in ker hx(xo),
so the multiplication by P0 will be superfluous. Thus we can see from

(3.12) that if r,se aff (TOfWK) then

¢yy(0)rs = dzz(zo)rzsZ - <AE,(CE)ZZ(ZO)rst> - <AA,(CA)ZZ(ZO)rZsZ>. (3.13)
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The expression on the right of (3.13) is simply the quadratic form defined
by the second derivative of the standard Lagrangian of (2.1) at Zg s
evaluated at the pair (rz,sz) .  Referring to (2.10), we see that r and
s belong to aff (TOFWK) if and only if r, and s, belong to

B

ker ; that is, to the subspace orthogonal to the gradients of (i)
G

the equality constraints, and (ii) those inequality constraints having
nonzero multipliers. Hence, our requirement that ¢yy(0) be positive
definite on aff (TOfWK) reduces, in this special case, to the requirement
that the second derivative of the standard Lagrangian be positive definite
on the subspace just described. This is, as we noted above, precisely the
"strong second-order sufficient condition" used by Kojima [2] and the
author [4] in their analyses of this particular case.

Although we have shown that the functions X and Y are Lipschitzian,
it is possible to gain some additional information about them by showing
that they are in fact differentiable in a certain sense, weaker than that
of Fréchet differentiability. We call this weak forﬁ of differentiability

Bouligand differentiability (B-differentiability). It is defined, and some

of its properties are derived, in the Appendix. In the remainder of this
section we shall use these results without further comment, and we shall
also assume that the space P 1is finite-dimensional: say, Rk .

We are going to prove that the functions X and Y of Theorem 3.3

are B-differentiable, and to exhibit their B-derivatives. In order to do

this, we shall require a Temma in which we use the idea of a polyhedral
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function or multifunction (multivalued function). This simply means a
function or multifunction whose graph is the union of finitely many
polyhedral convex sets. Such multifunctions are treated in some detail

in [5].
LEMMA 3.4: Let y be a single-valued polyhedral function from

R" to R" with y(0) = 0. Then there is a neighborhood M of the

origin such that for any zeN and any Ae[0,1], y(rz) = ay(z) .

PROOF: By [5, Lemma 1] there is some convex neighborhood N of the
origin such that if any component of graph y intersects N x R" , then
that component actually contains (0,0) . Now let zeN and Ae[0,1].
The pair (z,y(z)) belongs to some component of graph y, and as zeN
that component also contains (0,0) . Thus it must also contain
(rz, ay(z))=(1-2)(0,0) + A(z,y(z)). Hence (rz, Ay(z)) belongs to graph
y , and by single-valuedness we then have y(Az) = Ay(z) , which proves
Lemma 3.4.

The main result about B-differentiability of X and Y 1is the

following.

THEOREM 3.5: Assume the hypotheses of Theorem 3.3, and assume further
k

that P =R Then the functions X and Y of Theorem 3.3 are B-differ-

entiable at Py > and one has for small q<st

DY(pg)(a) = yeL-¢,,(0.pg)1{a) (3.14)

DX(py)(a) = DY(pg)(a) - D7h (xg.pg) (a) - (3.15)

where y(w) 1is the single-valued Lipschitzian function defined by (3.6) or

(3.7).
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PROOF: We first obtain the expression for DY(pO) . Recall that
¢, (0spg*a) = ¢,(0 pg) + ¢, (0.pg)(a) + ola) .

We also know from [6, Th. 4.5] or [4, Th. 2.3] that since Y(p) solves
(3.4)(p),

Y(p0+q) = .Y[(by(O:PO) '¢y(osp0+q)] + O(Q) S

where y is defined by (3.6) or (3.7). As y is shown (in the discussion

following (3.7)) to be Lipschitzian, we have

Y(pg*a) = y[-0,,(0,py)(a) + olq)]

yeL-6,(0.p)1(a) + ola) .

Lemma 3.4 shows that there is a function v defined from IRn to Rn ,

whose graph is a cone, and a neighborhood N of the origin such that
v(w) = y(w) whenever weN. It follows that for small g,
v0[-¢yp(0,P0)](q) = ya[-¢yp(0,p0)](q) . Thus, for such q we have (since
y(pg) = 0)
Y(pg*ta) = Y(pg) + vol-¢, (0,py)1(q) + o(q) .
Since the graphs of v and —¢yp(0,p0) are cones, so is that of their
composition. Applying Theorem A.2 to the Lipschitzian function Y, we

conclude that Y is B-differentiable at Pg > and that
DY(pO) = V°['¢yp(osp0)] .

However, for small gq, -¢yp(0,p0)(q) belongs to the region near 0 where

v agrees with y; hence we have (3.14).
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To establish (3.15) we note that for p near Po X(p) = xLy(p),p]l »
where the function x 1is as defined in Section 1. Hence, using the chain
rule for B-derivatives (Corollary A.4), we find that X 1is B-differentiable

at Pg with

DX(pg)(a) = x, (0,pg)eD¥(py)(a) + x,(0.py)(a)

X
y
DY(py)(a) - D“hp(xo,po)(q),

which is (3.15). This completes the proof.

We note in closing that Aubin [1] derived very general results about
solvability and sensitivity of convex optimization problems. He used
contingent derivatives, which are multivalued generalizations of the
Bonligand derivatives employed here. We have chosen to use a direct
approach in analyzing (1.15)(p), rather than to attempt to apply Aubin's
results, because with the direct approach we can apply special information
that we have about (1.15)(p) (e.g., strong convexity) to prove sharper

results than would be true for general convex optimization.
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APPENDIX: BOULIGAND DERIVATIVES

This appendix presents results about Bouligand derivatives that are
needed in the Tast part of Section 3. Only those results that are needed
here will be presented.

In [1], Aubin defined contingent derivatives and analyzed some of their

properties. These contingent derivatives are obtained by considering the

contingent cone (originally introduced by Bouligand) to the graph by a

multivalued function, at a point in that graph, to be the graph of a certain
operator. This operator is the contingent derivative of the multivalued
function at that point of its araph. Of course, in general the contingent
derivative will itself be multivalued.

We shall be concerned here with a special case of the contingent

derivative, which we call the Bouligand derivative. This special case

arises when the function involved is single-valued and Lipschitzian on a
neighborhood of the point in question and the contingent derivative at that
point is also single-valued. In this situation the Bouligand derivative
has some strong properties not shared by contingent derivatives in general.
Throughout this appendix we assume that f s a function from an open

k

set QCR" to R , which is Lipschitzian on © with modulus X . If

X~ e we consider the contingent derivative Df(xo) , defined by letting

0
graph Df(xo) be the contingent cone to graph f at (xo,f(xo)): that

is, the cone K defined by
(v.w) eK if and only if there exist p >0 and
(vn,wn) with w. = f(x0+vn) - f(xo), v, 0, and

pn(vn,wn)"> (v,w) .
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We observe that Df(xo) v is nonempty for any ve R". Indeed, if we
consider the set {T_1[f(x0+rv) —f(xo)] |t>0} we see that for small <,
no element of this set has norm greater than A||v|| because f is

Lipschitzian. Hence there is a sequence Tn¥0 with T;][f(XO+TnV) - f(xo)]

-1
n

converging to some w. Taking v, T TnV and Py = T in the above
definition, we see that we Df(xo)v.
0f course, in general Df(xo) contains more than one point. Our next
definition deals with the special case of single-valued Df(xo).
DEFINITION A.1: If Df(xo) is single-valued (i.e., a function) we

call it the Bouligand derivative (B=derivative) of f at Xg -

One of the most useful properties of the Fréchet derivative is that of
approximation. The following theorem shows that the B-derivative retains
the approximation property of the Fréchet derivative, that it inherits the
Lipschitz modulus of f, and that it provides the best approximation to f
near Xx, among all functions whose graphs are cones.

THEOREM A.2: Let f be Lipschitzian from the open set QC R" to

Rk, with modulus ., and let xoesz.

a. If f is B-differentiable at x,, then Df(xy) is Lipschitzian
on R with modulus A, and one has f(x) = f(xo) + Df(xo)(x~x0) + o(x-xo).

If d is any function on R™ such that graph d is a cone and

o

f(x) = f(xo) + d(x—xo) + o(x-xo), then f dis B-differentiable at Xq and
Df(xo) =d.
PROOF: There is no loss of generality in assuming for the proof that

Xq = 0 and f(xo) =0.
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Suppose f is B-differentiable at x,. We show first that if

Ve Rm, then

-1
DF(0)v = 1im p  f(ov) .
040 (A1)

Note that for small p, the quantity p-1f(pv) is bounded in norm by
A||v||. Therefore it has one or more cluster points; we shall show that
there is only one, namely Df(0)v, and this will establish (A.1).

