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ABSTRACT

A number of multiversion concurrency control algorithms have been proposed in the
past few years. These algorithms use previous versions of data items in order to improve
the level of achievable concurrency. This paper describes a simulation study of the perfor-
mance of several multiversion concurrency control algorithms. investigating the extent to
which they provide increases in the level of concurrency, and also the CPU, I/O. and
storage costs resulting from the use of multiple versions. The performance of the multiver-
sion algorithms are compared with each other and also with their single version counter-
parts. It is shown that the multiversion algorithms provide significant performance im-
provements despite the additional disk accesses involved in accessing old versions of data,
and that the storage overhead for maintaining old versions that might be required by ongo-
ing transactions is fairly small.

1. INTRODUCTION

A number of papers proposing the use of multiple versions of data to increase the level of con-
currency in database systems have appeared in the literature [Reed78. Baye80, Stea81. Chan82,
Robi82, Care83b, Reed83]. The basic idea in all of these proposals is to maintain one or more old
versions of objects in the database in order to allow work to proceed using both the current version
and older versions. Some of these algorithms maintain just one old version of an object [Baye80.
Stea81], whereas other algorithms are designed to utilize potentially many versions of an object
[Reed78, Chan82, Robi82, Care83b, Reed83]. For most of the algorithms in the latter class. the
idea is to permit long, read-only transactions to read older versions of objects while allowing update

transactions to concurrently create newer versions. It is this latter class of multiversion algorithm,
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those that do not limit the number of versions in the database. that we address in this paper.

In addition to the papers proposing various new algorithms. multiversion concurrency control
algorithms have been the subject of several recent theoretical papers [Bern83. Papa84]. Serializabil-
ity theory has been extended to include multiversion algorithms. and it has been shown that multiver-
sion algorithms are able to provide strictly more concurrency than single version algorithms. An
issue that has not received very much attention yet is the performance of multiversion algorithms. In
this paper we describe a simulation study of several multiversion algorithms in which several perfor-

mance and storage issues are addressed. Among the questions studied are:

(1)  To what extent do multiple versions provide increases in the level of achievable concurrency

that can be exploited in *‘real’’ database systems?

(2) How do the CPU and I/O costs associated with locating and accessing old versions affect

overall performance?
(3) How severe are the storage costs for maintaining multiple versions?

The answers to these questions are investigated for three multiversion algorithms: Reed’s mul-
tiversion timestamp ordering algorithm [Reed83]. which is based on timestamps; the CCA version
pool algorithm [Chan82], which is based on two-phase locking; and a multiversion serial validation
algorithm [Care83b], which is based on the optimistic concurrency control algorithm of Kung and
Robinson [Kung81]. The performance of the algorithms are compared both with each other and

with the performance of their single version counterparts.

Few previous studies have addressed these questions. Several recent papers by Lin and Nolte
included throughput results for multiversion timestamp ordering [Lin83a, Lin83b], and one of these
papers also included throughput results for an ‘‘optimistic™* variant of the CCA version pool algo-
rithm in which transactions postpone setting write locks until commit time {Lin83b]. In both papers.
however, transaction sizes were quite small (mean sizes ranged from | to 32 objects), and the sizes
for read-only and update transactions in the mix were identically distributed. In addition, their study

was based on models of a distributed database system. making it hard to separate the effects of having
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multiple versions of data from those of having distributed data. A recent paper by Peinl and Reuter
[Pein83] included results for the before-value locking scheme of [Baye80], but these results were
based on synthetic performance metrics (the number of restarts and the average number of non-
blocked transactions. not throughput or response time). In addition, the nature of the results was
strongly related to the fact that the algorithm is a before-value algorithm, permitting only two copies
of any data object. Finally, none of these studies have examined the response time or storage over-

head characteristics of multiversion concurrency control algorithms.

In this paper we try to overcome the shortcomings of these previous studies. The performance
of the multiversion concurrency control algorithms is examined in a centralized database setting so as
to isolate the effects of multiple versions on performance. Also, the performance and overheads of
the algorithms are analyzed using a variety of metrics. Among the metrics employed are throughput.
average response time. number of disk accesses per read, restart ratio. and space required for old
versions. Two classes of transactions. each with independently determined characteristics. are used
in the study. Several of the performance metrics are examined on a per-class basis as well as an

aggregate basis.

2. ALGORITHMS STUDIED

This section briefly describes each of the three algorithms studied in this paper. The descrip-
tions are sketchy, but hopefully sufficient to give the reader the basic idea in each case. For more
details, the reader is encouraged to refer to the original papers in which the algorithms were pro-
posed. This section also includes a description of the version maintenance scheme proposed for use
with the CCA version pool concurrency control algorithm. as we have used this scheme for maintain-
ing the set of old versions for each of the multiversion concurrency control algorithms that we have

studied.



2.1. Multiversion Timestamp Ordering (MVTO)

In this paper, we consider a simplified version of Reed’s original proposal [Reed78. Reed83].
In particular, we consider the algorithm as implemented in the SWALLOW data repository project at
MIT [Reed83]. This version of the algorithm can be viewed as a multiversion variant of the basic
timestamp ordering algorithm (BTO) of Bernstein and Goodman [Bern81]: Write requests are syn-
chronized using basic timestamp ordering on the most recent versions of objects, while read requests

are always granted (possibly using old versions of objects).

The basic timestamp ordering algorithm, used for write requests, works as follows: Each tran-
saction T has a startup timestamp, S-75(7), which is issued when T begins executing. The most
recent version of an item X in the database has a read timestamp, R-T5(X). and a write timestamp.
W-TS(X). which record the startup timestamps of the youngest reader and the writer (respectively) of
this version of X. A write request from T for X is granted only if S-TS(7T) = R-TS(X) and
TS(T) = W-TS(X). Transactions whose write requests are not granted are restarted. Once a write
request is granted, it is considered pending until the writer commits. When a read or write request
is granted for a object with a pending write request. the read or write request is blocked until the

pending write is no longer pending (i.e.. until the writer either commits or aborts).

Read requests are never rejected. though they may sometimes be blocked due to pending write
requests. Each version of an object X is marked with W-TS(X), the startup timestamp of its creating
transaction. Read requests from a transaction T for an object X are granted by allowing the transac-
tion to read the most recent version of X such that S-TS(7T) = W-TS5(X). Note that although T must
have started running more recently than the writer of this version of X, the writer may still be run-
ning as well. This is the case which requires a read request to be blocked for some period of time.

Also note, however, that pure read-only transactions will never be restarted for any reason.

