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The set S; of t-ary trees is defined for £=2 as follows.

L .The empty tree is in S5;.
il 1T, Ty ..., T; are in S;, then so is the tree
Ty T, ... Tp
consisting of a root vyith t subtrees equal to Ty, T, ..., T, ordered left
to right.
iil. Nothing else is in 5;.

The order among children is important, as are the gaps-left by empty subtrees. Figure
1 shows the five 2-ary trees with 3 nodes; in all but one, the root has an empty subtree.

The number of f-ary trees with n nodes is well-known to be [tn]-————-—l———-———,
n(t-1)n+1

1

oS the number of binary trees

When £ =2 this gives the n-th Catalan number, [27?] oy

with n nodes. These formulas have a very long history, dating back to 1758 when Euler
tabulated the first few Catalan numbers [3], and to 1841 when Grunert tabulated the
first few numbers for £=3,4,5,6 [4]. A linear recurrence for the Catalan numbers was
first shown by Rodrigues [6]. Further history and a comprehensive bibliography have
been published by Brown [1].

Several proofs of the "closed" formulas given above have appeared, using the

Lagrange inversion formula [2,7], generating functions and a generalized binomial
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theorem [5, ex. 2.3.4.4-11], and direct but lengthy calculations of binomial coefficient
identities [8], but the complexity of these proofs seems incommensurate with the sim-
plicity of the result. This note presents a simple direct proof, using algorithmic and
cormbinatorial ideas.

If a=<a,,...,®%> is a sequence of integers, let sj(a)= Z a; be the sum of
1<isj

the first j elements.

The algorithm of Figure 2 produces a sequence of integers afrom a t-ary tree
by doing a preorder traversal from the root 7, printing ¢ —1 before visiting each left-
most subtree and printing —1 before visiting each other subtree. 1t also prints an extra
—1 after the traversal is done. Exclusive of recursive calls, visit(v) prints £ numbers
that sum to 0, and summing the first j<t of these gives a nonnegative result. From

this observation, the following facts about a follow immediately:

(a1) The sequence a contains tn+1 integers, each of which is either £ -1
or —1.

(aR) Stn+1(@)=-1.

(a3) s;(a)=0, for 1<j<in.

Conversely, from a sequence that satisfies properties (a1)-(a3), we can recov-
er a t-ary tree with n nodes by first removing the last element (which must be —1), pro-

ducing a sequence b satisfying

(b1) The sequence b contains tn integers, each either £ -1 or —1.
(b‘?) Stn (b) =0.
(b3) 55 (b)=0, for 1=j<in.

From such a sequence, form a t-ary tree using the algorithm of Figure 3. The algo-
rithm works by forming ¢ subsequences of b starting at the places where the running
sum s;(b) first reaches t—1, £-2,.., and 0. Since the first element of b must be £ -1
and since the sum can only decrease by 1 at any step, these subsequences are well-

defined. Discarding the first elerment of each subsequence yields t sequences satisfying
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(b1)-(b3), which can be recursively converted to the ¢ subtrees of a root.
Alternatively, the algorithm amounts to parsing the sequence using the gram-
mar

§ ~->1t1S8S-18-1..-18
S -> g,

retaining the subtree of the parse tree induced by the nodes labelled S, then discard-
ing the leaves. |

Next we show that exactly one out of every tn+1 of the sequences satisfying
(al) and (a2) also satisfies (a3). Partition the set of sequences satisfying (al) and (a2)
into orbits under rotation; two sequences <a,, . .. ,a,n+;> and <by, ..., ,b;pme1> are in
the same orbit if and only if

<@y, ... Gine1> = <bj, .. bgmanb vbj-1>
for some j. Let L(a) be the index where s;(a) first attains its minimum value. If bis

formed by rotating the first element of a to the end, then

Ub)+1,  if 1=t(b)<tn,
(1) ta) = {1. if L(b)=tn+1,

because

s;iq(@)=s;(b)+a, for 1=j=tn,
s1(a)=spmn(b)+a+1.

The partial sums of b (except the last) equal those of a offset by one and translated by
g,. so the minimum value occurs offset by one, unless it first occurs as Sin+1(b). In this
case the minimum value is —1 and s;{b)=0 for l<j=in, so sj+1(@)=s;(b)+a=a, for
1=j<tn, and thus {(a)=1. Equation (1) implies that the in+1 sequences in a particular
orbit are all different, and that exactly one of them satisfies (a3).

A sequence satisfying (al) and (a2) must contain exactly n elements equal to

t-1, so there are [tn;l

t'n.+l] 1

] of them. By equation (1), there are [ n ) Erl seguences

satistying (a1)-(a3). The algorithms of Figures 1 and 2 provide a 1-1 correspondence

between t-ary trees with n nodes and sequences satisfying (al)-(a3). Thus the number
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of t-ary trees with n nodes is

[tn+1]__1____{(tn+1 ] 1

n Jin+l t=1n+1tn+1

= [(t -tﬁ)n] (E‘ZTl)}TlT

==
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Figure 1

The 2-ary trees with 3 nodes.
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procedure TreeToSequence(r);
¢ visit(r);
print(-1);

procedure visit(v);
§ if- v =null then return;
print(t —1);
visit(first child of v);
fori:=2 tot do
§ print(-1);
Vgrisit(i-th child of v);

Figure 2

Generating a sequence from a {-ary tree.

‘Page 7
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procedure SequenceToTree(b);
§ if empty(b) then return(empty-tree);
sum:=0; 1:=0; fence:=f-1,
while not empty(b) do
z := next(b);
sum = sum + z;
if sum=fence then

§ i:=i+1; fence:=fence—1,
8¢ 1= empty;
else
§ append z to s;;

§
fori:=1tot do

§ T; := SequenceToTree(s;);
P A
return( /\ )i
Ty ... T;
Figure 3

Generating a tree from a sequence.




