AN ADAPTIVE LOAD BALANCING ALGORITHM
FOR A MULTICOMPUTER

by

Phillip Krueger
Raphael Finkel

Computer Sciences Technical Report #539

April 1984

A

An Adaptive Load Balancing Algorithm
for a Multicomputer

Phillip Krueger
Raphael Finkel

University of Wisconsin

Abstract

A new multicomputer load-balancing algorithm is proposed which is adaptive, decen-
tralized, preemptive and simple. The algorithm uses broadcast messages to achieve
consensus about average load in the network and to match machines that are over-
and under-loaded. The communication bandwidth used by the algorithm can be con-
trolled to be as narrow as desired. Results from a simulation are presented, showing
that the algorithm is effective. Extensions to the algorithm that may increase its

effectiveness without a large increase in complexity are presented.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems - network operating systems; D.4.1 [Operating Systems]: Process
Management - scheduling; D.4.7 [Operating systems]: Organization and Design - distri-

buted systems
General Terms: Algorithms, Performance

Additional Key Words and Phrases: distributed operating system, dynamic load-
balancing, multicomputer, process migration, processor scheduling, resource alloca-

tion

This research was supported in part by National Science Foundation grant number MCS-8105004 and by
the Defense Advanced Research Projects Agency of the Department of Defense under contract number
N00014-82-C-2087.

Authors' address: Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madis-
on, WI 53708

1. Introduction

Recent advances in VLS! and computer communication technology have made the
rnulticomputer* an increasingly attractive design for powerful, robust and cost-
effective computer systems. The design of general-purpose operating systems for
multicomputers is complicated, however, by several unique requirements that have
not been addressed in traditional operating system designs. Most notable is the

requirement to efficiently allocate processor resources to programs.

In a general-purpose multicomputer operating system, it is desirable to automate
the allocation of processor resources for the same reasons that it is desirable to auto-
mate primary mermory allocation in a traditional multiprogramming operating system:
Automatic allocation applies a consistent allocation policy throughout the multicom-
puter and provides a level of abstraction that hides particular instances of the physi-

cal resource,

Load-balancing is a policy for allocating processor resources. Processes are
assigned to processors, or nodes, in such a way that each node has approximately the
same workload. When there is little variance in loads among the nodes, the multicom-

puter is said to be balanced; otherwise it is unbalanced.

Similar to optimal primary memory allocation, optimal load-balancing is compu-
tationally prohibitively expensive and requires foreknowledge of the runtime charac-
teristics of all processes [1, 2, 3,4,5]. Alternatively, a suboptimal heuristic algorithm
can be devised that allocates resources in real time according to the currently
observed state. The goal of such an algorithm is to approach optimality at a fraction
of the cost and with less knowledge than is required by an optimal algorithm. An

example of a heuristic algorithm for resource allocation is the Working Set policy [6]

* A multicomputer is a computer system composed of many fully independent computers, or nodes,
connected by a communication device. Memory is not shared between nodes; processes residing on different
nodes communicate through messages only.

for allocating primary memory.

When a process is created, a mnon-preemptive load-balancing algorithm per-
manently assigns it to the node that appears at that moment to be best. The process
is not moved even if its runtime characteristics, or the runtime characteristics of any
other process, change in such a way as to cause the multicomputer to become unbal-
anced. Load-balancing occurs only when a new process is created. Non-preemptive
load-balancing is appropriate if the nodes are constrained to have only one process
resident at a time, but its inability to adapt to changes in the runtime characteristics
of processes is a serious drawback when nodes are multiprogrammed, which may be
necessary to achieve even a moderate level of node utilization. Examples of heuristic

non-preemptive load-balancing algorithms can be found in the literature [7.8].

A preemptive load-balancing algorithm allows load-balancing to occur whenever
anomalies appear in the workloads of the nodes. If the multicomputer becomes unbal-
anced, a process in the middle of execution can migrale to a better node to continue
its execution. Load balancing can occur at any time, rather than being limited to
times when new processes are created. The increased adaptability of preemptive
load-balancing can make it more effective than nonpreemptive load-balancing in a
multicomputer having multiprogrammed nodes. This adaptability allows both an

increase in throughput and a decrease in process response time [9].

Several heuristic preemptive load-balancing algorithms have been discussed in
the literature [10, 11, 12]. Many have used constrained communication topologies, at

least for the purpose of migration, including arrays [13] and trees [14, 15].

