SOME EFFICIENT
RANDOM NUMBER GENERATORS
FOR MICRO COMPUTERS

by
Arne Thesen and Tzyh-Jong Wang

Computer Sciences Technical Report #5711

September 1983

SOMIL BFFICIENT
RANDOM NUMBER GENERATORS
IF'OR MICRO COMPUTERS

Arne Thesen and Tzyh-Jong Wang

Departments of Industrial Engineering and Computer Sciences
University of Wisconsin-Madison, Madison, WI 53706

ABSTRACT
August 1983

The relatively slow speed and small word size of the current crop of micro-computers
causes the eflicient production of pseudo-random numbers on these machines to be con-
siderably more difficult than on larger computers. As a consequence, some micro-
computer-based algorithms are excessively time consuming, while other algorithms trade
off speed against "randemness”. To alleviate this problem we present in this paper
several families of pseudo random number generators explicitly designed for use on
micro-computers. Some of these are adaptations of well known generators to the micro-
computer environment, others are new or lesser known algorithms designed to overcome
some of the restrictions intrinsic to the micro-computer’s 16 bit environment. For each
generator the basic algorithm is discussed and a Pascal implementation is presented.
Values of coefficients leading to pseudo random number streams with good statistical
properties are recommended and an empirical evaluation of the computational efficiency
of the Pascal procedures is offered.

o

Sponsored by the United States Army under Contract No. DAA29-80-C-0041.

Tow T LT T DT

The widespresd availability of micro-computers has encouwraged the
implensntation of micro-computer based software that previously
was only avaliable on larger computers. Freguently this software
iw adapted from earlier designs for larger computers. In some
AR clever design and a heavy use of program and deta overlavs
ig &ll that is needed to "shos-horn” these large software pack-

e onto smaller computers. In other cases, such as for the
of a&lgorithms discussed here, & fundamental redesign of the
uwnderlyving a&lgorithss may be regquired.

3

The most obvious reasorn for the failwe of pseuwdo random
generators designed for larger computers Lo work propeely on
gl cro-computers is the difference in word size (down from 32 bits
to 1é& bits). However merely adivsting the algoriths to reflect
the reduced word size do not solve the problem. This is becauses

[}

1y The limited word s r (1éH bhits) fously limits the
mambrer of wnigue integers that can be produced using
conventional congruential generators.

2y The relative speed of diftferent arithmetic operaticons is
et the & aume o micra-computers aE ulyl 1 arger
computers. This is because specilial puwrpose arithmetic
proceseors (such as the AMD 158 or the 8087) are usually
not available. Instead, micro-computers usually perform
arithmetic by executing & long sequence of ol e
generated instructions. This causes integer addition to
bre i o cler af magnitude faster thar integer
maltiplication, which i twern is yet another order of
magni tude faster than floating point arithmetic.

) Real numbers are wsually vepresented in & micro-computer
o

with greater precision than integers (4 bytes vs. @
bwtes) .

During the research leading to this paper,. we investigated the
prar o mance orf thousands of different procedwres anc/sor
coefficients for micro-computer based generation of random
numbers. Most looked promising, but feiled to perform well when
subrjected to the tests discussed later in this paper. Those thatl
gxcelled in these evaluwations are presented here.

ALl programs presented here are witten in Pascal /MT+, a widely
gdistributed implementation of Pascal for micro- computers. Most
programs are wltten in Btandard Pascal and should be portable to

gyatems using 1é& bit integers, however this claim has not

rr. el 2w X il L U S T ey T W g S

Users of pseudo random number gensrators are concerned with the
"randomness’ of the numbers generated as o well as with the
progranming and computational effort required to daoplement it
Many tradecoffs are therefore made when a specific generator is
chosen for & given application. In this section we will briefly
discuss some of these.

A Fuandamental Fropecties

The sequence of nusbers generated by a pseuwdo random number
generataor is nobt a random Sequence, rather, it ois & repeating
firned sequence of nusbers that pass many reasonable empirical
test +or "randomness". For ezanple, & simple linear congruential
generator may generate the following repeating peroutation of
the integers O,1,2,..,.14,15:

ﬁ—i#-?-lz-l3-10~3-8-9-6—15—4-5~2—11-9-1-14-7-12-13-3-8-?-6-15~4-2~11-2—1-14-——
- 3 DI

The length of the repeating sequence is celled the period of the
gengrator, and the (ordered) set of numbers generated in a period
is referred to as & cycle. The resolution of a generator is the
smal lest possible difference belbweesn two unequal numbers produced
by the generator.

It is desirable to have & generator with as long & period as
possible. Im addition, it is desirable to have a generator where
a cyvole contains multiple ococwrences of any one integer.
(Wi thout this featwe, the interval betwsen like numbers in the
shream will be egual to the cvole size for all numbers in the
gtream.) Finally & generator of random integers showld have a
resolution of one.

B, Computer anguage reguirements

A competent computer programmer s able to implement any pseudo
random number generator in almost any higher level compuber
Language. Evern soy higher level languages impose several
restrictions on the isplementation of psewdo random nusber
generators. Among the more common probhlems ares

Lo The wvalue of local veariables {(such as seeds) wmoight be
lost between calls to & procedure,

Z2e fAccess bto individual bits or bytes of & variable might be
difficult.

i
=

Special purpose arithmetic or logicel operations (such as
MOD o KO might not be available.

