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ABSTRACT

We present the design of mechanisms for concurrency control and recovery
in multiprocessor database machines. We also analyze the relative performance
of the various mechanisms and study their impact on database machine
performance. While the multiprocessor-cache class of database machines has
been the focus of our research, we also enumerate how our design can be

adapted to the other classes of database machines.

We show that for concurrency control, a centralized 2-phase locking
scheduler with deadlock detection is most appropriate. Amongst the recovery
mechanisms, parallel logging is shown to have the overall best performance.
With the architecture that we have proposed for logging, the recovery actions
can be completely overlapped with the processing of data pages. Thus, the
throughput of the database machine is not degraded by the recovery

mechanism.

Some other important results emerged as a consequence of this research.
We propose that the co‘ncurrency control and recovery are intimately related
and describe the interaction between different concurrency control and
recovery mechanisms. We also present the design of six integrated concurrency
control and recovery mechanisms in the context of centralized database

systems and the results of their performance evaluation.

We have extended the shadow and the differential-file recovery mechanisms
for use in a multi-transaction environment. We also designed a linear deadlock

detection algorithm. In addition, we have proposed a solution to the update



problem in hypothetical databases that permits the reinsertion of a previously
deleted tuple while preserving the append-only nature of the differential

relations.

We also present several parallel recovery mechanisms. Particularly
interesting is the parallel logging algorithm that allows logging for a transaction
to be performed asynchronously at more than one log disk, and yet does not
require physical merging of distributed logs to recover from failures. We show
how to take system checkpoints completely in parallel with the norn;al data
processing and logging activities. Although designed in the context of database
machines, these parallel recovery mechanisms may be easily adapted for use in

any high performance database management system.

iv




ACKNOWLEDGEMENTS

First and foremost, I wish to thank David DeWitt, my advisor; that without
him this thesis never would have happened cannot be gainsaid. He provided
more than generous support, arranged an excellent working environment,
helped me formulate a number of my ideas, and translated this thesis into
readable English. Randy Katz was very flexible and accommeodative, whether it
reqﬁired sitting in my preliminary examination with jet-legs or taking my thesis
to Berkeley for reading. Haran Boral squeezed in time to read this thesis in
spite of his short visit from Technion. Jim Goodman made numerous insightful
suggestions on the thesis. I also thank Andy Pleszkun, Doug Bates, and Dina
Bitton Friedland for their comments. Tony Klug gave valuable advise in the early

phases of this research. His unfortunate death in June was a personal loss.

The foundation for this research was laid in the initial part of my graduate
study. 1 thank.the excellent Computer Science faculty, in particular, Ray
Bryant, Marﬁn Solomon, Charles Fischer, Raphael Finkel, Olvi Mangasarian. Bob

Meyer, and Steve Robinson for all that | have learned from thermm.

Our stay in Madison was made pleasant and memorable by the company of
many of our fine friends. The entire list is too long to include here, but I would
like to mention Keith for his association in many projects, Kamesam for helping
me prepare for the Math Programming qualifier, and Dinkar for all the music

recordings.

Finally, I need to thank my family: my parents Dr. Ram Kumar and Mrs

Urmila Agrawal who were the constant source of inspiration and encouragement;



my daughter Geetika who never quite understood why 1 spent so much time
staring at the terminal and yet never insisted that 1 keep up with my last week's
"next week positively” promises; and of course my wife Shalini who provided

support, patience, and understanding.

This research was partially funded by the National Science Foundation
under grant MCS82-01870.




TABLE OF CONTENTS

Chapter 1 - Introduction

.1 The Problem .
.2 Multiprocessor-cache Database Machine Architecture
.3 Other Architectures
1.8.1 Conventional Systems
1.3.2 Processor-per-disk
1.8.83 Processor-per-track
1.8.4 Processor-per-head -
1.4 Organization of the Dissertation

1
1
1

Chapter 2 - Concurrency Control and Recovery
in Centralized Databases

Introduction

Summary of Related Research

Summary of Concurrency Control Mechanisms
2.3.1 Locking

2.3.2 Timestamp Ordering

2.3.3 Validation

2.3.4 Timestamp Ordering versus Locking

2.4 Summary of Recovery Mechanisms

2.4.1 Recovery Using Logs

2.4.2 Recovery Using Shadows

2.4.3 Recovery Using Differential Files

2.4.4 Recovery Using Versions

2.4.5 Shadows versus Versions

Interaction of Concurrency Control and Recovery
2.5.1 Sharing of Data Structures

2.5.2 Update of Data Pages

2.5.3 Commit Processing

2 8 The Cost Model

2.7 Cost Equations

2.7.1 System Parameters

LN+

o)

(911

2.7.2 Assumptions About the Concurrency Control Mechanisms

2.7.2.1 Locking
2.7.2.2 Optimistic

2.7.3 Integrated Mechanisms
2.7.3.1 Log+Locking
2.7.3.2 Log +Optimistic
2.7.3.3 Shadow+Locking
2.7.3.4 Shadow+Optimistic

[aery

O~ U DN

11

11

12
14
14
15
16
16

19

20
22
23
25
25
25
26
28
33
37
37
38
38
39
40
40
43
45
48



2.7.3.5 Differential File+Locking 50

2.7.3.6 Differential File+Optimistic 52
2.8 Database, Mass Storage Device and Processor Specifications 54
2.9 Evaluation 56
2.10 Conclusions 71

Chapter 3 - Concurrency Control and Recovery Mechanisms

for Database Machines 74

3.1 Introduction 74
3.2 Review of Related Research 74
3.3 Concurrency Control Design 77
3.3.1 Scheduler Location 77
3.8.2 Concurrency Control Algerithm 79
3.8.3 Replicated Data 80

3.4 Recovery Design . B1
3.4.1 Parallel Logging B1
3.4.1.1 Architecture , 82

3.4.1.2 Data Structures B2

3.4.1.3 Collection of Recovery Data B3

3.4.1.4 System Checkpoint B6

3.4.1.5 Recovery from System Crash 88

3.4.1.6 Recovery from a Transaction Abort 91

3.4.1.7 An Embellishment 92

3.4.2 Shadow 93
3.4.2.1 Reducing the Penalty of Indirection 93

3.4.2.2 Avoiding Indirection 95

3.4.2.2.1 Version Selection 95

3.4.2.2.2 Qverwriting 97

3.4.3 Differential File ‘ 98
3.4.3.1 A Problem and A Selution 99

3.4.3.2 Parallel Algorithms ' 100

3.5 Summary 105
Chapter 4 - Performance Evaluation 107
4,1 Introduction 107
4.2 Performance Evaluation Methodology 107
4.3 The Bare Machine Simulator 109
4.3.1 Model Description 109
4.3.2 Model Characteristics 112
4,3.3 Stability Experiment 1156
4.3.4 Conclusions 117

4.4 Parallel Logging Simulator 120
4.4.1 Specifications : 120
4.4.2 Experiments 122




4.5 Shadow Mechanism Simulator
4.5.1 Specifications
4.5.2 Experiments
4.6 Differential File Simulator
4.6.1 Specifications
4.6.2 Experiments
4.7 Comparison of the Recovery Mechanisms

Chapter 5 - Conclusions and Directions for Future Research
Appendix 1 - Notation
Appendix 2 - Linear Deadlock Detection

References

ix

147
147
148
164
165
168
177

181
187
189

205






CHAPTER 1

INTRODUCTION

1.1. The Problem

A database machine is a collection of specialized hardware designed for
supporting basic database management functions [Hsia79a]. The intent has
been to use hardware to do efficiently various tasks of database management
that are performed traditionally via software. During the past decade, a number
of database machine designs have been proposed (see the surveys in
SongB1la, BoraBla, HawtB2a). However, most of these designs have been

optimized only with respect to retrieval queries.

In reality, databases are continually updated by multiple transactions. In
the presence of updaf.e operations, a major function of the database
managerment software is to synchronize concurrent accesses to shared objects
so that certain consistency assertions called consistency constraints are
maintained and to restore the consistent state of such objects in case of
failures. The first problem is referred to as the concurrency control problem

and the second problem is called the recovery problem.

Database-machine designers have given no attention to the issues of
concurrency control and recovery and their impact on the performance of the
proposed machines. The study of recovery architectures for RAP-like

associative processors in [CardBla] is the only work in this area.

Herein lies the motivation and the objective of this research: to design and

analyze the velative performance of concurrency conirol and Tecovery
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mechanisms for a multiprocessor database machine architecture and to study

their impact on the performance of the database machine.

1.2. Multiprocessor-Cache Database Machine Architecture

The qnultiprocessor-cache database machine architecture (Figure 1.1) for
which we have investigated concurrency control and recovery mechanisms
consists of a set of general purpose processors, a multi-level memory hierarchy,
and an interconnection device connecting the processors with the multi-level

memory hierarchy.

Some of the processors, designated query pro“cessors (QPs), execute user
queries and operate asynchronously with respect to each other. One of the
processors, designated the back-end controller (BEC), acts as an interface to
the host processor (the processor with which a user interacts) and coordinates
the activities of the other processors. After a user submits a query for
execution, the host compiles the query and sends it to the back-end controller

for execution on the database machine.

We assume that the memory hierarchy consists of three comﬁonenisu The
top level consists of the internal memories of the query processors. Each
processor's local memory is assumed to be large enough to hold both a compiled
query and several data pages. Mass storage devices (disks) make up the bottom

level and the middle level is a disk cache that is addressable by pages.

The bottom two levels of the memory hierarchy are connected in a way that
allows for data transfers between each mass storage device and any page frame
in the disk cache. A processor, designated the 1/0 processor, is responsible for
transferring pages between the mass storage devices and the disk cache. The
1/0 processor is logically a part of the back-end controller. The top two levels of

the hierarchy are-so connected that each processor can read or write a different
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page of the disk cache simultaneously and all processors can simultaneously

read the same page of the cache.

This architecture captures the essence of the designs of the multiprocessor
cache database machines like DIRECT [DeWi79a], INFOPLEX [Madn79a],
RDBM [Hell81a] and the database machine project at Texas that utilizes the
TRAC [Upch79a] processor. See [BoraB0a] for query execution algorithms on

such an architecture.

1.3. Other Architeciures

DeWitt and Hawthorn [DeWiBla] have divided database machine

architectures into five generic classes®:

CS - conventional systems

PPD - processor-per-disk systems

PPT - processor-per-track systemns

PPH - processor-per-head systems

MPC - multiprocessor cache systems
Although all database machines may not directly fit into this classification, it has
been argued inDeWiBia] that most of the database machines may be

represented as sorme combination of these architectures.

While the multiprocessor cache architecture of the database machines, as
presented in Section 1.2, will be the focus of this dissertation, at the appropriate
points we will describe how our design of concurrency control and recovery
mechanisms may be adapted to the other architectures. In this section, we will

present an overview of the other database machine architectures.

! Those architectures that are not feasible using presently available technol-
ogy and those that may never become cost effective were not included in
DeWitt-Hawthorn classification.




" Conventional Systems (CS)

The first class of "database machines” is a database management system
running on a single processor (Figure 1.2). The operating system on the
processor is tuned to the needs of the database management
software [Gray78a, StonBla] and the CS uses sophisticated query execution
strategies such as those employed in System R [Seli79a]. The IDM 500 from
Britton-Lee Inc. [IDMB83a] is an example of this class of database machines. The
results that we will present in Chapter 2 will directly apply to this class of

datdabase machines.
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Figure 1.2 Conventional System



Processor-per-disk (PPD)
A search processor (or a set of processors [Leil78a] ) is placed between the

secondary storage devices and the primary memory (Figure 1.3) that filters out

irrelevant data. Examples include CAFS [Babb79a] and the designs in [Lang77al.

[Leil78a] and [Banc80al].
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Processor-per-track (PPT)

The mass storage device consists of cells. A cell can be a disk track, bubble
memory, or charge-coupled device. A search processor is associated with each
cell (Figure 1.4). Examples include RAP [Ozka75a], CASSM [Su75al,
RARES [Lin76a], and the early PPT designs in[Slot70a], [Park71a], [Mins72a],
and [Parh72a].
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Processor-per-head (PPH)

A PPH machine differs from PPT machine in that the mass storage cells are
clustered into equal sized partitions and there is a search processor for each
cell in a partition instead of a processor for every cell (Figure 1.5). The
processors are dynamically shared by the partitions but at any time, all the
processors are connected to cells in the same partition. An example of a PPH
machine is DBC [Bane78a] wherein each track of a disk is considered a cell and

each cylinder, a partition.
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1.4. Organization of the Dissertation
The organization of the rest of the dissertation is as follows.