We propose a new family of decentralized heuristic preemptive load-balancing

algorithms for a multicomputer having the following characteristics:

(1) The node architecture is homogeneous.

() The communication device fully connects all nodes and allows broadcast
transmission.

(3) New jobs may arrive at any node in the multicomputer. Jobs execute equally

well on any node, independent of the node where they arrived.
(4) Each node of the multicomputer supports multiprogramming.

QOur algorithms are meant to adapt to changes in the overall load on the multi-
computer, the load on the comrmunication device, the runtime characteristics of
processes, and the configuration of the multicomputer. Nonetheless, the algorithms
are not computationally complex, so gains made by load-balancing are not oversha-
dowed by costs. To attain these goals, our algorithms use broadcast messages to
maintain global information and to negotiate exchanges of processes. The algorithms
do not require that broadcast messages be reliable, but remain stable even when some

broadcast messages are lost.

We present the basic algorithm, called the Above-Average Algorithm, and report
on results obtained from a detailed simulation. We then suggest several extensions to

the basic algorithm.
2. The Above-Average Algorithm

2.1. Overview

The Above-Average algorithm, like any preemptive load-balancing algorithm, must

decide:
(1) When a process should migrate.
(2) Between which nodes the process should migrate.

(3) Which process should migrate.

Since the object of a load-balancing algorithm is to reduce the variance in loads
among the nodes of the multicomputer, the appropriate time for a process to migrate
to another node is when its node's load increases beyond the average for all nodes in
the multicomputer, making its node overloaded. Similarly, an appropriate node to
which the process should migrate is a node whose load is below the overall average, an
underloaded node. Thus, to negotiate the migration of a process correctly, the aver-
age load over all nodes of the multicomputer should be known. Because of the time
required to calculate and store the average load value, it must always be an approxi-
mation, and the cost of its maintenance can always be reduced with an accuracy

penalty.

In the Above-Average algorithm, negotiations of process migrations and the
maintenance of the average load value are intimately connected. The responsibility
for maintaining the average load value is distributed by allowing any node to broadcast
an updated average load value whenever it believes that the current approximation is
inaccurate. A node becomes convinced that the average load value is inaccurate
whenever its load is distant from the average, yet there is no complimentary node, one
whose load is distant from the average in the opposite direction, with which it can
exchange processes. For example, if a node’s load is above the average, and there are
no nodes having loads below the average, it can be inferred that the average load value

is too low and must be updated.

An overloaded node locates an underloaded node not by polling, but rather by
broadcasting its predicament and waiting for a response from an underloaded node. If
a response arrives within a reasonable amount of time, the node responding becomes
the destination of a process migrating from the overloaded node. If no response
arrives in time, the overloaded node can infer that there are no underloaded nodes

and that the average load value is inaccurate. Similarly, when a node becomes under-

loaded, it waits for an overloaded node to broadcast its status. If a node reports that
it is overloaded within a reasonable amount of time, the underloaded node can
respond and thus commit itself to accept a migrating process from the overloaded
node. If no node reports that it is overloaded in time, the underloaded node can infer

that there are no overloaded nodes and that the average load value is inaccurate.

If the load-balancing algorithm requires that each node strive to adjust its load to
be exactly equal to the average, processor thrashing [12] may result. The migration of
a process to an underloaded node may increase its load to the the point of making it
overloaded, necessitating the migration of that process to yet another node. Proces-
sor thrashing of this type can be avoided by defining an acceptable load range that
extends on each side of the average load. A node whose load falls within the accept-
able range is neither overloaded nor underloaded, so is not a suitable source or desti-

nation for a migrating process.

The width of the acceptable range determines the responsiveness as well as the
communication cost of the load-balancing algorithm. A wider acceptable range allows
more variation in load among the nodes and disallows less fruitful migrations between
nodes having similar loads. A narrower range causes the load-balancing algorithm to
strive to keep the variance in loads small at the cost of performing less fruitful migra-
tions. The minimum width of the acceptable range should be the maximum load that

can be imposed by a single process.

Choosing an appropriate width for the acceptable range allows the load-balancing
algorithm to adapt to changes in the multicomputer environment. The acceptable
range should be widened whenever a large portion of the bandwidth of the communica-
tion medium is occupied, caﬁsing long delays for migrating processes and load-
balancing messages; it should be narrowed whenever the communication medium 1s

underutilized. While the width of the acceptable range must be globally accessible,

there is no need to distribute it to all nodes if each node is equally able to measure the

relevant factors and calculate its value.

