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ABSTRACT

This paper compares several algorithms for the parallel evaluation of X'X.
The data matrix X is assumed to be large and the algorithms are with respect to
the transposed secondary storage layout of X. The algorithms differ in the loop-
ing scheme as well as buffer management strategies. The analysis compares the
performances of the transposed and relational secondary storage organizations,
as well as the relative performance of the different parallel algorithms for the
transposed crganization. .






1. Introduction

In statistical computing the time required to perform a specific statistical
analysis is usually measured by the time to perform the calculations involved.
In fact, early comparisons of algorithms only considered the number of floating
point multiplications involved as this time was assumed to be the predominant
part of the execution time [GENT73]. Later, as the rélative speeds of different
floating point operations has changed, it has become customary to measure the
computational cost of an algorithm by the number of floating point operations
where a floating point operation includes a floating point multiplication, a float-
ing point addition, and associated indexing operatioyns. This still assumes,
though, that the cost of moving the data within an algorithm is negligible com-

pared to calculation times.

. When working with large data sets, however, it is frequently the case that
the tin£e for .data movement can be comparable with the cal;:ﬁlation time. As
the size of the database extends to tens of thousands of observations on hun-
dreds of variables or more, the time for input/output operations can, in fact,

dominate calculation time.

In this paper we analyse the data movement and calculation time for a par-
ticular part of many statistical algorithms applied to a large data base. By a
large data base we mean that the entire data set will not fit into the available
primary memory.

We present a detailed analysis of the step of forming X'X, where the prime
denotes transpose and X is an n by p matrix with n > p. This is a basic step in
many regression algorithms and algorithms for principal components analysis
and factor analysis and it has the important property that it is the only time
when the entire data set must be accessed. Subsequent steps in the algorithms

work on the p by p matrix which is formed in this step so the greatest part of



the data movement cost will be encountered in the X'X step. Here we have con-
sidered only the evaluation of the non-diagonal elements of X'X. The diagonal
elements, which are the norm squared of the columns of X, can be assumed to
have been precalculated and available in a summary database [BATE82] which
contains several aggregate values (such as sum, min, max, norms ete.) for each

variable.

It can be argued that it is not appropriate to consider X'X at all. Alternative
approaches to regression analysis and the other statistical methods mentioned
above avoid the calculation of X'X altogether and instead use methods based on
orthogonal-triangular factorizations of X providing greater numerical stability at
the expense of more calculation. Despite the greater stability of other methods
we have decided to analyse algorithms for X'X because it is a simpler calculation
so the methods are more understandable. Also it is the algorithm which is actu-

‘ally used in many statistical packages such as SAS [RAY82}.

The greater stability of the QR method or methods based on Given's rota-
tions can be matched in an X'X method by accumulating dot products to a
greater precision than the precision of the data. With the introduction of
extended "working" precision registers in the LE.E.E. floating point standard

[COONB80], this is feasible even for data which is stored in "double” precision.

It can also be argued that it is not necessary to consider the data flow
requirements of this type of algorithm because one can simply rely on a virtual
memory system to provide the necessary address space and then act as if the
primary memory was sufficiently large. This does not solve the problem of data
movement, costs but only passes it from the user’s program to the operating
system which may not handle it particularly well. In fact, in experimental tim-
ings on actual multi-user systems using the Linpack package and large

matrices, we have found the amount of time required by the operating system



for paging is comparable to and often to exceed the actual time spent in calcula-

tion.-

Another approach is to randomly sample selected observations from the
database and use the results from the sample. This is appropriate for initial,
exploratory analyses of a data set where the purpose is to determine the struc-
ture of the data but in later, confirmatory analyses, where the detailed proper-
ties of the data are established, it is important to utilize all the data which is

available.

This paper considers a dense data set X, and analyses the overhead of data
_ movement for the evaluation of X’X. The analysis is with respect to three
different looping schemes and a number of buffer management strategies for
each. The buffer management and page reference string algorithms are with

respect to the transposed [TURN79] organization of the database.

In Section 2, we present the alternative secondary storage organizationé of -
the data file. Section 3 gives the system parameters for the cost evaluation

model. Section 4 describes buffer management and page replacement algo-

rithms for the parallel ! evaluation of X’X. In Section 5 we give the cost functions
of the different algorithms in terms of the system parameters, and plot different
graphs which describe the performance of the algorithms with respect to the
size of the primary storage, the number of active columns and cpu speed. Sec-

tion 7 summarizes our conclusions and observations.