Suppose that for some sequence {pi} converging to 0, we have
p;]f(piv)->y , where y 1is some element of RX. Then (p;v > Flpgv))
belongs to graph f for each i, and p;1(piv, f(piv))—*(v,y) . It
follows from B-differentiability that y = Df(0)v, and this proves (A.1).

To show that Df(0) ds Lipschitzian, choose any points Xy and Xo

in R" , and let €>0. Choose p to be a positive number so small that

PXy and  px, belong to © and (by (A.1))

lo™F (ox;) = DE(O)x; 11 (e (1=1,2).

Then we have

[IDF(0)x; - DF(O)x,|| < |IDF(O)xq - p-]f(-px’l)”

+ o7 I F(ox) = Flox) || + llo™ Flpxy) - DF(O)x, |

< xHx1—x2H + €.

As € was arbitrary, we see that Df(0) is Lipschitzian on R" with
modulus A .

To show that Df(0) has the approximation property we want, it
suffices to prove that for any sequence {xn} converging to 0, with

xnﬁfO for each n, there is a subsequence, say {xk} for k belonging
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to some index set I, such that
-1
llka llf(xk) - Df(O)ka + 0.
Given {xn} we select I so that Vk/HXkH converges-to some ve R".
Choose €>0 and let K be so large that if k> K then (by (A.1))

i~ £ hv) = DF(O)V] <3xe

and
v = ix 7T, < (@) e
Write py for kaH; then for k > K we have
o £ - DRl < o 1 (x) - Flo)l

¢ o7 floy) - DF(OVI + [IDF(O)V - DF(O) (o} x, )
<o xeppvll + e+ Allv-og Xyl < e s

where the bounds on the first and third terms come from the Lipschitzian
properties of f and DF(0) respectively. It follows that
llka'1Ilf(xk) - Df(O)ka > 0, and this completes the proof of (a).

To prove (b), let d be a function with the properties described in

(b). Let (v,w) e graph d. For small p>0, pvef, and therefore by (b)
f(pv) = d(pv) + olp) .
However, d{(pv) = pd(v) = pw. Thus

(v,w) = p'](pv, f(ov)) + olp) »

and it follows that (v,w) belongs to the contingent cone of graph f at
(0,0) . Hence graph d € graph Df(0) (the contingent derivative).

Now suppose (v,w) e graph Df(0). By definition, there are
sequences {pn]'C R and {xn}<252 with pn¢0 , xn-+0 , and such that

-1

(vow) = Tim P

n-—-o

(x, » Flx))
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Hence

X, = eVt olp,) (A.2)

and
f(xn) = p,wt o{pn) . (A.3)
As f 1is Lipschitzian, we derive from (A.2) and (A.3) the fact that
flov) = ow + olo ) . (A.4)
However, by hypothesis
flov) = dlp v) + ole,) - (A.5)

From (A.4), (A.5), and the fact that d(an) = pnd(v) (because graph d

is a cone), we obtain

1

o(pn).

w=d(v) + p;
and letting n+e we find that w = d(v) , so that graph Df(0) C graph d .
But d 4s single-valued, and therefore since we have shown that d = Df(0) ,
we conclude that f s B-differentiable at 0 with B-derivative equal to
d. This proves Theorem A.2.

This theorem can be quite useful in identifying B-derivatives and in
establishing their properties. The next two corollaries illustrate some
properties that can easily be proved using it.

COROLLARY A.3: Suppose f and g are Lipschitzian functions from an

open set QC R" to IRk. Let xoesz, and suppose f and g are

B-differentiable at Xg - Then

a. If aeR then of is B-differentiable at x, and D(uf)(xo) =
an(xo).
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b. f+g is B-differentiable at x; with D(f+g)(x0) = Df(xO) + Dg(xo).

PROOF: For (a), we just note that

1]

f(x) f(xo) + Df(xo)(x=x0) + o(x-xo) , (A.6)

and hence

1

(af) (x) (uf)(xo) + an(xO)(x-xo) + o(x—xo).

As the graph of an(xO) is a cone, Part (b) of Theorem A.2 tells us that
af is B-differentiable at x, and D(af)(xo) = an(xD).

For (b), the proof is similar to that of (a), except that we write
expressions like (A.6) for each of fand g. As Df(xo) and Dg(xo) are
single-valued, Df(xO) + Dg(xo) is a single-valued function on R" whose
graph is a cone. Again, Part (b) of Theorem A.2 gives us the result.

COROLLARY A.4: Let f be a Lipschitzian function from an open set

8C R" EQ_:Rk . Let xoesz, and suppose g is a Lipschitzian function

K, with f(xg)el, to R'. If f isB-differentiable

from an open set TC R

at xg and g 1is B-differentiable at f(xo) , then gof is B-differentiable

at x5 and

D(gof)(xy) = DgLf(xq)1Df(xy) -

PROOF: First note that if (u,w) belongs to graph Dg[f(xo)]on(xo),
then with v = Df(xo)u we have (u,v) e graph Df(xo) and (v,w) e graph
Dg[f(xo)] . If o>0 then oav = Df(xo)(uu) and ow = Dg[f(xo)](av).
Hence o(u,w) e graph Dg[f(xo)]on(xo) , so that this graph is a cone.

Now note that

f(x) = f(xo) + Df(xo)(x—xo) + O(X-xo)



-39-

so that

(gof)(x) = gLf(xy) +DF(xy) (x-x4) + o(x-x4)]

n

gl f(xq) +DF(xg) (x=x)1 + o(x-x,)

(gef)(xy) + DL (xq)1(DF(xq) (x-x4)) + olx-x4)

(gef)lxg) + [DgLf(xq)IoDf(xq)I(x-x4) + o(x-X;) (A.7)

where we have used the fact that ¢ and Df(xo) are both Lipschitzian,
as well as the approximation information given by Part (a) of Theorem A.2.
Now we apply Part (b) of Theorem A.2 to (A.7) to prove the corollary.
Finally, we note that evidently any Fréchet derivative is also a
B-derivative, since its graph is a cone and it has the approximation

property treated in Theorem A.Z2.
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1. Introduction. This paper continues the local analysis of nonlinear

programming problems begun in [7] and [8]. There, we introduced a funda-
mental algebraic decomposition of the space around a feasible point of the

basic problem

minimizex f(x,p)

0 (1.1)(p)

X e C,

subject to h(x,p)

where f and h are C" functions (r>1) from 2 xI to R and R"
respectively, @ and I are open subsets of R" and of a real Banach
space P respectively, and C 1is a convex subset of R". In [7] C was
not assumed to be closed; in [8] it was assumed closed and (for most of the
paper) polyhedral, and stronger results were thereby obtained. In this
paper we assume throughout that C is polyhedral. The parameter p is
used to study the behavior of the programming problem and its solutions
under perturbations of the functions appearing in the problem.

In [8] we studied the idea of nondegeneracy, defined as follows:

Suppose P e, and let x. be a feasible point for (1.1) (po). Denote

0
the tangent cone to C at a point xeR" by Tc(x), and the normal cone

by NC(x). The feasible point X3 is said to be nondegenerate if

hy (x> Pg) [1in Te(x)1 =R", (1.2)

where lin Tc(xo) is the lineality space of the cone Tc(xo) (the largest

subspace contained in it), and where hx denotes the partial Fréchet

derivative of h with respect to the x-variables. The property of




nondegeneracy is stronger than that of regularity, studied in [7]: Xg is
said to be regular if

h, (xq>Pg)[T¢(xg)] = R™. (1.3)

In [7], we used regularity, together with the decomposition mentioned
earlier, to derive optimality conditions and to examine the structure of
the feasible set F(po) near Xp; here F(p) is defined to be
{xeC| h(x,p):=0}==Cf7h(-,p)'](0). In [8], we showed that under the
stronger hypothesis of nondegeneracy, considerably more could be done.
Since we shall use the results of [8] in what follows, we summarize them
here.

Given a point Xg € F(po), denote hx(XO’pO) by D. Let M be the
subspace of R" parallel to aff C, the affine hull of C. Let
K:= MNkerD, and let L and J be subspaces complementary to K in M
and in kerD respectively. The regularity hypothesis (1.3) implies that
R" = J@K®L. The stronger nondegeneracy hypothesis (1.2) implies that L
can be chosen to lie in 11r|TC(x0), and we shall assume that this has been
P

done. Let P K? and PL be the projectors onto J, K, and L along,

J°
in each case, the-other two spaces, and let P0==PJ-+PK, the projector
onto kerD along L.