4. FParameter passing is freguently time conswming.

ay
A

I this paper we use Pascal/MT+ to illustrate how these
difficulties can bhe overcome.

The absence of static variables (1. above) is a nuisance but not
a serious obstacle. Without static variables, the user must give
a global scope to variables never used ocutside the generator.
This increasses the probability of coding errors, bhut it doss not
increasse memory reguirements or reduce omputing speed. (In
am 2 we show how steatic variables can be simulated in
LAMT+) .

Frogr

Fasoa

ITrability to access individual bites or byvltes is a more serious
prozlemn. Twoe of ow procedures require such access. IIn Programs 4
and 7 we illustrate how this can be done in Btandard Fascal wsing
variant records.

Frogram 2 reguires the use of an "exclusive or" (XOR) operation.
Thise is an operation that uwsusally is not deplemented in higher
level languages. We chose to dmplement this function in embedded
machine code. While this is & featwe supported by Pascal /MT+ and
marny obther Fascal compilers, it is not Standard Pascal, and the
reswlting code is not universally portable. { However the logic
of the programs are olesr and recoding of the slgorithm should
ot be difficult.)

C. Htatistical Properties

Even though the streams of numbers generated by pseudo random
runbrer generators are repestable and theretore not random, our
intention is to wuse these numbers in liew of trualy random nuse
bers. The generated streams owst therefore exhibit the same
behavior as truly random numbers in the application of interest.

The concept of "randomness” esbodies many different statistical
properties, and & single statistical test is nobt available.
Instead, different statisticel tests are reguired for different
piroperties. I the research reported here we operationalize the
concept of randomness by testing for the following properties:

Lo Unddformity of distribution.

e Handomness of sSequence.
Fe Absence of awtocorrelation.

£ for sach property are discussed in
Apperndis . gedless to say &1l the procedures and coefficients
presented in this e vields psewdo random nwmber streams that
pase all of ow tests Ffor Y"randomnmess".

.

T EE . A b T T TR i B] B e s T

The byte idis the basic information building block in & micro—
computer. Two adiacent bytes are wused to represent an integer and
fouwr adjacent bytes are used to represent a floating point
rivnber. As owe will show in later sectionse it is guite practical
to construct random deviates of more complexr bvpes from a stream
af random byltes.

A Truncated Integers

Most installations have available some proceduwres for generation
of pseudo random integers. It dig therefore tempting to develop a
procedure that obtains random bytes by first using the higher
order and then the lowsr order byte of thie integer. This is
exttiremely dangerous as a guarantee of randomness for an integer
does not extend to the bytes that make uwp that integer. In
particulear the lower order byte of an integer generated using &
Limear Congruential (.0 generabtor (Section IVY ies 1ikel to
exhibit extremely poor statisticsl properties. However 1+ the
mudtiplier is carefully choasen, it is possible to abtain a stream
of random bytes by retwning the higher order byte (only) of a
random integer) .. In Frogram 1| owe present such a procedure:s

k]

(5
{functinn RByte:Byte;}

{ note: the following declarations must appear in the main progras
VAR seed : record rase 1nteger of
Iy {int : integer);
2: {lshyte:byte;
msbyte: byge)

end;
CONBT
HULT = 12213 { other good values are: 2837, 3993, 4189, 4293 3
begin { ?247 14789 14125 17245}
seed.int := HULT % seed.int + 1
RByte := seed. msbyte;
dzf seed.int € 0 then seed.int:=seed.int+manintti;
end;

3

Frogram 1: Random byte %enerutnr returning the most
significant byte of a random integer.

Mote that the multipliers recommended for Program 1 are different
fram the ones recommended for its twe byvte sguivalent (Program
Fre We will defer a discussion of L generators until two bvte
generators are discussed in the following section. Here we will
crily paint out bthats

1Y The proceduwre uses variant records to access the same
variabile as both an integer variable and as btwo individusl
hvte variables.

2y The procedure is gquite inefficient as one full byvte
et dinformation s discarded whenever & new bvyte is
genaratead.

2) The procedure is portable as only Standard Pascal featuwres
are used.

4

B. & Tawsworthe Generator

12} more efficient approach to the generation of random bytes is
to use a proceduwre proposed by Tausworteld4d that operate directly
on kits to form a stream of random bits. This procedure has been
showr to produce random manber sequences that 1) have improved
statistical properties over LO generators, afd {2)Y have an
arbitrarly long period independent of the word size of the
compputer used.

Tausworthe generators are nobt in rapread wse on large
computers. This could be because they are diftficult to implement
efficiently in & higher order language, or because their improved

statistical properties are only marginally isportant oo large
word size computers. On micro-computers the situation is guite
different. Here the improvement in periad length and in
statistical properties is quite substantial, and, a3 we shall
see, well witten Tausworte generators are no more Lime consuaming
than other olasses of generators.

