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Abstract: We show that not every polyomino has a stochastic function (a labelling of its
cells by nonnegative real numbers so that the labels in every maximal rectangle sum to
1). We also show that determining whether a polyomino has a stochastic function can
be done in polynomial time, but that determining whether it has a stable transversal (a
stochastic function with integer labels) is NP-complete. This settles some open ques-
tions posed by Berge, Chen, Chvatal, and Seow.
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1. Introduction

A polyomino is a finite set of cells in the infinite planar square grid. Polyomi-
noes have an ancient tradition as a game or puzzle [4], but recently they have attained
new importance in digital image processing and in circuit design. An image or a circuit
layout can be thought of as a polyomino for some purposes, and combinatorial proper-
ties of polyominoes, such as the minimum number of rectangles whose union equals a
given polyomino, influence the effeciency with which an image or circuit can be
represented or processed in sorme way.

Berge et al. surveyed many combinatorial results about polyominoes, and
posed many more open questions [R]. This paper answers two of these questions, as

well as a third related question that Berge et al. did not explicitly pose.
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Any polyomino can be thought of as a hypergraph in a natural way. The cells
of the polyomino correspond to the vertices of a hypergraph; its maximal rectangles
correspond to the edges. (A maximal rectangle of a polyomino P is simply any rectan-
gle contained in P that is not strictly contained in some larger rectangle within P.) Us-
ing the language of hypergraphs, define a transversal of a polyomino P to be a set of
cells of P that has at least one cell in common with each maximal rectangle of P. The
set is a stable transversal if it contains exactly one cell in common with each maximal
rectangle.

Equivalently, a stable transversal is a function X of the cells of P that maps

each cell ¢ to {0,1} in such a way that

Y X(c)=1

celR
for each maximal rectangle R in P. Allowing X to take on non-integer values yields a
stochastic function, namely a function X mapping the cells of P to [0,1] such that
(1) 2 X(e)=1

ceR
for each maximal rectangle K in P. Clearly a stable transversal is a special case of a
stochastic function.

Berge et al. give an example of a polyomino that has no stable transversal,

although it does have a stochastic function. They pose the following open questions:

Q1 Is there a polyomino with no stochastic function?
Q2 How difficult is it to determine whether a polyomino has a stable
transversal?

If the answer to the first question is "yes', a third question follows naturally:
Q3 How difficult is it to determine whether a polyomino has a stochastic
function?
We provide the answers "yes"”, "NP-complete”, and "polynomial', respectively, to the

three questions.
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2. Notation and a useful lemma

Let P be a polyomino equipped with a stochastic function X. Number the n
" cells of P with the integers {1,2,....n}. A fop cell of P is a cell whose u;;per neighbor is
not in P. Similarly, a bottom (respectively left, right) cell is a cell in P whose lower
(respectively left, right) neighbor is nﬁt in P. A rectangle is determined by the loca-
tions of two diagonally opposite corners, so let <a,b> denote the rectangle with
corners numbered a and b. (In most cases, we will only refer to <a,b> when it is a
maximal rectangle of P with a as its upper left corner.) Let 2, denote the value of X at

cell @, and let T4 45 denote

Y X(c).

ce<a ,b>
In Figure 1, the top cells are 1, 2, and 5; the right cells are 2, 5, and 7; and the maxi-
mal rectangles are <1,4>, <2,6>, <35> and <4,7> Thus we rmust have

Tepg> = Tptxytzg = 1.
(Figure 1)

The following lemma formalizes and slightly generalizes an argument used by

Berge et al. to exhibit a polyomino with no stable transversal.

Lemma 1 (Berge et al. [R]). Let P be a polyomino with stochastic function X. Suppose
R, (with corners a, b, ¢, and d, reading clockwise from upper left) and R (with

corners e, f, g, and k) are rectangles in P such that

(i) ceRpand eeR;,
(ﬁ) Zeage> = Teag> = 1,
(iii) Teph> = Teag> = L.

Then z, =0 for all cells q in (R, JRg)—(<b,h>{J<d,f>). (See Figure 2.)