As the first step in our research, we designed integrated concurrency
control and recovery mechanisms for centralized database systems and
evaluated their performance. The intent was tha{t the results from this study
would guide us in the design of concurrency control and recovery mechanisms
for database machines. In spite of the numerous concurrency control and
recovery mechanisms that have been proposed during the past decade, the
behavior and the performance of various concurrency control and recovery
mechanisms are still not well understood. In addition, although concurrency
control and recovery mechanisms are intimately related, in the past they have
been treated primarily as two independent problems and very little research
has been devoted to explore the interaction between the two mechanisms. In
our design, we took a unified view of the problems associated with concurrency
control and recovery and developed integrated mechanisms. Our cost model for
evaluating the performance of these mechanisms incorporates both the effect of
the mechanism on the conflict rate between transactions and the overhead
associated with each mechanism on the execution of the transaction. Our
performance evaluation methodology isolates and quantifies the costs of various
components of a mechanism. In Chapter 2, we present this design and the
results of performance evaluation of integrated concurrency control and

recovery mechanisms for centralized database systems.

We describe the design of concurrency control and recovery mechanisms
for the multiprocessor database machines in Chapter 3. We show that for
concurrency control, a centralized 2-phase locking scheduler with deadlock

detection is most appropriate. We also present parallel recovery mechanisms.
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We present a parallel logging mechanism that allows logging for a transaction to
be performed asynchronously at more than one log disk, and yet does not
require physical merging of distributed logs to recover from failures. We also
show how to take system checkpoints completely in parallel with the normal
data processing and logging activities. We also propose several approaches to
parallelize the shadow mechanism. Finally, we present parallel algorithms for
operations on differential files. We also describe in this chapter how our design

can be adapted in other database machine architectures.

Chapter 4 contains the results of our experiments to evaluate the relative
performance of the parallel recovery mechanisms and their impact on database
machine performance. We first explain why we used simulation instead of queue
theoretic modeling for our performance evaluation. We then describe the
simulator for the bare (i.e., without recovery) database machine. The results of
the performance analysis when the bare machine simulator is augmented with
parallel logging, shadow, and differential file recovery mechanisms respectively
are presented next. F’inglly, we present a comparison of the recovery

mechanisms.

The conclusions and the directions for future research are presented in

Chapter 5.
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CHAPTER 2

CONCURRENCY CONTROL AND RECOVERY IN CENTRALIZED DATABASES

2.1. Introduction

During the past decade, alternative concurrency control and recovery
mechanisms have been the subject of intensive research
activity [Bern8.a, Bern82a, KohlBla, Verh78a]. However, in spite of the wide
variety of mechanisms proposed, there remains a lack of experimental and/or
analytical evidence regarding the behavior of various concurrency control and
recovery mechanisms and their influence on database system performance. In
addition, although concurrency control and recovery mechanisms are intimately
related, they have been treated primarily as two independent problems and very
little research has been devoted to explore the interaction between the two

mechanisms.

In this thesis, we take a unified view of the problems associated with
concwrrency control and recovery for centralized database management
systems, and present several integrated mechanisms. We then develop
analytical models to study the behavior and compare the performance of these
integrated mechanisms. The intent had been that the results from this study
would guide us in the design of concurrency control and recovery mechanisms

for database machines.

The organization of the rest of this chapter is as follows. In Section 2, we
present a review of the related work. Summaries of the concurrency control

and recovery mechanisms that we evaluated are contained in Section 3 and
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Section 4 respectively. We present the interaction between concurrency control
and recovery in Section 5. We describe the cost model that we use for
performance evaluation in Section 8. Integrated recovery and concurrency
control mechanisms are presented in Section 7 along with the cost equations for
each. In Section 9, we present the results of our performance evaluation using
the database, mass storage device, and processor characteristics specified in
Section B. Section 10 contains our conclusions from this study of concurrency

control and recovery in centralized database systems.

2.2, Summary of Related Research

As far as concurrency control is concerned, some researchers have
investigated the behavior of locking using both simulation and analytical models.
Through the use of simulation, in Spit76a] the difference in performance
between a system in which locks are released as soon after the shrink
point [Eswa76a] as possible and a system in which locks are held until the
transaction completes was found to be insignificant. Alternate methods of
choosing a victim for deadlock resolution were studied in {Munz77a]. The effects
of locking granularity on database performance were examined in ;Ries79a] and
it was demonstrated that different settings for system and application
parameters may favor different locking granularities. In ‘Lin82a] the probability
that a lock request by a transaction either results in a deadlock or causes the
transaction to wait (along with the expected average waiting time) ar;a

estimated.

Locking policies were analyzed in [PotiB0a] using hierarchical analytical
modeling and two queueing network models have been proposed in [Iran79a] to
study the effect of locking granularity on database system performance. An

analysis of the probability of waiting and deadlock has been -presented
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in [GrayB1la].

In [Garc79a] the  performance of two concurrency  control
algorithms [Alsb76a, Thom78a] for distributed database systems is compared
using simulation. In [Linéla] another two algorithms [Bern77a,Llin79a] for
distributed database systems have been compared. Concurrent with this thesis,
the performance of locking has been compared with the performance of basic
timestamp ordering in [GallBRa], and with basic and multiversion timestamp
ordering in [LinB3a]. Results of some experiments comparing locking to the
optimistic method of concurrency control have appeared in [RobiB2a].
Simulations to compare the performance of several concurrency control
algorithms are in progress in [Care83a]. A criticism of these simulation studies
is that they only generate one final number for comparison and do not help in
isolating the costs of various components of a mechanism. With the approach
‘that we have developed, in addition to saying that a particular mechanism is
expensive, one can determine why the mechanism is expensive and where

efforts should be concentrated to improve its performance.

Analytical models have been utilized to study log-based recovery systems
in [Chan75a, Gele78a, Gele79a]. These models, however, only address the issue of
selecting an optimum checkpoint interval. An assessment of shadows vis-a-vis

logs for recovery has been-given in [GrayBib].

The results that we will present in Section 9 are built upon several of these
earlier efforts, in particular, those of Lin and Nolte [LinB2a]. Lin and Nolte have
determined, through simulation, the probability of an access request by a
transaction conflicting with another request as a function of a variety of
parameters including the transaction size (the number of pages touched), the

number of transactions running concurrently (i.e. the multiprogramming level),
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the size of the database, and the access pattern of the transaction. They have
also determined for two-phase locking the probability of a lock request resulting
in deadlock and the average waiting time of a blocked request as a function of
these same parameters. These results are used as inputs to our performan&e
evaluation model. We also use the results in {GrayBla] to estimate the
probability of waiting and probability of deadlock for small transactions since
this range of transaction sizes is not covered by the results presented

in [LinB2a].

2.3. Summary of Concurrency Control Mechanisms Evaluated

We have considered three basic approaches! that we feel form the basis of

most concurrency control algorithms:

- Locking
- Timestamp ordering
- Validation

2.3.1. Locking

Locking synchrohizes read and write operations by denying access to a
certain portion of the database to a conflicting transaction. Before accessing an
object, a transaction is required to own a non-conflicting lock on the object.
Two requests for a lock on an object conflict if (a) one is for a read lock and the

other for a write lock, or (b) both are for write locks.

Eswaran et al. [Eswa78a] have shown that for serializability®, transactions
should obtain locks in a two-phase manner. A transaction is said to be two-phase

if it does not perform a lock action after the first unlock action. To avoid a

! The interested reader is encouraged to examine [BernBla, Bern82a] for a
complete exposition of all the approaches possible.

2 gerializability is the sufficient condition for  consistency
{Eswa78a, Bern79a, Papa79a].
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cascade of backups if a transaction fails, it is required that the second phase be

deferred to the transaction commit point [GrayB0a].
2.3.1.1. Deadlock

Whenever a transaction waits for a lock request to be granted, it runs the
risk of waiting forever in a deadlock. Deadlock has been shown to be equivalent
to a cycle in a waits-for graph [Coff71a, Holt72a]. There are three approaches to

deadlock resolution: prevention, detection and avoidance.

Deadlock prevention is a cautious scheme that does not let a transaction
wait if it may get into a deaﬁlock“ Timestamp-based preemptive wound-wait and
non-preemptive waif-die schemes pmp_os‘ed in [Rose78a)] are examples of
deadlock prevention. In deadlock detection, deadlocks are detected by
explicitly building the waits-for graph and examining it for cyCI.eS. Deadlock
auoidance is a conservative technique that avoids transaction restarts

altogether using hierarchal allocation [Hans73a].

2.3.2. Timestamp Ordering

In locking, the ordering of transactions in a serialization order is
dynamically determined while transactions are executing based on interleaving
of their requests. With timestamp ordering, a serialization order is selected a
priori and transaction execution is forced to obey this order. We will describe a

basic implementation of timestamp ordering as presented in ‘BernB1a].

For each object X, the largest timestamp of any read(X) and the write(X) is
recorded. Let these be R-ts(X) and W-ts(X) respectively. First consider rw-
synchronization. A read(X) with timestamp TS is denied if TS< W-ts(X);
otherwise, the read is permitted and R-ts(X) is set to max {R-ts(X),TS}. For a

write(X) with timestamp TS, the request is rejected if TS < R-ts{X); otherwise,
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the write proceeds and W-ts(X) is set to max {W-ts(X).TS}. For ww-
synchronization, a write(X) with timestamp TS is rejected if TS < W-ts(X);
otherwise, the write is allowed and W-ts(X) is set to TS. If a read or a write
request of a transaction is denied, it is aborted and restarted with a new, and

larger, timestamp.

Two variations of the basic algorithm: maultiversion and conservative
timestamp ordering have been described in [BernBla]. Both attempt to reduce

the number of restarts induced by the basic algorithm.

v

2.3.3. Validation

Unlike the locking or the timestamp ordering approach, algorithms based
on validation allow a transaction to execute unhindered to its end. At the time
of commit, the transaction is validated to determine whether or not to commit
the transaction. The rationale for the validation approach is the optimistic

assurnption that only a few transactions conflict.

Kung and Robinson |KungB:a] have developed a timestamp-based approach
to validation. As a transaction executes, injormaﬁion about the set of objects
fead, written and created by the transaction is collected and at the end, the
transaction is validated using one of the three validation conditions. We will,
henceforth, use the term "optimistic” instead of more general term "validation”
to emphasize that we are specifically considering Kung and Robinson's

optimistic method in the integrated mechanisms presented below.

2.3.4. Basic Timestamp Ordering versus Locking

For centralized databases and database systems, the basic timestamp
ordering algorithm is very similar to locking in its behavior but has the

disadvantage of inducing a larger number of restarts.
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In basic timestamp ordering, the serialization order is decided a priorl,
whereas the serialization order is dynamically decided in locking. Because of
this, when compared to locking, basic timestamp ordering is more prone to
transaction restarts. Assume, for example, that ts(T2) > ts(T1) and the following

sequence of operations:

T2 : read(X)
TR : commit
Ti : write(X)

Basic timestamp mechanism will abort T1 but locking will permit both T1 and TR
to commit. Gray [Gray79a] has observed that the transaction restarts are very

expensive.

We will now investigate the similarity in basic timestamp ordering and
locking mechanisms. With basic timestamp ordering, a transaction’s read(X)
[write(X)] is tranlslated into 3 actions: (i) checking that the timestamp
associated with the access request is not less than W-ts(X) [R-ts{(X)], (ii) updéting
R-ts(X) [W-ts(X)]. and (iil) executing read(X) [write(X)]. It is necessary that
these three actions are executed in an atomic fashion Consider, for example,
the consistency assertion that X=Y, assume R-ts(X) = W-ts{X) = R-ts{Y) = W-ts{¥)

=0, ts(T1) = 1, ts{TR) = 2, and the following sequence of execution:
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T1 : read(X)
T1 : write(X:=X+1)
T2 : read(X)
T2 : write(X:=2*X)
T1 : read(Y)
T1 : write(Y:=Y+1)
T2 : read(Y)
T2 : write(Y:=2*Y)

DO

Assume serial execution up to step 5. At step 6, ts(T1) is checked to be greater
than R-ts(Y), write(Y) is accepted, and W-ts(Y) is set equal to 1. However, before
Y is updated, processing of read(Y) at step 7 begins. Since ts(T2) > W-ts(Y). the
read is accepted, R-ts(Y) is vupdated, and read(Y) is carried out. Subsequently,
the pending write(Y) of step 6 is completed. After execution of step B, we will
have an inconsistent database. Therefore, as in the case of locking®, while an

object is being accessed, other conflicting {read and write) accesses to the
object must be blocked*.