1

Lo Algori thm

The basic proceduwrse of a Tausworthe tyvpe generator is illustrated
in Figuw e 1

Bli-pl BLi-r] BIil

(BY = te¥esonoeatusoausnofersvaasn
] 4 A

l—>x9R<~'+]

Figure 1: Relationship between bits in a Tausworthe sequence.

Haere B} is defirned as & seguence of bkits, and the relationship
hetween individual bits in the seguence 1s defined as:

BEid = BLi-—-r1 XOR BLi-pd

where 3 i = any integear,
voe o= Fixed integers with Odrdp.
XOR = the exclusive R operator vielding O i the
terms are equal and 1 if they are nob.,

When r and p are properly selected (as primitive trimodals [&1),
the maxtimum period of the stream {(BY is Skkp ~ 1.

-y

2o Tmplementation

Im Program 2 we present an loplementation of & Tausworthe
algoritmn for the generation of psewdo random byltes. The
nake e is an adaptation of an algorithm presented by lLewis
and Fayne [31. To avoid the need to access individual bits, the
algorithm maintains 8 independent and parallel streans of bits,
and the exclusive OR opsration is performed on all 8 bite {(or one
bvte) at once. Since esch of the eight independent bit streams

PR

have & period of 2%kp - 1, the resulting stream of bvtes will
also have a period of 2%kp 1.

- ¥
(functian rhytelvar {,5:integer) : byte;1
- - ¥

const
p = 98: paminusl= 97; g = 27;

type
gTahle = frray [0..983 of chary { This table holds the queue of bytes to }
vag WTabl {operated upon at a later time}
; “HTable;

)
procedure ByteTable; (This is a programwing trick to reserve space for, and initialize }
begin {a static table within a Pascal/HT+ procedurel
inlinel 9/1/93/71917154/78/5/5/20/189/74/73/179/ 189 /B5/182/77/25/ 14/ 1541220/ 195/ 179148717R/7128¢
G6/181/80/166/52/209/130/142/151/222/ 1872817101 /1367137 /1747 167148/ 7971371 155/65/132/174/
{74790/ 75/1 28/ 112797437 /1721 189/ 68/ 137/1 25/ 206/ 707681228/ 237/ 192/ 147716/ 169/ 203/ 230/175/
239733661137 253/T0/ VB2 T00 321 VB0 LI L1311 239/ 207765163/ 175722/ 19642497102/ 224/ 147/
] 0/070/0707070401070/00/070/070107070/0)
end;
function wor tirst,second:char):hyte; { Hachine code implementation of XOR}
var
temp:byte;
begin
inlinel
43R / first / (% LDA address 1)
§47 7 {tHIVEB AR O
534 / second/ (§ LDR address §)
H {1 XORAE &)
$32 / temp)3 (¥ STA address §)
rori=teap;
end}
be?n
= addr {ByteTablel; { B points to start of the byte tablel
if f ¢ gminusl then

o]

“IF1 3

s=xor (BIF1,B°L8D) 3

=5

Program 2: Random byte generator using a Tausworthe algoritha,

The table ByteTable contains &1l entries in the bit streams
between the cuwrent bits and the ones lagged p positions from the

current ones. The pointer F o points te the entry lagged p
pogsitions as well as to the cuwrrent entry in the table and the
poainter 5 points to the entry lagged p-g) positions.

2. FRemarks

Here we use several wanique featwres of FPascal /MT+. Through the
wse of the IMLINE and ADDR functions we have reserved space (in
ByteTabkle) Ffor a static table of bytes inside the generator.
This has the advantesge thalt the user need not define the table as
a global variable in the main program. The INLINE function is
also wsed to implement the XOR operation. While this {function
probably could be written in Btandard Pascal, its efficiency is
greatly enhanced ky the wse of the 8080 machine code XOR
trstructi on.

%t N % D T e R g R TTUED B ey T RS

A The Linear Congruential Generabors.

The linear congruential (LG algorithm is perhaps the best known
&l b owidely used procedure for computer generation of pseudo
random integers. This is not swprising as the algorithm is both
gasy to uanderstend and easy to code in a&leost any programming
language. Fuwrthermore, for compulters with & word size of 22 bits
o morrey, the resulting code is computationally efficient, and it
viwlds random number sequences that pass most ressonable tests
for randomnmess.

For micro-computers we are not so lucky. The smaller word size
arnd slower speed of these computers defime limits both on speed
and Mrandomness” thalt are much less abttractive than those fFound
3y 1arg@r conputers. It is therefore essential that designers and
users of micro-computer based LT algorithms fully understand how
these algorithmns work and what theld restrictions are. Designers
rieeecd this knowledge bto optimize the perforsance of their
algorithns {apparently trivial changes can guadruple the count of
unigue numbers generated), and wsers need this knowledge to
decide i+ an alternative algoriths shouwld be used.