In [8, Th. 2.2] we showed that there were open neighborhoods U, of
the origin in Rn, V, of Pg in P, and W, of Xg> such that for each

PeV, the function
0,:= Pol(+) = xg1 | W0 F(p)

was a C' diffeomorphism of W,N F(p) onto U,NA, where A:= (C-x.)NK.

o)
We also exhibited the inverse wp of ep. This diffeomorphism property was



a key result of [8] since it implied that we could replace (1.1)(p), for

p near p, and x near Xg» by the problem
minimizey {¢(y.p) | yeAl, (1.4)(p)

where ¢(y,p):= f[ep'](y),p]. In replacing (1.1)(p) by (1.4)(p) we have
changed a problem whose feasible set is defined by nonlinear, parametrically
dependent functions into one whose feasible set is a fixed, polyhedral
convex set.

Note that the definition of 5 just given makes sense only for argu-
ments yeU,MA, since wp is only defined there. This will be slightly
inconvenient, so we shall extend 6 to a function ¢ defined for all small
yelﬁ‘ and all p near Pg in P. To do so, we recall from [7] and [8]
the construction of ep and its inverse. We first define uniquely a

particular generalized inverse D of D by the requirements

DD =1, D D=PL. (1.5)
Next, we observe that the equation

0 = D h[x(y,p),p] + (I-D7D)[x(y,p) - (x4*y)] (1.6)

defines, for y near 0 and p near Po> @ ¢" function x(y.p).
When x(*,p) is restricted to U,NA it becomes a diffeomorphism of

U, NA onto U, NF(p) whose inverse is Details of this construction

p°
are in [7] and [8]. To obtain our desired function ¢ , we need only take
the composition f(-,p)ox(-,p)oPO.

It will be convenient for later use to record some of the first and

(if r > 2 ) second derivatives of x(y,p) with respect to y and/or p.




Standard calculus applied to (1.6) yields, for any r, seR” and qeP,
x,(y,p)(s) = A(y,p)']PQs
and
x,(y-p)(q) = -Aly,p)"' D hoLx(y.p), pla,
where
Aly,p):= Py+D" h [x(y,p).p].

Note that since P = I-D D, we have A(O,po) = I. We then obtain

it

X, (¥>P) (r)(s) -A(y,p)']D'hxx[x(y,p),pJ[xy(ysp)r][xy(y,p)SJ, (1.7)

and

x,n(¥>P)(r)(q) Aly.p)”' D thy [x(y>p)-pILx, (y-P)allx, (y.p)r]

(1.8)
—hxp[X(y,p) ,pJ[xy(y,p)r][q]} .

These formulas become considerably simpler when evaluated at (y,p) =

(0,pg)-
The reduced gradient g, for (1.1)(py) at Xy 1s the derivative

of w(.-,po) at 0: that is,
*
9y = ¢y(O,P0) = PO f (xo,po)- (1.9)

The first-order optimality criterion for (1.1)(p0) is the inclusion

9p€- NC(XO) [8, Prop. 3.1]. If we use (1.9) to write this as
* - %k
fX(XOsPD) - D [(D ) fX (Xospo)] € - NC(XO) 3
- %k
and if we write A(xo,po):= (D7) fy (xo,po) then we have

*
90 = fX(XO’pO) -D A(x'ospo) € - NC(XO) . (]']O)



Note that the multipliers x(xo,po) are reversed in sign from those in
[8]. The purpose of the present sign convention is to facilitate the
following simple geometric interpretation of 9g° if we recall that

(ker D)@®L =R", we can see that also
(ker D)*® L' = R", (1.11)

The projectors on (kerD): and L*, along the other subspace in each

*

*
case, are PL and P0 respectively, so since Pt + P; = ] we have

* *

PL Ty (xgoPg) = ) (xgsPg) = DA (xg5Pg) = -
In other words, g, is the component of fx(xo,po) in LY under the
decomposition (1.11). If we take the rows of D as a basis for (ker D)*,
then the multipliers A(xo,po) are simply the coordinates, in that basis,
of the complementary component of fx(XO’pO) in (ker D)*. When we remove
this component from fx(xo,po), we are left with the reduced gradient 9y-

The optimality condition (1.10) implies that, for each ceC,

{gys c-Cyl 2 0. The set C, consisting of those ceCy for which this
inequality holds as an equation ((go, c—co) = 0) 1is a face of C. 1In
fact, this face has special relevance to local optimization. If we define
)NK, then we showed in [8, Th. 3.4] that for y near 0 and

A0:= (Co-x0

P near pg. the local minimizers of the problem
minimizey {o(y,p) | y e A} (1.12)(p)
are exactly the same as those of the more tightly constrained problem

minimize‘y {$(y,p) | YesAO}. (1.13)(p)




In fact, we can simplify (1.12)(p) and (1.13)(p) even more if we recall
that C and hence CO are polyhedral. Therefore, near Xg the sets
C-xg and C0-~x0 coincide with their tangent cones TC(XO) and TCD(XO),
which we shall denote by T and T0 respectively. It follows that A
and AO coincide, near Xg> with TNK and TOIWK respectively. The

cone TNK is actually T )(XO)’ as shown in [7, Th. 3.1].

F(pg
It then follows from our earlier diffeomorphism result that if we

choose U,, V, and W, to be small enough, W, NF(p) will be diffeomorphic

to U, NTNK via ep, and w*ﬁF(p)ﬂC0 will be differmorphic to

U*fWTofWK. Thus, we may replace (1.12)(p) and (1.13)(p) by

min  {¢(y,p) | y e TNK} (1.14)(p)

and

min  {¢(y,p) | ¥y e Ty Nk} (1.15)(p)

respectively.

By this diffeomorphism technique we have replaced the problem of
studying local minimizers of (1.1)(p) by that of studying local minimizers
of the ¢” function ¢(*,p) on the po1yhedra1 convex cone TOIWK (which

does not depend on p ). We call T0r1K the critical cone for (1.1)(p0)

at Xg* We shall see that this transformation enables us to use simple
geometric properties of the critical cone to gain optimality and sensitivity
information about (1.1)(p) in an easy and natural way. In the process we
shall recover several criteria that have previously been proved for particu-

" lar cases of (1.1)(p).



With the reduced gradient 9 defined in (1.9) we can associate the
cone (gO):= {Agolxg;O}. Using this notation it is easy to show that
Tg = Tfﬂ(go)° . As the inner product (go,-> is non-negative on T
because (—goesNC(xo) = T%°), this also shows that TO is the face of
T defined by T0 = {te:T[<go,t>==0}. We shall use these observations in
Section 2.

The remainder of this paper is organized as follows: in Section 2, we
study the critical cone T0r1K. We show how to determine when this cone is
actually a subspace, and how to compute its affine hull even when it is not
a subspace. We also relate these results to particular criteria that have
appeared in the literature for special cases of (1.1)(p0). In Section 3,
we show that strong convexity of ¢(~,p0) on aff (TOFNK) ensures existence,
local uniqueness, and Lipschitz continuity of a minimizer of (1.1)(p) for
p near p,. We show that this criterion generalizes earlier work of
Kojima [2] and the author [4], and we provide a convenient test to determine
when this strong convexity holds. Finally, we show that the minimizer will
exhibit a weak kind of differentiability, which we call Bouligand differen-
tiability. This concept is explained, and some of its properties are derived,
in the Appendix. The final result of Section 3 shows how to compute the

Bouligand derivative of the minimizer.
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2. Properties of the critical coﬁe. In this section we study various

aspects of the critical cone TofWK identified in Section 1. We show that
the problem (1.1)(p), for p near Po and x near Xg? behaves essen-
tially like an unconstrained minimization problem when Tof\K is a sub-
space, and we observe that in some familiar special cases of (1.1)(p) this
will occur precisely when certain well-known conditions (strict complementary
slackness or dual nondegeneracy) hold. Then we examine the more general
situation when TOfWK is not a subspace. We show that in a particular
case frequently seen in the literature, the critical cone TOfWK is the_
linear image of a certain cone occurring in the second-order optimality
conditions. Finally, for this case we show how to compute the affine hull
of TOFWK, since that subspace will play an important part in the results
of Section 3.