2. File Organization

In most conventional relational databases the n-tuples of each relation are
stored record-wise. In a statistical application a data matrix represents a rela-

tion and therefore a conventional DBMS will store the data matrix row-wise.

! By "paralle]” we mean the concwrrent execution of the [/0 and the processing subsystems.

-3-



However, there are at least two reasons why such a secondary storage organiza-

tion might not be an attractive alternative for a large statistical database.

The first reason relates to data compression. In statistical analysis it is
common to analyze "qualitative" data. That is, data with a very small range of
val\ies. Therefore, for qualitative attributes only a small number of bits are
needed to code all the different data values. A particular relation might have
several qualitative (each with a different number of code-bits) and quantitative
attributes per record. Because of this non-uniformity, compression will be
difficult in record oriented systems. Moreover, it is common in statistical data-
bases to have data either of equal length or identical values clustered within the
attributes. If the data is stored attribute-wise it is feasible to 'unplerﬁent "run

length" [EGGEB1] compression techniques.

A second reason why a.relational row-wise storage organization might not
be a suitable organiZatit')n.for statistical databases, is that statistical operations
usually encompass most {(or all) of the observations (rows) and few of the vari-
ables (columns). That is most of the time only a fraction of the columns are
referenced. For example, if all the rows and only 10% of the columns are
accessed, all the relation must be retrieved. This implies an unnecessary
retrieval of potentially 90% of the relation. For large databases this can have

serious performance implications.

These objections, and especially the second one, suggest an alternative
storage organization namély the transposed file organization [BATO79, TURN79,
BURNS1]. The two types of transposed flle organizations are: (1) partially tran-
sposed (or clustered transposed) and (2) completely transposed, which is a spe-
cial case of the partially transposed organization. In the partially transposed
organization the set of attributes is decomposed into a mutually exclusive col-

lection of subsets of attributes and the attributes in each subset are storéd



together. That is, a collection of n-tuples is stored as k collections of n;-tuples
where n; + ng + - -+ + ng = n. However, this process does not create new rela-
tions, new keys ete.. The attributes which are stored together are hopefully the
ones which are also accessed together. If each attribute subset contains exactly

one attribute we get the completely transposed organization.

As indicated, it is common in statistical analysis to process only a fraction
of the columns (henceforth called the "active” columns). The page reference
string algorithms in this paper are with respect to the completely transposed
secondary storage organization. The algorithm for the relational organization is

rather straight forward.

3. System Parameters

In this section the ‘parameters used in the cost equations of X'X are intro-
duced. Besides the disk and CPU parameters, several model parameters are
also‘ introduced. These parameters include the size of the relation, the size of
the transposed flles, the number of attributes, the number of active columns
and the buffer size. For each parameter the value or range of values of the

parameter are indicated.

3.1. Disk Parameters

The mass storage device is assumed to be a disk. The parameters for a disk
are: (1) the track size (BSIZE); (2) the number of tracks per cylinder (DCYL); (3)
the average time to read/write a page (Tio); (4) the average random seek time
(Tdac); and (5) the cylinder-to-cylinder seek time (Tsk). The values of the disk
parameters are those of the IBM 3350 disk drive [IBM77]. All the values are in

milliseconds (ms.). A page (the unit of transfer between the disk and main



store) will be the same size as a disk track throughout.

BSIZE page size 19069 bytes
DCYL number of pages per cylinder 30 pages
Tio page read/write time 25 ms.
Tdac average access time 25 ms.
Tsk time to seek 1 track 10 ms.

The I/0 time to read U contiguous pages randomly is approximately:

Tr-io{U) = Tdac + + 1/2ITsk + U-Tio

U
DCYL

3.2. CPU Parameters

The arithmetical computations of X'X consists of the "Inner Productf' opera~
t;ion: |

Inner Product: a =a + x3'x
Here the unit of execution is a "floating point operation” (a "flop”) [DONG79],
which involves the execution time of a double precision floating point multiplica-
tion, a double precision floating point addition, some indexing operations and
storage references. Our own experiments and the timing indicated in [DONG83],
suggest that, 0.5 to 25 u seconds (micro seconds) per flop is a reasonable range

of processing speeds.