Lo Algorithm

The Linesr Congruential Senerator produces a new random number
Fo-cm the previous one threough the following congruential
relationships

Pl e e P
B e B

MHitll={atHil+c) Hodam

where 1111 = the i-th nusber gruduced by the generatar.
I[i+1} = the {i+1)-th nusber produced by the generator.
a,C,m = constants,

Using this relationship, ILi+1l ig computed as the remainder of
fa % IL43 + o) divided by m. For example, if oa = 13, o=1, m=1lé&
ancd IL3EY = 7 then 043 is compubted as the remailnder of
CIZET10A0d o 1041 = 132,

faad

Ay daportant featwre of LE generators igs the fact that each
period contains at most one oocwence of each of the integers in
the range O —~ m - 1. Thereftore, the interval between any two
Tike integers is fixed, and, the maximum period is m.

The properties of LO generators heave been extensively studied.
Fruth E21 provides guidelines for selecting the values for the
cogfficients a, o and m and recommends specific values for large
conputers. Recommended values for micro-computers are presented
tater in this section.

2a Implementation

To minimize computational effort, m is chosen to be the largest
integer that the computer can represent + 1 (2318 ar 7 iy
most micro-conputer systems) . This has the advantage that the Mod
aperation in the Linesr Congruential relationship is perforoed
awtomatically when the term (a % I041 + o) iz formed.

T mindmize the importeance of the initial seed, we wish the
gengrator to generate all non negative integers less than m. It
can be shown dnuth CED that this is always possible if © and a
are chosen according to certain rules. MNote however that no
guarantess are mades regarding the statistical properties of the
. 'ulltnq rumber sequence. One family of generators satisfying
these s AT

={a ¥ I[i] +1) Hod 32748

e~ Dt
ot
~

e - T

where a = k¥4 +1 [k=0,1,2,....1

A Fascal ioplementation of this generator is

H

given in Frogram 3s

{ 3
function unif_lcg (var seed : integer) :integer;

Const
HUILT = 3993 ({recommended values are: 589, 1813, 2125, 2433, 3993, 4773, 5275
begin { 5737, 5995, 6&&1, /149 11097, 112#4,12217 20315 256411
seed 1= gpultiplier % seed + Ij
if seed ¢ 0 then seed := seed + maxint +1j
upif_lcg := seed;
end;

-
=
o]

[=]
=
@
=
st
-
£

ongruential generator

T g g

A total of 8192 different valuess for a can be chosen for this
generator. Some of these vield "good" seguences, while others
yviegld 'Ybhbad” sequences. For example, the following seguence is
generated i+ & is ones

0-1-2-3-4-5-6-7-8-9-10-11-12-13-14- ..., -32766-32747-0-1-2...

This seguence clearly has & period of m. However, 1t will not
pass any reasonable test for randomness.

As we are not aware of any method for predicting a mrimri witi oh
values of a will result in "good" segquences and which values will
¥ bt din Mhad® ees, we conducted empirical t@%tﬁ o the
cutpat proaduaced by of the 192 possible values of a. Bome of
the wvalues of a that were found to vield statistically ‘Ygood"
sequences are listed in the program. The reader s cautioned
against wsing other values of the mualtiplisr as most other values
were found to fail at least one of the tests discussed in Appx. .

b2y
[EES

He Remnarks

I=

certain degree of simplicity and computational efficiency
appears to be geined when ¢ is set egual to zero. However, we
shiowld point out that generators of the form i

Ifi+13 ={a % I[i1)Hod 32748

Bl P
B = P

lave only ane fowth of the periocd of the recomnended mixed
gernerator. As & consequence the generator now produces two
mutbual ly exclusive sets of (odd) random integers. The actual set
produced in any one run depends on the initial sesd chosen for
that run. Fwrthermore, as we show in the evaluation section the
elimination of the constant ¢ has no significant impact on the
gpesd of the resulting procedure.

LU

B, & Tausworthe generabtor.

In section TII we showed that & random bylte could be developed
from eight parallel random it streams wsing & Tausworthes
generator. Since this algorithm was not © trained by the word
: of the compubter wsed, we can easily extend it to generate a
random integer from sixtesn parallel streams of random bits. Due
to the simplicity of this extension we do not provide & program
ligting here. However data for the performance of the resulting
algorithm is provided in the svaluation section({ as Program 4&).
Here we chose instead to present an algorithm that illustrates
Mow we can "build" a random integer from twe random (Tawsworthe)
brytbes. (This concept is extended in a later section to the
construction of flaating point numbers.) As showsn in Program 4,
the key to this algorithm is ow a&bility to use a variant record
] resent twoe adjacent bytes as both two individual byl aret
& single integer:

i

}

{
{Function Unif:lnteger;1

2

type
integertype = Record
case integer of
1 ¢ {Onelord @ Integer);
2 : {lsbyte : Byte
Hebyte : Byte)
end;
var
itIntegerType;

{ Place Function RBYte right herel

begin
1,L5Ryte :
1. HGByte s
end;

RBytes
RByte;

Program 4: Building a random integer from random bytes.

The reswiting random number stream bhas good statistical
properties and it has & period of 2%ip~1. This period can be
substantially extended 1f the two independent generators have
periods that are relative prime (but we have not evaluated how
this affects the statistical properties of the resulting random
mumbrer stream) .

Co Shutfle Generabors

Bhuffle generators combine two or more independent generators to
produce & single random ramber stream with (hopefully) Lmproved
statistical properties. Of cowse this improvement (if any) comes
at. the cost of reduced computational efficiency. Many elaborate
shurfling algorithme have been proposed. The key to success for
any of these is the requirement that the driving generators must
have periods that are relative prime.