2.2. The CCA Version Pool Algorithm (VP)

The CCA version pool algorithm [Chan82] is a multiversion variant of two-phase locking

(2PL), and it works as follows. Each transaction T is assigned a startup timestamp S-7S(7) when it
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begins running and a commit timestamp C-TS(T) when it reaches its commit point. Also. transac-
tions are classified at startup time as being either read— only or update transactions. When an
update transaction reads or writes a data item. it locks the item, just as it would in two-phase locking,
and it reads or writes the most recent version of the item. When an item is written. a new version of

the item is created, and every version of an item is stamped with the commit timestamp of its creator.

When a read-only transaction T wishes to access an item, no locking is required. Instead, the
transaction simply reads the most recent version of the item with a timestamp less than S-75(7).
Since the timestamp associated with a version is the commit timestamp of its writer. a read-only tran-
saction T is thus made to only read versions which were written by transactions which committed
before T even began running. Thus. T is serialized after all transactions which committed prior to
its startup. but before all transactions which are active but uncommitted during any portion of its life-

time.

2.3. Multiversion Serial Validation (MVSYV)

The multiversion serial validation algorithm [Care83b] is based on the optimistic concurrency
control algorithm of Kung and Robinson [Kung81] known as serial validation (SV). In their algo-
rithm. transactions record their read and write sets as they run. A transaction is restarted at its com-
mit point if any granule in its readset has been written by a transaction which committed during its
lifetime. One difference between their algorithm and our version of the algorithm is that we use
timestamps to efficiently check for readset/writeset conflicts instead of storing old write sets and expli-
citly testing for readset/writeset intersections [Care83b]. Each transaction is assigned a startup times-
tamp, S-TS(T), at startup time. and a commit timestamp, C-TS(T), when it later enters its commit
processing phase. A write timestamp, 7S(X), is maintained for each data item X: T5(X) is the
commit timestamp of the most recent (committed) writer of X. Each transaction T is validated at
commit time. being allowed to commit if and only if S-TS(T) > TS(X,) for each object X, in its
readset. Each transaction 7T that successfully commits sets 7S(X,,) equal to C-TS(T) for all data

items X, in its writeset.



The CCA version pool algorithm is a multiversion algorithm which enhances a known con-
currency control algorithm. two-phase locking. by permitting read-only transactions to read older
version of objects. In this way, serializability is guaranteed for update transactions in the usual way,
and serializability is guaranteed for read-only transactions by having them read a consistent set of
older versions of data determined by their startup time. Conflicts between read-only transactions and
update transactions are eliminated. increasing the level of concurrency which can be achieved using

the algorithm. This same idea can be applied to yield a multiversion variant of serial validation.

In multiversion serial validation [Care83b]. transactions are again classified as being either
read-only or update transactions at startup time. Update transactions record their readsets and wri-
tesets and perform commit-time conflict testing. and versions are stamped with the commit timestamp
of their creator (as above). As in the CCA version pool algorithm. read-only transactions read the
most recent versions of items with timestamps less than their startup timestamps. As a result. the
serializability of update transactions is guaranteed by SV semantics and the serializability of read-only
transactions is guaranteed by making sure they read consistent. committed versions of data. Read-
only transactions thus do not have to undergo a validation test in multiversion serial validation. and
they are never restarted. (A similar multiversion optimistic concurrency control algorithm is dis-

cussed in [Robi&2].)

2.4, Maintaining Old Versions

For all three of the algorithms studied here. versions are maintained using a slightly simplified
version of the scheme proposed in the CCA version pool paper [Chan82]. Basically. the physical
database is divided into two parts, the main segment and the version pool. The main segment con-
tains the current versions of all of the objects in the database. and the version pool contains older
versions of database objects. The version pool objects are organized in a large circular buffer with
slots numbered from O to vp-size — 1. Versions of objects are chained in reverse chrdnological
order, and version pool slots are allocated sequentially. Figure 1 depicts the main segment of the

database. the version pool, and a version chain for an object X.
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Figure 1: Storing Multiple Versions.

The reclamation of free version pool space is handled efficiently by using the CCA algorithm
for maintaining sliding ranges of version pool slots that are in use [Chan82]. Three pointers.
reader -first, update -first. and last, where reader-first < writer-first = last (modulo vp-size). are
used to maintain these sliding ranges. Slots between reader -first and last contain versions of objects
that may be needed to satisfy a read request for some ongoing transaction. Slots between update -first
and last contain object versions that have been written by an ongoing or recently committed update
transaction. The objects in this latter range are those objects that may be required to undo the effects
of an ongoing update transaction if it is restarted, so this section of the version pool also serves as an
UNDO log {Gray79] for recovery purposes [Chan82]. The simplification referred to earlier is that
the maximum size of the version pool is made sufficiently large in our simulations so as to avoid
problems that arise when the version pool size reaches its maximum limit. In addition, our approach
to version selection is based on timestamps rather than the completed transaction lists of [Chan82],

slightly simplifying the implementation while preserving the desired semantics.
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Of the three algorithms studied. two were designed to be used with this version management
scheme [Chan82, Care83b]. Reed proposed a scheme where versions with timestamps newer than
some threshold value are kept, and older versions are discarded [Reed83]. Depending on the thres-
hold setting, this scheme may require that some read-only transactions be aborted. We opted to use
the CCA version management scheme for multiversion timestamp ordering as well for several rea-
sons. First, it is simple, efficient, and allows us to ignore the problems of a finite version pool limit
if we choose the version pool size appropriately for our simulations. Second, Reed’s proposal does
not update objects in place. which is unacceptable from a database performance standpoint. (Reed’s
proposal was aimed at providing a transaction-oriented object storage facility in an operating system.
not at solving database problems.) Finally. we felt that this would facilitate a fairer comparison of the
algorithms. and would allow us to address the question of how much storage is required to maintain

all versions that may be needed by in-progress transactions.

3. THE SIMULATION MODEL

This section outlines the structure and details of the simulation model which was used to evalu-
ate the performance of the algorithms. The model was designed to support performance studies for a

variety of centralized concurrency control algorithms [Care83a. Care84].

3.1. The Workload Model

An important component of the simulation model is a transaction workload model. When a
transaction is initiated in the simulator, it is assigned a readset and a writeset. These determine the
objects that the transaction will read and write during its execution. Two transaction classes. large
and small, are recognized in order to aid in the modeling of realistic workloads. The class of a tran-
saction is determined at transaction initiation time and is used to determine the manner in which the
readset and writeset are to be assigned. Transaction classes, readsets, and writesets are generated

using the workload parameters shown in Table 1.



Workload Parameters

mpl
resiart-delay
db-size
small-prob
small-mean
small-xact-rvpe
small-size-dist
small-write-prob
large-mean
large-xaci-type
large-size-dist
large-write-prob

multiprogramming level

mean xact restart defay

size of database

Pr(xact is small)

mean size for small xacts

type for small xacts

size distribution for small xacts
Pr(write X | read X) for small xacts
mean size for large xacts

type for large xacts

size distribution for large xacts
Pr(write X | read X) for large xacts

Table 1. Workload parameters for simulation.