Furthermore, if an updated object is allowed to be accessed before the
transaction that updated it completes, the problem of triggered aborts will
occur. Assume, for example, that ts{T2) > ts{T1) and the following sequence of

execution:

T: @ write(X)
T2 : read{X)
T2 : cornmit
T? : abort

When T1 is aborted, T2 will also have to be aborted and any updates of T2 will
have to be undone. Consequently, once a transaction begins updating an object,

access to that object must be blocked until the transaction either commiits or

3 However, once the transaction has finished reading an object, writes to
that object may be allowed to proceed unlike the two-phase locking where the
read locks must be kept until the shrink point.

% An alternative might be to recheck after executing read(X) write{X)] that
the timestamp associated with the request is still not less than W-ts{X) R-ts(X)]
and if the test fails, abort the transaction. This solution will further increase the
number of restarts induced by the basic timestamp ordering.
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aborts. This is equivalent to putting a write lock on the object and keeping that

lock set until the end of the transaction (as in the case of two-phase locking).

Finally, with locking, the entries for a transaction in the lock table may be
deleted as soon as the transaction completes. With basic timestamp ordering,
however, timestamps corresponding to a transaction may have to be maintained
even after the transaction has committed. Thus, the size of the timestamp table
will be, in general, larger than the size of the lock table. Hence, granting an
access request and adding and removing the timestamps with the basic
timestamp ordering will not be less expensive than acquiring and releasing the

locks.

To summarize, the only situation where timestamp ordering may offer
additional concurrency over locking is the one in which a write request on an
object is allowed to proceed once another transaction has finished reading the
object. However, with timestamp ordering, a larger percentage of transactions
will have to be aborted and rerun. The result is likely to be less net concurrency.
In view of the above arguments, we wiil not consider basic timestamp ordering

further.

2.4. Summary of Recovery Mechanisms Evaluated

We considered four basic recovery mechanisms for transaction oriented

database systems®:

Log

Shadows
Differential Files
Versions

5 For a different classification and some of the techniques that are not
directly applicable to transaction-oriented database systems, see Verh78a].



2.4.1. Recovery using Logs

The log-based approach [Gray78a] relies upon a redundant representation
of the database on an append-only log. In addition to updating a data object,
every update operation also creates a log record that includes information such
as the transaction identifier, the object identifler, and "before" and "after”
values. The log records of a transaction are threaded together. To limit the
amount of work at the time of system restart, system checkpoints are taken
pericdically in an action-consistent state. At systermn checkpoint, buffers are
flushed and a checkpoint record containing a list of all active transactions and

pointers to their most recent log records is written to the log.

2.4.1.1. Commit Processing

Modification of the database follows the following write-ahead-log protocol:

(1) Before recording uncommitted updates of a transaction on stable storage,
force its before-value log records to stable storage.

(2) Before committing updates of a transaction, force all its log records to
stable storage. :

2.4.1.2. Recovery Algorithm

The essential idea is to undo the effects of uncommitted transactions by
reading log records for the transaction backwards and restoring the before-
values. Similarly, the actions of committed transactions are redone by scanning
log r‘ecords for the transaction forward from the most recent checkpoint and

reapplying the after-values.

2.4.2. Recovery using Shadows

The fundamental idea of shadows is not to do in-place updating but rather

to keep two copies of the object being updated while the transaction is still
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active: the modified copy and a copy of the object as it was before the
transaction began. This latter is termed the shadow copy. When the transaction
commits, the shadow copy is replaced by the.updated copy. We will present a

scheme based on the ideas in [Lori77a, Lamp79a].

For each relation, there is a shadow page-table, S-Map, that is maintained in
- stable storage. An incremental current page-table, C-Map, for each transaction
is formed in the main memory as the transaction updates data pages. To update
a page k, if k is already in C-Map then C-Map[k].PhysicalPage is used for
updating. Otherwise, a free page j is obt.ained for the updated copy of k and an

entry is added to C-map for k with C-Map[k].PhysicalPage = j.

2.4.2.1. Commit processing

At commit time, all the pages updated by a transaction are forced to the
stable storage. Then, for all pages k that appear in a transaction’s C-map, S-
Map[k].PhysicalPage must be changed to C-Map[k].PhysicalPage. Since the
system may fail when S-Map has been partially updated, S-Map is updated in two
phases. First, C-map is written to a commit list on stable storage as
transaction’s precommit record. Once the precommit record of a transaction
appears on the commit list, its effects cannot be undone. Next, S-Map is
updated. Since system failure in the middle of writing of an S-Map block may
garbage the block, the S-Map is updated carefully® Finally, a commit record

for the transaction is written to the commit list.

8 As explained in [Lamp79a], careful updating requires two physical writes
for each write operation.



2.4.2.2. Recovery Algorithm

Recovery from a transaction abort is straight-forward. First, the C-map
associated with the transaction is discarded. Next, the updated data pages are
reclaimed. To recover from a system crash, the commit list is examined to
determine those transactions for which a precommit record appears in the list
but not the commit record. For all such transactions, S-Map is updated using

the precommit record.

2.4.3. Reccvery using Differential Files

With the differential file scheme proposed in {Seve76a], all logical files
comprise of two physical files: a read-only base file and a read-write differential
file. The base file remains unchanged until reorganization. All updates are

confined to the differential file.

2.4.3.1. Hypothetical Data Bases -

In [StonB0a] the notion of Hypothetical Data Bases (HDB's) was introduced,
and in [StonBia] it was proposed that all databases (including the real cnes) be
treated as hypothetical. Each relation R = (BUA)-D is considered“ a
view [Ston75a] where B is the read-only base portion of R and A and D are
append-only differential relations. Intuitively, additions to R go to A and

deletions go to D. Operations on R are translated into operations on B, A and D.

2.4.3.2. Commit Processing

Assume that each transaction has been assigned a unigue timestamp and
that the tuples in the A and D files have been widened to have an extra field TS
for such a timestamp. While a transaction is active, its updates go to its local A
and D; relations that are inaccessible to other transactions. When the

transaction comrnits, & and D are appended to the global Ag and Dg relations
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and are forced to stable storage. Finally, the timestamp of the committing

transaction is written to a Commitlist relation.

2.4.3.3. Recovery Algorithm

If a transaction aborts, its A} and D, are simply discarded and its timestamp
is not appended to the CommitList relation. To recover from system crash,

instead of R, start using the following view:

Range of (b,a,d,x) is (Bg.Ag,dg.CommitList)

Define View R-Crash ([ (b.all) U
(a.all) Where s.TS = x.TS ] - [(d.all) Where d.TS = x.TS ])

2.4.4. Recovery using Versions

In the version-oriented approach [Reed7Ba, SvobBla], an object is thought
of as a sequence of unchangeable versions that are linked together through an
object header to form a history of the object. Updating an object is considered
as creating a new version, while reading an obje.ct is considered as selecting the

proper version’.

A wersion is a pair consisting of walue and time attributes; the time
attribute specifies its range of validity. The start time of a version is the time
specified in the write request that created the version. The end time is initially
the same as the start time, but it is extended by both read and write operations
to the time specified in the request. When a new version gets created, the end
time of the preceding version is frozen. To make versions immutable, only the
start time is stored with versions. The end time of only the current version is

kept in the associated object header which is mutable.

7 By following the chain emanating from the object header.



2.4.4.1. Commit Processing

When an object is updated, first a tentative version called a token is
created. All the tokens created by a transaction have embedded in them a
reference to a commit record that contains the state of the transaction.
Initially, the state is set to unknown. Eventually, it is changed to either commit
or abort and it implicitly commits or discards all the tokens. Before committing
a transaction, it is ensured that all the tokens created by the transaction have

been forced to stable starage.

It is important to note that the object headers are updated in-place twice
for each update of the object (in create-token and commit/discard token), and
may have to be updated when the current version is read (to extend thek end
time). Updating object headers safely will require careful writing [Lamp79a]
which is quite expensive as each write generates two physical writes. Therefore,
object headers are designed to be only hints: they are not required to survive

systern crashes.

2.4.4.2. Recovery Algorithm

To recover from a transaction failure, the state fleld of the associated
‘comumit record is set to abort. Token pointers in the object header of all the

objects updated by this transaction are also set to nil.

For recovery from system crash, the state of commit records is examined.
If a commit record is found that has its state set to unknown, the state is
changed to abort and the corresponding transaction is rerun. Since object
headers are not assumed to survive system failure, a major part of recovery is
the reconstruction of object headers. Object headers are reconstructed from
the latest committed version of the object which is found by a sequential

backward scan of version-storage.




2.4.5. Shadows vs. Versions
The version approach is, in a certain sense, a "super shadow' mechanism.

No doubt, versions offer more functionality®, and, when coupled with
multiversion timestamp ordering, may have the potential of allowing more
transactions to run concurrentlyg'ﬂ Unfortunately, they have a severe
performance penalty. The major problem is that simply reading the current
version of an object may cause the corresponding object header to be updated.
Thus, as compared to shadows, every read operation potentially requires one
more disk access [GrayB8lc]. Because of their expected poor performance, weé

will not consider versions further.

2.5. Interaction of Concurrency Control and Recovery

With this background, we developed the following integrated concurrency
control and recovery mechanisms: log+locking, log+optimistic, shadow+locking,
shadow+optimistic, differential+locking, differential +optimistic. We will first

present the interaction of the concurrency control and recovery mechanisms.

2.5.1. Sharing of Data Structures

With the optimistic method of concurrency control, while a transaction is
active, all the updates are made to the local copies of each data object. Only
after the transaction completes, will the updates be made globally available.
Thus, redundant data structures are required for holdiﬁg local copies during the
active life of the transaction for concurrency control purposes. However,

instead of creating separate data structures, those data structures required for

8 1t is possible to go back in time and answer questions such as "who did
what when”.

9 Recently, in [LinB3a] it was found that the multiversion timestamp order-
ing performed only marginally better than the basic timestamp ordering.



recovery may be shared between concurrency control and recovery.

In the log+optimistic combination, the log records required for recovery
may double as the local copies for concurrency control. In the
shadow-+optimistic combination, the incremental current page-table together
with the new disk pages required for recovery may function as the local copies
for concurrency control. In the differential+optimistic combination, local A and
D pages that are private to_a transaction may be used as the local copies for

concurrency control.

2.5.2. Update of Data Pages

In any real system that has finite memory and finite I/0 bandwidth, the way
a mechanism handles updating of data pages on disk has crucial performance
implication. 1f an updated page has to be paged out to disk while, the

transaction is still active, then there are two approaches.

1. Immediate Updating: Write the updated page to the disk block where it
belongs. The advantage is that if the transaction cornpletes, there is nothing
more to be done as the updated page is where it should be. The disadvantage is
that if the transaction aborts, then the image of the data page as it existed on

disk before the transaction started will have to be restored.

2. Deferred Updating: Write the updated page in some scratch space and, after
the transaction completes, move it to its original position. The advantage is that
the transaction aborts can easily be handled by simply discarding the copy in
the scratch area. The disadvantage is that successful transactions will incur two
extra disk 1/0s for each updated page: one to read the page from the scratch

area and a second to write it in its proper location.
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Amongst concurrency control mechanisms, locking can handle immediate
updating but optimistic methods require deferred updating. Amongst recovery
mechanisms, logging can support immediate updating but both shadow and
differential file mechanisms require deferred updating. We will now investigate

the integrated mechanisms from this point of view.

In log+locking, both the concurrency control and recovery mechanisms
permit immediate updating and augment each other. An uncommitted update
that migrates to disk cannot be seen by other transactions as it has Io;:ks put on
it. If the transaction aborts, the uncommitted update can be undone by

restoring the before value from the log.

In the log+optimistic combination, the recovery mechanism allows
immediate updating but the concurrency control requires deferred updating.
Thus, concurrency control and recovery interact adversely and this mechanism
pays a large performance penalty for this adverse interaction. Recall that in the
log +optimistic combination, log records double as local copies for concurrency
control. Thus, at the time of making local copies global, all those log pages that
have been flushed to disk due to buffer size constraints will have to be reread.
Worse still, all those data pages that are to be updated and which could not be
held in the memory due to buffer limitation will also have to be reread. Thus,
this mechanism may involve considerable rereading. A positive byproduct of
deferring updates to transaction completion, however, is that only an after-value

log is required as a before-value log is used only for transaction undo.

Whereas in the log+optimistic combination the concurrency control
inviolates the immediate updating feature of the recovery, in shadow+locking, it
is the recovery mechanism that inviolates the immediate updating feature of the

concurrency control mechanism. The result is that when the transaction
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completes, those page-table pages that are to be updated and that are no long
available in the memory will have to be 7eread. However, unlike the
log+optimistic combination, this mechanism does not require rereading of data
pages to be updated as the page-table is updated to point to new disk locations.
In shadow+optimistic combination, both concurrency control and recovery
require deferred updating. Therefore, like shadow+locking, rereading of page-

table pages may be required.