(Figure 2)
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Proof: By (i), <b,h> and <d,f > are actually rectangles within P, so we are allowed to

refer to them in (iii). We have

ZeacstLeggs> =2, by (11),
and Zep n>tTed p> = R by (iil).

The first equation counts cells in X, JF3s, counting cells in B M\F: twice; the second
counts cells in <b,h>{<d,f>, also counting cells in R;N\F; twice. Subtract the
second from the first and recall that z,20 for all cells g to complete the proof.

We will almost always apply Lemma 1 in situations where <a,c>, <e,g>,
<b,h >, and <d, f > are maximal rectangles, although in one case <b ,h> and <d,f > will
be contained in larger maximal rectangles whose cells are known to have value 0 out-
side the region shown in Figure 2.

If s is a real number, let § denote 1—=.

3. Wires, signals, and gates

The constructions in the main theorems are best described by analogy with
digital circuits. This section describes the building blocks of circuit design via polyom-
inoes. Each piece of circuit is described as if it were part of a large polyomino P with
stochastic function X.

A wire is a series of overlapping 2x2 rectangles, as in Figure 3(a). By Lemma
1 applied to the maximal rectangles <1,4> and <4,7>, we find that z, = zy = 0. Apply-
ing Lemma 1 to each pair of overlapping 2x2 rectangles, we find successively that
=z g=0and zy =23 = 0. 1t is not necessary that cell 1 be a top aor left cell, or that
cell 13 be a bottom or right cell; as long as there are at least three 2x2 rectangles, we
can extend the wire as far as we like, knowing that the center cells must have value 0.

A wire propagates a signal s along one side as follows. If zg=s, then because

T¢4>=1 and z,=x,=0, we must have z,=5§. This forces zg=s, because ¢ pg,=1 and



Stable transversals in polyominoes Page 5

z,=0. Similarly this forces zs=5 and zg=s, forcing zs=F and z;z=s, finally forcing
z1,=5. These values satisfy equation (1) for all the rectangles in the wire. Thus the
wire propagates signal s down the lower left side, or, equivalently, § up the upper right;
the signal is determined by facing in the direction of propagation and reading the vaule

on the right of the wire. We symbolize a wire as in Figure 3(b).
(Figure 3)

A tab is a group of three 2x2 rectangles attached to a wire as in Figure 4(a).
Its purpose is to restrict the signal on the side of the wire nearest the tab to be at least
1/2: this restriction is symbolized as in Figure 4(b). It does this as follows. In the wire,
Lemma 1 shows that

T|=T,=T9=Tyg = T1gTTpaTL307%ss = O
note that z,g is not included because it doesn't belong to a 2x2 maximal rectangle. In
the tab, Lemma 1 shows that

Tgp=Tpr=%p1=%16 = 0.
Suppose zg=s and zgg=t. Then as before we find that

Tg=Tg=8; Tp=I5=La=Z 115§,

Zop=Toz=t; Tpg=T0=215=1 .
But then

0=Zqoars—Tazies = (Z1otZ1)—(T1a+218) = §—T1a,
so

T4 197 Le5=T31=F Tpg=Tgg=T34=F.
Thus the tab doesn’t stop signal s from propagating. However, by looking at part of the
rectangles <B8,22> and <15,19>, we see that

Tg+Zop = F+L < 1
and ZTyg+Ts = §+E < 1,

Adding, we find that
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RF+1=2,
which implies that s=1/2, as claimed. The remaining cells (12, 13, and 17) can be as-
signed values in many ways, the easiest being z,3=x,,=0, z,3=s. This forces {=s, but

the value of £ really doesn't matter.