For the transposed file organization we shall use the function

Tow(U) = U-q-flop
where U is the number of page pairs whose inner product is to be accumulated,
g is the number of elements per page, and flop is the time to perform a floating

point operation. For the relational organiztion we shall use



Tow(U) = U'nt- ELﬁPé'———g-ﬂop
where here, p is the number of active columns, nt is the number of tuples per

page, and U is the number of pages.

3.3. Model Parameters

Since the relational and the transposed organizations are being compared
it is imperative to define the parameters of each. In relational form, the data
set is assumed to have 100 attributes and 230,000 tuples. All the attributes are
eight byte numbers. With the above disk parameter values, this implies that
there are 23 tuples per page (that is nt = 23). In the transposed organization,
each page ﬁll contain 2383 elements. To simplify the subsequent analysis it is
assurned 2300 elements are stored in each page of a transposed file. Hence
each attribute will occupy 100 pages. Thus in both the row-wise orgarization
and the tranéposed organization the relation will occupy 10,000 pages. These

parameters are as follows:

number of pages occupied by the relation(matrix) 10,000 pages
N number of pages for a column(transposed) 100 pages
w number of attributes 100
n number of tuples 230,000

p number of active columns
for the matrix operations the values considered are
10 to 100 active colummns

M the size of the main storage
the values considered are 10 to 200 pages



4, Parallel Algorithms For XX

In this section we present several schemes for implementing parallel
evaluations of X’X. In Section 4.1, we give three high level algorithms for the
evaluation of the matrix X'X. In Section 4.2, we specify page reference string
and ldgical memory organization strategies for the different high level algo-

rithms of Section 4.1.

4.1, Algorithms

The three (high level) algorithms evaluated, '"Vector Building Block”, "Vec-
tor Times Matrix,” and, "Horizontal Stripes," are called VBB, VIM, and, ST

respectively:; In the "Vector Building Block” algorithm, X'X is evaluated as
P-'-%“—1—-'1111181' products. This is perhaps the most obvious way of evaluating X'X.

However, it is the most I/0 intensive of all the three approaches. With the "Vec-
tor Times Matrix" algorithm, X'X is evaluated as {p-1) "vector times matrix’
operations. The "vector” of the k' operation is the k' column, and the matrix is
the remaining (p-k) columns. The "Horizontal Stripes” algorithm involves the
fewest page transfers, since here the active columns of X are read once. In this
algorithm, after reading a "stripe" of the active columns, the partial inner pro-

ducts are accumulated before processing the next stripe.

VBB:
Fori:= 1top-1
Forj:=i+ltop
Fork:=1ton

Cy =y + de~X1q~



VTM:
Fori:=1top-1i
Fork:=1lton
Forj:=i+ltop

Cij i = Cy + X]d'ij

ST:
Fork:=1ton
Fori:=1top-1
Forj:=i+ltop

eyi=cy t+ de'ij

4.2. Page Reference Strings and Memory Management

In this section we shall present several -page reference string and memory
management strategies for each of the high level algorithms of the previous sec-
tion. In the following R’ stands for the Kth U-page block of the i*R column of X

If there is no U, the block size is one.

4.2.1. Vector Building Block Algorithms
There are two strategies for the vector building block algorithm.

[1] -Divide the M pages of primary memory into three logical subdivisions: a
memory unit of M-2 pages and two memory units of size one page each.

-For each inner product read the next M-2 pages of one column and then,
page by page, read the corresponding M-2 pages of the other column accu-
mulating the inner product of a resident page pair while reading the next
page.



VBB 1
Fori:= 1top-1
Forj:=i+ltop
For k := 1 to N/(M-2)
RF-Z,k : Rj(k—l)(M—z)H
For q:= 1 to M-2
$ o=y + X{E-1E-2)+q . xj(k-l)(ll—z)m

$ if g < M—2 then R{k-DE-2)+at1

[2] -Divide the M pages of primary memory into four logical subdivisions and
allocate M/4 pages to each subdivision.

-For each inner product accumulate the inner product of the resident M/4
page blocks and, concurrently, read the next pair of M/4 pages.