The algorithms for concurrency control and recovery interact adversely in
the differential+locking mechanism also. At the time of transaction conipletion.
rereading of those local A and D pages that have migrated to disk will be
required to append them to the global A and D files. In differential+optimistic
combination, both concurrency control and recovery require deferred updating

and rereading of local A and D pages may be required.

An observation that can be made from this discussion is that thebehavior
of shadow+locking vis-a-vis shadow+optimistic and the Dbehavior of
differential +locking vis-a-vis differential+optimistic, as far as the rereading of
data is concerned, will be similar due to the manner in wbich the concurrency

control and recovery mechanisms interact.

2.5.3. Commit Processing

When a transaction says that 1 am done' (reaches D stage in Figure 2.1),
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Figure 2.1. Cormmit Processing

the database system performs somé actions (for example, writing the log and
commit records to stable storage) before irrevocably committing the
transaction {transaction reaches C stage). The difference between the D and the
C stage is that if the system crashes during the DC interval then at the time of
recovery, the transaction will be undone; whereas, the transaction will be redone
if the system crashes after the D stage. Even after a transaction has been
committed, there is a time gap before its updates are made available to other
transactions (transaction reaches A stage). This time gap could be due, for
example in the optimistic method, to the time required to make local copies
global. The transaction is forgotten (reaches F stage) when the database system
deletes all the control information that it is maintaining on the transaction. For
example with the optimistic method, a transaction may be forgotten only after

all those transactions that started before this transaction reached the A stage
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have completed their validation. Various control sets for the transaction like

read set, write set etc. will have to be retained till such time.

It is desirable that the length of the time-interval between the different
stages during the commit processing be as short as possible. A long DC interval
increases the chance of a transaction-abort if the system crashes. A long CA
interval results in increased waiting for lock requests with locking and a higher
number of transaction restarts with the optimnistic method. A long AF interval
increases the space overhead of the database system. We will now examine

these time-intervals for the different integrated mechanisms.

With log+locking (Figure 2.2), to commit a transaction, the database system
must flush the log records and the commit record to stable storage. Updates
are made available to other transactions once the locks held by the transaction
have been released. The locks frlay be released even before updated pages have
been written to disk. Thus, if there is locality of reference, a page may be

updated many times in the memory without being written to disk.

F
D C A
R R ! updates still
flush log free in memory
records locks

Figure 2.2. Log+Locking
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Figure 2.3. Shadow+Locking
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With shadow+locking (Figure 2.3), on the other hand, updated pages have to

be written to disk before a transaction can be committed. Thus, if there is

locality of reference, the advantage of saving 1/0s by not writing the updated

data pages to disk is lost. Updates are made available to other transactions

after the page-table entries have been updated and locks released. In general,

locks will be held for a longer duration with the shadow+locking mechanism

compared to the log-locking mechanism. Also the duration of the DC and CA

intervals with shadow=locking will be longer than the corresponding durations

with log+locking.

jmmrmmmmem e i i ‘ ----, updates still
flush log make updates destroy in memory
records global sets

Figure 2.4. Log+Optimistic

With the log+optimistic combination (Figure 2.4), the database system has

to flush the log and commit records before committing a transaction as in the



32

case of log+locking. Updates are made available to other transactions after the
local copies have been made global. The time required for this operation could
be substantial, particularly for long transactions, as this operation may require

reading of data and log pages from disk.

!
write updated update destroy
pages to disk pagetable sets

Figure 2.5. Shadow+Optimistic

The commit processing for shadow+optimistic (Figure 2.5) looks very much
like shadow-locking. The transaction is committed once updated pages have
been written to disk, and updates are made available after updating the page-

table.

append Al & DI free;
to Ag & Dg locks

Figure 2.6. Diflerential+Lockig

With differential+locking (Figure 2.6), local A and D pages have to be
appended to the global A and D files to commit a transaction. Updates are made

available after the locks have been released. The duration of the DC interval
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with differential+locking may be longer compared to log+locking because

reading the local A and D pages from disk may be required.

append Al & DIl destroy
to Ag & Dg sels

Figure 2.7. Differential+Optimistic

Commit processing for differential+optimistic (Figure 2.7) is similar to
differential+locking. The transaction is committed and the updates are made
available as soon as local A and D pages have been appended to the global A and

D files.

The F stage is reached much later in all the optimistic-based mechanisms
when compared with the corresponding locking-based mechanisms. The reason
is that, with locking, a transaction can be forgotten as soon as the locks held by
the transaction are released. With the optimistic method, however, the
database system has to wait for all those transactions that started before the A
stage of the transaction was reached to complete validation before forgetting

the transaction.

2.6. The Cost Model

To evaluate the performance of various concurrency control and recovery
algorithms, our cost model incorporates both the impact that the concurrency
control mechanism has oh the probability that the transaction will run to

completion without contlicting with another transaction and the extra burden
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imposed on the transaction by the algorithm. This burden is measured in terms
of CPU and 1/0 resources consumed by the transaction (or by the sysiem on
behalf of the transaction) to execute the concurrency control and recovery

algorithm.

When a transaction is started, there are three possible outcomes:

(1) the transaction runs to completion and commits (transaction succeeds),

(2) the transaction is aborted by the user or because of invalid input data
(transaction fails),

(3) the transaction is aborted by the system and is restarted, perhaps many
times, before it completes (transaction succeeds after reTun(s)).

In each of these three cases, the concurrency control and recovery

mechanism adds eztra but varying amount of burden on the transaction.

Let us examine the third case more closely. Assume that the transaction is

restarted only once. The extra burden in this case consists of two parts:

‘a] the burden from the time the transaction started to the time it was aborted
by the system and its effects were undone,

(b] the burden during the final successful execution of the transaction from
start to cornmit. s . .

Note that the burden for case 3[b] is the same as for case 1. At first glance
the burden for case 3 a] appears to be equal to the burden for case 2 {assuming
that the transaction fails at the same point). However, the burden for case 3 a]
must also include the execution cost of the transaction before it was aborted
since this cost would not have been incurred if the transaction were run by
itself. Another way of viewing this scenario is that transactions always succeed
unless terminated by the user!®. However, certain successful transactions get

internally restarted before they succeed, creating extra burden.

10 [f » user restarts a transaction after aborting it, it is considered to be a
new transaction.
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The burden, BX, imposed on a transaction by the recovery and concurrency
control algorithm utilized can be modeled as:

BX = Bsetup * Ptai] Bfail * Psuce Bsuce * Prerun * Brerun

where,

is the initialization cost incurred irrespective of the ultimate fate of
the transaction,

Pfail is the probability that the transaction fails, i.e. is aborted by the user,

setup

Btail is the cost incurred when a transaction fails,

Psuce IS the probability that the transaction ultimately succeeds,

Biuce I8 the cost ipcurred when a transaction succeeds (e.g. for committing
the transaction), .

Prerun IS the probability that the transaction is rerun!!,

Brepun 1S the cost incurred when a transaction is aborted by the system,

and,

Psuce T Pfail = .l“

We will develop cost equations for B B Bg,j and B for

setup' “succ’ rerun

various integrated concurrency control and recovery mechanisms in the
following section. The value of Ptail will be based on Gray’'s estimates
in [GrayBic]. Knowing P, Psuee = 1~ Prail’

When locking is used as the concurrency control mechanism, we assume
that transactions that run into deadlock are rerun. We will take the valué of
Padik’ the probability that a lock request by a transaction will result in a
deadlock, from Lin-Nolte's simulation study [LinB2a] and Gray's analysis of the
probability of waiting and degilock [GrayBla]. Knowing pgq)). the probability
that a transaction will be restarted, Prerun' 1§ computed by assumning that all
lock requests are independent and that a deadlock may be caused only at the

time of a request for a write-lock!®.

11 1f a transaction is restarted more than once, it is modeled by suitably ad-
justing the value of Prerun’

12 The assumption that only write accesses may cause a transaction to be
aborted underestimates the probability that a transaction will be restarted. In
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Figure 2.8. Transaction conflict with optimistic concurrency control

For the optimistic method of concurrency control, we will assurme that if an
access to an object by a transaction conflicts with the objects accessed by
another transaction, then the probability that the transaction will be restarted
is 0.5. To see this, consider conflicting accesses to an object X by transactions
T1 and T2 and two scenarios as shown in Figure 2.8. In the first case, T: is
aborted, while in the second case, T1 runs to completion. Values for p,,naict
are based again on earlier simulation and analytical analyses [LinBRa, GrayBia].

We again assume accesses to be independent and compute Ppomyp further

Lin-Nolte's simulation [Lin82a] and in Gray et al.’s analysis [GrayBla], it has
been assumed that all locks are exclusive. Thus, in order to use their results we
had to assurmne that for both the locking and optimistic mechanisms only a
conflicting write access will cause a transaction abort. A sensitivity analysis that
we performed showed that this assumption tends to favor the optimistic method.
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assurning that only conflicting write accesses result in transaction aborts to be

consistent with the assumptions made for locking.

The Transaction Model

A database system is characterized by a mix of read-only and the
read /write transactions. We will model a transaction by the total number of
database pages it touches, NPt of which NP‘_1 pages are updated (we assurmne that
a transaction reads a page before updating it). Finally, for purposes of

simplicity, we assume that each page is read by a transaction exactly once

regardless of the number of records that must be accessed on the page!®.

2.7. Cost Equations

Before presenting integrated .recovery and conclarrency control
mechanisms and their associated cost equations, we first specify the system
parameteré used in these 9ost equations and state our assumptions about the
concurrency control mechanisms. Assurnptions about the recovery mechanisms
will be described along with the cost equations for the integrated mechanisms.

Appendix ! contains a glossary of the notation used in the cost equations.

2.7.1. System Parameters

Table 2.1 shows the system parameters used in the development of cost
equations for various recovery and concurrency control algorithms. The actual
values of these parameters will depend on the physical characteristics of the
stable storage device (assumed to be a disk) and the processing unit. Some

parameters also depend on the characteristics of the database for which

13 Note that our model can be extended by including a parameter APPENDZ
to specify the fraction of update pages that were created by the transaction.
These pages are not read before they are updated.
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average values have been assumed. Before evaluating the performance of the
alternative integrated concurrency control and recovery mechanisms in Section

9, values will be assigned to these parameters in Secticn 8.

-

Ti-i0 time to read/write a disk page with disk seek
Ts-io time to read/write a disk page without a seek
Tpage cpu time to process a page in memory

Trec cpu time to process a record in memory
DBSize Size of the database

MPL Level of multiprogramming

Table 2.1. System parameters

2.7.2. Assumptions About the Concurrency Control Mechanisms
2.7.2.1. Locking-Based Concurrency Control
1. The lock-acquisition discipline is "get only when needed”.

2 The time to process a lock acquisition request is Ty and the time to process
a lock release reque'st is Trlu' The probability that a lock request will conflict is
Peonfiict and py.it is the probability that a request will be queued. Twait is the

wait time for a blocked request.

3. The granularity of locking is a page'®.

4 Gray [GrayB2a] asserts that the lock table can always be maintained in
the main memory, and that this is the case in IMS and System R. Lin and
Nolte [Lin82a] in their simulation of two-phase locking assumed the lock pro-
cessing to be instantaneous. If, however, the lock table must be maintained on
secondary storage, it can be modeled by choosing appropriate higher values of
Ta1 and T,

15 A page may not necessarily be the best level of granularity _Ries79a], but
we will assume it to be so uniformly for all the algorithms.
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4. Transaction abort (either system initiated or user initiated) occurs when the

transaction has read NP, /2 pages and has updated NPU/Z pages.

5. Deadlocks are resolved by checking for cycles in the waits-for graph at each
lock request that conflicts®®. Tadik 18 the cpu time required for this test and
P4dik IS the probability that a cycle would be found. Thus, the probability that a

lock request waits, py it = Peonfiict ~ Pddik:

2.7.2.2. Optimistic Concurrency Control

v

1. The granularity of the elernents in the various control seté {readset, writeset

etc.) is a page.

2 The cost of creating various control sets is a function of NP, '". When NP, =1,
the cpu time to create the control sets is assumed to be Tas‘ We assume that a
background process is responsible for deleting various control sets and we will

not model this cost.