2.2. Determining which process to migrate

Once the negotiation of a process migration has been completed, the load-

balancing algorithm must choose which process should migrate from among those

resident on the overloaded node. Factors that are important in choosing the best pro-

cess to migrate include the following:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The migration of a process that is not ready to execute will not affect the

source node’'s load, so it is less useful.

Migrating the process that is currently executing incurs an extra context

switch.

The process with the most favorable current response ratio can best afford

the time penalty imposed by a migration.

A process with a small executable image places the smallest burden on the

communication medium and the source and destination nodes.

The process that will require the most CPU time in the future is likely to
amass the greatest long-term benefit from migration. The amount of CPU
time that a process will use in the future can be approximated by the

amount of time it has used in the past [12].

Processes that communicate with peers on the destination node more often
than with peers on the source node will reduce the load on the communica-
tion medium when they migrate. Again, future performance can be approxi-

mated by past performance.

Migrating the process responsible for the largest fraction of the load on the

source machine has the largest influence on the remaining load.

Some or all of these attributes can be combined to form a heuristic choice of the
best process to migrate. How these factors are combined depends on the aspect of
load that the load-balancing algorithm aims to improve. If overall multicomputer utili-
zation is important, then the process’ size should be a primary consideration in the
decision. However, if the average response ratio over the multicomputer is important,
then the process’ response ratio is a more important factor. The Above-Average algo-
rithin chooses the process to migrate from among those that are ready to execute,
but are not currently executing. From these, the process having the lowest response
ratio is chosen. If several processes have approximately the same response ratio as

the lowest, then the process having the smallest size is chosen from among these.

2.3. Measuring Processor Load

The mechanism for measuring local processor load is at the heart of a load-
balancing algorithm. Depending on what one wishes to improve, it may be a measure
of throughput, processor utilization, or process response ratio. As a measure of the
instantaneous load on a node, we have chosen to count the number of processes that
are currently ready to execute. This value is quickly evaluated, so it is responsive to
changes in the local state. The number of processes currently ready to execute has
been shown to be significant in the measuring of processor load [8]. This value is
correlated with the instantaneous processor utilization. If one or more processes is
ready to execute, the utilization is one; otherwise it is zero. This value also correlates
with the instantaneous response ratio, and is an exact measure if each process always

uses all of its timeslice.

A node must not commit itself to accept so many processes that, when they
finally arrive, it becomes overloaded, since processor thrashing might result. This
problem can be avoided by augmenting the node’s actual load with its virtual load, the

load expected to be induced by processes that are in transit. A node's virtual load

increases when the node agrees to accept a migrating process, and decreases when
the migrating process arrives or the node becomes convinced that the migrating pro-
cess will never arrive. The instantaneous load on the node is the sum of its actual and

virtual loads.

Rapid fluctuations in the instantaneous load on a node may cause many spurious
and nonproductive migrations. A node may find that it is underloaded and negotiate
the migration of a process only to find that, while the migrating process is in transit, it
has become overloaded and must rid itself of a process. To be of greater use to the
load-balancing algorithm, the load measured should be an indicator of the load on the
node over a period of time at least on the order of the time required for a process to
migrate. The appropriate low-bandpass filter for processor load can be constructed by

averaging the instantaneous load over a number of measurements.

For other approaches to measuring load, see Bryant and Finkel [12].

2.4. Detailed Description
The types of messages used for load balancing are:

ToaHigh The sender is overloaded. This message is broadcast to invite

any node to send an Accept message.

Accept The sender is underloaded and commits itself to accept a
migrating process. This message is directed to an overloaded

node that previously sent a TooHigh message.

Change Average A node believes that the average load value, which serves as
the center of the acceptable range, is inaccurate. This broad-

cast message contains an updated average load value.

The actions taken by a node in each of the following states are:

A node becomes overloaded:
Broadcast a TooHigh message, start listening for an Accept message and

set a TooHigh timeout alarm.

An Accept message is received at a node that is waiting for a response to its
TooHigh message:
Cancel the TooHigh timeout alarm. If this node is still overloaded, choose
the best process to migrate and send it to the source of the Accept mes-

sage.

