),
e

O
1 [%2] <t
- (1o
st =
o= 3 -
o S
g o
¥}
= o
r
et —
o 4> o]
ted ot &)
ek (] ~ ot <
D o ()] [[o0]
Lol £ Koy ()]
<] un &) r—
5 (4} >y = = [1°] L)
® = = 5= = ¢
—t —
- [4}) - w >
s (4] = = a -
L = = &)
%] o [
o %) [¢}]
BN} o
S = A
= (72}
ot
Q _ 5
= [¢7]
o 42
= =
Q.
= =
b o 9
(&}

]

S1

i

ver
e

@
|

Placasa

U

On Non-Intersecting Eulerian Circuits

Samuel W. Bent
and
Udi Manber

Computer Science Department
University of Wisconsin
1210 W Dayton St.
Madison, Wisconsin 53706

June 1984

This research was supported in part by the National Science Foundation nunder Grants
MCS-8203238 and MCS-8303134.

On Non-Intersecting Eulerian Circuits

Samuel W. Bent and Udi Manber
University of Wisconsin-Madison

ABSTRACT
The following question arises in flame-cutting and similar applications. “Given a graph
drawn in the plane, is there an Eulerian circuit in which successive edges always belong to
a common face?” We prove that this question and related ones are NP-complete.

1. Introduction

The problem of determining whether a graph has an Eulerian circuit was solved by Euler;
it is considered to be the first problem of graph theory [1]. It is easy to design an efficient
algorithm to determine whether an Eulerian circuit exists in a graph, and to find one if it
does [3, p. 375]. In this paper we consider a modification of the Eulerian circuit problem by
restricting circuits to be non-intersecting in a way that is defined below. We prove that the
non-intersecting Eulerian circuit problem is NP-complete. This means that the modified
problem belongs to a large class of problems (including, for example, the Hamiltonian
circuit problem) that are all believed to be impossible to solve efficiently on a computer.
(Garey and Johnson give an overview of NP-completeness [2].)

The modification to Euler’s problem arises when the edges incident to a vertex are
ordered cyclically. Suppose G = (V,E) is a graph for which a “clockwise” order has been
defined on the set of edges incident to v, for each vertex v. We say that two edges incident
to v are netghbors at v if they are consecutive in the order. For example, an embedding
in the plane of a planar graph G induces such a clockwise order; the neighbors of an edge
are the edges that are adjacent to it in some face of the embedding. A path or circuit in
G is called non-intersecting if every two consecutive edges (v;,v;) and (v, vg) in it are
neighbors at v;.

The non-intersecting Eulerian circuit problem (NEC for short) asks, given a graph G
with clockwise orderings as above, whether G has a non-intersecting Eulerian circuit. The
planar non-intersecting Eulerian circuit problem (PNEC) asks, given a planar graph G and
an embedding in the plane, whether G has a non-intersecting Eulerian circnit with respect
to the ordering induced by the embedding. In general, we are also interested in finding
such a circuit if it exists, or, alternatively, in finding a minimal set of pairwise edge-disjoint
non-intersecting paths that cover G. However, we show that even the seemingly simple
problem of determining existence is computationally very difficult.

The motivation for the definitions above originated from work on flame cutting [5]-
Given a stock sheet nested with regular or irregnalr parts that need to be cut, for example
by a torch. the problem is to optimize the movement of the torch according to several
objectives. Minimizing the number of pierce points, or starts, is one important objective.
Pierce points usually require materials and operator time for setup. Intersecting paths,
although not impossible, should usually be avoided in flame cutting. There are obviously
other objectives and restrictions in flame cutting; the entire problem cannot be defined
with such a “clean” formulation as above. It is still interesting, however, to identify
the difficult parts of the problem. The resnlts of this paper indicate that it is probably

: \‘

ph

to

g
e
n
e

s U e el (D MQ

Non-intersecting Eulerian Circuits Page 2

computationally infeasible to find a non-intersecting circuit (or path) in an arbitrary planar
graph with minimal number of starts.

Another way to view this problem is by considering the graph to be a network of
roads. The question is whether one can traverse all the roads without going through the
same segment more than once and without crossing an intersection. In this case, if bridges
or tunnels are present, then the graph need not be planar.

2. The Main Result

To prove NP-completeness for a problem, we must somehow efficiently encode a known
NP-complete problem as an instance of the new problem. The known problem we choose
to begin with is SAT, the problem of determining satisfiability of a boolean formula in
conjunctive normal form.