3. Reads and writes on a page with optimistic concurrency control first check
the write set to determine whether the local copy exists of the corresponding

page. Since the write set can be maintained in the main memory, we will

16 Deadlock prevention using one of the timestamp-based schemes proposed
by Rosenkrantz et al [Rose78a] can be modeled by assuming that half of the
conflicting requests wait and the other half result in transaction aborts, that is,

Pwait = Prerun = Pconflict”>

An alternative is to avoid the problem of deadlock altogether by assuming
that all the locks needed for executing a transaction are requested at the initia-
tion of the transaction as in [Ries79a, PotiB0a]. If any lock cannot be granted,
the transaction releases all the locks and tries again. This can be modeled by
choosing a larger value for T.

17 A much finer analysis is possible where the size of various sets is estimat-
ed and accordingly the cost of creating various sets is determined. However, be-
cause of the coarse granularity chosen for the elements of these sets, they can
be maintained in the main memory and the creation of sets would not contri-
bute significantly to the total cost.






assume the cost of this indirection to be negligible®®.

4. If a transaction is aborted by the user, it happens when the transaction has

completed half of its read phase.

5. If a transaction fails to be validated, it is detected half way through the

validation test.

8. The cost of validating a transaction is a function of the size of the
transaction and the number of concurrently executing transactions, MPL. We
will assume the cost of validation to be (MPL-1) * Tvalid' where Tva,lid is the time
to validate a transaction if only one other transaction executing concurrently

with it.
2.7.3. Integrated Mechanisms

We will now sketch integrated recovery and concurrency control

mechanisms and present cost equations for themn.

2.7.3.1. Log+Locking

This is the well known scheme described in 'Gray78a]. A transaction before
accessing a data page acquires a lock on it and the database is updated using

the "write-ahead log" protocol.
2.7.3.1.1. Assumptions

1. The number of log pages generated by a transaction is determined by the
parameter Log% (Number of log pages = LogZ% *NP,. NP, is the number of

pages updated by the transaction).

18 If desired, the extra cost can be modeled by choosing a larger value of

T. , for reads and writes.

i/o
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o A transaction is assigned a fixed number of data buffers. We postulate a
function DFlush(X) that, given the total number of data pages X updated by a
transaction at some time t, returns the number of pages that have migrated to
disk at time t and are not present in the main memory. Similarly, the function
LFlush(Y), where Y is the number of log pages generated by a transaction at

time t, returns the number of log pages that have been written to the disk and

are no longer available in the main memory at time t'°.

For the write-ahead protocol, it must be the case that for all time t

LFlush(Y) = Log% * DFlush(X).

3. We assume a separate log disk devoted to logging. Therefore, writing a log
page does not require a disk seek except when a complete cylinder has been
filled with the log pages. As specified in Section 8, we account for the cost of this
seek by amortizing it across all write operations to the cylinder. Another
situation that may necessitate a seek for writing a log page is after the disk
heads have been moved to a random cylinder to read a log page for performing a
transaction undo. As explained in Section B8, we account for this seek by

multiplying the average seek time by the sum of Prerun and Peail

4. Since we assume that on average a transaction gets into deadlock after

reading and processing NP, /2 pages and updating NP /2 pages, the execution

18 Sometimes, the flushing of data and log buffers is delayed as much as pos-
sible until the transaction commits or aborts in order to reduce the cost of undo
processing. On the other hand, data and log buffers may be flushed as soon as
they are created to increase parallelism and minimize the commit time dura-
tion.

The first situation can be modeled by defining DFlush to be DFlush(X) =
max §0,X-DBufi} where, DBufl is the number of data buffers allocated to the tran-
saction. This assumes that the buffer manager first ejects a page that has only
been read but not updated before replacing an updated page. The second situa-
tion can be modeled by defining DFlush as DFlush(X) = X. The function LFlush
may be defined analogously.
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cost of an aborted transaction = cost of reading NPt/Z pages + cost of
processing NP, /2 pages + cost of updating NP /R pages = (Tl-io'*'Tpage)*NPt/z
+ DFlush(NP ,/ R)*T1 o

2.7.3.1.2. Cost Equations

B = cost of writing the tran-begin log record Teuio ]

setup

+ cost of writing the commit/abort log record ¢ Ts-io J

Boyee = costof acquiring-locks®
{ NP{*T, + NP¢*Poongict *Tadlk * NPt "Pwait Twait !

+ cpu cost of creating log pages ¢ ceil{LogZ * NPu) * Tpage }
+i/0 cost of writing log pages { ceil(LogZ% * NP ) * T }
+ cost of releasing locks { NP * T, !
Bfail = burden before the transaction abort
+ cost of undo processing

= cost of acquiring and releasing locks
HT o1 Peonfict “Tddik *Pwait " Twait *Tr) NP/ 2

wait
+ cpu cost of creating log pages | { ceil(Log% * NP, /2) * Tpage ]
+i/0 cost of writing log pages- { LFlush(ceil(Log% * ,;\’Pu/Z)) * Teio ]
+ cost of reading log pages for undo { LFlush(ceil(Log%*NPu/Z)) *T-io !
+ cost of reading flushed data pages for undo { DFlush(NPu/z) *Tleio $
+ cpu cost of undoing corrupted data pages ¢ DFlush(NPu/Z) * Tpage 3

+ i/0 cost of writing undone pages { DFlush(NPu/Z) *Thio )

Brerun = Bfail + transaction execution cost before abort

= Bry) * (Tpoio*Tpage) NPy /2 + DFlush(NP /2)*T;,

page

20 Cost of acquiring locks = Cost of (requesting locks + deadlock detection -
waiting for locks)



2.7.3.1.3. Comments

Instead of incurring separate 1/0's for writing the tran-begin and the
commit/abort records, they can be written along with other log records for the

transaction on the same page. In this case, we can assume that Bsetup = 0.

2.7.3.2. Log-+Optimistic

Transactions execute unhindered but instead of making separate local
copies of updated objects during the read phase as required for concurrency
control, the log records are used. Although it is possible to derive the writeset
and the createset of a transaction by examining its log records, it is more
efficient to create them separately in rmain memory. During the write phase of
the transaction, log pages are used to make the updates global while observing

the write-ahead-log protocol.

2.7.3.2.1. Assumptions

Assurnptions 1-3 of the log+locking mechanism are again assumed to hold.
In addition, we assume that a disk seek will be required to read a log page in
order to make the local coples global as the log pages for one transaction may

not be physically adjacent on the disk.

Observe that the decision to abort a non-serializable transaction is taken
after the completion of its read phase, i.e. after reading and processing NPy
pages, but no upd.ated pages are written during the read phase {log records
double up as local copies during the read phase). Hence, the execution cost of

an aborted transaction is (T4 o+Tpag o) *NPy.




2.7.3.2.2. Cost Equations

B = cost of writing the tran-begin log record {Tg, }

setup
+ cost of writing the commit/abort log record { Tg_j, !

Bsucc = cost of creating control sets } NPt * Tas !
+ cpu cost of creating log pages ¢ ceil(Log%*NPu) * Tpage }
+i/0 cost of writing log pages ¢ ceil(Log%"‘NPu) * Tsmio }
+ cost of validation test § (MPL-1) * Ty ;4 }
+ cost of making local copies global®!
{LFlush(ceil(Log% *NPu)) *T-io +DFlush(NP )*T| .}
Bp,j) = burden before the transaction abort + cost of undo processing (= 0)%?
= cost of creating the control sets { NP /2 * T !
+ cpu cost of creating log pages { ceil(l.og%*NPu/Z) * Tpage !
+i/0 cost of writing log pages LFlush(ceil(Log%*NPu/Z)) * Tesio }

- cost of writing DFlush(,:\’Pu/2) data pages®® { DF’lush(NPu/Z) *Taio )

Brerun = cost of creating the control sets { Npt * Tas 3

+ cpu cost of creating log pages { ceil(Log%*NPu) * Tpage ]

+ i/0 cost of writing log pages | lFlush(ceil(Log%*NPu)) *Toio S

21 The cost of making local copies global involves reading the log pages that
have migrated to disk and the data pages to be updated that are no longer avail-
able in main memory. However, it would not include the cost of updating the
data pages in the main memory and writing back the updated pages. These
costs are not incurred during the read phase of the transaction and hence can
be amortized during this phase.

22 No undo processing is required as at this point all changes have been per-
formed on the local copies.

23 Since we are developing formulas that express the overhead (burden) in-
curred, we must model savings provided by a mechanism as well as costs. Thus,
since no pages are actually updated in the log+optimistic approach until the
transaction is validated, DFlush(NP, /2) write operations are avoided when com-
pared with a system that provides no recovery mechanism and does in-place up-
dating. .



+ cost of the validation test { (MPL-1) * Tyalid 7 2

+ transaction execution cost before abort § (Tl-io+Tpage) *NP, }

2.7.3.2.3. Comments

As in the case of the log+lock algorithm, the tran-begin and the
commit/abort records for a transaction can be written together with the other

log records for the transaction.

2.7.3.3. Shadow+Locking

Before accessing a data page, the transaction locks that page. However, no
explicit locking is needed to access page-table (both S-Map and C-map) entries.
The protocol required is that a transaction accesses a page-table entry to gst
the physical address of a data page only if it has been granted a lock for that
page. Thus, it is not possible for a transaction to access a page-table entry while
it is being updated. Once a transaction completes, its write-lock on a page is

released only after the corresponding entry in the page-table has been updated.
2.7.3.3.1. Assumptions

1. The size of the page-table is PtSize pages. For relations of reasonable size,
PtSize will be large. Thus, the S-Map cannot reside in the main memory and
must be paged from the secondary storage [GrayBib]. Consequently a data
page [/0 may also cause a page-table /0. However, in general, accessing X data
pages will not result in access to X distinct pages of the S-Map since a number of
page-table entries can be blocked into one S-Map page. The number of S-Map
pages that will have to be accessed is determined by a function PtPages{X). For
the random access of data pages, the number of S-Map pages required to be

accessed is analogous to the number of pages accessed when randomly selecting
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records from a blocked file. We will use the Cardenas’ expression [Card75a] for
this purpose®*, and define

PtPages(X) = PtSize(1 - (1 - 1/PtSize)X).
For sequential access of data pages,

PtPages(X) = 1 + X / blocking-factor®.

2. The tran-begin and the incremental C-Map can be written on the same page

as the pre-commit record on the commit list.

3. The function SFlush(X), where X is the number of S-Map pages read by the
transaction at time t, returns the number of S-Map pages that are no longer
available in the memory. SFlush(X) = max {0, X-SBuffj where SBuff is the number
of buffers available to the transaction for reading the S-Map pages. The function
DFlush(Y) which returns the number of updated pages that have migrated to the

disk is defined analogously.

4. A shadow-based algorithm generates extra NP  allocate-page and free-page
requests for data pages when compared to an in-place updating algorithm. The

cost of processing an allocate-page or a free-page request will be assumed to be

TI‘GC"

5. Writing to the commit list does not require a disk seek.

6. The cost of creating an entry in the C-Map is Tr‘ec’

24 |t has been shown that the Cardenas’ expression gives the lower bound for
the expected number of pages accessed and more accurate expressions are
available in literature (see [Yao77a] ). However, for large blocking factors { >
10) such as would be present in the S-Map, the error in Cardenas’ approximation
is negligible.

2 One has been added to account for the fact that the desired page-table
enitries may not start at the beginning of a page-table page.
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7 As in the case of log+locking mechanism, the execution cost of an aborted

transaction = (Tl~io+Tpage)*NPt/2 + DFlush(NP ,/ R)*T .o

2.7.3.3.2. Cost Equations

B = cost of writing commit/abort record = T _;

setup

Biyee = cost of acquiring locks { NP, * (Tal+pconﬁict*Tddlk"rpwait*Twait) J
+i/0 cost of reading S-Map pages for data reads § PtPages(NPt) *Tlio }
+ cost of extra allocate-page requests { NIPLl * Trec }
+ cpu coét of creating incremental C-Map ¢ NP, * Trec !
+1/0 cost of writing the pre-commit record § Ty, !
+i/0 cost of rereading flushed S-Map pages {SFlush(PtPages(NP ) * T .}
+ cpu cost of updating S-Map entries { NP, * Toq !
+i/0 cost of writing the updated S-Map pages $ PtPages(NPu) *Tloo }
+ cost of releasing locks { NP, * T, 3§
+ cost of extra free-page requests 2 ‘NPu * Trec }

Bail = burden before the transaction abort + cost of undo processing

= cost of acquiring and releasing locks
¢! - " -
Ty pconﬁictﬂddlk pwait*Twait+Trl)*NPt/2 ;
+i/0 cost of reading S-V.ap pages for data reads EPtPages(NPt/z) * THO;

+ cost of extra allocate-page requests { NPu/Z * Tr'ec !