A TooHigh timeout alarm expires, indicating that the node has been overloaded
for too long:
If this node is still overloaded, increase the average load value by broad-

casting a ChangeAverage message.

A node becomes underloaded:

Start listening for a Too High message and set a TooLow timeout alarm.

A TooLow timeout alarm expires, indicating that the node has been underloaded
for too long:
If this node is still underloaded, decrease the average load value by broad-

casting a ChangeAverage message.

A TooHigh message is received at a node that is underloaded:
Cancel the 7oolow timeout alarm, send an Accept message to the source
of the TooHigh message, increase the virtual load for this node and set an

Awaiting Process timeout alarm.

An Awaiting Process timeout alarm expires:
The node loses hope of ever receiving the migrating process for which it

sent an Accept message. Decrease the virtual load.

10

A migrating process arrives:

Install the process on this node. Decrease the virtual load.

The utilization of the communication medium is high enough to cause long mes-
sage delays:
Increase the local copy of the global width of the acceptable range value.

The communication medium is underutilized:

Decrease the width of the acceptable range value.

3. Computer Simulation
A multicomputer having 40 nodes was simulated.

The simulation assumes a processor-sharing discipline. A Poisson arrival process
is assumed at a rate such that the overall multicomputer utilization p is 0.8. Process
service times have an exponential distribution with a mean of 3 seconds. The mean
time interval that a process runs before blocking is 100 milliseconds; the distribution
of these intervals is exponential. Block intervals have a normal distribution, with a
mean of 40 milliseconds and a variance of 100 milliseconds. Process sizes have an

exponential distribution, with a mean of 20K bytes.

A communication device having a bandwidth of 10 million bits per second is
assumed. The load-balancing algorithm adjusts the width of the acceptable range of
processor loads in an attempt to keep the communication line utilization between 0.05
and 0.5. The maximum size of a packet on the communication device is 4K bytes. The
size of each load-balancing control message (TooHigh, Accept or ChangeAverage) is 12
bytes. Receiving a packet from the communication device requires 1 millisecond of
processor time; sending a packet requires 3 milliseconds. Messages other than those

used by the Above-Average algorithm are not simulated.

11

The time interval for the TaoHigh and Toolow and AwailingProcess timeout
alarms is 30 milliseconds.
The duration of the simulation is 100 seconds.

The effectiveness of the Above-Average algorithm as a load-balancing algorithm is

illustrated by figure 1, which shows a reduction in the standard deviation of processor
loads.

We define the process response ratio as the total time required by a process to
complete, divided by the time that would have been required had processor resources
been allocated ideally from the point of view of that process. Using this definition, the
time spent by a process waiting for its 1/0 requests to complete does not affect its
response ratio. A process response ratio is degraded (increased) only when a process
is ready to execute, but is waiting in the ready list or is in transit to another node.

Figure 2 shows that the Above-Average algorithm improves the mean process response

Std. Dev. of Proomeasr Loada

1]

/
A, J

s o Y

i@ lﬂ&

el
o] "

&Pngg: ﬁf? f

4 1

! ?’ll, m?ﬂmg

Pfqﬂ

T T T 1 H

T 1

&0

Tirm= (==ac)
+ na kaod-talaresing

O with lood~bdanzing

T T
a0

Fig. 1. Standard deviation of processor loads

100

12

5‘ | N"
:
- L llllllﬂ \
§ (e
i, .T“ A “ 1
i, T
BEES f ﬁ 'T%alt i | H 4""’? fi L aﬁmﬁ%ﬁb” ,—
| . Iﬂé ;o HISEﬁLM [
"t o "Ior — j—. ‘ éslr:v — &0 ‘ 100
ith lood—kabarsing Tim= r'w::rf = fa baod-talarsziog

Fig. 2. Mean process response ratio

4
35 4

3 { ’rH
A

IT' _
N
N 5.*,“.

#&{ Mﬁ i

. Tirme (se=ands)
0 with lood=-kodarzing 4+ g laod-balareing

8td. Dov. of Process Reapones Ratice

Fig. 3. Standard deviation of process response ratios
ratio. Figure 3 shows that the Above-Average algorithm also improves the fairness of

processor resource allocation by reducing the standard deviation of process response

13

ratios.

Figure 4 shows that the Above-Average algorithm does not impose a heavy load on
the communication device. It also shows that the algorithm can adapt to changes in
the load on the communication device. After the first ten seconds, the utilization of

the comrunication mediurn remained within the specified bounds throughout the

simulation.