We have already observed that for all p near Po and for all y
near 0, if y 1is to be a local minimizer of (1.12)(p), then y must lie
in TOfWK, and that therefore we can restrict our attention to the problem
of minimizing ¢ on TOIWK. If TOF\K is a subspace, let k be its
dimension and let Q be an injective linear transformation from lg( onto
TOfWK. The problem of minimizing ¢(ys;p) in y on TOfWK is then evi-
dently equivalent to that of minimizing ¢(-,p)eQ on Rk , Sso that in this
case our nonlinear programming problem has been reduced to a simple uncon-
strained minimization. It is therefore of interest to be able to determine
whether in a particular problem TOIWK is in fact a subspace, and we show

in Proposition 2.2 how to do this. In order to prove that proposition, we

need the following lemma.



LEMMA 2.1: Let W be a closed convex cone in R" and let weR".

Then (w)® NW 1is a subspace if and only if -weriW®. In the latter case,

we actually have (w)° NW = Tin K.

Proof (only if): Suppose (w)° NW 1is a subspace. If -w¢riW®,
then by the proper separation theorem [9, Th. 11.3] there is some veR"™
with (Vv,-w?> > 0 and (V,y) <0 for each yeW® (so that veW’=W).
Further, either (v,-w) > 0 or (v,yo) < 0 for some yoew".

As veW with (v,w) <0, it follows that w< (w)° NW. But the
latter set is a subspace by hypothesis, so -ve (W°)NW. Thus (-v,w} <0
so in fact (v,-w) = 0, which implies (v,yy> < 0 for some yoew°. This
contradicts the fact that -veW and hence (-v,yo) < 0. Thus -weriW®.

(if): Designate by B0 the intersection of the unit ball B with

aff W° Since -w ri W, there is some e > 0 with -w+eBOCN°. Thus

€B, = wt(-wte BO)C(w) +W

The right-hand side is a cone, so we actually have aff W°C(w) +W°.
However, (w)C-W° by hypothesis, so (w) +W°C aff H°, so in fact

(w) +W° = aff W°. It follows that
(w)° NW = [(w)+W°]° = (aff W°)° = 1in W,

as required. This completes the proof.
Using Lemma 2.1 we can now develop a convenient criterion for TOfWK
to be a subspace. In keeping with our convention for TC(XO) we write N
for Nc(xo).
PROPOSITION 2.2: T,MNK 1is a subspace if and only if -

0

and in that case one has ToﬂK = 1in (T NK).

eri N,

9
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PROOF: We apply Lemma 2.1 with w = % and W=TNK. As T0 =

Tfﬂ(go)°, we see that the statement that TOfWK is a subspace is
equivalent to saying (w)° NW is a subspace. By Lemma 1, this is equiva-
lent to -weri W®: that is, to -gy € ri (TNK)® = (ri N)+KL. Lemma 2.1
also tells us that then Tof\K = 1in (TNK). Hence the proof of the propo-
sition amounts to proving that ~gg € (ri N) + k- if and only if -goe:ri N.
The "if" part is obvious. For the "only if" part, suppose -go==r-Pv,
reriN, vek. We know LC1inT, so aff NCL': hence rell.

As go==P3 fx(xo,po), 9g € inng =t . It follows that both -9, and r
belong to L“': hence VeKLﬂL‘L=(k+L)‘L=ML=Hn N. But N=N+1lin N, so
ri N=ri N+1in N. As reri N and velin N, we have -9q € ri N, which
proves the proposition.

Proposition 2.2, and the discussion preceding it, makes precise the
jdea that a nonlinear optimization probiem may be "locally essentially
unconstrained," and it provides a test for determining just when this
property holds. In the rest of this section we show that in two familiar
special cases of (1.1)(p), this test reduces to properties already familiar

in the literature.

Example I: Standard linear programming. Here we are concerned with

the problem
min  {{c,x)| Ax=b, x > 0},

so we can set f(x)=¢c,x?, h(x)=Ax-b, and C=R2 . We suppress the
perturbation parameter p since it plays no role in this example. If we

suppose that Xo is a basic feasible point corresponding to the basis B
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and the partition [B N] of A, then we pointed out in [8] that non-
degeneracy in the sense used here corresponds to the requirement that

Xg > 0 (that is, to primal nondegeneracy in the usual linear programming
sense). In this case we take L =1in Tc(xo) =RBx {o" , where the
superscripts indicate that individual factors are to be taken to be R or
{0} according as the particular index is in B or N. We then have

1 BN 0 -B

D = , P = ,» and P0= . The multipliers
0 0 o0 0 I

are A = (D-)*fx(xo) = [(3—1)*OJC = cp B—1, and the reduced gradient is
0 0
* -1
gO=P0fx(x0)= - c=[05,¢cy-cyB N]
-(B"'N) I
where we have abused notation slightly in order to write the multipliers and
the reduced gradient in familiar forms.
In this case we have T-= RBx (R+)N , SO N={0}Bx (R_)N . Hence,
gy Wwill belong to N whenever C, -Cp BN > 0, the familiar linear
programming optimality criterion. The problem will be "essentially
unconstrained” near X0 whenever -9q € ri N: that is, when CN -CB B—]N > 0.
This is the criterion usually referred to in the linear programming literature
as "dual nondegeneracy."
It is of interest here to compute ToﬂK to see what kind of subspace
we are dealing with. In this case aff C= R" , so J has dimension zero,

and thus K=J+K= im PO’ Using the expressions for P0 and T given

above, we see that the cone TNK is given by
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TNK = Is >0

The cone TO‘WK consists of those elements v of TNK for which

1

(gg> v? < 0; that is, for which (CN -Cg B"'N,s)< 0. However, if

Tof\K is to be a subspace then as already pointed out we have

CN-CBB']N >0, and as s > 0 this implies s = 0. Hence in the case

of standard linear programming, TOfWK is a subspace if and only if it is
just the origin. This should not come as any particular surprise, since
we know from linear programming theory that dual nondegeneracy implies a
unique "corner solution," and the solution of an unconstrained minimization
problem with a Tinear objective function will be unique if and only if the

dimension of the space over which the minimization is done is actually zero.

Example II: Nonlinear programming with inequality and equality

constraints. We consider next the nonlinear optimization problem

minimize d(z)
subject to cE(z) =0
(2.1)
cA(Z) <0
CI(Z) ; 0 3

where z::Rk and d, cp» Cps and c; are ¢" functions (r>1)

k

from .an open set Q CR™ into R,Re,Ra, and R’ respectively. Let

zpeQ and suppose that cE(zo)==0, cA(zo)==0 and cI(zo) <0: thus cp

and ¢ identify the inequality constraints that are respectively active

and inactive at zg - We shall write dZ for dZ(zo).
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To convert (2.1) to the form (1.1)(p), we introduce slack variables

s, and s . We let x:= (z,sA, sI) and f(x):= d(z),

cg(z)
h(x):= cA(z)-i-sA
cilz) +5; 1,
and C:= Rk x Ri x Ri . Then an equivalent formulation of (2.1) is
minimize f(x)
subject to h(x) =0 (2.2)
xeC.

Note that we have suppressed the perturbation parameter in (2.1) and (2.2);
in the analysis that we shall do here it would simply remain constant, so
there is no point in writing it out.

Now suppose that x0==(zo,—cA(zo),-cE(zo)) is a nondegenerate
feasible point of (2.2). Write Gp for cé(zo) » and define G, and G
similarly. We shall determine the various elements of the reduced problem
at z, in terms of these matrices. In particular, we shall compute TOfWK
and its affine hull.

As provided out in [8], nondegeneracy of Xg Means that the matrix

E
has full row rank. Thus, we can write
Gp
GE .
=[0R]IQ ,
Ga

where Q is a k x k orthogonal matrix and R is a nonsingular, upper
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triangular (e+a) x (e+a) matrix. If we now write Q=[Q1 Qz], where Q]

is kx (k-e-a) and Q2 is k x (e+a), then

G

= RQ;

Gp

Referring to the definition of C in (2.2), we can see that

k i i

TC(XO) =R*xR*xR', and thus 1lin Tc(xo) = Rk x {0}% x R Choose

L = (imQ,) = {0}* xR, so that LC1in Tc(xy) . In this case aff C =

Rk+a+i, so J 1is the zero subspace and K = kerD, where

To show that the subspaces K and L satisfy K&L= grktati

suppose first that yeKNL . Partition y as _(y],yz,y3) » With

y]ele, Yo € lRa, and y3e]R1. As yeker D, we have

GEy] =0
GAy] + Y, =0 (2.3)
By tY3t 0

but as yeL we also have Yi€ im Q2 (so that, say, y]=Q2w) and y2=0.
Using y2=0 in (2.3) we find that

G
T
0= ,Y] = (RQz)(sz) = RW,
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since Q; Q2 =1. As R is nonsingular we must have w =0 and thus
Yy = 0. Using this in (2.3) we find that Y3 = 0. Hence K and L are
independent.