+ cpu cost of creating incremental C-Map { NP /R * Trec l

+ cost of extra free-page requests § NP /2 * T, }

Brerun = Bfail + transaction execution cost before abort

= Bpaiy * (Tleio*Tpage) NPy /2 + DFlush(NP /2)*Ty

page




2.7.3.3.8. Comments

1. The writing of commit/abort can be piggybacked with the pre-commit
record of the next transaction at the expense of increasing somewhat the

response time of the transaction.

2. It is possible to avoid writing the abort record when a transaction is aborted
by the user. However, the disadvantage is that at the time of the recovery from
system crash, it would not be possible to distinguish the user-aborted

transactions from those that were active at the time of crash.

2.7.3.4. Shadow+Optimistic Algorithm

With shadow as the recovery mechanism, there are always two copies of
each data page being updated by a transaction: the updated copy and the
unmodified (shadow) copy on disk. When shadow is combined with the optimistic
method of concurrency control, the updated copy of each data page being

modified can also be used as the local copy for concurrency control purposes.

For purposes of coﬁcurrency control, as a transaction executes, it creates
various control sets {readset, writeset etc.). There is, however, no need to
create a C-Map as required by recovery mechanism since the writeset {which
normally contains only the page numbers of the updated pages) can be
augmented to include the disk addresses of the modified pages along with the
page numbers. With this approach, the write phase in which local copies are
made global requires simply updating the S-map entries using the writeset to

point to new disk addresses.

Note that it is not required to keep S-Map or C-Map page numbers accessed
by a transaction in its control sets. If the updates to S-Map by a transaction

have been partially applied and meanwhile another transaction reads the not yet
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updated S-Map entries, that transaction will not be validated.

2.7.3.4.1. Assumptions

We assume that assumptions 1-5 of the shadows+locking mechanism are
valid for this mechanism also. However, since the decision to abort a non-
serializable transaction is taken after the completion of its read phase, the
execution cost of an aborted transaction = (T1-10+Tpag o) *NPy + DFlush(NP )*T}.

io
2.7.3.4.2. Cost Equations

B = cost of writing commit/abort record = Ts-io

setup

Boyee = cost of creating the control sets { NP * T }
+i/0 cost of reading S-Map pages for data reads { PtPages(NP,) * Ty, {
+ cost of extra allocate-page requests { NPLl * Trec }
+ cost of validation test § (MPL-1) * T ;. 4}
+1i/0 cost of writing the pre-commit record $ Tooio S
+1i/0 cost of reading flushed out S-Map pages | SF‘lush(}'"tPages(NPu)) *Tlio !
+ cpu cost of updating S-Map entries ¢ NP, * Trec !
+1/0 cost of writing the updated S-Map pages { PtPages(NP_) * T, }

+ cost of extra free-page requests ¢ NPu * Trec }

Bial = burden before the transaction abort + cost of undo processing
= cost of creating the control sets { NP /2 *T_¢ !
+i/0 cost of reading S-Map pages for data reads { PtPages(NPt/Z) *Tl-io }
+ cost of extra allocate-page requests { NP,/2 * T, }

+ cost of extra free-page requests _ | NPu/E * Trec !

Brerun = burden before the transaction abort + cost of undo processing




+ transaction execution cost before abort
= cost of creating the control sets { NP, * T ¢ !
+i/0 cost of reading S-Map pages for data reads { PtPages(NP;) * T}, }
+ cost of extra allocate-page requests | NP, * Trec }
+ c§§t of validation test { (MPL-1) * T, ;14 / 2}
+ cost of extra free-page requests { NP, * Ty.o J

+ transaction execution cost { (T);+T )*NP, /2 + DFlush(NPu/Z)*Tl_io J

page
2.7.3.4.3. Comments

As in the case of the shadow+lock algorithm, the cormmit/abort record may
be piggybacked with the pre-commit record of the next transaction. Also, the
writing of the abort record in the case of a user-initiated transaction abort may

be avoided.

2.7.3.5. Differential File+Locking Algorithm
As the transaction executes, it locks the pages of the global base relation,

Bg' and the differential relations, Ag

relations A; and D). Once the transaction commits, & and D, are appended to A

and Dgze' and creates the local differential

dD .
an Dg

2.7.3.5.1. Assumptions

1. The sizes of the differential relations, Ag and Dg' are SizeZ of the size of the

base relation, Bg' We will assume Ag and Dg to be of equal size.

2. Accessing NP, pages of R needs Xtra% extra page accesses. Xtra% is a
function of the size of Ag and Dg' We assume that the transaction is executed

when half of Ag and half of D have been created. Thus. a transaction will read

% Recall that R=(Bu A) -D
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Size%/R extra pages each from the Ag and D g relations.

3. Processing of pages in the memory also incurs extra cpu overhead?”. We will
assume the extra cpu overhead to be CpuOHZ of the total cpu time consumed if

the transaction was run alone without any provision for recovery.

4. The number of A1 and D1 pages generated by a completed transaction is
Comprs% of NP,;. Thus, a transaction writes ceil(Comprs%*NPu) pages each to A
and D;. However, in-place updating would incur the cost of writing NP, pages.

Therefore, the net cost is the ¢ost of writing (2*ceil(Comprs%*NPu) - NPu) pages.

5. DFlush(X) is the function that returns the number of A1 and Dl pages that

migrate to disk®®.
6. Writing to the commit list does not require a disk seek.

7. The execution cost of an aborted transaction = (Tl_-m-i-Tpage)*NPt/Z. Note
that unlike an in-place updating mechanism like log+locking, with the
differential file approach the transaction does not incur the cost of writing
updated-pages. The cost of writing A and D pages is considered to be recovery

burden associated with the differential file approach.

2.7.3.5.2. Cost Equations

S
Bsetup =0

27 For example, since R = (B U A) - D, a retrieve on R will be translated into a
retrieve on B, A, and D followed first by a union of tuples retrieved from Band A
and then by a set-difference of the result and tuples retrieved from D.

28 DFlush(X) = max §0,DBuff-X] where DBuff is the number of buffers avail-
able.

29 Only the tran-id of committed transactions is written to commit list and

this cost is included in Bsucc'




= cost of acquiring and releasing locks
{(1+Si2e%)*NPy * (Ty) *Peonfict "Tddlk ™ Pwait Twait *Trp)}

Bsuce
+ cost of extra data page reads { Size%*NP, * T|; }
+ extra cpu cost of processing data pages { CpuOHZ * (Npt*Tpage) !
+ cost of writing flushed 4 and D, pages iZ*DP’Iush(ceil(Comprs%*NPu))*Tl_ici
+ cost of rereading flushed A; and D pages {2*DFlush(ceil(ComprsZ*NP ))*T|_; .}

+ net cost of writing Ag and D pages®® 2(2*ceil(Compr‘s%*NPu) - Npu)*Tl-io;

g
+ cost of extra allocate-page requests {2 * ceil(Comprs%*NPu) *Trec }

+ cost of writing the tran-id to commit list § 'I‘S_.10 !

Bj,) = burden before the transaction abort + cost of undo processing

= cost of acquiring and releasing locks
2 (l+Slze%)*NPt/2 ¥ (Ta1+pconﬂict*Tddlk'*'pwait*Twait'*'Tr‘l) ;

+ cost of extra data page reads § SizeZ*NP, /2 * Ty_i, !
+ extra cpu cost of processing data pages { CpuOHZ% * (NPt/Z*Tpage) ]
+ net cost of writing flushed local A and D pages

f(R* DF‘lush‘(ceil(Compr‘s%*NPu/2)) - DF’lush(NPu/Z)) *Tlio }

Brerun| = Brajl * cost of writing DFlush(NP ,/2) pages {DFlush(NP /) * T|;,}

+ transaction executfon cost before abort § (Tl_io—:-Tpage) *NPt/Z }

2.7.3.6. Differential File+Optimistic Algorithm

First observe that the A and D) can also be used for the local copies of
modified records’ for concurrency control purposes. As the transaction
executes, it creates control sets and if it is validated, it appends A} and Dy to

global Ag and Dgh

80 See assumption 4 above.

81 The execution cost before abort does not incur the cost of writing
DFlush(NP,_/2) pages as is the case in an in-place updating algorithm. However,
since the cost of writing DFlush(NP _/2) pages was subtracted from Bfail‘ this
cost will be added here in order to maéke the formula correct.



2.7.3.6.1. Assumptions

The same assumnptions stated for differential file+locking are assumed to
hold. As in the case of differential file+locking mechanism, the execution cost
of an aborted transaction = (Tl—io+Tpage)*NPt' The difference is that the
decision to abort the transaction is taken after reading and writing NP, pages.

instead of NPt/Z pages as in the case of differential file+locking mechanism.
2.7.3.6.2. Cost Equations

B 0

setup =

Byyee = cost of creating the control sets { (1+SizeZ)*NP, * T }
+ cost of extra data page reads ¢ SizeZ*NP, * Tiio }
+ extra cpu cost of processing data pages { CpuOHZ * (Npt*Tpage) }
+ cost of writing flushed A; and D, pages {2* DF‘lush(ceil(Comprs%*NPu)) * Tlio!
+ cost of validation test §{ (MPL-1) * T__ .4 !
+ cost of rereading flushed A and D; pages EZ*DF‘lush(ceil(Comprs%"‘NPu)) *Tlio}
+ net cost of writing Ag and Dg pages | (2*ceil(Comprs%*NPu) -NP,) *TLio }

+ cost of extra allocate-page requests |} Zi‘ceil(Comprs%*NPu) *Trec }

+ cost of writing the tran-id to commit list { Ty, }

Bp, = burden before the transaction abort — cost of undo processing {=0)
= cost of creating the control sets § (1+SizeZ)*NP /2 * T ¢ !
+ cost of extra data page reads ¢ SizeZ*NP, /2 * T ]
+ extra cpu cost of processing data pages { CpuOHZ * (NPt/Z*Tpage) J
+ net cost of writing flushed local A and D pages

§R* DFlush(ceil(Comprs%*NPu/Z)) - DF‘lush(NPu/Z)) * Thio ]

Br'erun = burden before the transaction abort + cost of undo processing (=0)
+ transaction execution cost before abort




= cost of creating the control sets { (1+Size%) *NP, * Tas }
+ cost of extra data page reads | Size%*NP, * T-io !
+ extra cpu cost of processing data pages { CpuOHZ% * (NPt*Tpage) !

+ cost of writing flushed local A and D pages
{ 2 * DFlush(ceil(Comprs%*NP )) * T);, }

+ cost of validation test § (MPL-1) * Ty 1.4/ R}

+ transaction execution cost § (Tl_io-i-’[‘page)*NPt/Z ]

2.8. Database, Mass Storage Device and Processor Specifications

In this section, we specify the characteristics of the database, the mass

storage device, and the processor employed in our evaluation.

The mass storage device is modeled after the IBM 3350 disk drive [IBM77a]
whose characteristics are shown in Table 2.2. Thus, the average time required
to access a random block on the disk

Tl-io = Average seek time + Latency + Transfer time = 37.525 ms.

When an 1/0 operation is performed on an append-on file such as a log, seek
operations are only occasionally necessary. For algorithms that utilize shadows
or differential files for recovery, a seek operation is only needed when the
current cylinder has been completely filled. To simplify our cost expressions,

we have amortized the cost of these occasional seek operations across every

Parameter " Value
No. of recording surfaces 30
No. of cylinders 555
No. of blocks per track 4
Block size 4096 bytes
Revolution time 18.7 ms.
Time to move head N cylinders 10 + 0.072*N ms.
Average seek time 25 ms,

Table R.2. Disk drive Specifications



write operation on the cylinder. Thus,
Teuio = Latency + Transfer time
+ 1/120*(time to move heads to the adjacent cylinder)®
= 12.61 ms.
When the append-only file is used to hold a recovery log, the disk heads must be
moved from t;.he end of the log file to perform transaction undo. In this case,
'lf‘s_10 = Latency + Transfer time
+ 1/120*(time to move heads to the adjacent cylinder)

+ (Paq) * prerun) * Average Seek Time

= 1R.81 + (Pgay; + prerun) * 25.0 ms.

We have assumed that a 1 MIP processor is used to execute transactions,

that 500 instructions are required to process a record (Trec = 0.5 ms), and that

5000 instructions are required to process a page of approximately 10 records™®

(Tpage

The size of the database, DBSize, has been assumed to be 100 million bytes.

= 5.0 ms.).

We have evaluated the performance of the integrated concurrency and recovery
algorithms under three different workloads: small (TS), medium {T¥), and large
(TL). Their sizes and somne associated characteristics are shown in Table 2.3.

The access pattern of the transactions has been assumed to be random.
Twait has been calculated using the formula:
Twait = TwaitFCtr ¥ (Tl-io * Tpage)
in which TwaitFetr=0.83 for the TS workload, 1.96 for TM, and 2.94 for TL. These

numbers and the probability figures in Table 2.3 are based on the results

presented in {GrayBla, Gray8lc, LinB2a].