The parameter mp! determines the level of multiprogramming for the workload. The parame-
ter restari-delay determines the mean of an exponential delay time required before a transaction can
be resubmitted after being restarted during its current execution. The parameter db-size determines
the number of objects in the database. and objects are represented by integer names ranging from 1

to db-size. Objects correspond to disk pages throughout this paper.

The readset and writeset for a transaction are lists of the numbers of the objects to be read and
written, respectively. by the transaction. These lists are assigned at transaction startup time. When
a terminal initiates a transaction. small -prob is used to randomly determine the class of the transac-
tion. If the class of the transaction is small. the parameters small-mean, small-xact-rype.
small -size -dist. and small -write -prob are used to choose the readset and writeset for the transaction
as described below. Readsets and writesets for the class of large transactions are determined in a
similar manner using the parameters large-mean.

large -xact -type . large -size -dist. and

large -write -prob .

The readset size distribution for small transactions is given by small-dist. It may be constant.
uniform. or exponential. If it is constant. the readset size is simply small -mean. 1If it is uniform.
the readset size is chosen from a uniform distribution on the range from 1 to 2*small -mean. The

exponential case is not used in the experiments of this paper. The particular objects accessed are
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determined by the parameter small-xact-rype, which determines the type (either random or sequen-
tial) for small transactions. If they are random, the readset is assigned by randomly selecting objects
without replacement from the set of all objects in the database. In the sequential case. all objects in
the readset are adjacent, so the readset is selected randomly from among all possible collections of
adjacent objects of the appropriate size. Finally, given the readset. the writeset is determined as fol-
lows using the small -write -prob parameter: It is assumed that transactions read all objects which
they write (*‘no blind writes "). When an object is placed in the readset. it is also placed in the wri-

teset with probability small -write -prob.

3.2. The Queuing Model

Central to the detailed simulation approach used here is the closed queuing model of a single-
site database system shown in Figure 2. This model is an extended version of the model of Ries
[Ries77, Ries79a. Ries79b]. There are a fixed number of *“terminals™’ from which transactions ori-
ginate. When a new transaction begins running, it enters the siarfup queue. where processing tasks
such as query analysis. authentication, and other preliminary processing steps are modeled. Once
this phase of transaction processing is complete. the transaction enters the concurrency control queue
(or cc queue) and makes the first of its concurrency control requests. If this request is granted. the
transaction proceeds to the object queue and accesses its first object. If more than one object is to be
accessed prior to the next concurrency control request. the transaction will cycle through this queue
several times. When the next concurrency control request is required. the transaction re-enters the
concurrency control queue and makes the request. It is assumed for convenience that transactions

which read and write objects perform all of their reads before performing any writes.

If the result of a concurrency control request is that the transaction must block. it enters the
blocked queue until it is once again able to proceed. If a request leads to a decision to restart the
transaction, it goes to the back of the concurrency control queue after a randomly determined restart
delay period of mean resiart-delay; it then begins making all of its concurrency control requests and

object accesses over again. Eventually, the transaction may complete and the concurrency control
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Figure 2: Logical database queuing model.

algorithm may choose to commit the transaction. If the transaction is read-only, it is finished. If it
has written one or more objects during its execution, however, it must first enter the updare queue
and write its updates into the database. (It is assumed that sufficient main memory exists to allow
updates to be cached in main memory until end-of-transaction.) When a transaction finally does

commit, it is immediately replaced by a new transaction.

Underlying the logical model of Figure 2 are two physical resources, the CPU and I/O (disk)

resources. Associated with each logical service depicted in the figure (startup, concurrency control,
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object accesses. etc.) is some use of each of these two resources — each involves I/O processing fol-
lowed by CPU processing. The amounts of CPU and I/O per logical service are specified as simula-
tion parameters. All services compete for portions of the global I/O and CPU resources for their /O
and CPU cycles. The underlying physical system model is depicted in Figure 3. As shown, the phy-
sical model is simply a collection of terminals. a CPU server, and an I/O server. Each of the two

servers has one queue for concurrency control service and another queue for all other service.

The scheduling policy used to allocate resources to transactions in the concurrency control I/O
and CPU queues of the underlying physical model is FCFS (first-come. first-served). Concurrency
control requests are thus processed one at a time. as they would be in an actual implementation. The
resource allocation policies used for the normal I/O and CPU service queues of the physical model
are also FCFS. These policies are again chosen to approximately model the characteristics which a
real database system implementation would have. Since a transaction never requests CPU time for
processing more than one page in a cycle through the CPU queue. this is approximately equivalent to
a round-robin CPU scheduling policy where the quantum exceeds the page processing time. When
requests for both concurrency control service and normal service are present at either resource. such
as when one or more lock requests are pending while other transactions are processing objects. con-

currency control service is given priority.

The parameters determining the service times (I/O and CPU) for the various logical resources
in the model are given in Table 2. The parameters stariup -io and siartup-cpu are the amounts of
1/0 and CPU associated with transaction startup. Similarly, obj-io and obj-cpu are the amounts of
[/O and CPU associated with reading or writing an object. Reading an object takes resources equal
to obj-io followed by obj-cpu. Writing an object requires the same resources as reading an object,
but the time when the obj-io portion of the cost is assessed is different. A cost of obj-cpu is
charged at the time of the write request and a cost of obj-io is charged later, at transaction comple-
tion time. (It is assumed that updates reside in main memory buffers until being flushed out when

the transaction commits.) The parameters cc-io and cc-cpu are the amounts of I/O and CPU associ-
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System Parameters

startup-io
startup-cpu
obj-io
obj-cpu
cc-io
cc-cpu

I/0 time for transaction startup

CPU time for transaction startup

I/0 time for accessing an object

CPU time for accessing an object

basic unit of concurrency coatrol I/O time
basic unit of concurrency control CPU time

Table 2: System parameters for simulation.

ated with a concurrency control request. All these parameters represent constant service time

requirements rather than stochastic ones for simplicity. All parameters are specified in internal

simulation time units, which can be interpreted in whatever manner is desired. In the studies

reported here, one simulation time unit will represent one millisecond of simulated time.
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3.3. Algorithm Descriptions

Concurrency control algorithms are described for simulation purposes as a collection of four
routines. /nir-CC -Algorithm. Request-Semantics. Commit-Semantics. and Update -Semaniics. Each
routine is written in SIMPAS, a simulation language based on extending PASCAL with simulation-
oriented constructs [Brya80]. the language in which the simulator itself is implemented.
Inir-CC -Algorithm is called when the simulation starts up, and it is responsible for initializing all
algorithm-dependent data structures and variables. The other three routines are responsible for
implementing the semantics of the concurrency control algorithm being modeled. Request-Semantics
handles concurrency control requests made by transactions before they reach their commit point.
Commit-Semaniics is invoked when a transaction reaches its commit point. (pdate-Semaniics is
called after a transaction has finished writing out its updates. Each of the latter three routines
returns information to the simulator about how much simulation time to charge for CPU and I/O

associated with concurrency control processing.