4. Extensions to the Above-Average Algorithm

4.1. Symmetry

As presented, the Above-Average algorithm suffers a lack of symmetry. An over-
loaded node broadcasts its plight and is noticed by all underloaded nodes. However, a
node whose load plummets below the acceptable range after the broadcast has
ocecurred will not realize that an overloaded node is awaiting a response. The under-

loaded node may then incorrectly infer that the average load value is too high. To

1

o3
5 nE
M
E O.F S
_-é &
2
)
:t-:‘. 0.5 -4
[
% 1.4 -
£ i
3 o34 (\ \ Y
E ! [' ! ﬁ ! | ! [
£) v 0]
8 3.2 - ".JII"II' hlﬁ "' Iﬂ‘l o i f II 'I,“,JIH [“l ﬁ l, _’ '”‘I l’ |'|| b 4y

H el |»',:.;,(l il NI
0t ' f "".,“ ﬂ’ R A L “l!
0 Ilf"! 1 T i i T T H T
) 20 40 &0 S0 100

Tirme (sacards)

Fig. 4. Utilization of the communication device over 1-second intervals

14

remove this asymmetry, a node that becomes underloaded broadcasts its Toolow
status, which serves as an invitation to all nodes that are waiting for a response to

their TooHigh status messages to send another Toofigh message to this node.

4.2. Limiting Acceptances

Two problems arise when an overloaded node sends a Toofigh message at a time
when there are many underloaded nodes. The first is that handling the profusion of
Accept messages sent in response to the TooHigh message may further degrade the
throughput of the node, which already has too heavy a workload. The second is that,
since only one process will migrate from the overloaded node, all but one of the nodes
that send Accept messages must wait until they are certain that the process will not
arrive before being able to safely commit to accept another process. An overloaded
node may get no response from underloaded nodes, even though some may exist,
because they are all waiting to hear if they will be chosen by some other overloaded

node.

A solution to both of these problems, which we will refer to as Single Accept, is to
broadcast the underloaded node’s commitment to accept a process, its Accept mes-
sage. No node should commit itself to accept a process that has already been
accepted by another node. Assuming that no broadcast messages are lost, no more
than one node will wait for a migrating process to arrive from a particular TooHigh

node.

A migration between nodes having a large difference in loads is better than a
migration between nodes having a smaller difference in loads because it causes a
greater reduction in the variance in loads. Another solution, Multiple Accept, allows a
better match between overloaded and underloaded nodes than does Single Accept.
Under Multiple Accept, the underloaded node includes the value of the current load in

its broadcast Accept message. The overloaded node chooses the most underloaded

15

node among those that sent Accept messages. An underloaded node is allowed to com-
mit itself to accept a process that has already been accepted by another node if its
load is lower than that of any other node that has accepted the process. An under-
loaded node's commitment is released if a more underloaded node later accepts the
same process or if the node times out waiting for the process to arrive. Assuming that
no broadcast messages are lost and n is the number of underloaded nodes, each with
distinct loads, that might respond, the number that will send Accept messages in
response to a particular TooHigh message is Hy, the nth harmonic number. This

number grows logarithmically in n [15, p. 74].

Of all the underloaded nodes that send Accept messages, only one waits for a
migrating process. Multiple Accept, then, allows an overloaded node to choose the
best underloaded node as a destination for a migrating process at the cost of only a

few more Accept messages than the Single Accept version.

4.3. Constraints Imposed by Finite Memory

So far, we have ignored the constraint that each node has a finite amount of
memory. To extend Single Accept to satisfy this constraint, the amount of available
memory on the underloaded node may be included in its Accepf message. If the
Accept message received by the overloaded node indicates that the underloaded node
does not have enough memory available to contain any of the overloaded node’s
processes, then the acceptance is ignored and a new TooHigh message is broadcast.
An underloaded node is released from its commitment to accept a process if it
receives a TooHigh message from the node to which it is committed before the initial
portion of the migrating process arrives. It does not send an Accept message to this
overloaded node unless it now has more memory available than it did when its last
Accept was sent, or if no other node sends an Accepl message. The mean number of

Accept messages sent in response to a TooHigh message, and the number of nodes

16

that wait for the arrival of a particular process, is identical to Single Accept without

the finite memory constraint.