The shuffle algorithon presented here is adapted from Enuth L3231,
fAe shown in Figuwe 2, the algorithm maintains an internal table
of pesewdo random numbers. Whenever a random nunber is reguested,
a random index is generated, and the random number stored at the
corresponding location in the table is returned. This entry is
then replaced by & new entry wsing the second random number
gernerat

STEP I. Get table index.
i (-Random index, using generator 1
STEP I1. Get value stored at this location.
4 (- Tablelil
STEF III. Replace this value.

Tablelil (- Random integer, using generator 2.

Figure Z: Knuth’s Shuffle Algoritha.

The resulting procedure (Frogram 5 produces random number
sl {13:3 of guite (Ehuth savs edceptional Ly long periods.
Unfortunately this procedure is rather slow due to the fact that
we now st perform additional operations to make swe that the
twe driving generators have periods that are relative prime. It
ig likely that the proceduwre can be speeded up by replacing one
of the generators by & Tauwsworte generator such as the one
presented in Program 2.However this would reduce the portability
of the procedare,

¥

function shuffle {var table : array [0..127] of integer;

var generator @ integer ;

var selector @ integer ; o

request ¢ integer { 0 : initialize the table }
{ 1 : request value output 3
) ¢ integer j
{ ¥
var
index @ integer ;

éunc%ion DO_BENERATE (var seed:integer j): integer ;
ans
hea Hultiplier = 5737 {(see table ! for other recosmended values}
egin

seed := seed ¥ multiplier + 1 j

if seed { 0 then seed := seed + maxint + 1 ;
10 GENERATE := seed ;
end 3

Eunc%iun 00_GELECT({var seed:integer j 1: integer ;
ons
Hultiplier = 6041 {see table ! for other recommended values}
var
valid : boolean ;
begin
valid := false ;
while not valid do
begin
sepd := seed % pultiplier + 1
if seed ¢ O then seed := seed + maxint + { j
valid := seed ¢ 32749 3 { force peripd o be
32749-- pax prime § ¢ 32768 }

end ;
DB_SELECT := hi{seed) ;
end ;
begin {main}
case request of
t: { request a value
begin
index 1= DO SELECT(selector, s_sultiplier) ;
shuffle := Tablelindex] ;
tgble[index] 1= DO_GENERATE {generator,g_multiplier) ;
end
0 : { {nitialize the table }
for index := {0 to 127 do
tablelindexl := DO_BEMERATE (generator,g_multiplier) ;
end ¢ { of case }
end 3{main}

Frograe 3: Sample Pascal procedure for table shuffling.

11

i o e E T O S PTG e T R
Ae. Conventional procedures

Real wvalued random deviates are readily obtained from integer
deviates by mode conversion (from integer to real) and by scaling
Cfram O.0-327467.0 to 0.0-1.0). One such procedure is illustrated

in Frogram é.

var
seed:integer;

I
function u2i28 :real;}

begin
sead = 2425 § seed + 1
if seed ¢ O then seed := seed + manint +1;
32125 1= seedid, 034A48E-5;

end;

Program 6: Pascal procedure for uniformly distributed deviates on 0.0-1.0.

This is an acceptable procedure for large computers. However fwo
seriouws problems restricts its usefulness for smicro-computers:

1y Flasting point arithmetic is particularly slow on most
micro-comput er s, Fraogram & is aboult 4 times slower than
its dinteger counter part. It would be even slower 1F

g

wer divide by 32,7688 instead of multiply by its inverse.

21 Most micro-computer languages use four bytes to store a
floating point number while they use only two byvites to
store an integer. FProgram & has inherited the cyole
ard prer i ol restrictions of owr bwo byt e integer
generators.

I the following section we present a new approach to generation
of Floating point random numbers that overcomes these problems.

A Construction Algorithm for Floesting Point Deviates.

i

Lo Algowithm

A random variable w on LO-11 can be expressed as a function of a
rardom exponent e and & random mantissa m as follows:
m e
W X 2

i

random variable on [0-11
random variable dirawn from bthe distribabtion:
=i+l
Frie = i } = 2 o= 0, 1,2 ..

1
1

where w

B
i

M = a constant
m = Uniformly distributed random variable on § M/72,M) .

o

I

A algorithm based on this notetional convention is presented in

Figure 3 {(the algorithm is discussed in more deteil in [53):

T. INITIAL ASSIGNMENTS

e
&

0 {Correct value if u > 1/2}
U0, M {Uniform deviate on O-H3

{1, I5 ADDITIONAL WORK REBUIRED?

o

I m»= N2 { this happens half the time}
then goto step IV
else @ = m + W2,

I11. ADJUST EXPOHENT
. Draw random byte{s) until a nonzero byte is found:
k = RandosByte
while k = 0 { this happens with a probability of 1/256

g=g-4f
k = RandomBbyie.