As im 02 has dimension e+a, we see that dim L=et+tat+i. But
D has full row rank, so its kernel K has dimension (k+a+1i) - (e+a+i)
=k-e. As K and L are independent we have dim (K+L) = k+ta+i,
and hence Rk+a+i =K®L.

To compute D~ we follow the procedure suggested in [7] , defining

a (k+a+i) x (e+a+1i) matrix E by

Q
E={0 0/},
0 I
so that
R O R o
DE = ., (pE)! =
-1
Thus
- _
QR 0
D" =EME) V=] o 0
-1
| G0RT |

It follows that the multipliers at Xy are

- -1
£ (xg)0" = [d,0,R™', 0 . (2.4)
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For future reference we partition R'] into [ZE ZA] » Wwhere ZE is
(e+a) x e and ZA is (e+a) x a. With this partitioning we can display

the multipliers for each type of constraint by rewriting (2.4) as
f(3g)07 = [d,Q5Z¢, d,QpZy, 0] =2 (hps ApsAg)

To find the projectors on L and on ker D, we compute

—

[ T

L DD = 0 0 0 s
T

| 6100 607, T

=
il

where we have used Q1QI =1 'QZQE and R = [ZE ZA].

Then

- -
Q0 Q7
P.=1-P = 0 1 o,

:
| 640 607y O

and the reduced gradient at X0 is
_ T
fX(XO)PO - [dZQ]Q] ’ -dZ.QZZA 3 0] . (2.5)
Note that in the second position of the reduced gradient we have the
negatives of the multipliers for the active inequality constraints.
We can now compute the cones TNK and TOfWK . For TNK, recall

i

that TC(xo) = Rk x Ri x R’ and that (2.3) describes the vectors (y],yz,

y3) in ker D. Putting these together we see that

TNK = {(y],-GAyl,-GIyﬂ | Gpy;=0,G,y, <0} . (2.6)
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Up to now we have._assumed only that X, Was a nondegenerate feasible
point. To find TOfWK we assume that X0 is a stationary point, so that
the reduced gradient belongs to —Nc(xo) . Recalling that NC(XO) =

{0}k x Ri x {0}' and using (2.5), we see that stationarity implies

dQ; =0, dQ7Z, <0. (2.7)

The points y of TOFWK are those in TNK that make a non-positive
inner product with the reduced gradient. Using (2.5) and (2.6) we see that
this implies ('szZZA)('GAy1)=§ 0. However, as dZQZZA = A < 0 by (2.7)
and GAy] <0 since yeTNK, we see that AA and GAyl must have

complementary supports. Hence we have

I

(U (2.8)

0)’

where we have defined the polyhedral convex cone U0 by
= k - s i
Ug:= {y] eR IGEy] =0, GAy];O and (GAy])J =0 if (xA)J#O} . (2.9)

This cone U0 is the familiar cone appearing in the second-order optimality
conditions (see, e.g., [3, §10.3]).

From Proposition 2.2 we know that TOIWK will be a subspace if and
only if the reduced gradient belongs to -ri Nc(xo) : in this case, this
means precisely that every component of AA is negative. This property
is usually referred to as "strict complementary slackness" in the nonlinear
programming literature, so we have shown that the problem (2.1) reduces

locally to an essentially unconstrained minimization if at the stationary
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point Xg one has (1) strict complementary slackness and (2) linear
independence of the gradients of the active (binding) constraints.

As a final step in the analysis of (2.1) we compute the affine hull
of TOfWK » since we shall need this information in the next section.
For this purpose, let us suppose that the rows of GA have been ordered

so that all of those corresponding to negative components of AA are

placed before all corresponding to zero components of AA . Then we can

G
partition GA accordingly, as " |, and we can partition the component
G
matrix ZA of R as [Z_ Zo]; Now recall that
Ge
I=ROQR = |6 |0, [z 2 7.
Gy
G

It follows that (QZZO) =0 and GO(QZZO) = 1. Referring to (2.8)

we see that each column of -0220 belongs to the cone U0 defined earlier.

G- | G
However, these same columns form a basis for ker E , SO0 ker {: E:] C

G_ G_
_.GE
aff Uy . However, it follows from (2.9) that UOCIker » So actually
G
S | _ . -
aff U0 = ker = im (QZZU) . We then have
I
B
aff T,NK = | -G (ker ). (2.10)
0 A G
-G -
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3. Stabjlity and sensitivity analysis of an optimizer. In Section 2 we

studied the critical cone TOfWK associated with a local minimizer Xg -
The results of that section made no use of the perturbation parameter p,
which remained fixed at Py -

Here we allow p to vary near Pg > and we study the questions of
exjstence, uniqueness, and stability of a local minimizer near g when
the problem is pe;turbed. We show that, under appropriate conditions, not
only does a local minimizer“exist near X, for each p near Po » but
when regarded as a function of p this optimizer is Lipschitzian. In
fact, it is almost differentiable in the sense that it can be well approxi-
mated by a simpler function that can, in principle, be computed using
information available at the solution. The "almost" results from the fact
that this approximating function is not affine (unless TofWK is a sub-
space): 1in general, the portion of its graph near Po is a cone rather
than an affine set.

Recall that we have transformed the problem (1.1)(p) into the con-
siderably simpler problem (1.15)(p), whose feasible set is the polyhedral
convex cone TOIWK . Of course, without making some assumptions about the
functions involved in the problem we cannot expect to find any interesting
results about stability. Thus, we consider next what kinds of assumptions
we should make about (1.15)(p) in order to ensure that its minimizer is
unique and well behaved for p near Pg - Then, of course, any information
we gain about that minimizer can be immediately translated into corresponding

information about a minimizer of (1.1)(p) near Xg -
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We shall use the concept of strong convexity in connection with (1.15)
(p). This idea is defined as follows:
DEFINITION 3.1: Let y be a function from R" to (-w,+w].

v is strongly convex with modulus o> 0 if for each xO,Mx]elﬂl and
each e (0,1),

YL(-A)xg #3%y] < (1) y (xg) +xylxy) =% pA0IA) [xg - % 112

We say +y 1is strongly convex on a subset U of R" if the function equal
to y on U and to +« off U 1is strongly convex.

The following lemma characterizes strong convexity when the function
in question is restricted to an affine set and when enough differentiability
is present.

LEMMA 3.2: Let vy be a C2 function from a neighborhood N of X0

in R" to R. Llet A be an affine set containing x, and let S be

the subspace parallel to A. Then y is strongly convex on a neighborhood

of xg in A, if and only if y"(xO) is positive definite on the subspace

S.

PROOF (only if): Suppose vy is strongly convex with modulus p on a
neighborhood of Xg in A. We can take this neighborhood to be MOA,
where M CN 1is a neighborhood of Xg in R". Let seS; we can assume
with no loss of generality that s 1is small enough so that X0 + s and

X, - s belong to M. As seS, these points also lie in A, hence in

0
MNA . Thus we have

%pllsu2= so(%) ()]l 2S|I2 < %v(xy+s) + v(xy-s) -v(xg) -
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But
vixgts) =v(xg) #v'(xg)s + %Cs,y" (xg)s? + olllsll?)
v(xg-s) =v(xp) - v'(xg)s + %¢s,y"(xg)s) + ollIsll®)
SO
2 " 2
Bollsll® < %¢s,v"(xg)s? + ollfsl|”) -

Since this inequality holds for all small seS, it follows that for all
seS, (s,y"(xo)s) > piisll2 .

(if): Suppose y"(xo) is positive definite on S, and let seS.
Since y is C2 , there is an open convex neighborhood M of Xg in R"
such that if XeM then vy"(x) is positive definite on s with modulus op.
Define an auxiliary function 6 from the neighborhood {t|w+tseMNA} of

the origin in R to R by
8(t) : y(wrts) - v'{w)(wtts) .

Then we have

t
vwrts) - v(w) -y (w)ts = 8(t) -6(0) = {0 8" (v)dv

t t v
[ [y'(wtvs) -y'(w)] sdv { J (s,y"(wtys)s) dy dv
0

0’0

v

t v
ollsll? [ {0 dy dv = %pto||s]|® . (3.1)
0

Now let X1 and X, be any two points in MNA, and let 2e (0,1).