3.4. Concurrency Control Costs

In order to simulate the concurrency control algorithms of interest, it is necessary to make
some assumptions about their costs. This section briefly describes how the simulation cost parame-
ters are used in modeling the costs for each of the multiversion algorithms in order to evaluate them

using the simulation model.

It is assumed that transactions are issued startup timestamps (for all three algorithms) and
registered as being either read-only or update transactions (for VP and MVSV) at transaction startup
time. The cost of doing so is assumed to be included in the siariup -cpu and siartup -io costs. Read-
only transactions incur no additional concurrency control costs in VP or MVSV, but read-only tran-
sactions in MVTO and update transactions in all three algorithms will incur costs for setting locks.
checking timestamps, or performing validation tests (depending on the algorithm being considered).
These latter costs are charged at the points where the algorithms require the associated actions. It is

assumed that the costs for the actions of setting a lock, checking a transaction timestamp, or
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performing a validation test step are all equal. and each results in charges of cc-cpu and cc-io per

action [Care84].

When a transaction accesses a version of an object. costs of obj-io and obj-cpu are assessed
for each disk access required. The number of disk accesses required to satisfy a read request using
an old version of an object depends on whether or not there is a pending (uncommitted) update for
the object and on the number of versions accessed. If there is no pending update for the object, one
disk access is required to access the current version, two are required to access the second most
current version. three are required for the most recent version before that. and so on. If there is a
pending update for the object. we assume that the address for the object’s before-image in the version
pool is stored in the lock or timestamp table in main memory along with its concurrency control
state. In this case. one disk access is required for either the current version or the second most
recent version, two accesses are required for the most recent version before that. and so on. Thus.
in effect, the cost of accessing the most recently committed version of an object is always one. even if
it happens to be the before-image of a version undergoing an update. Other read and write charges

are assessed as described previously in the discussion of the queuing model.

In addition to the costs for concurrency control processing and following version chains. mul-
tiversion algorithms incur costs for version maintenance. When an object is to be updated. the
before-image of the object must be read from the main segment and written into the version pool
before the actual update can be permitted. In this paper we ignore this source of costs. Our argu-
ment for doing so is based on the fact (mentioned earlier) that this copying cost occurs instead of the
UNDO logging portion of the normal recovery costs for a transaction processing system. Since we
chose not to include other recovery costs, such as UNDO and REDO logging costs for the single
version algorithms or REDO logging costs for the multiversion algorithms. we chose also to ignore

the cost of this before-image copying.
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3.5, Statistical Analysis

In the simulation experiments reported here, one of the main performance metrics used is the
transaction throughput rate. Mean throughput results and 90% confidence intervals for these results
were obtained from the simulations using a variant of the baich means [Sarg76] approach to simula-
tion output analysis. The approach used is due to Wolf [Wolf83]. it differs from the usual batch
means approach in that an attempt is made to account for the correlation between adjacent batches.
Briefly, we assume that adjacent batches are positively correlated. that non-adjacent batches are
uncorrelated, and that the correlation between a pair of adjacent batches is independent of the pair
under consideration. We then estimate this correlation and use it in computing a confidence interval
for the mean throughput. In the remainder of this paper. we omit most confidence interval data for
brevity. presenting just mean throughput figures. However. we only point out performance differ-
ences which are significant in the sense that their confidence intervals do not overlap. More infor-

mation on the statistical approach used in our experiments may be found in Appendix 3 of [Care83a].

4, EXPERIMENTS AND RESULTS

In this section we present the results of three experiments designed to examine the performance
and storage characteristics of the multiversion concurrency control algorithms. Experiment | exam-
ines the algorithms under the type of workload for which they are expected to be beneficial. a mix of
small update transactions and large read-only transactions. Experiment 2 investigates the effects of
the fraction of update transactions in the mix on the degree of benefit obtained. Experiment 3 inves-
tigates the relative performance of the three multiversion algorithms for a workload consisting of
larger update transactions. to see how the algorithms behave when update conflicts are likely to

occur.

Table 3 contains the settings for parameters which are fixed throughout all of the three experi-
ments. The database size used for the experiments is 500 pages. This (rather small) size was chosen
to allow the use of transaction size values that represent a significant fraction of the database without

requiring prohibitively long simulation times. The multiprogramming level for the experiments is
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ten. so ten transactions will be in the system at all times (although some of these transactions may be
blocked or waiting to be restarted). Transactions incur costs of a 35 millisecond disk access and 10
milliseconds of CPU time at startup time. The unit cost for a concurrency control decision is 1 mil-
lisecond of CPU time but no I/O.+ The cost associated with accessing a page is a 35 millisecond disk
access and 10 milliseconds of CPU time to process the page. Finally, restarted transactions are

delayed for an exponential period with a mean of 1 second.

4.1. Experiment 1: Read-Only Transactions

This experiment examines the behavior of the algorithms under a mix of transactions for which
the multiple version algorithms were designed to be beneficial. The mix used here consists of update
transactions and read-only transactions. Update transactions are small. and the size of read-only
transactions is varied from small to very large (with respect to the overall database size). We study
the relative performance of each of the multiversion algorithms. first as compared to their single ver-
sion counterparts, and then as compared to each other. The performance metrics used are
throughput and response time (both aggregate and by transaction class). Also studied are the size of

the version pool and the number of disk accesses required to satisfy read requests from transactions.

The workload parameters for Experiment 1 are shown in Table 4. 80% of the transactions in

the mix are small, reading two randomly-chosen pages and updating each one with 50% probability.

Fixed Parameter Settings
db-size 500 pages
mpl 10
startup-cpu 10 ms
startup-io 35 ms
cc-cpu 1 ms
cc-io 0 ms
obj-cpu 10 ms
obj-io 35 ms
resiart-delay 1000 ms

Table 3: Fixed Parameters.

-
It is assumed that all concurrency control information is kept in tables in main memory.
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The other 20% of the transactions in the mix are read-only transactions. Each read-only transaction
reads a uniformly-distributed number of sequential pages, and the mean size of these transactions is
varied from 1 to 250 pages as shown in the table. With these parameter settings. conflicts between
update transactions are unlikely. In the single version case, however, conflicts between update tran-
sactions and read-only transactions are quite likely for the larger read-only transaction sizes. The
point of this experiment is to see how much is gained by having multiple versions available to elim-

inate this latter source of conflicts.