To extend Multiple Accept to satisfy the finite memory constraint, the Accept mes-
sage is expanded to include the amount of available memory on the underloaded node
as well as its current load. An underloaded node is allowed to commit itself to accept
a process if no node that has at least as low a load and at least as much available
memory has already committed for that same process. A node’s commitment to
accept a process is released if another node, whose load is at least as low and that has
at least as much available memory, later accepts the same process, or if the node
times out waiting for the process to arrive. Again, assuming that no broadcast mes-
sages are lost, if n is the number of distinct loads on underloaded nodes at the instant

a TooHigh message is broadcast, then the mean number of nodes that send Accept

2

messages in response to a single TooHigh message is -?—plus lower-order terms. In

general, if each Accept message contains d pieces of information, and a message is
sent by an underloaded node unless its message is dominated in all respects by some
other Accept message that has already been sent in response to the TooHigh message,
d

n
!

H
then the mean number of responders out of n underloaded nodes is Tplus lower-

logg(n
order terms. This quantity is roughly -—gi—lg——l—. A proof of this assertion can be found

in the Appendix.

4.4. Detailed Description of the Extended Algorithm
The types of messages used for load-balancing are:

TooHigh The sender is overloaded. This message may be broadcast or
may have a single destination. It serves as an invitation to a

node to send an Accept message.

17

Toolow The sender is underloaded. This broadcast message serves as
an invitation to any node that is waiting for a response to its
TooHigh message to send another TooHigh message to this

node.

Accept The sender is underloaded and commits itself to accept a
migrating process from an overloaded node. This is a broad-

cast message and includes the load of its sender.

ChangeAverage A node believes that the average load value, which serves as
the center of the acceptable range, is inaccurate. This broad-

cast message contains an updated average load value.
The actions taken by a node in each of the following states are:

A node becomes overloaded:
Broadcast a TooHigh message, start listening for a 7Toolow or an Accept

message and set a TooHigh timeout alarm.

A Toolow message is received at a node that is waiting for a response to its
TooHigh message:
If this node is still overloaded and no Accepl messages have been received,
send a TooHigh message to the source of the 7ooLow message and reset

the TooHigh timeout alarm.

An Accept message is received at a node that is waiting for a response to its
TooHigh message:
If the load of the source of this Accept message is lower than that of any

other Accept received, remember the source node of this message.

A TooHigh timeout alarm expires, indicating that the node has been overloaded
for too long:

If this node is still overloaded:

18

If an Accept message has been received, choose the best process to
migrate and send it to the source of the Accept message. Other-
wise, increase the average load by broadcasting the updated value

in a ChangeAverage message.

A node becomes underloaded:
Broadcast a TooLow message, start listening for a 7TooHigh message

and set a ToolLow timeout alarm.

A ToolLow timeout alarm expires, indicating that the node has been underloaded
for too long:
If this node is still underioaded, decrease the average load value by broad-

casting a ChangeAdverage message.

A TooHigh message is received at a node that is underloaded.
Cancel the Toolow timeout alarm, send an Accepl message to the source
of the TooHigh message, increase the virtual load for this node and set an

Awaiting Process timeout alarm.

An Accept for the same process that this node has Accepted is received from a
node whose load is at least as low and has at least as much available memory as
this node.
If the Accept message has not yet been sent due to contention on the com-
munication medium, abort it. Decrease the virtual load on this machine

and cancel the Awaiting Process timeout alarm.

An Awaiting Process timeout alarm expires:
The node loses hope of ever receiving the migrating process for which it

sent an Accept message. Decrease the virtual load.

A migrating process arrives:

Install the process on this node. Decrease the virtual load.

19

The utilization of the cornmunication medium is high enough to cause long mes-
sage delays:
Increase the local copy of the global width of the acceptable range value.

The communication medium is underutilized:

Decrease the width of the acceptable range value.

5. Conclusions

A new decentralized load-balancing algorithm has been described that uses
broadcast messages to maintain global information and to find nodes with which to
exchange processes. The Above-Average algorithm is relatively simple and has been
shown, by simulation, to require little processor or communication overhead, yet it is
quite effective. It improves the mean process response ratio and improves the fair-
ness of processor allocation. It is adaptive to processor and comnunication device
load, so it is able to function well within a very wide range of environments. In addi-
tion, several extensions to the basic algorithm have been suggested, which will be

examined more closely in a future paper.