VEB 2:
Fori:=1top-1
Forj:=i+ltop
RAVOL , ROV
For k := 1 to N/(M/4)
$ cyizcy + XJ k. Xj(M/:&).k

$ if k <N/(M/4) then [ R/ 4Met1 . R/ 4 k+1 ]

4.2.2. Vector Times Mairix Algorithms

We shall call the vector which multiplies the matrix of the remaining
columns in a '"vector times matrix” step of this algorithm, the "operating”

column. Here again we have two strategies:

[1] -Divide the M pages of primary memory into three logical subdivisions: a
memory unit of M-2 pages and two memory units of size one page each.

-10-



-For each operating column, read the next M-2 pages and then, page by
page, read the correspondmg M-2 pages of each of the remaining columns

accurnulating the inner product of a resident page pair while reading the
next page.

VIM 1:
Fori:= 1top-1
For k:= 1 to N/(M-2)
RE-2)k ; R 1)MH-2)+1
Forj:=i+ltop
Forq:=1toM-2
Boyi=oy+ X(k D-2)+q . XD E-2)+
$ if g < M—2 then R{k-DE-2)+ar1
else if j < p then Ri(}f;l)(ﬂ—a)ﬂ

[2] -Divide the M pages of primary memory into three 1oglcal subdivisions and
- allocate M/3 pages to each subdivision.

-For each operating column, read the next M/B pages and then read the
correspond_mg M/3 page blocks of the remaining columns, accumulating

the inner product of a resident M/3 page pairs while reading the
corresponding M/3 pages of the next column.
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VIM 2:
Fori:=1top-2
Riﬂ/a.l
For k:= 1 to N/(M/3)
R 9
Forj:=i+ t-top
§ cyi= oy + Xk . XWX
$ifj <p then RJY3k
else if k < N/ (M/3) then R{¥/3)k+1
Rp(lj{4).1 : RP(M/4),1
For k:= 1to N/(M/4)

$ Cp—1,p = Cp-1.p + X}(,g/14)'k . XI()M/4)-k

$ifk <N/ (M/4) then[ Rf{#9¥k+1 ; RA/4Lk+1 ]

4.2.3. The Horizontal Stripes Algorithm

If we were to measure the effectiveness of an algorithm by the number of
pages transfers, f;his algorithm is obviously optimal since it requires all the
active columns of the data matrix to be read exactly once. Comparing the hor-
izontal stripes algorithm with the vector building block and the vector times

matrix algorithms, we make the following observations:

(1) with a completely transposed secondary storage organization, this algo-
rithm requires at least p (p being the number of active columns) pages of
primary storage

() since the algorithm requires corresponding pages of the active columns to
be accessed simultaneously, with a given memory size, the algorithm
processes the matrix columns in smaller blocks than either the vector
building block or the vector times matrix algorithms. This could imply
more disk seeks.

(3) the amount of computation within the overlap region is substantially
greater than either the vector times matrix or the vector building block
algorithms.

Here we have three different strategies:

-12-



[1] -Divide the memory into p (the number of active columns) logical subdivi-
sions

-For each stripe, after reading the next M,/p pages of the first two columns
start accumulating the inner products of the columns which are aiready

resident, while concurrently, reading corresponding M/p page blocks of the
columns which are not yet accessed.

To avoid the indexing and timing details we have introduced a function
called "Find”, which accesses a shared linear array A (of size p) and a two dimen-
sional array D (p by p) and finds two indexes i and j, such that the current M/p
page blocks of X; and X; are resident and the inner product of X; and X; are not
accurnulated. The function Find waits and does not return until it finds a pair.
The itP position of A is set as soon as the cufrent-M/p pages of X; are read.
Since A is referenced by two independent processes, it should be in a critical

region.

ST 1: :
Fork:=1to N/(M/p)
clear(A); clear(D)
DONE := 0
$Foritz=1top
R/ p)k
set(A[i])
$ Repeat
Find(i, j)
oy 1= oy + XM/ phk Xj(M/p).k
set(D[,j])
DONE := DONE + 1

Until DONE = E%’—l

-13-



[2] -Divide the main storage into p+1 equal subdivisions

-If there is a free M/{p+1) page block, read the next block while con-
currently accurnulating inner products of resident block pairs

-If all the partial inner products for a column are acumulated free the block
occupied by the column.