Figure 4 shows the overall transaction throughput rate (in transactions per second of simulated
time) versus the mean size of read-only transactions in the mix. The three multiversion algorithms
all performed identically with respect to throughput. The explanation for this is that. given the small
size of the update transactions in this experiment. almost all conflicts are between read-only and
update transactions. All three of the multiversion algorithms totally eliminate this source of conflicts.
so the three algorithms provide the same throughput. Of the single version algorithms. two-phase
locking (2PL) has the highest throughput. basic timestamp ordering (BTO) is next, and serial valida-
tion (SV) has the worst overall throughput of the algorithms studied. It is evident from Figure 4 that
2PL has only slightly lower throughput than the three multiversion algorithms. and only for the very
largest read-only transaction sizes. Thus. as far as throughput is concerned. it would appear that

multiple versions are not a significant source of improved performance for 2PL. For BTO and SV.

Workload Parameters
small-prob 0.8
small-mean 2
small-write-prob | 0.5
small-xact-type random
small-size-type fixed
large-mean 1.5, 10, 25, 50, 100, 250
large-xact-type sequential
large-size-type uniform
large-write-prob | 0.0

Table 4: Workload Parameters, Experiment 1.
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however, the addition of multiple versions does indeed improve throughput — the throughputs for
MVTO and MVSYV are several times larger than those for BTO and SV (respectively) when the mean

size of read-only transactions is large.

The throughput results for the six algorithms are explained by Figure 5. This figure shows the
restart ratio for each algorithm, where the restart ratio is defined as the ratio of the number of tran-
sactions restarted to the number of transactions which started running for the first time. The three
multiversion algorithms have extremely small restart ratios. 2PL has a slightly higher restart ratio.
BTO has a restart ratio which is much greater than that for 2PL. and SV has the highest restart ratio
among the algorithms studied. The greater the restart ratio for an algorithm. the more resources that
are wasted due to restarted transactions: this necessarily leads to a lower overall throughput
[Care83a, Care84]. The reason for the high restart ratios for BTO and SV are that both algorithms
are quite biased against large read-only transactions: When a large read-only transaction tries to
read an object in BTO. it is restarted if the object was written by an update transaction that started up
more recently. The same is true for SV, though the restart will occur after the large read-only tran-
saction has finished all of its work. Such restarts become more and more likely as read-only transac-
tion size is increased. as more update transactions can run during the lifetime of each read-only tran-

saction in the mix.

Figure 6 shows the overall average response times obtained for the six algorithms in this exper-
iment. The relationships between the algorithms are similar to those for throughput — the three
multiversion algorithms have the same average response time, 2PL has the next best response time,
and then come BTO and SV with significantly worse response times. There is an interesting change
in the relative performance of 2PL and VP here, however. Although the throughput for 2PL is not
much lower than that of VP, the response time for 2PL is about 25% worse than that of VP for the
largest read-only transaction size studied. This shows that, while VP does not offer improved perfor-
mance when measured in terms of throughput, it does lead to an improved average response time by

reducing the amount of blocking due to lock conflicts between read-only and update transactions.

-19 -



Throughput

7.50

825

375

2.50

125

0.00

R
- i
g . — — —

: ' 1 ! !

S mvto

T T
25 50 75 100 125 150

Figure 4: Overall Throughput.

Overall

Response Time

70000

60000

50000

40000

30000

20000

10000

f———g mvto
G TIVEV

o ——o bto

Qv [TIVEV
SRR - Vp
0-—-—-—0 bto
v - -7 B3V
e 2pl
Read..Only
Xact Size

Restart

Figure 6:

Ratio
1.0 -+
0.9 - v
-
-
-
-
08 - -
-~
-
0.7 - P - .
e
7 7
0.8 4 ’ -
V4 A//
7 ,//
-
0.5 /7 el
/ ;’/
v s
_,
0.4 - / 4
/ i
i
0.3 I'd
7
i/
0.2 - /o
I/
s
0.1 -—/I/'
y _—
———
0.0 ﬂ'““ s T - i L i ] 1 Y
T 4 hd T T L ¥ H hd
0 25 50 75 100 125 150 175 200 225 250
Figure 5: Restart Ratio.
“
//
174
} 1 } } Read..Only
175 200 225 250 Xact Size

Overall Response Time.

.20 -

Read..Only
Xact Size



Figures 7 through 10 give throughputs and response times by transaction class. showing how
the six algorithms treat the small update transactions and large read-only transactions in the mix.
Figures 7 and 8 show that the algorithms have the same per-class throughput curves, in terms of
their shape and their relative position to one another. as was seen above in the overall throughput
curves of Figure 4. The multiversion algorithms perform identically, 2PL is just slightly worse. and
BTO and then SV have significantly lower throughputs. However, there are several enlightening
differences between Figures 9 and 10, the per-class response time curves. and the overall average
response time curves of Figure 6. In Figure 9, with the exception of 2PL. all of the algorithms pro-
vide about the same response time for the small update transactions. This is because. except for
2PL. small update transactions never have to wait for large read-only transactions to complete betore
performing their updates. For 2PL, however. the response time is much worse — this is because
small update transactions are waiting for large read-only transactions to release locks. and this wait-
ing time goes up as the size of read-only transactions is increased. In spite of this increased waiting

time, though. Figure 7 shows that the throughput of small update transactions does not suffer.

A second interesting observation concerning the per-class response times of the algorithms
comes from Figure 10. The response time for large read-only transactions is actually slightly better
for 2PL than for the three multiversion algorithms. This is because. in the multiversion algorithms.
large read-only transactions incur extra disk accesses — updates occur while they execute. causing
some of the data read by these transactions to be old versions of data. More disk accesses. in turn,
lead to longer average response times. In going from 2PL to VP, then, one is trading much
improved response times for small update transactions for slightly worse response times for large
read-énly transactions. The fact that the three multiversion algorithms provide higher overall
throughputs and lower overall response times than the three single-version algorithms, and yet large
read-only transactions have to do more work. illustrates a key point — the decrease in the number of
restarts (see Figure 5) due to reader-updater conflicts for the multiversion algorithms provides more
of a resource savings than the amount of resources lost due to the extra disk accesses for reading old

versions.
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Having studied the performance of the multiversion algorithms for this experiment. we now
consider their storage overheads. Figure 11 shows how the relative version pool size. defined as the
average ratio of the size of the version pool to the size of the database, behaves as a function of read-
only transaction size. All three algorithms have the same overhead. and this overhead increases with
read-only transaction size. The larger the ratio of read-only transaction response time to update tran-
saction response time, the larger the number of old versions of objects that a read-only transaction
may have to read (because more updates occur during its lifetime). Thus. more old versions have to
be maintained in the version pool. which explains why the relative size of the version pool increases
with read-only transaction size. However, as shown in the figure. the average version pool size is
never more than about 11% of the size of the database itself in this experiment. even though the aver-

age read-only transaction reads as many as one-half of the objects in the database in some cases.