Our construction of graphs in which it is difficult to find non-intersecting circuits
begins with some facts relating boolean formulas and graphs. To every boolean formula
F in conjunctive normal form (CNF), with variables 2y, ..., @,, associate a graph G(F).
The graph contains one vertex for each variable in F', and one vertex for each clause. The
edges of G(F') fall into two classes. The first class of edges forms a cycle through the
variable vertices, called the thread; it connects the vertices corresponding to variables z;
and z;4; with an edge (for 1 < { < n), and also connects z, to z;. The second class of
edges connects variable vertices with clause vertices; if variable z; appears in clause Cj, it
connects the corresponding vertices by an edge.

If G(F) is planar, F' is called a planar formula. Lichtenstein has shown how to
construct in polynomial time, from any formula F' in CNF, a planar CNF formula F' and
an embedding of G(F') in the plane, such that F’ is satisfiable if and only if F is too [4].
We will use Lichtenstein’s result as a starting point, but we do not need the details of his
construction.

Theorem 1. PNEC is NP-complete.

Proof: PNEC is clearly in NP; it’s easy to guess a path and verify that it has the required
properties. To prove completeness, we reduce SAT to PNEC.

Given a formula F' in CNF, first use Lichtenstein’s construction to obtain a planar
formula F' and a planar embedding of G(F'). We will alter G(F') to obtain a graph H
that has a non-intersecting Eulerian circuit (NEC) if and only if F’ is satisfiable, hence if
and only if F' is satisfiable.

The thread of G(F’) divides the plane into two regions, the inside and the outside. A
typical variable . is connected to r clanses inside the thread and s clanses outside. Replace
x by a wheel with 2r + 2s vertices on the rim, and one vertex in the center, as in Figure 1.
(If r = 0, then add two dummy vertices to the rim; similarly if s = 0. This guarantees
at least one pair of rim vertices lies inside the thread, and one pair lies ountside.) Connect
each rim vertex to the center by a pair of edges, called a loop, and connect neighboring
rim vertices by two loops. Label the rim vertices alternately £ and Z.

A typical clause C is connected to k variables £y, ..., @) in clockwise order. (Licht-
enstein’s construction actually gives & < 3, but we don’t need this fact.) Replace C by a
cycle of k vertices, and connect each vertex of this cycle to the rim of the corresponding

Non-intersecting Eulerian Circuits Page 3

inside ¢ outside

Figure 1
Variable z

variable’s wheel by a loop, as in Figure 2. If the literal z; appears in C, use a rim vertex
labelled z; from z’s wheel; if Z; appears, use a rim vertex labelled z;.

| |
| _
AN

Y

Figure 2
Clause C = (zVJV 7)

Finally, replace each edge (&;,£;41) of the thread by a new vertex, with four loops
connecting it to the wheels of z; and #;4.,. Connect two of the loops to 2;'s wheel, using the
Z; vertex just inside the thread and the z; vertex just outside; connect the other two loops
to ri4;'s wheel using an inside r;4; vertex and an outside Z;4, vertex. The thread edge
{£n.2;) is handled slightly differently; replace it by three vertices g, 1 and vy, connect
vy to 2y's wheel and v to x,’s wheel with two loops apiece, as above, and finally connect
vy and v; to vy by one loop apiece. Figure 3 illustrates this.

We can embed the resulting graph H in the plane in the obvious way, by connecting
at most one clanse to each pair of rim vertices and Z, and by letting the loops connecting

Non-intersecting Eulerian Circuits Page 4

—=1 or

inside outside

Titl § Tigl

Figure 3
The thread

clauses to variables lie near the corresponding edges of G(F'). It remains to show that H
has a NEC if and only if F’ is satisfiable. ﬂ

Each wheel or thread vertex » in H has only loops incident to it. So any NEC, upon
reaching v along one edge of a loop, must leave v either along the other edge of the loop,
or along an edge from a neighboring loop. In the first case, we say the NEC rebounds
along the given loop at v. But any NEC either rebounds along all the loops incident to v
or rebounds along none of them, as in Figure 4. (In the figures, we draw two short lines
between edges if the edges appear consecutively in the NEC.) A NEC thus induces a truth
assignment to the literals of F', by assigning ¢rue to a literal at which the NEC never
rebounds, and faise to one at which it always rebounds.

Adjacent rim vertices are labelled z and Z, and are connected by two loops as in
Figure 5. A NEC that rebounds at one end of a loop cannot rebound at the other, or else
it closes upon itself without using all the edges in the graph. Thus it cannot assign false
to both literals. Neither can it assign ¢rue to both literals, since then the two inner edges
would form a closed cycle. Thus a NEC assigns true to one literal and false to the other
consistently around the wheel. By a similar argument, a NEC cannot rebound at a center
vertex or a thread vertex {except for 1y), since it must rebonnd at the other end of at least
one of the loops incident to the vertex in question.