B. Scan the byte for the first nopzerg bit:
while k ¢ 128
b=k 2
e= g~
IV. RANDOM VARIABLE IS u = fie,ml

Figure 3: Algorithe for generating u

The algorithm sterts oult by assigning & value of zero to the
@rponent (odetining & number on [0.5-1.01) and & random value to
the mantissa. & check is made to see 14 the resullting mantissa
fras a valid value {(there dis & S30¥ probkability that this is true).
I so, the algorithm stops as & valild number has been produced.

I+ the mantissa is not valid {i.e. its first bit is not oned,
Then AE 0 ds added to m bto make it valid, and & procedure for
generating a random exponent is entered. This proceduwre 1& based
o the premise that the number of zeross preceding the first one
in a random stream of bitse follows the gecometric distribution
with p o= 0.5, Random bytes are deawn until & nonsero bvte is
found. This byte is then scanmed until the first nonsero it is
fornd. The resulting expornent is computsd as the negative value
af eight times the number of zero valued bytes plus the number of
sonsecutive zero valued bits i the last byvte,

e

2o ITmplementation

o dmplensntation of the algorithm is based on the conventions
£ o representation of floating point numbers adopted by the A&MD
FELl COR ITNTEL 82318) hardware flosting point unit 13

bit K3 S ARt 2524 23 16 14 87 0
¢ pogomt s ot ¢ $mmtt -t
?n ! sign b value of ! Hantlssa !

! of esponent ‘mnst signif! 'east signif!

b ICdﬂt hyte ! Yicant byte !

+ R
T T T

'mantissd exponent!

Figure 4: AMD 98911 converntion for flosting point notation

For numbers betwsen zero and one the sign bit of the mantissa is
zero. The sign bit of the exponent is one i+ the number is less
tharn 0.5 and zero atherwi se. Inm Table 1 we show how the values
of @ and m oare encoded in the fow byltes representing & number in
the range O-1. The correspondence in behavior bebtween @ and bl
and m oand BEBIEILES s observed.

| 1 ' e ' a 1(1;1 :' b2 ' bS,bfiE
;:o =05 ! 0 16,777,2058, 380,608 | 0 '128 255! 0-255 |
0.5 383%0,25 -1 16,777,215-8, 389, 608 *177'129 255! 0-255 !
10,25 0,18 1-7 114,777, 245-8, 388, 608 126!126-755! 0-255 !
?0.125—:\;;2).0625 -3 ‘16 777,215-8, 368, 608 125! 126-255! 0-15 5!
1, 042531)=0,0312 5i-p 116,777, 2158, 388,608 ‘124'128 255! 0-255 !

Table 1: Values of individual bvytes for numbers on L0171

Ouwr dmplementation of an algorithm exploiting this data structw e
is shown in FProgram 7.

Se Discussion

While a fixed number of random bytes are alwavs used to generate
a andom mantissa, the mnumber of bytes n used to generate &
rardom exponent s itseld a random variable. It carn be shown that
the distribution of n iss

i
Fin=1 } = 285 ¥ {}/2538) 72 for i = 1,2,%,...

and the expected value of n is 122885 = 0,5019407.

The procedwe is driven by the two independent random byvite gene—
ratoars RBytel and RBEyteZ. In our perfornance tests we used both
the simple truncated integer procedure presented in Program 1,
arnd the more efficient (but not as portable) Tausworthe generator
presented in Program 2. When Progeam 1 owas used then Programs &
and T owere egually fast (but Program 7 has better resclution and
a longer periad). When Program £ was used, then Program 7 was
faster than Frogram & and of cowse it still vielded mnumbers with
better statistical properties.

14

{

function unifors sreal

e

type
realtype =
record {variant record for byte access}
case integer of
Iz {unir 3 reall; {The variable we want}
2: f{exponent : byte; {exponent and sign bits}
m% H §y§9; {most significant byte of mantissal
a2 @ byte;
] XEH byte;; {least significant byle of mantissal
end;
var
k1 byte;
u i real%ype;
begin
with u do
begin
sl = Riytel; {a separate byte generator is assumed}
@2 := HBytel;
83 := RBytel;
giponent 1= 03 { proper value for 0.5 Cu ¢ L0
it @l {128 then {by convention the most significant
begin {bit ! in al must be |

Prograg 7:

ml o= al o+ 1285
exponent = 125;
k1= RByteZ;
While k = 0 do
begin
exponent := exponent - B3
b 1= KByteZ;
ends;
if k ¢ 1ZB then begin
it & = &4 then exponent := exponent -1
else if k »= 32 then exponent := exponent -2
else if & = 1& then exponent := exponent - 3
else if k = 3 then exponent := exponent -4
else if & = 4 then exponent ;= exponent - §
else if k 3= 2 then exponent := exponent -6
else exponent := exponent - 7
ends
upiform := unif;
end;
ends

Pascal /WT+ Implementation of unitorm random number
gererator using AHD 7311 floating peint notatian.

13

S bt ot

T W B e g L LB T T

Al the generators presented here were subjected to extensive
prerf o mars @ teats. This itncluded =stati el tests £ o
distribution, segquence and awtocorrelation as well as timing
tests for computational efficiency. The statistical tests used
for this puwrpose are summarized in Appendix T, ALl generators
presented here passed all statistical tests. & further discussion
of statistical test results is therefore omitted. The results of
thes timing tests differed substantially for the different
genarators., Thes are summarized here together with obher
important intrinsic performance charecteristics.