32 There are 4 blocks per track and 30 tracks per cylinder
33 A record can be, for exarmple, either a database record or a log record.




Parameter TS ™ TL,
NPt - number of pages touched 2 50 250
NPu - number of pages updated 1. 15 50
MPL - multiprogramming level 15 10 7
Pfail - probability of transaction failure 0.05 0.05 0.05
Pconflict - probability of transaction conflict | 0.0012 0.0085 0.01
Pddlk - probability of deadlock 1.92e-7 5.6e-6 | 3.0e-5
Prerun(locking) - probability of rerun 192e-7 | Bl4e-5 | 0.0015
Prerun(optimistic) - probability of rerun 0.0008 | 0.04766 | 0.22169
Twait - wait time for a blocked request 0.83ms. | 1.96 ms. | 2.94 ms.
Tvalid - time to validate a transaction 0.1ms. 0.5 ms. 2.0 ms,

Table 2.3. Transaction sizes and database characteristics

T d is based on the assumption that a transaction can be validated

vall
against a concurrent transaction in O(NPt-i-NPu) time plus the time for a
procedure call. T, (the time to process a lock request), Ty (time to release a
lock request), and T, (time to construct the control sets for the optimistic
concurrency control algorithm) have been assumed to be 0.5 ms. A value of 0.5
ms. has also been used to represent the cost of determining whether granting a
lock request will result in deadlock (Tddlk) based on the results described

in {AgraB3a].

2.9. Evaluation

In this section we compare the performance of the different integrated
concurrency control and recovery mechanisms by computing the burden ratio
for each mechanism. The burden ratio is defined to be the ratio of BX {the extra
burden imposed on the transaction by the concurrency control and recovery
mechanism) to the execution time of the transaction if run without any

concurrency control or recovery mechanism:
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BX
Execution Time of the Transaction

Burden Ratio =

Bsetup + Pfail*Bfa.i] + Psucc*Bsucc +P rerun*Brerun
Npt*Tl‘iO + Npt*Tpage + NPU*T]*“iO

We first compare the relative performance of locking and optimistic
concurrency control for each of the recovery mechanisms. Then the

pérformance of the three finalists are compared.

2.9.1. Logging

The relative performance of the log+locking and 'log+optimistic
mechanisms is shown in Figure 2.9 and Table 2.4. In Table 2.4, all costs have
been expressed in milliseconds. We assurmed that DBuff, the number of data
buffers allocated to the transaction equals 10, LBuff, the number of buffers
available to coliect log records for the transaction, equals 1, and Log%, the

fraction of each updated page that must be recorded in a log record, equals 0.1.

Based on Figure 2.9 and the data in Table 2.4, we make the following

observations about the performance of these two mechanisms:

1. The operation of "making local copies global” in the optimistic concurrency

control algorithm is very expensive since NPu-DBuff data pages® that need to be

| Toual | BSucc | BFail , BRerua | Locking | Sev | Velid | Make |

: Bur ! compo | compo compo i ? P oerea | oo local !
den . __ment nent ment - total o wait.  ddlle . tion __pgiohai

% 221 199 22 00 | 20 0100 , -

TS Tngt | o121 202! gos ' 005 | 10t 13l o0 |

- Lockf 1134 1092 | 4.1 L 01 753 | 264 .02 § '

Opt 1 9855 i 2800 ¢ 17 1 1038 i , 258 1 44 | 3436

7, ek 7157 | 6245 80O 112 11372 13041112 ' :

| opt | 4200.9 | 18146 | 223 | 24086 | | 1496 | 127 | 1568.6 |

Table 2.4. Log+locking & Log-+optimistic
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updated will have migrated to disk before the write phase begins and will have to

be reread during the write phase.

2. Backing up a user aborted transaction is more expensive with locking due to
the cost of undo processing (reading back those updated pages that have
migrated to the disk, undoing the changes and then rewriting them, and the cost
of acquiring and releasing locks). In the case of the optimistic method, Bfail can
actually have a negative value for large transactions as only LFlush(Log%*NP ,/ 2)
data pages are written to the disk instead of DFlush(NP, /) pages>* and no undo

processing or validation cost is incurred.

3. As the average transaction size increases, the number of transaction restarts
increases faster for the optimistic mechanism than for a lock-based mechanism
that uses deadlock detection. Hence, the value of B, increases faster for

the optimistic method.

4. TFor a successful transaction, with an increase in the transaction size the cpu
“burden becomes a larger fraction of the total burden in the log=locking
combination as the cost of transaction waits becomes very significant. For the
optimistic method, the validation cost does not increase significantly with the
transaction size but the 170 burden increases significantly due to the high cost

of making the local copies global.

5. The dip in the burden ratio for TM in Figure 2.9 is due to the blocking effect

while writing the log. TS, although it updates only 1 data page, writes 1 log page.

On the other hand, TM, although it updates 15 pages, writes only 2 pages®. The

3¢ Recall that for TL, NPu=50, DBufi=10, LFlush(Log%*NPu/2)=2 and
DFlush{NPu/2)=15.

85 0eil(0.1*1)=1 and ceil{0.1*15)=2.
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increased cost of undo processing and waiting increases the burden ratio for TL
in the case of locking. In the case of the optimistic method, the increased cost
of making local copies global coupled with the high cost of transaction restarts

result in a higher burden ratio.

6. Although the total cost of validation is less than the cost of lock
manage'ment, the log+locking combination outperforms the log+optimistic
combination because of the high cost of making local copies global and the the
higher restart rate associated with the log+optimistic mechanism. Only in the
case of small transactions does the performance of the log+optimistic
combination becomes comparable to the performance of the log+locking
combination. In this case the buffer space available to the transaction, DBufl, is
large enough to hold all the pages updated by the transaction until the
transaction is validated and hence the cost of making local copies global is not

significant. In addition, for small transactions the value of B is quite low.
g v rerun S 9

2.9.2. Differential Files

The performance of the differential file+locking and differenti“al
file -optirnistic mechanisms is shown in Figure 2.10 and Table 2.5. We assumed

that SizeZ% the relative size of the A and D files compared to the B file, equals

, Total ;BSucc‘ BFail EBRemné Locking Set fValid: exura  exira , 70
T 1 er i size% | | -
|| Jcompoleom) om0 T T T 0 i’ 2 uon'
TlLock! 679! 6741 05 00!l 221 01'00 | ? I 75l 9Bl 357
'Siopt] 648, 6400 05 | 01 | . 11 13! 7a. 908 357
TlLock| 131.4] 11821 131 | 01| 828! 200102 | | | 190.5 | 243.8 | 534.7 |
Moot | 1906 Baal 116 | 12386 E | ool as! 1044 o557 53a7!
T{Lock|1311.7 12577 | 439 | 101 60413445713 | . 9703 12197 18087
.| opt |3713.6 | 808.0 | 31.9 1287371 i i 1163.2 | 14.1 |1137.6 1 1495.9 | 1808.7 |

Table 2.5. Differential+locking & Differential+optimistic
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10%, that, CpuOHZ, the extra cpu overhead equals 100%, (implying that, for

example, T,.. is 1.0 ms. instead of 0.5 ms.), and that Comprs% equals 10% (i.e. a

rec
transaction writes ceil(0.1*NP ) pages to both A and D)). One page-sized buffer
was allocated for the base file and five each for the A and D files. We make the

following observations based on Figure 2.10 and Table 2.5:

1. There is a considerable burden in accessing Size% extra data pages and
extra CpuOHZ processing. However, for the values assumed. for Size% and
CpuOHZ, this burden is more than compensated by the savings that result from

not writing the updated data pages as in an in-place updating algorithm.

2. Writing to the A and D files is akin to writing to the log and hence the
performance characteristics of the differential file approach appears similar to
that of the log approach. In particular, because of blocking effect while writing
to the A and D files, TM performs better than TS. The burden ratio for TL

becomes higher than for TM because of comparatively less savings in not writing

the updated data pages®®. In addition, the cost of waiting for the

lock +differential file mechanism and the cost of transaction restarts in the case
of optimistic+differential file mechanism increases considerably from the TV

workload to the TL workload.

3. Overaﬂ. the differential+locking mechanism performs better than
differential+optimistic mechanism for medium and large transactions due to the
larger number of transaction restarts with optimistic method. Only for small
transactions, where there are not many transaction restarts, does the
performance of the differential+optimistic combination becomes comparable to

the differential+locking combination.

38 For the values assurned, TM updates 30% of the pages read while TL up-
dates only 20% of the pages read.



2.9.3. Concurrency Control with Shadow for Recovery

The comparative performance of shadow+locking and shadow+optimistic
mechanisms is shown in Figure 2.11 and Table 2.6. We assumed that DBuff=1 and
SBufi=10. Each entry in the page table is assumed to take 4 bytes and thus the
size of S-Map is 25 pages®. We make the following observations based on Figure

2.11 and Table 2.6

1. The cost of reading and updating S-Map (the shadow page table map)

constitutes the major portion of total burden.

2. The proportion of the cost of reading S-Map pages reduces with an increase
in transaction size since more page-table entries can be found on the same S-
Map page {see Table 2.'%). The cost of updating S-Map increases for larger
transactions because at the time of updating S-Map. PtPages(NPu)-SBuff of S-
Map pages are reread. However, the reduction in the cost of reading S-Map
pages is much higher than the increase in the cost of updating the S-Map. This
is the reason why in Figure 2.11, the burdeﬁ ratio reduces with an increase in

transaction size.

i

' Toral ¥BSucci 3Fail lBRerun! “ocking ' Ser iValid{ Smap  Smap

" Bur compo. COmnpo, COmpo E 7 " crea- . az-

‘ I den ' nent Cqemt ' mem -oral | wais "ddix! sian -ation read dae
TS-Lockf 119.8' 1378 20 00 20  01'00_ __ 718 361 .
ISy T g7 1177l 19 ' o1 ? 3 " 10l 13!' 718! 381
oy sk 1397.8 ;}1365;1; 325 | 02, 75.3 . 26.4102 ; _805.5 . 486.5

M opr s1811.0 13127 31.0 L 1673 ¢ r ' : o856 44 B4dad  ARRS
gy, hock|2606.4 27326 | 62.6 | 112 (540213041 | 12 | ‘ | 939.2 112270 ,
Oot 15367.8 {23043 | 51.0 130125 11496 | 12,7 11145.8 .1227.0

Table 2.6. Shadow+locking & Shadow+optimistic (random)

37 DBSize = 00 million bytes =~ 25000 pages and No. of S-Map entries per
page = 1000.




— Shadows+Locking ——— Shadows+Optimistic
: (Random)

1.0
0.9
0.8
0.7

0.6

Burden Ratic
=]
on

0.2 -

0.1

000 ¥ ¥ ¥ L
TS ™ TL

FIGURE 2.11




No. of Data Pages No. of Page Table
Accessed (N) Papes Accessed: PtPages(N)
1 1.0
2 1.96
15 14.48
50 21.75
250 25.00

Table 2.7. No. of accesses to the S-Map

3. Overall, the performance of shadow+locking and shadow-+optimistic
mechanisms are very similar since the cost of reading and updating S-Map
(which is the dominant factor in .the total burden) is independent cof the
concurrenc;y control mechanism. For large transactions, the optimistic

approach performs somewhat poorer because of the high cost of transaction

restarts.

4. We also considered the case of seqﬁential accesses to the database pages for
TV apd TL workloads. The performance results for this case are shown in Figure
212 and Table 2.8. The performance improves considerably because of large
reduction in thé cost of reading and updating the S-Map. The relative behavior

of the locking and optimistic methods is similar to that of the random access

case.
(. T

! ‘ Total ! BSucc BFail ! BRerunx Locking ; Ser Valid; Smap qmap
| } Bur lcomnoicorm:r.)l cormnpo [ T T 1 crea- l | up- !
! ! . i auonx read :
i _den nent__nent nent. . +atal ' wait  ddt lc +ign date !
VTS Tock| 119811178 | 20 ' 00 20l o1l00] P 1718 381 |
Oot L yeriiizz i 19 | 01 : I 0% 13:718 361

oy lLoek| 250.3 2529 | 6.3 | o1l 753] 264l02 . 1751 784
{ont | an71 2004 ' a7 | 1320 { ! o586 44 787 78B4 _1;
o ek 8104 (7808 | 107 | 9.9 \549.213041 1.2 - w2 951
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Table 2.8. Shadow+locking & Shadow+optimistic (sequential)




— Shadows+Locking ——— Shadows+Optimistic
(Sequential)

e o e o =
@ =2 oo w o

Burden Ratio
= o
N o

0.2 -

0.1

0.0 ; . .
TS ™ TL

FIGURE 2.12




67

However, as pointed out in [GrayBlb], a consequence of using shadows is
that logically adjacent pages may not be physically adjacent. Thus, although
accesses may be logically sequential, getting the next page may involve disk
seek. [Lori77a] suggests a page allocation strategy that may maintain physical
clustering of logically adjacent pages within a cylinder. We have assumed that
the shadow mechanism employs such a scheme and we have not assigned any

extra cost for potential disk seeks during sequential accesses.