(Figure 4)

The next building block consists of a central 3x3 rectangle with three 2x2 rec-
tangles attached to each corner, as shown in Figure 5(a). These attachments can be
extended as wires in adjacent pairs to form a turn (Figure 5(b)), in opposite pairs to
form an inwverter (Figure 5(c)), or in threes (Figure 5(d)). If signal s enters on the
upper left wire, then signal § leaves on any other attached wire. To see this, use Lem-
ma 1 to find that

T)ZLe=EL =21 = T4=Tg=T 5=Tp0 = To=Tgy=Tq=Tpe = L45"Ta0=T34 Tz = 0.
Then if zs=s, the signal propagates toward the center, yielding z,,=s, and z,3=§. Now
T1p+Za1=<1, SO 25, <1 -2 ,7=F, which forces x;,=1—Ty;>s. Similarly, £3<1-2,4<§, forcing
Tog>s, forcing Tz5<5, and finally forcing Zg>s. But since zg<l-z,;3=s, we must have
Zge=8, which forces all the other inequalities to be equalities too. In short,

Z17=T 14T g =L 32=5 ZT13=T21=L33=T25=5 .

These signals then propagate down their respective wires as claimed. The remaining

values must be T,9=Z2e=L4=T3,=0 and zzs=1.

(Figure 5)

A crossover (Figure 6(a)) allows two wires to cross each other without in-
terference, except that the signals are inverted as they cross. It consists of two
elongated overlapping inverters, symbolized as in Figure 8(b). As in the previous para-
graph, a signal entering the "vertical" inverter, say z3=s, starts a chain reaction fore-

ing zg=ze=xz,5=%14=s and z,=2,=2 ;=2 1,=§. A signal entering the "horizontal” invert-
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er, say x.=t, forces z,=zg=z ;=2 3=t and r5=2g=Z,3=Z10=t. The two signals never

need to interact, since we can set zg=1 to take care of the large central rectangles.
(Figure 6)

A NAND gate (Figure 7(a), symbolized in Figure 7(b)) takes two input signals s
and t, and produces an output signal . Besides the usual restriction that these signals
must lie in [0,1], a NAND gate enforces the restriction
(2) r+s+t <2,
but allows any values that obey this restriction. In other words, if s=f=1 then r must
be 0; otherwise r can be nonzero. In section 5 we will see why the name NAND is ap-
propriate. To verify its behavior, suppose z,=5, zg=t, and z,,=7r. By Lemma 1 applied
to the input and output wires,

Tp=Zg=Z =L 155L 17718 = O,
hence

x4=§, z16=t, and x,s=zs=F.

Applying Lemma 1 to <6,11> and <11,15> yields

Tg=Ty=Z s = Q.

We must have 2 ,p<1—2,=5, and zg<1-z,9=f. But since

1 =Zgq1> = TgtTogtz o< THE+5,
equation (R) must hold. If r decreases from 2—(s+£), then ¥ increases, and x4 or =g

must decrease. Increasing z,3 or z5 compensates for this, allowing smaller values for

r.
(Figure 7)

Finally, a superfab (Figure 8(a), symbolized in Figure B(b)) forces entering
signals to be 1 and departing signals to be 0. Wires may be attached at any of the

corners. To verify its behavior, apply Lemma 1 to <2,36> and <10,44> to find that



Stable transversals in polyominoes Page B

Tp=Xg = Tyg=Lgy = Q.
By symmetry,

Z13=T19 T Tpo=2gs = 0,
Now Lemma 1 applies to «1,10> and <B,3B>, even though <7,12> is not maximal, be-
cause x;g=0. Thus

) = L19TE 18T LT L= T g =gy~ Lgg = 0.
By symmetry, every cell has value 0 except for x4, T5, Ty, Zoo, Tea, Toa, Tag, T4y, aNd Zyp.
This implies that 1 = z¢713> = Z7, and by symmetry that

T5=T7=2q1=Tg9=1,
which in turn forces

Z4=Zgg=ﬂ?23=m4g=o, and -’-1723=1.
(Figure 8)

Since wires run at a 45° angle from the coordinate axes of the planar grid, it
is convenient to rotate the schematic diagrams of circuits by 45°. The remaining

figures are drawn with this convention.

4. A polyomino with no stochastic function

Berge et al. give an example of a polyomino with no stable transversal. Using
the components of the previous section, we can view their example as a wire with tabs
on opposite sides (Figure 9). Let s be the signal propagating to the right. the first tab
forces s=1/2 and the second forces s=1/2, so we mmust have s=1/2 A stable

transversal has only integer values, so this polyomino cannot have one.