From Figure 2, we easily see that a NEC in H cannot assign all the literals in a
clause the value false, since in this case there would be no way for the NEC to escape the

Non-intersecting Eulerian Circuits Page 5

always rebounds never rebounds

Figure 4
Rebounding at wheel vertices

Figure 5
Adjacent rim vertices

subgraph formed by the clause’s cycle and its incident loops. This shows that if H has a
NEC, then F’ must be satisfiable. Conversely, if F' is satisfiable we can find a NEC in H
as follows. The NEC leaves vy for v,, traces the inside of the thread until v;, traces the
loop to vy and back, traces the outside of the thread back to v, and finally returns to
vo. While tracing the wheel of variable z, it proceeds as in Figure 6a if z is true, or as in
Figure 6b if z is false, using the solid edges the first time it reaches the wheel (along the
inside) and the dashed edges the second time (along the outside). Note that the NEC can
only reach clauses from #rue literals.

Each clause contains at least one true literal. When the NEC reaches the clause’s
cycle along a true literal’s loop for the first time, it traverses the cycle, visiting loops that
connect to false literals but avoiding loops that connect to true ones. The latter loops are
visited later, when the NEC reaches the wheels belonging to the true literals. The three
basic possibilities for a clause with three literals are illustrated in Figure 7. There is always
a way for the NEC to proceed in each clause. This completes the proof.

Non-intersecting Eulerian Circuits Page 6

Figure 7
Traversing a clause
3. Extensions
Many variations of the PNEC problem are also NP-complete.
Corollary 2. It is NP-complete to determine whether (a) a directed graph has a non-

intersecting Eulerian circuit, (b) a graph or directed graph has a non-intersecting Eulerian
path, {¢) a graph with no multiple edges has a non-intersecting Eulerian path or circuit.

Non-intersecting Eulerian Circuits Page 7

Proof: (a) Orient all the loops and cycles in H in the counter-clockwise direction. (b) At-
tach two new vertices to vp, lying on the inside of the thread. (c) Introduce vertices of
degree two within the edges of H.

Corollary 3. It is NP-complete to determine, for a planar graph G, whether any embed-
ding of G in the plane induces an order for which G has a non-intersecting Eulerian path
or circuit. :

Proof: The graph we constructed in Theorem 1 has essentially only one embedding in
the plane. To see this, consider a cycle that follows the thread, using the center vertex
and two rim vertices from each wheel, as well as the thread vertices. In any embedding,
this cycle divides the plane into inside and outside regions; by a suitable inversion of the
embedding we can assume these labels correspond to the labels used in Theorem 1.

Near each wheel there are four vertices from the main cycle: the center, two rim
vertices, and one adjoining thread vertex. Given any pair of rim vertices not in the main
cycle, one from the inside and one from the outside (with respect to the embedding of
Theorem 1), it is always possible to find disjoint paths from one of them to the two rim
vertices in the cycle, and disjoint paths from the other to the center and thread vertices.
Since these paths meet the cycle in an overlapping manner as in Figure 8, they require
that the chosen pair of vertices lie on opposite sides of the cycle.

Figure 8
Overlapping paths to the main cycle

Every rim vertex has three disjoint paths to the main cycle, two along the rim and
one directly to the center, so no rim vertex can be embedded within a region bounded by
a loop. Thus, the only choice in embedding a wheel is whether to interchange the inside
and outside portions of the rim.

el s

{f

Non-intersecting Eulerian Circuits Page 8

No clause can be embedded within the region bounded by a wheel, provided that the
clause uses at least two different variables. Nor can a clause be embedded within a loop.
Thus the graph must be embedded essentially in the way described in Theorem 1, except
that clauses can be moved from the inside to the outside of the thread or vice-versa. It is
also possible for one clause to completely encircle the entire graph, with the loops leading

to variables lying on the inside of its cycle. None of these alterations affect the proof of
Theorem 1. This proves the corollary.

References

[1] Leonhard Euler, “Solutio problematis ad geometriam situs pertinentis”. Commen-
tarii Academiae Scientiarum Petropolitanae 8 (1736), 128-140. Reproduced in Leon-
hardi Euleri Opera Omnia, Series I 7 (1923), 1-10.

[2] Michael R. Garey and David S. Johnson, Computers and Intractability: A Guide
to NP-Completeness. W. H. Freeman, San Francisco (1979).

[3] Donald E. Knuth, The Art of Computer Programming. Volume I: Fundamental
Algorithms. Addison-Wesley, Reading, MA (second edition, 1973).

[4] David Lichtenstein, “Planar formulae and their uses”. SIAM Journal on Computing
11 (1982), 329-343.

[6] Udi Manber and Sharat Israni, “Pierce point minimization and optimal torch path
determination in flame cutting”. Journal of Manufacturing Systems (to appear).