The main difference between this algorithms and [1], is that in [1] a hor-
izontal stripe is processed completely before the next horizontal stripe is read.
In [2], M/(p+1) page blocks of the next horizontal stripe are referenced while
processing the current stripe. In order to allow more blocks of the next stripe
to be accessed, we have introduced the procedure "Release”, which releases a
block (of M/(p+1) pages) from the current horizontal stripe. For each active
column, a counter is incremented when an inner product of the active column is
accurnulated. When the counter achieves the value p-1, the block which holds
the M/(p+1) pages of the column is released. Since there are p+1 subdivisions,
there 'could be blocks from at most two horiz;mtal stripes. Therefore, there are
two shared linear arrays (of size p each), which indicate the resident blocks
from the two stripes. Finally, the boolean function "Free" attempts to find a free

block of M/(p+1) pages, and does not return until it finds one.
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ST 2:
$q:=0
For k:= 1to N/(M/(p+1))
Fori:=1ltop
If Free(M/(p+1)) then R G+1.k
set(A[q.i])
q:= (gq+1) mod 2
$ clear(A); g:=0
For k := 1 to N/(M/(p+1))

clear(D)

DONE := 0 ’

For j:= 1 to p [ count[j]:= 0]

Repeat
Find(q,i.j) ,
oy 1= o + X{E/ GO XU GrO)k
count[i] := count[i]+1; count{j] := count[j]+1
If count[i] = (p-1) then Release(X®/ ®+1).k)
if count[j] = (p-1) then Release(X (P+1)).ky
set(D{i, i])
DONE := DONE + 1

Until DONE = E%“—Q-

clear{A[q,])

q:= {(g+1) mod 2

[38] -Divide the memory into 2p logical subdivisions

-Read the next stripe of M/2p pages from each active columnn, while evaluat-
ing the inner products of the current stripe

Note: With this scheme we need at least 2p pages of primary memory

-15-



ST 3:

Ri/2p1RM/2p.1
For k:= 2 to N/(M/2p)
$ For i:= 1 to p-1
Forj:=i+ltop
ey 1= oy + XAPMk-LL g (/P k-1

$ if k < N/ (M/ 2p) then
RiVZAgpi2pk | RIVZPk

5. Cost Functions

In the previous sections we presented several algorithms for implementing
XX. In this sectmn we gwe the cost functmns for each algorithm. More
specifically, for each algorlt.hm we find: (1) Total 1/0 cost; (2) Average execution

time in overlap region; (3) Total execution time (without cost of messages).

5.1. 1/0 Costs

The table below gives the total 1/0 costs for each algorithm in terms of the
function Ty-j.. We have also indicated the minimum memory size which must be

available in order for the algorithm to be implementable.
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Algorithm Total 1/0 Min. Memory Size (Pages)
VBB N
1 p(p—-1) H‘:é'"Tr—io(M"z) 3
VBB 2 P(P"'l)' 4-'5:—'"?1'40(%‘) 4
B+ . N o
VTM 1 (BB 1) g Treie(M=2) 3
( E(E'*'_lL_. 3). 3 N_._.Tr__m( _M__)
2 M 3
VIM 2 N M. 4
+8 F'Tr—io(z‘)
N M
ST1 pa' E"Tr—io(? P
N . , M :
ST2 p(p+1) 3 Tr-iol 5_—,_-1—) p+1
ST3 zpt Lo, 9 2p

2p

In Figure 1 we have the curves of the number of page transfers as a function

of the number of active columns. The curve of VBB is p-(p—~1)-N. That of VTM is

(MLL 2+1 — 1)N and of ST is p'N. Since the number of page transfers of ST is

linear in p it appears constant in the graph. It is interesting to note that the

"Vector Building Blocks"” algorithms will involve fewer page transfers than the

number of pages transferred with the relational secondary storage organization

(that is 10,000 pages), only if p (the number of active columns) is less or equal to