8. Acknowledgements

We would like to thank Sam Bent for showing us how to prove the results shown in
the appendix. We also thank Ruth Ginzberg, who provided insights in early discussions

of the Above-Average algorithm.

7. Appendix

We now prove the formulas presented in the text concerning the number of Accept
messages that are sent. First, consider the case d = 1, in which only one datum is
contained in each message. Assume the m nodes sending the message have data
@, @z ' - - @, respectively. Define [); to be the number of nodes j <1 such that

a; < g;. Clearly, D; <1i. If the original values of @; are a random permutation, then

20

the D, are independent, and Prob(D; =j) = %—for all 0 <j <1i [17, pp. 12-13]. The
number of messages sent is the number of J; that are 0. The expected number of

. 1
such messages is therefore Y, == Hp.
O<i<n

In the case d = 2, the data are represented by sequences @; and b;. Once again,
we define I); based on @;. The ith node will send an Accept message if b; is lower than

all b; for the D; values of j for which g; < g,. If D; = k, then the probability of sending

1
k+1°

is The expected number of messages is then

1 1 1
Z 2 1 k+1 lskzs:is‘n'i‘k

1si=n 0=k <t

Similar arguments show that for arbitrary d, the expected number of messages is

1

1<igs o sigsn Y10t

Hd
The largest term in this sum is EZILUS' p. 91-92].

8. References

[1] W. W. Chu, L. J. Holloway, M.-T. Lan, and K. Efe, "Task Allocation in Distributed
Data Processing,” IEEE Computer 13, 11, pp. 57-69 (November 1980).

(2] S. Krishnaprasad and C. C. Price, "Distributed computer network scheduling
algorithms and their complexities,” Technical Report No. CSE-8105, South-
ern Methodist University Department of Computer Science and Engineering
(August 1981).

[3] T. C. K. Chou and J. A. Abraham, "Load balancing in distributed systems,"
[EEE Transactions on Software Engineering SE-8, 4, (July 1982).

[4]

(5]

(6]

(7]

[8]

(8]

[10]

[11]

[12]
[13]

[14]

[15]

(18]

[17]

21

S. H. Bokhari, ""A shortest tree algorithm for optimal assignments across
space and time in a distributed processor system,” IEEE Transactions on
Software Engineering SE-7, 8, (Novernber 1981).

G. S. Rao, H. S. Stone, and T. C. Hu, "Assignment of tasks in a distributed pro-
cessor system with limited memory,” JEEE Transactions on Computers (-26,
4, (April 1979).

P. J. Denning, 'Working sets past and present,” IEEE Transactions on
Software Engineering, pp. 64-84 (January 1980).

R. G. Smith, "The contract net protocol: high-level communication and con-
trol in a distributed problem solver," IEEE Transactions on Computers (-29,
12, (December 1980).

L. M. Ni, "A distributed load balancing algorithm for point-to-point local com-
puter networks," Proceedings of Compcon, Compuler Networks, pp. 116-123
(September 1982).

Y. C. Chow and W. H. Kohler, "Models for dynamic load balancing in a hetero-
geneous multiple processor system,” IEEE Transactions on Computers, pp.
354-361 (May 1979).

M. Livny and M. Melman, "Load balancing in homogeneous broadcast distri-
buted systems,” Computer Network Performance Symposium, pp. 47-55
(April 1982).

A. B. Barak and A. Shiloh, A Distributed Load Balancing Policy for a Multicom-
puter, Department of Computer Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel (1984).

D. A. Reed, "A simulation study of multimicrocomputer networks,” 1983
International conference on parallel praocessing, pp. 161-163 (August 1983).

R. M. Bryant and R. A. Finkel, "A Stable Distributed Scheduling Algorithm,"
Proc. Second International Conference on Distributed Computing Systems,
pp. 314-323 (April 1981).

L. D. Wittie and A. Van Tilborg, "Control hierarchies for arbitrarily connected
microcomputer networks," Technical Report 126, Department of Computer
Science, State University of New York at Buffalo (May 1977).

Y. Eran, M. Livny, and M. Melman, "Modeling and evaluation of a tree struc-
tured network: a case study,” Proceedings of MELECON, (1981).

D. E. Knuth, The Art of Computer Programming Volume 1-Fundamental Algo-
rithms (second edition), Addison-Wesley (1973).

D. E. Knuth, The Art of Computer Programming Volume 3-Sorting and
Searching, Addison-Wesley (1973).