The timing data presented below was obtained by measwing the
time regquired to generate 32,000 random numbers on & Slerra Dats
Beiences single board computer running at 4oz under the Twhodos
operating system (& CF/M dialect).

The reader is warned against resding too suweh into minoe
difterences in edxecution times. Such differences are as likely to
e caused by ditferences in programning styvles and data transfer
methads as by intrinsic algorithmic performance differences. Foe
example we found that the Teausworthe hyte generator (Program 2
pertorned three to fowr seconds faster in ow tests when the
resulting byvte was maintained as a global variable rather than
retuwrned through the function.

fA. Bylte generators

The perforaance of owr two bylte generators ie summarized in Table
2. While the Tausworthe genersbtor was slightly slower than the LG
generator, we have contirmed the fact that this difference
primarily due to differences in dete transfer methods and not due
to differences in algorithmic design. The most important differe-
roe between the generators is btherefore the fact tha the
Tausworte generabor has a substantially longer period than the LG
generator., Howsver this improvement in performance 1 gained at
the cost of not wsing Btandse-d Pascal.

i

t

L 1 n 4
t * 3 +
3
i

__,.
-

) 9 UINTERVAL! 3 s .
LAFPROY. 'RESO- 'BETHEEN 'ARGUMENT! I STANDARD
RANGE FERIOD 'LUTION'LIKE | PASSED 'RELATI! PASCAL |

| PRO-! GENERATOR

!
i
! GRAH!
1
i

-

! ! ! 'NUMBERS ! ! GPEED! !

I ! Truncated integ! 0-25% ' 28045 ¢ 1 !vrapdom ! oo ! 2" ' yes !
e - + + + + ¥ + 4 +
' 2 ! Tausworthe byte! 0-258 ! 244987 ! ‘randog ! yes ! 16" ! no !
L + + - + $ + + ¢ t t

Table 2: Relative Performance of Random Byte Generators.
Be Imteger generabtors

The performance of ow integer generators iz summarized in Table
F. The standard LO generstor (Frogram 2 performed faster than

arny of the other generators. However the period for this

La

gener ator (32768) is so short that we hesitate to recommend its
uee in lengthy siomuwlations. Program fa is a standard LD generator
with o set equal to zero. Data for this generator is included to
iltlustrate the fact that the omission of ¢ reduces the pericd of
a generator withowt improving itse speed. The twoe Tausworthe
generators were slower than the LOC generators. Again we verified
the fact that the speed difference between these two algorithms
was only cawsed by differenc in data transter methods. Finally
the shuffle algorithm was about three times slower than the LO
gunmxuhur However this generator has & substantially longer
period and s written in Standard Pascal, it might he the
gernerator of choice for users without access to Fascal /MT+,

P ?] T el L 1 '
UPRO-! BENERATOR | URPPROX. 'RESD- 'BETHEEN ! ORDER | 'STANDARD!
| GRAM! | RANGE {PERIOD {LUTIONILIKE { BYTE RELATII PASCAL |
P z " INUHBERS ! *RANDON" ! SPEED! i
prmmme T + ; ¢ ; * ¢ ‘ +
|3 ULCE (Tsai+l) ' 032767 MMS ! L} MG ! ona ! 15! yes !
R e— VL2767 V2630 4 ! M43 no ! L5 ! yes A
+ : et ¥ 3 f § + € ;
Y fa ! Tausw. 2 bytes ! 0-32747 ! 244%6 0 1 'random 'yes ! " ! no !
fmmmmnt . + ; 3 ¢ ¢ + +
Y4 ! Tausw. Integer ! 0-32747 ! 24497 ' 1 ! random 'yes ! 23! po !
+ +‘ - 3 - + + $ + + +
C 5 ! TABLE GHUFFLE ! 0-32767 ! 24430 ' 1 ! random ' yes ! 45' ! yes !
fmmmen ' ' : + ; + ; fommmmemm +

Table 3: Relative Performance of Integer Generafors.

o Floating Point Generators

The performance of ow flosating point generators is summarized in
Table 4. We note that the fastest g@ﬁmr(”mr is owr dmplementatlon
of the construction algorithm wsing the nonstandard Tausweorthe
byte generator (Frogram 7Fa). However the implementation of this
procedure wusing Standard Pasceal (Program 7)) was as fast as the
conventional LE based generator and it edhibited substantially
hetter statistical properties.