10. The corresponding critical value for the "Vector Times Matrix" algorithms is

13. Of course the "Stripes” algorithms will always involve fewer page transfers

(unless all the columns are active).
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As the secondary storage medium is a disk, another measure of the I/0 is
the number of random seeks. Figure 2 gives the number of random seeks also
as a function of the number of active columns. The main storage size is held at
75 pages (tracks). It is clear from Fiéme 2 that the flrst algorithm of the "Vec-
tor Times Matrix’ approach involves the least number of random seeks for any
number of colurnns. On the other hand the second algorithm of the '"Vector
Building Blocks" approach has the largest number of random seeks also for any
number of active columns. The curves for the number of random seeks of the
other algorithms are between these two e_xtrema. It is interesting to note that
the first and second algorithms of the "Stripes” approach outperform the others
{except VIM 1) only when the number of active columns exceed approximately
50. The reason is that although the "Stripes’ algorithms reference the data
matrix only once, the main storage is divided into O(p) logical subdivisions. As
we noted earlier, the large number of random seeks is t%he consequence of

accessing the transposed columns in smaller blocks.

In Figure 3 we have the curves for the total (transfer plus seek) 1/0 time as
a function of the number of active columns for the first four algorithms (that is
all the implementations of VBB and VIM). The time is in seconds and the main
storage is again held at 75 pages. The figure clearly shows the effect of fewer
page transfers for the '"Vector Times Matrix" algorithms. The first algorithm of
the ''Vector Building Bocks"” approach outperforms the second algorithm. This
was to be expected, since the second algorithm involves a larger number of ran-
dom seeks (see Figure 2). Figure 4 gives the corresponding curves for the three
implementations of ST. The curves for the first two algorithms are almost ident-
ical, except that the first algorithm involves fewer random seeks (since the
memory is divided into p logical subdivisions rather than (p+1)) and therefore is
slightly better. The breaks in the curves correspond to the same breakpoints as

in Figure 2. In other words, these breaks are due to a substantial increase in
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the number of random seeks. For example, with M = 75, when p = 25 M/p is
equal to 3. Therefore ceil(100/3) = 34, and the total number of random seeks is
25.34 = 850. On the other hand when p =26, then M/p = 2 and the total number
of random seeks is 26.50 = 1300. Note that with the stripes algorithm a substan-
tial percentage of the main storage can be wasted. With the previous example,

49 pages (or approximately 85%) of the main storage are not used.

Again comparing the I/0 cost of these algorithms with the 1/0 cost of the
relational organization, let us point out that the total I/0 for the relational
organization is approximately 253 seconds. The critical number of active
columns for the "vector Building Block" and '"Vector Times Matrix" algorithms
are again 10 and 13 respectively. However, for ST 1 and ST 2 the critical number
of active columns are, respectively, 50 and 41. This shows that a substantial per-
centage of }:he total /0 time for the stripes algorithms is seeks ?. Finally Figure
5 and Figure 6 are the curves of the total I/0 times (in seconds) as fuﬁctions of
the main storage size for p (the number of active columns) = 20. Here the gen-
eral observation is that, if we neglect track-to-track seeks the curves generally

look like:

PO = C, + T
where, C; and C; are in terms of N, p and the disk parameters. The oscillations
in the curves of Figure 5 are due to the overhead of the track-to-track seeks.
For example, if M = 120 there are no track to track seeks for the first algorithm
of VBB. On the other hand when M = 124, there are three track-to-track seeks
per column. The sharp edges of the curves in Figure 6 are due“ to the fact that

trunc(M/Pv) remains constant for Pv consecutive values of M. In ST 1, Pv = p; in

ST 2Pv=p+1;and inST 3, Pv = 2-p.

% In an earlier analysis we have shown that with 50 pages of main storage approximately 50% of
the total I/0 time is seeks
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5.2. Execution Time in Overlap Region

Here we find the execution time in the overlap regions. These overlap times
are the maximums of the I/0 and computational times in the overlap regions of
an algorithm. However, since ST 1 and ST 2 require some synchronization
between the 1/0 and processing subsystems, we have not given the overlap times

for these two algorithms.

$Hep = MAX(Tonv(q) » Tio)
e = MAX(Ton(ar (5) . 2o 3

Ttseéi'fa)p = MAX(TINN(Q) ! Tr—io(l) )

Skl = MAX(Toa(@) » Tio)
ey = MAX(Ton(2 (23) ., T 1)

- M
5 = MAX(REZL (e 23 pTn( 35

5.3. Total Executions Times

The total execution time of an algorithm is the sum of three terms:
Tatart + Q Toverlap + Tush, Where Tgar, and, Taysn are respectively the initial read
time to start the execution and the final arithmetic time after all the data has

been read. Q is the number of times the overlap region is executed.