Apply (3.1) with s = Xq - X5 and with w = (1—A)x] +2x, » taking the
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indicated choices for t to obtain the inequalities shown:
t = A oy(xg) - v(w) -2y (W) (xy-x,) 2 !sp9\2ltx1—x2||2 ; (3.2)

t = A-1:y(0x) - v(w) + (1-2)y" (W) (xy-x,) %»p(1—~x)2Hx]'-x2H2 . (8.3)

v

Multiplying (3.2) by (1-A) and (3.2) by A and adding, we obtain
2
(-2)v(x) +v(x,) - vL(O-A)x x50 2 %A (-0 llxg=x, 11

which completes the proof.

Our approach to stability analysis of (1.15)(p) will be the following:
we consider a local minimizer xg, and we make the assumption that ¢(-,p0)
is strongly convex on aff (TOfWK) .  Since aff (TOfWK) js itself a sub-
space, we see from Lemma 3.2 that our assumption is equivalent to the
assumption that ¢yy(x0,po) js positive definite on aff (TOfWK) . As we
shall see later, this latter assumption is well known in the special case
of nonlinear programming with inequality and equality constraints, being
exactly the "strong second order sufficient condition" used by Kojima [2]
and the author [4].

With this assumption, we consider the nonlinear generalized equation

0e¢,(y,p) +NTonK(y) , (3.4)(p)

which expresses the condition for a stationary point of (1.15)(p) to exist.
We can use (3.4)(p) since our assumption will guarantee that not only
¢(-,p0) , but also ¢(-,p) for p near Py > is strongly convex. Hence
the stationary-point condition (3.4)(p) is equivalent to the minimization

condition in (1.15)(p).
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Applying to (3.4)(p) the analytical machinery devised in [4], we can
prove that for each p near Po there is a unique minimizer Y(p) of
(1.15)(p) near O, and that the function Y is Lipschitzian. Of course,
this immediately implies the existence of a Lipschitzian function X(p)
yielding the unique local minimizer of (1.1)(p) near Xg -

Finally, we shall use some additional results about generalized
equations to show that the functions Y and X are almost differentiable,
in the sense that they can be well approximated near Po by relatively
simple functions that are in principle computable. However, the graphs of
these simple functions are not subspaces (as would be the case with deriva-
tives) but rather cones.

To begin the detailed analysis we make the assumption, for the
remainder of this section; that Xg is a nondegenerate local minimizer of
(1.1)(p0) and that f and h are TC2 on a neighborhood of (xo,po) . Of
course, this then implies that 0 is a local minimizer of (1.15)(p0), and
that ¢ is C2 on a neighborhood of (O,po) . We also assume that
¢(-,p0) is strongly convex on a neighborhood of 0 in aff (TOIWK) . By
Lemma 3.2, this is equivalent to assuming that ¢yy(0,p0) is positive

definite on aff (TOfWK) . Since ¢ is C2

, there are neighborhoods U0
of 0 in R" (open and convex) and VO of Pg in 7w, such that if
(y,p)e:UOXV0 » than ¢yy(y,p) is positive definite on aff (TOfWK) with,
say, constant p>0: d.e., for each se aff (TOfWK) . (s,¢yy(y,p)s) >
p||s||2 . Now Lemma 3.2 (in particular, the proof of the "if" direction)
implies that for each pe‘V0 s ¢(*,p) is strongly convex on U0 . This

tells us that ¢(-,p) has a local minimizer Y(p) on UOIW(TOfWK) if and
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only if the stationary point condition (3.4)(p) holds for y = Y(p);
further, if such a minimizer exists it is the unique global minimizer of
¢(,p) on UOFW(TOVWK) . Thus we have now to investigate the solvability
of (3.4)(p).

Fortunately, quite a lot is known about inclusions like (3.4)(p);

these generalized equations exhibit solvability and regularity properties

analogous to those of conventional nonlinear equations. A survey of this
area is given in [6], and many details and proofs are in [4].
From results in [4] and [6] we can see that the key to analyzing the

behavior of (3.4)(p) is the linearization given by

For example, [6, Th. 4.4] or [4, Th. 2.1, Cor. 2.2] show that if the inverse
of the operator on the right in (3.5) is (locally) single-valued and
Lipschitzian near 0, then for any p near pg (3.4)(p) will .have a
locally unique solution Y(p) that is Lipschitzian in p. In fact, under
our assumptions such a solution will even be globally unique.

To investigate the inverse of the operator in (3.5), note that y solves
we o (0,p)) +¢yy(0,p0)y+NTonK(y) (3.6)
if and only if y solves the convex quadratic programming problem
minimize {<¢y(0,p0)—w,y>-+%(y,¢yy(0,p0)y)| ye:TOf\K} . (3.7)

Since ¢yy(0,p0) is positive definite on aff (TOYWK) , we can see that
for each we R" (3.7) has a unique global optimizer y(w) , and such an

optimizer is then also the unique solution of (3.6). Further, if W, and
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W, are two points in R" , then
w'i _q)y(O’pO) ‘¢yy(0:p0))'(w.i) € NTOnK(‘Y(wi))' i=1,2.
The definition of normal cone then yields
<W1 - ¢y5/0’p0) '¢yy(0,P0))”(N]) L] ,Y(W-I) 'y(wz)) ; 0 s

<w2 - ¢’y(osp0) - ¢yy(0’p0)y(w2) ) .y(w'l) = .y(wz) ) 0.

A

Subtracting the second inequality from the first, we find that

v

(W] 'WZ, Y(W]) ".Y(Wz)) (¢yy(osp0)[}'(w])'y(w2)]s .Y(w]) - (W2)>

o Ilytwy) - y(w,) 1%,

v

so that we have
lywy) =y )l < 67wy = wyll s
and therefore the inverse operator we are considering is in fact Lipschitzian.
(Another way to reach this conclusion would have been to show that the
operator in (3.6) is strongly monotone and then to use general results
about such operators. In this case the direct argument seemed simpler.)
We are now able to prove the following theorem about minimizers of

(1.1)(p) and (1.15)(p):

THEOREM 3.3: Suppose that Xg is a nondegenerate local minimizer of

(1.1)(p0), that f and h are ¢® ona neighborhood of (xo,po) , and

. s . n
that ¢yy(0’P0) is positive definite on aff (T0 K) .

-

Then there exist neighborhoods U of 0 jg_IR" ,» V of P i P,

and w of x, in R", and Lipschitzian functions Y:V—>U and X:V W,

such that for each peV, Y(p) is the unique minimizer of (1.15)(p) in

U, and X(p) is the unique minimizer of (1.1)(p) in W.
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PROOF: Our analysis just prior to the statement of the theorem showed
that the generalized equation (3.4)(p0) was regular at the origin in the
sense of [6] (i.e., its linearization has a Lipschitzian inverse). Applying
[6, Th. 4.4], we see that there are neighborhoods U of 0 in R" and V
of Po in P (which we can take to be contained in Uofﬁu* and vorwv*
respectively), and a Lipschitzian function Y :V = U such that, for each
peV¥, Y(p) is the unique solution of (3.4)(p) in U. However, our
previous remarks show that this is equivalent to saying that Y(p) is the
unique minimizer of (1.15)(p) on U. Finally, we set X = wpoY ; since
Y(p) remains in U,NA we know from our earlier diffeomorphism results
that X(p) will then be the unigue minimizer of (1.1)(p) on MW:= wp(U).

As W 1is a neighborhood of Xp s We have completed the proof.

At this point two remarks are in order. First, the review in Section 1
showed that the multipliers A Qere ¢” functions of x: thus, as
X(p) varies with p the corresponding multipliers will be Lipschitzian in
p, and possibly smoother: 1in fact they will share whatever smoothness
properties X may have (up to c") . Second, there is indeed a situation
in which X will be at least C2 : it is precisely the case that we
studied in Section 2, in which TOfWK is a subspace. We saw that this
case would arise whenever -g, belonged to the relative interior of NC(XO)’

To see why X 1s in fact ¢” in this case, we return to the generalized
equation (3.4)(p). If TOFWK is a subspace, say of dimension k, we can

write (3.4)(p) equivalently as

i
¢y(y’P) € (TonK) ®
yeToﬂK .