+ fommn ; * + : + ¥ -+
e ! l C hTeRvALY Lo 1 i
| PRO-i GENERATOR | | APPROY. RES0- 'EETHEEN | DRDER | 'STANDARD!
! ERAN! | RANGE IPERIOD ILUTIONILIKE 1 “BVTE IRELATI! PASCAL |
P i (" INUNBERS {"RANDOH®! SPEED! i
T ',0000 - f 5277 12015 615 1 na L S0 yes
b 0,0000306 10.99996941 V! i L !
e L UL/2678 L0000 - 1 32767 \24-15! * b yeg
P 19, 9999694 Cpax | Z4H5 o7 i
U7 1 UsFle,m)+Progl ! 'L, o?\‘zzizafz:x-z Urandom ! yes ! 57 | yes !
! ! !mu ! ! ! !
¢ frmmmm { e + $. + ¢
! 7a ! U=Fleym)tProg 2! .0 - L.0}) }2413'244-23! randon ! yes ! 453" ! po !
Pt i i Cpar i P s

Table 4: Performance of Fleating Point Generators,

b LW B LR ol o e

This paper presents the findings of an ertensive evaluation of
thousands of different combinations of algorithms and constants
for micro-compubter based random number genereators. A11 of the

rators presented here have been shown Lo pass reasonable
For wndformity of distribution, randomness of seguence and
absence of auwto correlation. In addition each generator dominate
the others in at least one of the dimensions of speed, period and
portability.

We had expected to observe a tradecoff between speed and
"randomness” , however no such relationship was observed. In fact
the fastest generabtor of floating point numbers also exhibited
the longest periocd. We also had ewpected to observe a strong
tationship hetwesn pragramming stvle ard computati onal
zfficiency. This expectation was condirmed Clever wuse of
nonstandard language festwres do improve Likewise the
manrer dn which ig transferred to and from the procedures
has & significant (15Y up to ; gffect on relative performance.

However, we feel that the most important lesson to be s e
frrom this study is the fach that we were completely unable to
predict in advance whether or not a given algorithm would sxhibit
good e bad statisticeal properties. The Llikelihood of improving
art algorith through ad hoo changes are slim at bhest.

18

LT

L.

B0 B U JEmd, J0 TR et R el e

Intel Corp., 82314 Arithmetic Frocessing Unit, Freliminary Data
Sheet, 1981,

Friuthy, The Art of Computer Frogramming. Addison-Wesley, l9&9,

Lewis, T.06. and Fayne W.H. Generalized Feedback Register
Feseudorandom Number Generator. JACM vol . 20,No 3, July 1973,
e 456468,

Tauvsworte,R.C., Random Numbers Generated by Linear Recurrence,
Modulo Two, Matih. Comput. 19 (19&65) 2013209,

Thesen, fArne., An Efficient Generator of Uniformly Distributed
Random Deviates Between Zero and One. Technical Report.
Mathematics Research Center, University of Wisconsin-Madisan,
15,

Zierler, Niegl and John Brilihart, On Primitive Trinomials
(Mod 20, Information and Control, Vol 13 pp 841-58%4, 1968,

1%

I

3R B I X o= ST T O CERTT D T e

Aall proceduwres ligted in this paper, when used with recommended
parameter values, produce streams of numbers that will pass the
following statistical tests. (Gtreams produced wsing obther
parameter values are likely to fail these tests.)

. Distribution.

The range of numbers produced by a generator is divided into 128
aqual subranges. A stresm of 4100 numbers is then generated and a
freguency coaunt of observed valuess in each subrange is developed.
These empirical counts are then compared bto the eupected counts
(41007128, & two sided Chi-square test is used to test the
hypothesis that the observed errors in each interval e
reasonable errors that couwld have ccowred i+ the original data
wera deawt Fform the undform distribubtion.

This procedwe was replicated ten timess. ALl gensrators presented
here falled this test at most once on the 95% level.

A orun test was used to test the hvpothesis that the rnumbers
generated o the above distribution test appeared in random
order. Specifically we sccepted the hypothesis that & generator
produced integers in a random sequence i+F no more than one of the
tern streams failled the following test on the 99%% level.

Lo Define a run of length n to be a sequence such thats

whdd < w023 oo wind » wlin+ll

The sequence 89450489035 g a run of length three.

e Boan the set of numbers sequentially Lo determinge the
Tength of individual runs. (Discard the run terminator
shn+ll, do net include it din the nest run!) The segquence
; SFBF-F0-78 has two vrunsy one of length

24 and one of length three (45I-789-59%50-

T] e 5 Ly £ e T T e £
two (234~
TEY .

Ge o Develop a é&-bin histogram counting the number of runs
af length 1, 2y 3, 4, % and 6 and more.

4. Use a chi-~soguare test to compare the observed
igtribution of run lengths to the expected distribution:

- + . t + + ¢ +
YRun length ¢ 1 ' 2 V3 OV 4 0V 5 V4 or aore !
Uprobability | 1/2 ' 1/3 0 L/B D 1/30 ! L0441 /720
fmmmmn ; ; + 4 . ; +

20

C. Autocorrel ation

A good pesewdo random nuweber generator should have the feature
that the value of the rext number to be generated can not be
predicted from the values of previously generated numbers. I
this featwe is present then we cam consider the random number
streanm to be a stationary time series with & constant mean and
variance, and & undt autocorrelation materisx.

Im ow test for the absence of auvto correlation, we estimated the
attocorrelation and partial auto correlation matrices (for the
firast 128 Lage) for the ten streams generated for the
distribution test above.

The hypothesis of no autocorrelation was accepted if e
syestematic patterns such as aubtoregressive oF moving average were
obzerved from the error adivsted correlogram for any of the
streans evaluwated.

21