N

VBB 1: M2

_ p(Pz"l) ‘[Tr—io(M'—z) + Troio(1) + (M=3) TSeHep + TmN(q)]
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VBB 2: P%Ll?—-[z-l‘,-ix%e oo 1]-Té3.-§lap + TMq-(%f—-))]

VIM 1: (1) g [Temio(M=2) + Trio(1) + Tom(@)] +

N ,[P(P;l) (M=3)TEL + §E:.1.22§P_‘_§2_.T§§é11).r)}

M___z ver]ap

VIM 2: <P"2)'[Tr-—io( %‘;‘) + '@:M’I:I"'Tr-io(%;) + Tow(a: %"’]

(G (e m'—‘zkzﬁg:‘lqm"a“‘"

N
M/ 4

+

+ 2Tea( ) + o (D) + |55 - 1]T§e.-f,a,,

In the previous section we did not specify the overlap time for ST 1 and ST
2. The overall execution time of these algorithms depends on the speeds of the
1/0 and processing subsystems. Therefore, suppose that there exists an integer

k such that:

To{(k+1)-U'q) = Tryo(U) = Tn(k'U-q)

where,U = %—-in ST1and U = ;%—i—in ST 2. Theri the total execution time of ST 1

is given by:

ST

N
1'(M/p)

[ +2) Tooso( 2y + [REZD).  mlemt) }-qu-(%a

where m = min(k, p-2). -

For ST 2 we have two cases:
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Case 1: k = KE%—I-Z— 1t is clear that the algorithm will be 1/0 bound and the exe-

cution time is:

ST2: pr ZM—/TI;—_HT)—'Tr-—io(E%T') + |(p—-1) + (p—m-—l)z(p—-m—z) }-Tm(q- ;‘:_[_1.)
where here m = min(k, p—1).

Case 2: k < gp_;;_ll_ Here the execution is computation bound and the total exe-

cution time is:

, o M N p(p-D _ kx-1)] .M
S’I‘2.(k+1)T,._i°(p+1,+ TVACTS) pp2 5 JTM(qW

Finally,
ST3: P‘Tr—xo("zh'%) + ('(-M%;)—‘ 1)'T‘§9£']ap +#E£P§:1L'TNN(Q' %‘)

Figure 7 and Figure 8 give the curves for the the total execution times as
functions of the number of active columns where in Figure 7 the time per float-
ing point operation is 0.5 microseconds and in Figure 8 it is 25. We have con-
sidered only the second version of the algorithms VBB, VIM, and, ST. We have
also included the curve for the total time of the relational organization. The
main storage size is 100 pages in both figures. In Figure 7, VBB 2 performs
better than the relational organization for p< 10. VTM 2 outperforms the rela-
tional for p<13 and ST 2 for p €51 . However, in Figure 8 (where the time per
flop is 25 microseconds), the corresponding critical values for p are 9, 9, and, 10.
Therefore, the general observation is that with a very slow CPU, any implementa-
tion for the transposed organization will not yield significantly better perfor-
mance than the relational organization if more than 10% of the columns are

active. With a very fast CPU the situation is better (up to 50%) if we choose a
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good algorithm.

Figure 9 and Figure 10 are similar plots but here the number of active
columnns is held fixed (p = 20) and the total execution time is plotted against the
main storage size. Figure 9 clearly shows the relative performance of the three
algorithms. As it was expected, the curves look similar to Figure 5 (where we
plotted only the 1/0). The performance of VBB 2 in Figure 10 is interesting since
it actually possesses a minimum. The shape of the curve can be easily explained
by the fact that as the size of the main storage increases, the '"startup” and
"flush" times per inner product also increase. In fact for each inner product the
"startup” time is the time to read M/4 pages from each column and the "flush”
time is approximately the time to accumulate the inner products of the last M/4
block pair. For a small memory size the time in the overlap region is 1/0. How-
ever, since the CPU is slow, soon (for M greater than 28) the overlap region

becomes €PU bound. Therefore the total time for an inner product becomes the
startup 1/0 time plus the inner product time. A larger memory size will imply a
longer startup time, and, therefore, a greater total execution time. This obser-

vation also holds for VIM 2. Here however, the degradation is not serious.