(Figure 9)
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Similar reasoning shows that the polyomino shown schematically in Figure 10
cannot have a stochastic function. I the wire begins by propagating signal s to the
right, the first supertab inverts s to § and forces s =1, then the second inverts § to s

and forces §=1. But it is impossible to have both s =1 and §=1.

(Figure 10)

5. NP-completeness and polynomial algorithras

A poiyomi,no may or may not have a stable transversal or a stochastic func-
tion. Theorems 1 and 2 below show that determining whether it has a stable transver-
sal is NP-complete, whereas deterining if it has a stochastic function can be done in po-
lynomial time. For definitions and standard results about NP-completeness, consult

the excellent book by Garey and Johnson [3].

Theorem 1. Determining whether a polyomino has a stochastic function can be done in

polynornial time.

Proof: Let P be a polyomino with n cells. Since a rectangle is determined by two op-

2

posite corners, there are at most n* rectangles in P. Determining whether P has a

stochastic function is equivalent to determining whether the system of linear inequali-

ties
Y,z =1, for all maximal rectangles R in P;
ceR
Osz.<1, for all cellsc in P
has a feasible solution (z,, ... ,z,). This system has at most 2n®+2n inequalities, n

variables, and integer coefficients. A feasible solution can be found, if it exists, in poly-
nomial time using {for example) Khachiyan's ellipsocid algorithm for linear program-

ming [1].
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Theorem 2. Determining whether a polyomino has a stable transversal is NP-complete.

Proof: Clearly the problem is in NP, since given a polyomine with n cells we can guess
the n vaules of a stable transversal X and verify that equation (1) holds for each maxi-
mal rectangle. There are at most n? such rectangles (as noted in the proof of Theorem
1), each of size at most n, so the verification can easily be done in time 0(n?),

We prove the problem is NP-hard by giving a reduction from 3SAT [3]. Let F
be a boolean formula in 3CNF with n variables and m clauses. We construct a polyomi-
no P with O(mP?) cells that has a stable transversal if and only if F is satisfiable.

For each variable v in F, form a ''variable component” consisting of a short
wire leading into a sequences of inverters, as in Figure 11. Use as many inverters as
there are occurrences of v in F', leaving enough room between them to allow the des-
cending wires to contain turns. Call the signal entering from the left v; then signal v
leaves from the even numbered inverters, ¥ from the odd. In a stable transversal, sig-
nal v must be either 0 or 1, which we interpret as false and frue to obtain a truth as-

signment to the variable v.
(Figure 11)

For each clause (a\Vb\V¢) in F, form a "clause component'’ consisting of two
NAND gates, input wires labelled @&, &, and &, and an output wire with a tab attached, all
connected with turns and inverters as shown in Figure 12. The tab forces the output
signal to be at least 1/2, so it must be 1, representing true. A NAND gate with frue
output forces at least one of its inputs to be false, by equation (2). Thus the com-
ponent forces at least one of the three input signals @, b, and & to be false, which

means at least one of a, b, and ¢ must be frue.

(Figure 12)
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Finally, connect the 3m wires descending from the variable components to
the 3m wires ascending from the clause components, using turns, crossovers, and in-
verters as necessary to ensure that the signal leaving a variable component arrives at a
clause component with the correct value. Figure 13 shows a possible connection for
the formula (zV§Vz)(ZVEVw), By the observations here and in section 4, the

resulting polyomino has a stable transversal if and only if F' is satisfiable.
(Figure 13)

The strategy used in Figure 13 to connect the wires partitions the space
between the variables and the clauses into 3m layers, each used to route one wire to
the right until it is above its destination. There are 3m vertical strips near variables
and another 3m near clauses. Each layer and strip has constant thickness (enough to
hold a crossover or turn), so the whole construction lies within a rectangle of area
O(m?). Thus the number of cells in the resulting polyomino is O(m?), and the con-

struction can be done easily in polynomial time.
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