(3.8)
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If we let Q@ be an injective linear transformation from .Rk to R" with

TOIWK = jm Q, then we can reformulate (3.8) as

QT¢y(Qz,p) =0, (3.9)

where we have replaced y by Qz. The expression (3.9) is a system of
nonlinear equations, and we can analyze its selution using the implicit-
function theorem. To do so, we examine its first derivative in z at
z =0 (hence y =0), which is QT¢yy(0,p0)Q . This is a positive
definite (hence nonsingular) linear transformation from .Rk to Rk , since
we have assumed that ¢yy(0,p0) is positive definite on aff (TOfWK) = im Q.
The implicit-function theorem then tells us that there is a ¢” solution
z(p) of (3.9) for p near Py > which is unique in some neighborhood of
the origin in Rk . Putting Y(p) = Qz(p) , we obtain a ¢’ solution of
the minimization problem (1.15)(p) and thence a ¢’ solution X(p) of (1.1)
(p). Derivatives of X and Y can then be computed, using Q and the
derivatives of ¢ .

Returning to the general case, we investigate the positive definiteness
condition on ¢yy(0,p0) in the special case of nonlinear inequality and

equality constraints. This case was dealt with in detail in Section 2.

There, we found that

1
Gg
aff (T,NK) = | -G (ker ). (2.10)
0 A G
-G -
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Since we are interested only in ¢yy(0,p0) » we shall suppress the pertur-
bation parameter p in writing the problem functions. Using the notation

of Section 2 we have

(CE)zz(ZO)rzsz
fxx(xﬂ)rs = dzz(zo)rzsz 3 hxx(xo)rs = (cA)zz(zo)rzsZ (3.10)

(CI)zz(zo)rzSz

where r, and s, denote the portions of r and s corresponding to z
(the first k components). Incidentally, the form of (3.10) shows that the
introduction of slack variables to convert (2.1) to (2.2) made no essential
difference in the derivatives of the problem functions; this point is of
interest when considering the computational effectiveness of such a procedure.

Using the derivative formulas from Section 1, one finds
¢yy(0)rs = fxx(xo)(POr)(POs) -fx(xo)D hxx(xo)(POr)(Pos) . (3.11)
Recalling that fx(xo)D' = (AE,AA,AI) , and using (3.10), one obtains from

(3.11) an expression in the original problem functions from (2.1) , namely

0,y (0ITs = 4, (20)(Pgr), (Ps), - g (ep) 1, (20) (Pgr)(Pgs) ) -
3.12

- >\Aa (’CA)ZZ(ZO) (POr)z(POS)z) s
since we know KI =0.
Now if r and s 1lie in aff (TOIWK) they surely lie in ker hx(xo),
so the multiplication by P0 will be superfluous. Thus we can see from

(3.12) that if r,se aff (TOFWK) then

¢yy(0)rs = dzz(zo)rzsZ - (AE,(CE)ZZ(ZO)rst) - (AA,(CA)ZZ(zo)rZsz>. (3.13)
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The expression on the right of (3.13) is simply the quadratic form defined
by the second derivative of the standard Lagrangian of (2.1) at g
evaluated at the pair (rz,sz) . Referring to (2.10), we see that r and
s belong to aff (TOFWK) if and only if r, and s, belong to

G

ker ; that is, to the subspace orthogonal to the gradients of (i)
G

the equality constraints, and (ii) those inequality constraints having
nonzero multipliers. Hence, our requirement that ¢yy(0) be positive
definite on aff (TOFWK) reduces, in this special case, to the requirement
that the second derivative of the standard Lagrangian be positive definite
on the subspace just described. This is, as we noted above, precisely the
"strong second-order sufficient condition" used by Kojima [2] and the
author [4] in their analyses of this particular case.

Although we have shown that the functions X and Y are Lipschitzian,
it is possible to gain some additional information about them by showing
that they are in fact differentiable in a certain sense, weaker than that
of Fréchet differentiability. We call this weak form of differentiability

Bouligand differentiability (B-differentiability). It is defined, and some

of its properties are derived, in the Appendix. In the remainder of this
section we shall use these results without further comment, and we shall
also &ssume that the space P 1is finite-dimensional: say, Rk.

We are going to prove that the functions X and Y of Theorem 3.3
are B-differentiable, and to exhibit their B-derivatives. In order to do

this, we shall require a Temma in which we use the idea of a polyhedral
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function or multifunction (multivalued function). This simply means a
function or multifunction whose graph is the union of finitely many
polyhedral convex sets. Such multifunctions are treated in some detail
in [5].

LEMMA 3.4: Let y be a single-valued polyhedral function from

R" to R" with y(0) = 0. Then there is a neighborhood N of the

origin such that for any zeN and any Ae[0,1], y(rz) = ay(z) .

PROOF: By [5, Lemma 1] there is some convex neighborhood N of the
origin such that if any component of graph y intersects N x R" , then
that component actually contains (0,0) . Now let zeN and Ae[0,1].
The pair (z,y(z)) belongs to some component of graph y, and as zeN
that component also contains (0,0) . Thus it must also contain
(Az, Ay(z)) = (1-A)(0,0) + A(z,y(z)). Hence (rz, Ay(z)) belongs to graph
y , and by single-valuedness we then have y(Az) = Ay(z) , which proves
Lemma 3.4.

The main result about B-differentiability of X and Y is the
following.

THEOREM 3.5: Assume the hypotheses of Theorem 3.3, and assume further
k

that P =R Then the functions X and Y of Theorem 3.3 are B-differ-

entiable at Pg and one has for small qeRl<

DY(pg)(a) = yeL-¢,,(0.py)1(a) (3.14)
and

DX(py) (q) = DY(pg) (a) —D'hp(xo,po)(q) , (3.15)

where y(w) is the single-valued Lipschitzian function defined by (3.6) or

8.7).
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PROOF: We first obtain the expression for DY(pO) . Recall that
4,(0,pg*a) = 4,0 pg) + ¢,,(0.pg)(q) + ola) .

We also know from [6, Th. 4.5] or [4, Th. 2.3] that since Y(p) solves
(3.4)(p)>»

Y(pgta) = y[4,(0.py) - ¢, (0,pg+a)] + ola) ,

where y is defined by (3.6) or (3.7). As y 1is shown (in the discussion

following (3.7)) to be Lipschitzian, we have

Y(pg*a) = y[-0,,(0.pg){a) + o(q)]

y°[°¢yp(osp0)](q) + O(Q).

Lemma 3.4 shows that there is a function v defined from Rn to Rn .

whose graph is a cone, and a neighborhood N of the origin such that
v(w) = y(w) whenever weN. It follows that for small g,

°oL- 09 = Yel- s . 3 i
vol ¢yp( po)](q) yo[ ¢yp(0 po)](q) Thus, for such q we have (since
y(py) = 0)

Y(pg*a) = Y(pg) + vo[-¢,,(0,py)1(a) + olq) .

Since the graphs of v and —¢yp(0,p0) are cones, so is that of their
composition. Applying Theorem A.2 to the Lipschitzian function Y, we
conclude that Y 1is B-differentiable at Py > and that

DY(PO) = V°[‘¢yp(osp0)] .

However, for small q, -¢yp(0,p0)(q) belongs to the region near 0 where

v agrees with y; hence we have (3.14).
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To establish (3.15) we note that for p near Po X(p) = xLy(p),pl
where the function x 1is as defined in Section 1. Hence, using the chain
rule for B-derivatives (Corollary A.4), we find that X is B-differentiable

at Pg with

DX(pg)(a) = x,(0.pg)eD¥(py)(a) + x,(0.py)(q)

which is (3.15). This completes the proof.

We note in closing that Aubin [1] derived very general results about
solvability and sensitivity of convex optimization problems. He used
contingent derivatives, which are multivalued generalizations of the
Bonligand derivatives employed here. We have chosen to use a direct
approach in analyzing (1.15)(p), rather than to attempt to apply Aubin's
results, because with the direct approach we can apply special information
that we have about (1.15)(p) (e.g., strong convexity) to prove sharper

results than would be true for general convex optimization.
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APPENDIX: BOULIGAND DERIVATIVES

This appendix presents results about Bouligand derivatives that are
needed in the last part of Section 3. Only those results that are needed
here will be presented.

In [1], Aubin defined contingent derivatives and analyzed some of their

properties. These contingent derivatives are obtained by considering the

contingent cone (originally introduced by Bouligand) to the graph by a

multivalued function, at a point in that graph, to be the graph of a certain
operator. This operator is the contingent derivative of the multivalued
function at that point of its araph. Of course, in general the contingent
derivative will itself be multivalued.