Figure 12 shows how the average of the maximum number of disk accesses per read request by
transactions behaves as a function of read-only transaction size. The statistics in the figure were
compiled by recording the maximum number of disk accesses among all read requests for each com-
mitted transaction. then averaging these results over all of the comminied transactions. As shown in
the figure. all three multiversion algorithms behaved similarly. The maximum number of disk
accesses per read for transactions increases. expectedly. with the size of read-only transactions in the
mix. Small update transactions almost always access the most recent versions of objects.'L so they
have an average number of disk accesses per read of 1. Figure 13 shows how the maximum number
of disk accesses per read for large read-only transactions behaves — these transactions account for
the increase in the curves of Figure 12. It is quite interesting to note that, despite the large fraction
of the database accessed by read-only transactions, the maximum number of disk accesses per read

never exceeds an average value of about 2.1 for the read-only transactions in this experiment.

Tables 5 and 6 each contain four results pertaining to the version access behavior of transac-

tions for the VP algorithm for read-only transaction sizes of 50 and 250 (respectively). The results

" Since update transactions update each of two objects with 50% probability. an update transaction actually has a 25%
chance of not updating any object (i.e., of being a small read-only transaction).
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for the MVTO and MVSV algorithms were very similar, so VP results alone are given to illustrate
the interesting points. The first column in each table is the number of disk accesses, or versions
accessed. per read. The next three columns in each table pertain to the maximum number of disk
accesses that a transaction had to perform in order to read an object. with the first column of data
giving overall results and the next two columns giving the results by transaction class. The last
column in each table shows the number of disk accesses required to satisfy read requests (recorded

on a per-read basis instead of on a per-transaction maximum basis).

Table 5 shows that 88% of all transactions were able to avoid extra disk accesses. and only 1%
of all transactions ever required more than one or two disk accesses. The results by transaction
class are also quite enlightening. Small update transactions rarely needed more than one disk access.

For large read-only transactions. 38% never needed more than one disk access. another 58%

required only two accesses in the worst case. and another 5% required a maximum of three disk

Versions Accessed, Large Read-only Transaction Size = 50
Disk Percent of Percent of Percent of Percent of
Accesses | All Transactions | Small Transactions | Large Transactions | All Reads
1 87.66 99.91 37.69 96.88
2 11.43 0.09 57.71 3.04
3 0.88 0.0 4.48 0.08,
4 0.03 0.0 0.12 0.002'
Table 5. Versions Accessed, Size = 50. Experiment [.
Versions Accessed, Large Read-only Transaction Size = 250
Disk Percent of Percent of Percent of Percent of
Accesses | All Transactions | Small Transactions | Large Transactions | All Reads
1 83.68 100.00 17.81 95.92
2 11.00 0.00 55.39 3.91
3 5.03 0.00 25.33 0.16
4 0.29 0.00 1.47 0.01

Table 6: Versions Accessed. Size = 250. Experiment 1.

"This value is here to indicate that one transaction required a maximum of four disk accesses — the value should really
be 0.00 for the percentages to add up properly.
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accesses. Less than 1% of all large read-only transactions ever required more than three accesses.
and no transaction ever had to perform five disk accesses to satisfy a read request. The last column
in the table shows the number of disk accesses required to satisfy read requests. and it shows that

about 97% of all read requests were satisfied using only one disk access.

Table 6 shows the same collection of statistics for the case where the mean size of large read-
only transactions is 250. or one-half the overall database size. The results are quite similar to those
in Table 5. though the percentages for more than one disk access are slightly higher in this case.
Still, very few transactions ever needed four disk accesses in order to satisfy a read request. and
never did any transaction require more than this number. Viewed on a per-read basis. 96% of all
read requests were still satisfied in just one disk access. In other words. even in extreme cases. the
vast majority of reads did not need to use versions other than the most recently committed version.
Note, however, that the performance results discussed earlier do indicate that having old versions

around for those accesses that need them helps performance immensely.

Tables 7 through 9 give throughput results for the three single version algorithms and for their
multiversion counterparts using two different cost models. For each multiversion algorithm, results
are given for a model where no extra cost is incurred when accessing an old version and for a model
where the extra cost for accessing old versions is included (the model used throughout the rest of the
paper). Model 1 shows the performance gains due strictly to the additional concurrency offered by
the multiversion algorithms, and model 2 shows how the cost of reading old versions affects this per-
formance. (Also given in the tables are the sizes of the 90% confidence intervals for these results,

given as a percentage of the throughput values.)

Examining the tables, it is apparent that both cost models for the multiversion algorithms pro-
vide very similar throughput results. except when the mean size for read-only transactions is very
large. In this case, the average cost for executing a transaction begins to be affected by the addition
of the cost for accessing old versions. Compared to the differences in performance between the sin-

gle version variant of each algorithm and the multiversion models. though, the differences between
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Throughputs and Confidence Intervals

Size

BTO

MVTOI

MVTO?2

1
5
10
25
50
100
250

7.310=1.98%
6.004=1.10%
4.622x2.05%
2.419=7.86%
1.030=9.74%
0.452+210.72%
0.147+13.31%

7.310=1.98%
6.066x1.05%
4917=1.67%
3.215£3.88%
2.088=5.48%
1.162=5.84%
0.538x6.80%

7.310=1.98%
6.062x1.08%
4.903x1.61%
31722381%
2.042x5.23%
1.124£6.66%
0.514=7.75%

Table 7. BTO and MVTO Throughput

. Experiment 1.

Throughputs and Confidence Intervals

Size SV MVSVI MVSV2

1 7.250=2.63% | 7.330=2.28% | 7.330=2.00%
5 5.704=1.70% | 6.062=1.14% | 6034=1.24%
10 3.810=2.68% | 4.915=1.70% | 4.879+1.36%
25 1.570=9.28% | 3214=3352% | 3.154x4.29%
50 0.539=757% | 2.088=5.45% | 2.039:3.05%
100 | 0.218=9.04% 1.162=5.82% | 1.124x6.40%
250 | 0.062£19.47% | 0.539x6.74% | 0.513x7 12%

Table 8: SV and MVSV Throughput. Experiment 1.

Throughputs

and Confidence Intervals

Size

2PL

VPl

VP2

|
5
10
25
50
100
250

7.340%1.64%
6.076=1.26%
4.929x1.65%
3.212£3.76%
2.048=5.05%
1.070=5.70%
0.42125 22%

7.340%2 32%
6.074x1.11%
4.927x1.65%
3221x3.95%
2.088=5.49%
1.162£5.80%
0.539x6.79%

7.340=1.81%
6.060=1.08%
4.901x1.51%
3.165%3.99%
2.039=5.03%
1.124=6.40%
0.514x7.28%

the multiversion models themselves are quite small. (In fact, the multiversion model differences lie
within the range for which statistical variations cannot be ruled out as their cause.) These tables
illustrate that the benefits of having multiple versions, at least in a performance sense. significantly

outweigh the costs. The cost of accessing old versions simply does not significantly degrade overall

performance.
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4.2. Experiment 2: Transaction Mix

This experiment examines the behavior of the algorithms under a mix of transactions similar to
that of Experiment 1. In this experiment. however. read-only transaction size is held fixed. The
variable here is the fraction of update versus read-only transactions in the mix. The point of this
experiment is to find out the tvpe of mixes for which multiple versions provide the greatest perfor-
mance benefits. Also investigated is the way in which the storage cost (i e.. the size of the version

pool) varies with the transaction mix.