In Figure 11 we have the total execution times for all the algorithms in
terms of the time per floating point operation (which is inversely proportional to
the CPU speed). Here the main storage size is 75 pages and the number of
active columns is 20. All the curves {except VBB 2) have a I/0 bound region and
a CPU bound region. The critical value for the "Stripes” algorithms is approxi-
mately 2 microseconds per flop and for the other algorithms about 10. The
curves show that the "Stripes” algorithms become CPU bound much faster than

the others.

Finally, to provide an idea about the required memory bandwidths to sup-

port high CPU speeds, we have plotted in Figure 12 the memory bandwidth
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versus the time per flop. An interesting point is that the required memory
bandwidths of all the algc_:rii':hms were quite close, especially for fast CPU’'s.
Suprisingly, the algorithm which required the least memory bandwidth was ST 3.
The algorithms which required the highest memory bandwidths were VBB 1 and
VIM 1. But, as we said earlier, the differences between these extrema were not
significant. For example, if the time per flop is 2 microseconds, the required
memory bandwidth for VIM 1 and VBB 1 was 8.5 megabytes per second and for
ST 3 it was B.1 megabytes per second. Since the curves for the different algo-
rithms looked almost identical, this curve is that of ST 2 (with p = 20 and M =
75).

8. Conclusions

This paper presents three looping alternatives for the evaluatién of X'X.
' These are labeled "Vector Building Blocks" (or VBB), "‘;ector'T;ﬁi'leé Matrix" (or
VTM), and "Stripes” (or ST). For each we have given a number of buffer manage-
ment and page replacement algorithms in a high level concurrent programming
language, wherein we have explicitly stated the page reference strings and the
overlap regions. The only type of parallelismn considered here is the overlapped

execution of the processing and I/0 subsystems.

This paper provides a comparative performance evaluation and analysis at
several levels. First we show that the number of page transfers grows quadrati-
cally in p (the number of active columns) for the "Vector Building Block” and
"Vector Times Matrix" algorithms and linearly in p for the "Stripes” algorithms.
On the other hand, the number of random seeks of the "Stripes” algorithms is
less than the other algorithms only for p < 50 . The eflect of these is seen in the
curves of the total 1/0 times as functions of the number fo active columns.
Although random seeks is a substantial percentage (approximately 50% for p and

M = 50) of the total 1/0 time of the "Stripes" algorithms, the corresponding
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percentages for the other algorithms are approximately 3% for seeks and 977
for page transfers. Therefore, the curves of the total 1/0 times for the "Vector
Building Block" and "Vector Times Matrix" algorithms are quadratic in p, but the
substantial percentage of seeks in the curves of the "Stripes” algorithms show as

jumps in the linear curve.

The curves of the total I/0 times as functions of the main storage size are
asymptotic. After a certain threshold, the size of the main storage does not
effect the total I/0 time to any significant degree. More specifically, if the main
storage is divided into k equal subdivisions ? then to be within f percent of the

asymptote the mémory size needs to be:
k-Tdac

£ Tio
For example with 20 active columns, to be within 5% of the least 1/0, M needs to

M=

be approximately 20 for VBB 1 and VTM 1, 80 for VBB 2, 60 for VIM 2, 400 for ST 1
and ST 2, and 800 for ST 3. '

In comparing the total execution times we observed that with a fast CPU the
"Stripes” algorithm with the transposed organization performs better than the
relational organization, provided the number of active columns is less than or
equal to approximately 50. This percentage decreases as we consider slower
CPU's. In fact as the CPU gets slower, the total time of all the algorithms tend
to the computation time. Moreover, with the transposed organization and any
CPU speed the "Vector Times Matrix" and the "Vector Building Block"” algorithms
will perform better than the relational, only if the active columns are less than

107 of the total number of columns.

Therefore the general conclusions of this paper are (1) the "Stripes” algo-
rithms perform better than the building blocks algorithms by an order of magni-

tude. (2) if it is anticipated that a substantial percentage of the columns will be

3 where k is taken to be 1 for VBB 1 and VTH 1
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active it could be preferable to consider the relational organization. (3) increas-
ing the memory size does not always improve the total execution time. In fact
the curves of the total times for the "Vector Building Block” and "Vector Times

Matrix" algorithms as functions of the main storage size, possess minimums.
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