We shall be concerned here with a special case of the contingent

derivative, which we call the Bouligand derivative. This special case

arises when the function involved is single-valued and Lipschitzian on a
neighborhood of the point in question and the contingent derivative at that
point is also single-valued. In this situation the Bouligand derivative
has some strong properties not shared by contingent derivatives in general.
Throughout this appendix we assume that f is a function from an open
set RCR" to Rk , which is Lipschitzian on @ with modulus X . If
Xgef we consider the contingent derivative Df(xo) , defined by letting
graph Df(xo) be the contingent cone to graph f at (xo,f(xg)): that

is, the cone K defined by

(v,w) eK if and only if there exist p >0 and
(vn,wn) with w = f(xo+vn) - f(xo), v, 0, and

-
pn(vn,wn) (vow) .
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We observe that Df(xo) v is nonempty for any ve R". 1Indeed, if we
consider the set {1'1[f(x0+Tv)-—f(x0)] |T>0} we see that for small t,
no element of this set has norm greater than A|lv|| because f is
Lipschitzian. Hence there is a sequence T 40 with T;1[f(XO+TnV) - f(xo)]

1 in the above

converging to some W. Taking Vo © TnV and Pn = Tp
definition, we see that W<éDf(x0)v.

Of course, in general Df(xo) contains more than one point. Our next
definition deals with the special case of single-valued Df(xo).

DEFINITION A.1: If Df(xo) is single-valued (i.e., a function) we

call it the Bouligand derivative (B-derivative) of f at Xg -

One of the most useful properties of the Fréchet derivative is that of
approximation. The following theorem shows that the B-derivative retains
the approximation property of the Fréchet derivative, that it inherits the
Lipschitz modulus of f, and that it provides the best approximation to f
near X, among all functions whose graphs are cones.

THEOREM A.2: Let f be Lipschitzian from the open set QC R" to

Rk

, with modulus ., and let xoesz.

a. If f is B-differentiable at x;, then Df(xo) is Lipschitzian
on R" with modulus A, and one has f(x) = f(xo) + Df(xo)(x—xo) + o(x-xo).

b. If d 1is any function on R™ such that graph d 1is a cone and

f(x) = f(xo) + d(x-xo) + o(x-xo), then f is B-differentiable at Xg and
Df(xo) =d.,
PROOF: There is no loss of generality in assuming for the proof that

Xg = 0 and f(xo) =0.
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Suppose f is B-differentiable at x,. We show first that if

Ve IRm , then

-1
DF(0)v = 1im p F(pv) .
040 (A.1)

Note that for small p, the quantity p'1f(pv) is bounded in norm by
A|lv]|. Therefore it has one or more cluster points; we shall show that
there is only one, namely Df(O)v, and this will establish (A.1).

Suppose that for some sequence {pi} converging to 0, we have
p;1f(piv)-+y , where y 1is some element of Rk . Then (piv ,f(piv))
belongs to graph f for each i, and p;](piv, f(piv))-+(v,y) LIt
follows from B-differentiability that y = Df(0)v, and this proves (A.1).

To show that Df(0) is Lipschitzian, choose any points X, and x,

in RV , and let €>0. Choose p to be a positive number so small that

Xy and  px, belong to §© and (by (A.1))

[107F (ox;) = DF(O)x;ll ¢ e (1=1,2) .

Then we have

10F(0)x; - DF(O)x,ll < [IDF(0)x; = o7 £ xp)

-1 -
+ 07 I F(oxg) - Floxp)l| + Ilo™ Fox,) = DF(O)x, |
< AHx]~x2H + €.

As ¢ was arbitrary, we see that Df(0) 1is Lipschitzian on R" with
modulus A .

To show that Df(0) has the approximation property we want, it
suffices to prove that for any sequence {xn} converging to 0, with

xnﬂfo for each n, there is a subsequence, say {xk} for k belonging
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to some index set I, such that

eI, - DRIl = 0.

Given {xn} we select I so that vk/kaH converges-to some ve R".

Choose €>0 and let K be so large that if k > K then (by (A.1))
Il lekll'1f(llxkllv) - Df(0)v]| <%¢
and
v - I Tx I < (43)7 e
k k :
Write p  for kall; then for k > K we have
-1 -1
o 110x,) - DF(OXII < o 1F(x) = Flo W)l
+ llop #lo,v) - DEOIVIL + [1DF(0)V - DF(O)(og'x, )i
<ol lxeopvll + e+ allv-og Xl < e
where the bounds on the first and third terms come from the Lipschitzian
properties of f and Df(0) respectively. It follows that
kall']llf(xk) - Df(O)xkll »~ 0, and this completes the proof of (a).
To prove (b), let d be a function with the properties described in
(b). Let (v,w) € graph d. For small p>0, pveQ, and therefore by (b)
f(ov) = d(pv) + olp) .
However, d{(pv) = pd(v) = pw. Thus
(vow) = p" (v, Fov)) * olp)

and it follows that (v,w) belongs to the contingent cone of graph f at
(0,0) . Hence graph d C graph Df(0) (the contingent derivative).

Now suppose (v,w) e graph Df(0). By definition, there are
sequences {p,JC R and {xn} CcqQ . with pn+0 , xn+0 , and such that

-1

(v,w) = Tim Py

n-o

(%, » Flx)) -
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Hence
Xo =PV Y ole,) (A.2)
and
flx,) = oW+ o(pn) . (A.3)
As f 1is Lipschitzian, we derive from (A.2) and (A.3) the fact that
flov) = p W+ olp,) - (A.4)

However, by hypothesis
flov) = dlpv) + olp,) - (A.5)

From (A.4), (A.5), and the fact that d(pnv) = pnd(v) (because graph d

is a cone), we obtain
_ -1
w=d(v) +p olp,) -

and letting n>= we find that w = d(v), so that graph Df(0) C graph d.
But d is single-valued, and therefore since we have shown that d = Df(0) ,
we conclude that f s B-differentiable at 0 with B-derivative equal to
d. This proves Theqrem A.2.

This theorem can be quite useful in identifying B-derivatives and in
establishing their properties. The next two corollaries illustrate some
properties that can easily be proved using it.

COROLLARY A.3: Suppose f and g are Lipschitzian functions from an

open set Q€ R" to Rk. Let erQ, and suppose f and g are

B-differentiable at Xg Then
a. If aeR then of is B-differentiable at x; and D(af)(xo) =

qu(xO) .
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b. f+ g is B-differentiable at x; with D(f+g)(x0) = Df(xo) + Dg(xo).
PROOF: For (a), we just note that

f(x) = f(xo) + Df(xo)(x=x0) + o(x—xo) , (A.6)

and hence
(af)(x) = (af)(xo) + an(xO)(x-xo) + o(X-XO).

As the graph of an(xo) is a cone, Part (b) of Theorem A.2 tells us that
af is B-differentiable at x, and D(uf)(xo) = an(xO).

For (b), the proof is similar to that of (a), except that we write
expressions 1ike (A.6) for each of f and g. As Df(xo) and Dg(xo) are
single-valued, Df(xo) + Dg(xo) is a single-valued function on R" whose
graph is a cone. Again, Part (b) of Theorem A.2 gives us the result.

COROLLARY A.4: Let f be a Lipschitzian function from an open set

¢C R to Rk. Let xjef, and suppose g is a Lipschitzian function

K, with f(xg)er, to R'. If f is B-differentiable

from an open set T'C R

at Xq and g 1is B-differentiable at f(xo) , then gof is B-differentiable

at x5 and

0
D(gef)(xy) = DgLf(xy)IeDFf(xy) .

PROOF: First note that if (u,w) belongs to graph Dg[f(xo)]on(xO) R

then with v = Df(xo)u we have (u,v) e graph Df(xo) and (v,w) € graph

Dg[f(xo)] . If a>0 then av = Df(xo)(uu) and aw = Dg[f(xo)](uv).

Hence o(u,w) e graph Dg[f(xo)]on(xO) , so that this graph is a cone.

Now note that

f(x) = f(xo) + Df(xo)(x-xo) + o(x-xo)
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so that

(gof)(x)

oL f(x) +DF(xy) (x-x() + 0(x-x)]

il

ol F(xg) +DF(xy) (x-x4)] + olx-xy)

(gof) (xg) + DaLf(xy)1(DF(xy) (x-x4)) + olx-xy)

L}

(gof)(xq) + [DgLF(x4)1eDF(x0)1(x-xg) + o(x-x4) (A.7)

where we have used the fact that g and Df(xo) are both Lipschitzian,
as well as the approximation information given by Part (a) of Theorem A.2.
Now we apply Part (b) of Theorem A.2 to (A.7) to prove the corollary.
Finally, we note that evidently any Fréchet derivative is also a
B-derivative, since its graph is a cone and it has the approximation

property treated in Theorem A.Z2.
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