Table 10 gives the parameter settings used in this experiment. The update transactions in the
mix again read two objects. updating each with 50% probability. The mean size of read-only tran-
sactions is 50 in this case, meaning that each read-only transaction reads between | and 100 sequen-
tial pages. As mentioned above. the mix of transactions in the workload is varied in this experiment.
In particular. workloads with 0%. 20%. 40%. 60%. 80%, and 100% update transactions are stu-

died. with the remainder of the workload consisting of read-only transactions.

Figures 14 through 16 show the overall throughput. restart ratio. and average response time
results for Experiment 2. Since small transactions execute much more quickly than large transac-
tions. the throughput increases in Figure 14 with the fraction of small transactions in the mix. The
interesting thing about the throughput results in this experiment is that the difference between the

single version and multiversion concurrency control algorithms is the greatest when the mix consists

Workload Parameters
small-prob 0.0.0.2.04,06,08,1.0
small-mean 2
small-xact-rype random
small-size-rype fixed
small-write-prob | 0.5
large-mean 50
large-xact-type sequential
large-size-rype uniform
large-write-prob | 0.0

Table 10: Workload Parameters, Experiment 2.

.28 -



Throughput

8.0

Figure 14: Overall Throughput.

Overall
Response Time

22000 =
20000 —+
18000 -
18000 -+~
14000 —
12000 -+
10000 —

8000 -

8000 —+

4000 —«-

2000 -

Small

Xact Fraction

Restart

Ratio
0.50 -~
§——8 mvio
Qs IAVEV
045 -+ [ s vp
o - ~0 bto —
2 1 4 /v-" - \
0.40 o e 2D ; \
4 \
’
035 , \
4 \
g \
030+ ’ R
/ te v
g A
/ & vy
025 — , . L
d \
/ v 1 \
d
7 yd
020 - y -
/ e
.
015 - / Vs
/ e
/ o
010 - .
/ r's
/ »”
P
005 L+ 7 .
/,
7,7
000 et e e
00 01 02 03 04 05 068 07 0B 08 10
Figure 15: Restart Ratio.
- * — v 8V
\ 2———u 2pl
} ’ ! Small

0.0

1.0

Figure 16: Overall Response Time.

-29-

Xact Fraction

Small
Xact Fraction



of 80% small update transactions and 20% large read-only transactions. This is easy to explain —
the more update transactions there are in the mix with read-only transactions. the more likely the
read-only transactions are to be interfered with by updates in the single version case. This is clear in
Figure 15, which shows that the restart ratios for BTO and SV are the largest with this mix. Figure
16 shows that the differences in response times for BTO and SV versus MVTO and MVSV (respec-
tively) are the greatest for this mix as well. 2PL and VP perform approximately the same in all the
figures. This is to be expected, as differences between 2PL and VP did not come out in Experiment

1 until the size of read-only transactions was larger than 50.

Figures 17 through 19 show the storage results obtained in this experiment. The results are
basically what one would expect. given the storage results of Experiment 1 and the performance
results of Figures 14 through 16. The relative size of the version pool is greatest with 80% updaters
and 20% large readers. which was where the multiple version algorithms outperformed their single
version counterparts by the most significant amounts. The maximum number of disk accesses
needed to satisfy read requests by large transactions. on the average, is also the greatest for this mix
of transactions. Figure 18 shows the overall average. and Figure 19 shows how the results for large
read-only transactions behave. The overall average actually peaks at the mix of 60% updaters and
40% large readers — this is because small update transactions have their requests satisfied in a sin-
gle disk access, and the 80% of the mix that are update transactions pull the overall average value

down towards 1.0.

4.3. Experiment 3: Update Conflicts

This experiment examines the behavior of the algorithmé under a workload consisting purely of
update transactions. Whereas experiments 1 and 2 examined how each of the multiple version algo-
rithms performs under conditions which were favorable for the algorithms, in this experiment we
examine the performance of the algorithms under less favorable conditions. The size of update tran-
sactions is varied in order to see how each of the algorithms performs under varying conflict proba-

bilities.
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The workload parameters for Experiment 3 are given in Table 11. All of the transactions ran-
domly read and then update some number of pages in the database. The number of pages accessed is
varied from 1| to 100. as indicated in the table. At the extreme. then, conflicts between update tran-
sactions are highly probable — each update transaction reads and then updates 1/5 of the database.

and the multiprogramming level for the experiment is ten (as always).

Figures 20 through 23 give the overall throughput. restart ratio. response time. and relative
version pool size results for Experiment 3. The throughput results for update transactions of size |
were omitted so as to make the ranges covered by the graph more helpful: all algorithms performed
alike at this size anyway. In this experiment. where the probability of conflicts between transactions
is non-negligible even with multiple versions. significant differences in performance are visible
among the three multiversion concurrency control algorithms. Looking at Figure 20. VP provides
the best throughput with update transactions of size 10 or less, and MVSV provides the best
throughput for larger update transaction sizes. MVTO performs significantly worse than the other
two algorithms for all but the smallest of transaction sizes. Figure 21 indicates that the response time
results follow the same basic trend. and Figure 22 shows that the explanation behind the trend lies
with the restart ratio — the algorithm causing the least number of restarts offers the best overall per-

formance.

The reason that VP outperforms MVSV initially is that it blocks conflicting transactions. res-
tarting them only when deadlocks require it to do so. MVSV. on the other hand, uses end-of-

transaction restarts to resolve conflicts. The reason that the MVSV and VP curves cross over, with

Workload Parameters

small-mean 1,5, 10, 25, 50, 100
small-xaci-tvpe random
small-size-1ype fixed
small-write-prob | 1.0

Table 11: Workload Parameters, Experiment 3.
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MVSYV eventually outperforming VP, is that the deadlock victim selection criteria which we chose to
use is poor and leads to thrashing. The policy used in our VP implementation is to check for
deadlock every time a transaction blocks, and to restart the current blocker (the transaction whose
blocking induces the deadlock). It is possible for transactions to repeatedly restart each other under
this policy [Care83a. Pein83]; this is evident from the fact that the restart ratio for VP significantly
exceeds 1 for VP (it reaches about 18 for the largest transaction size). With SV on the other hand. a
transaction is only restarted when it conflicts with another. commined. transaction. SV thus has a
sort of stability. in the sense that it guarantees that some useful work will get done in the system. We
expect that a more stable victim selection criteria. such as restarting the youngest transaction in the
deadlock cycle, would allow VP to uniformly outperform (or at least perform equally as well as)

MVSV.

The reason for the poor showing by MVTO in this experiment is a phenomenon known as
cyclic restarts [Date82. Care83a. UlI83]. This phenomenon has been known to be a problem for
BTO. and it can also arise between updaters in the MVTO algorithm. Basically. two updaters that
wish to access the same object can get into a mutually infinite loop. with one restarting the other.
then the other coming back and restarting the first one, etc. Such loops can also involve more than

two transactions, and more than one such loop can exist at a time. The serious performance impact

Step Action Result
I T1: begin; S-TS(T1) = 1

2 T2: begin; S-TS(T2) = 2

3 T1: read X: R-TS(X) = 1

4 T2: read X: R-TS(X) = 2

5 T1: write X;  Restart(T1) with S-TS(T1) = 3
6 T1: read X: R-TS(X) = 3

7 T2: write X;:  Restart(T2) with S-TS(T2) = 4
8 T2: read X; R-TS(X) = 4

9 T1: write X:  Restart(T1) with S-TS(T1) = 5
10 T1: read X: R-TS(X) = 5

11 etc. etc.

Figure 24: Example of cyclic restart anomaly.
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of such restart loops is evident from the exiremelv high restart ratios for MTVO (i.e.. values >> 1).
Figure 24 illustrates the phenomenon for a pair of update transactions which each read and then
update the most recent version of an object X. Each restart in the figure is due to an attempt to write
when the startup timestamp of the writer is less than the read timestamp of the most recent version of
X. The solution to the problem is to delay resubmitting restarted transactions for awhile. until the
conflict that cansed the restart will be gone with high probability. Our one-second restart delay was
not sufficient to solve this problem for the larger update transactions. In fact. no fixed length delay
can solve the problem if transaction sizes can be arbitrarily large and are not known a priori. An
adaptive delay solution. perhaps analogous to the probabilistic collision control algorithm used in the
Ethernet [Metc76]. seems necessary. With such an adaptive delay, we expect that BTO would vield
performance closer to that of VP and MVSV, although its restart delays would still cause some

degradation in performance with respect to these other algorithms.

Returning to the graphs, Figure 23 shows how the relative version pool size behaves as a func-
tion of the size of the transactions in this experiment. Note that. with no read-only class of transac-
tions in the mix. the entire version pool size is due to the before-images of objects which are
currently (or were recently) undergoing updates. For VP and MVTO. the size of the version pool
gets up to about 15% of the database size. then seems to flatten out. For MVSV. however. the ver-
sion pool size grows steadily to 40% of the database size as the size of the transactions in the work-
load increases. This occurs because VP and MVTO use blocking, to some extent. to resolve con-
flicting updates: MVSV relies completely on end-of-transaction restarts. In MVSV, many conflict-
ing transactions can concurrently attempt to update objects in the database. and the version pool
becomes increasingly cluttered with the before-images of objects that restarted transactions were in
the process of updating. (Recall that the version pool is maintained as a sliding range of objects. so
these useless objects will not be reclaimed until the wupdate -firsi and reader-first pointers advance
beyond their position in the version pool.) The problem of increasing version pool size in MVSV
could be solved by delaying the copying of before-images from the main segment into the version

pool until commit time. after the updating transaction has been successfully validated. Doing this.
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however. is not without cost — the updater will have to re-read the before-image of the object in the

main segment in order to perform the transfer at commit time.

5. CONCLUSIONS

In this paper. we have examined the performance and storage overheads of three multiversion
concurrency control algorithms. Reed’s multiversion timestamp ordering algorithm. the CCA version
pool algorithm, and a multiversion variant of Kung and Robinson’s serial validation algorithm. We
have also compared the performance of the algorithms to their single version counterparts (basic
timestamp ordering. two-phase locking, and serial validation. respectively). Our study of these algo-
rithms was based on a detailed simulation model of a centralized (i.e., single-site) database manage-

ment system.

Experiment 1 examined the performance of the algorithms under a mix of small update transac-
tions and large read-only transactions of various sizes. It was found that all three multiversion algo-
rithms outperform their single version counterparts under such a workload. Since the probability of
conflicts was virtually zero for the multiversion algorithms with this workload. all three algorithms
performed identicallv. It was seen that MVSYV significantly outperformed SV and that MVTO signi-
ficantly outperformed BTO when the size of read-only transactions was fairly large. but that VP only
moderately improved on the performance of 2PL using throughput as the performance metric of
interest. In examining the response time results, however. it was found that VP provides a signifi-
cant savings in the average response time for transactions, doing so by trading a slight increase in the
average response time for large transactions for a huge decrease in the average response time for

small transactions.

In terms of their storage characteristics. all three multiversion algorithms were again very simi-
lar in Experiment 1. The relative size of the version pool was seen to increase with the size of read-
only transactions, but its average size never exceeded about 11% of the total database size — even
with very large read-only transactions. It was observed that most read requests (95% or more) could

be satisfied in a single disk access. Over 83% of all transactions were able to execute without ever
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needing more than one disk access for anv of their reads. and never were more than four disk
accesses required. Finally, it was seen that the cost of these accesses to old versions onlv slightly
degraded the throughput of the system. with the benefits of the multiversion algorithms (the reduction

in blocking and/or restarts) outweighing the costs.

Two other experiments were also performed. In Experiment 2. the fraction of update transac-
tions in the mix was varied. It was found that mixes with a large fraction of updaters are the ones
that benefit the most from having multiple versions, as these are the mixes with the greatest probabil-
ity of conflicts between updaters and large readers for the single version algorithms. In Experiment
3. a workload consisting solely of update transactions was examined. and the size of these transac-
tions was varied in order to see how the three multiversion algorithms would behave when conflicts
were more likely. It was found that VP and MVSV outperformed MVTO. with VP doing the best
with smaller update transactions and MVSV doing the best for the larger update transaction sizes
(where VP's simple deadlock victim selection criteria was insufficient to achieve reasonable perfor-

mance).

In summary, multiversion concurrency controf algorithms can definitely provide improvements
in performance by allowing large read-only transactions to access previous versions of data items.
The added costs that arise due to following version chains for read requests are not significant. as the
majority of read requests can be satisfied in a single disk access, and most of the remaining requests
require just one additional access. Finally, the storage overhead for maintaining all old versions
which might be required to satisfy read requests from ongoing transactions is surprisingly small —
in our experiments. the average size of the version pool rarely exceeded 10-15% of the overall size of

the current version of the database.
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