- 2.9.4. Comparing the Finalists
The relative performance of the log+locking, differential+locking, and
shadow+locking mechanisms is shown in Figure 2.13. We conclude with the

following observations:

1. For small transactions, log+locking is the clear winner but for medium and
large transactions, differential-file+locking also appears promising. As recovery
mechanisms, the log and the differential file approach have many similarities.
Both do not suffer from the one level of indirection found in the shadow
mechanism. The A and D files in the differential file approach are in certain
sense after-value and before-value logs. However, in the log approach a
transaction, besides writing its log records, also writes to stable storage the
updated data pages at the same time3€. On the other hand, while the differential
file approach must also write pages of the A and D files (that are like log pages)
to stable storage, the actual updating of the data pages in the base relation
(that is, merging of pages of the A and D files with the pages of B) can be

deferred until a slack time.

9 Writing of updated data pages may not be deferred to some slack time as
the associated data buffers may have to be reallocated to another transaction.
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The disadvantage of the differential file approach is the cost of accessing
SizeZ%*N extra pages in order to access N data pages and the cpu processing
overhead of CpuOHZ. A sensitivity analysis we have performed indicates that its
performance is very critically dependent upon the values of these two factors.
Figure 2.14 and Figure 2.15 show the performance of the differential+locking
mechanism for larger values of Size% and CpuOHZ respectively. The
performance degrades considerably for larger values of these parameters. In
addition, the assumption that that the differential A and D files can be merged

with the main file in slack time is crucial to the performance of this approach.

2. Figure 2.16 compares the performance of log+locking with shadow-+locking
when a sequential access pattern has been assumed for medium and large
transactions. Only in case of lérge transactions, does their performance

become comparable.

2.10. Conclusions

The choice of the "best” integrated concurrency control and recovery
mechanism depends on the database environment. If there is a mix of
transactions of varying sizes, log+locking emerges as the most appropriate
mechanism. If there are only large transactions with only sequential access
pattern, the shadow-locking rmechanism is a possible alternative. In an
environment of mediwm and large sized transactions, the differential~locking is

a viable alternative to the log+locking mechanism.

The optimistic method of concurrency control induces a higher number of
transaction restarts when corpared to locking with deadlock detection. This is
because locking resolves conflicts by blocking the conflicting transaction

whereas the optimistic method resolves conflicts by aborting the conflicting
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transaction. Furthermore, in the case of the optimistic method,
nonserializability is detected after the transaction has run to completion, thus
wasting total transaction processing. On the other hand, with locking, the
deadlock detection is performed whenever a lock request éonﬁicts. Therefore, if
a transaction is to be aborted, it will be discovered relatively earlier. Thus, with
the optimistic approach, not only are there a higher number of transaction
restarts, but each restart is also more expensive. This factor is mainly
responsible for the poorer performance of the optimistic combinations when

compared to the locking combinations for medium and large transactions.

The optimistic method of concurrency control should only be considered in
an environment where transactions are small with a very low probability of
conflict. Even in a low conflict situation, if transactions are large and in-place
updating is required, the cost of making local copies global will make the
optimistic algorithm an expensive mechanism. The optimistic method can be
attractive only in combination with a recovery mechanism that requires that all
updates be collected in some scratch area and applied to the main copy only
after a transaction has comple§ed~ Thus, recovery and concurrency control
mechanisms may share the data structures and the cost of making local copies

global.

Relatively, deadlock detection is so inexpensive that, in a locking scheme, it
should be preferred over deadlock prevention which induces a larger number of

transaction aborts.

Armongst recovery mechanisms, it is more expensive to do transaction undo
with logging when compared to shadows or differential files. However, logging
puts a smaller burden on a successful transaction. Since most of the

transactions succeed rather than abort, logging emerges as the best
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mechanism. The major disadvantage of shadows is the cost of indirection
through the page table. This mechanism can become attractive only if the page
table can always be maintained in the main memory or with an architecture that
avoids this indirection. The disadvantage of the differential file approach is the
overhead of reading differential file pages and extra cpu overhead to process a
query. While the number of extra differential file pages that have to be
procéssed depends on the frequency with which differential files are merged
with the base file, parallel architectures may alleviate the cpu overhead

probler.
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CHAPTER 3

CONCURRENCY CONTROL AND RECOVERY MECHANISMS
FOR DATABASE MACHINES

3.1. Introduction

In this chapter, we present our design of“ concurrency control and recovery
mechanisms for the multiproceﬂssor-cache database machine architecture
described in Chapter 1. We discuss various design trade-offs and the choices we
made. We also point out how our design can be adapted for other database
machine architectures. The results contained in Chapter 2 from the study of
concurrency control and recovery in centralized databases provided the basis

for many of our design decisions.

The organization of the chapter is as follows. In Section 2, we present a
summary of related research in this area. Section 3 and Section 4 contain our
concurrency control and recovery designs respectively. Section 5 contains a

summary of the chapter.

3.2. Review of Related Research

The only work in the area of concurrency control and recovery in database
machines is a working paper by Cardenas, Alavian and Avizienis [CardBla] in
which recovery in the processor-per-track database machine architecture is
investigated. Recall that in the processor-per-track architecture, the mass
storage consists of a number of data cells. A processor is associated with each

cell and a back-end controller supervises the cell processors.
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3.2.1. Recovery Mechanisms

Cardenas et al. analyzed three recovery mechanisms. The first two are
special cases of the general logging mechanism. In the first mechanism, before
comrmitting a transaction, updated data records are modified in the data cells so
that only a before-value log is required for transaction undo. In the second
mechanism, updated data records are modified after the transaction has
committed, so that only an after-value log is required for transaction redo. In
both the mechanisms, there is one log for all the cell processors which is

centralized. The log. itself consists of a data cell and a -cell processor,

henceforth called the log processor.

In the third mechanism, before-value log records are interspread amongst
data records. As we will see, the exposition of this mechanism is not complete,
particularly in presence of system crashes. Each record is assigned one of the
three following states: 1) present clean, 2) previous clean, or 3) present dirty.
Initially, all data records are in the "present clean” state. When a data record is
modified, a duplicate record with the state "present dirty"” is creatéd and the
state of the original record is changed to "previous clean”. All subsequent
accesses are made to. the record occurrence which is in the “present dirty”
state. On transaction completion, the state of the updated records is changed
from "present dirty” to "present clean” and then the records with the "previous
clean” state are deleted. It is not clear from the paper when a traﬁéaction can
be considered committed. There seems to be three alternatives: 1) after all the
"present dirty" records have been inserted in the data cells, 2) after all the
"present dirty" records have been changed to “'present clean”, or 3) after all the

"previous clean” records have been deleted.
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With the first alternative, to recover from a system crash, different
recovery actions are required for records updated by committed and
uncommitted transactions. For a committed transaction, "present dirty”
records should be made "present clean” and the "previous clean” records should
be deleted. "Previous clean' records of an uncommitted transaction should be
made "present clean” and the "present dirty” records should be deleted. Thus,
it is not sufficient to just record the state information with the records. It is
- required that the transaction identifier be encoded with the records and the
back-end controller maintains sufficient information in stable storage to be able
to do a "winner-loser” analysis [GrayBla]. For the second alternative, the
recoveriz action is similar to the first alternative. The motivation for the third
definition of commit is to avoid transaction redo. However, this definition is not
safe. If the system crashes after some of the "previous clean” records for a

transaction have been deleted, the transaction cannot be undone,

Distributed log records will be kept in the same cell as the corresponding
data records to avoid excessive communication between the back-end controller
and the cell processors. Thus, data cells will only be 50% utilized to handle the
case when a transaction updates all records in a cell. Considering the criticism
that the applicability of processor-per-track database machines is constrained
to relatively small databases because of limitations on the size of data cells, this

is a severe penalty.

3.2.2. Performance Analysis

The three recovery mechanisms were compared by computing the number

of extra revolutions® of data cells required due to recovery. A worst-case best-

1 A revolution is the traversal of entire data cell by the cell processor dedi-
cated to it. For example, if a data cell consists of a disk-track, then a revolution
of data cells will be the same as a revolution of the disk.
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case abproach has been adopted to compute extra revolutions. For example, in
the first two mechanisms, collection of recovery data essentially consists of
transferring log records from cell processors’ memory to the log processor's
memory and then inserting the records in the log. In the best case, all the
records can be transferred in one revolution, and in the worst case, it'will take
min {#records,f#data cells}? revolutions. Similarly, for inserting records in the
log, one revolution is required in the best case and #records revolutions are
required in the worst case.

Using this approach, the difference in the performance of the recovery
. schernes between the worst case and the best case was found to be very large,
and the average case performance is difficult to ascertain. The impact of

recovery on database machine performance has not been examined in the

paper.

3.3. Concurrency Contrel Design

We will now present our design of concurrency contrel and recovery
schemes. The concurrency control design  has three basic

components "BernB2a] :
(1) location of the scheduler: centralized or distributed,
(2) type of algorithm: locking, timestamp ordering or optimistic, and

(3) handling of replicated data.

3.3.1. Scheduler Location

There are two alternatives:

2 Assuming that all the records in a cell can be transferred in one revolution.
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(1) locate a scheduler with each query processor (distributed), or
(2) locate the scheduler with the back-end controller (centralized).
The major arguments in favor of distributed schedulers are:

(1) distributed schedulers are more robust (what if the node at which the

centralized scheduler is located goes down?);
(2) a centralized scheduler may get saturated and become a bottleneck;

(3) communications overhead between the centralized-scheduler node and the
processing node may become substantial, particularly if the network is

geographically distributed and there is locality of reference.

In database machines, since there are a number of processing nodes, it is
tempting to immediately conclude that the distributed scheduler is the right
option. However, distributed schedulers presuppose that each processing node
owns and controls the data it accesses. In the multiprocessor cache database
machine architecture, there is no static binding of a processing node and the
data it accesses; rather, pages are dynamically bound to processors at run time.

Therefore, this architecture necessarily requires a centralized scheduler:

'i’he scheduler may be located with the back-end controller or a separate
processor may be entrusted with the task of concurrency control to whom the
back-end controller may inquire before assigning a data page to a query
processor. For example, the back-end controller in DIRECT has been
implemented as three processes that may run on three separate physical
processors [BoraBRa]. One of these processes, ‘designated MEM, is responsible
for transferring data pages between the disk and the disk cache, managing data
pages in the cache, and assigning them to the query processors. It would be

logical to enhance MEM with the concurrency control scheduler.
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In the processor-per-track, processor-per-head and processor-per-disk
classes of database machines, the processors and the data pages accessed by
each processor are statically bound. However, Garcia-Molina [Garc79a] and
Robinson [RobiB2a] have observed that unless the network connecting the
processing nodes is geographically distributed, distributed concurrency control
has no performance advantage over centralized concurrency control. On the

other hand, distributed concurrency control has following disadvantages:
(1) the required process communication is much more expens'ive
(2) problems such as distributed deadlocks are difficult to handle efficiently

(3) system correctness is in general more often in doubt due to added

complexity of the system.

Since the query processors and the back-end controller are closely-coupled in
these architectures also, the concurrency control scheduler should be

centralized with the back-end controller.

3.3.2. Concurrency Control Algorithm

Having settled on a centralized concurrency control scheduler, we draw
upon the results of our evaluation of concurrency control mechanisms for
centralized databases to decide on the concurrency control algorithm. As
shown in Chapter 2, the behavior of basic timestamp ordering is very similar to
that of locking as far as the effects of blocking are concerned. However,
timestamp ordering induces a higher number of transaction aborts. The
performance of the optimistic method and locking are comparable for small
transactions, but for medium and large transactions, the optimistic method
performs poorer than locking as there are a-higher number of transaction

restarts and each restart is more expensive. Database machines will be
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primarily used in an environment where the transactions are large rather than
small. For small transactions, the "Gray" argument (named after Jim Gray, a
well-known proponent of this viewpoint) against the use of database rrachines
applies. The argument states that a backend processor can only be effective
when the work performed by the backend processor outweighs the cost of
context switches and the cost of sending the request to the backend processor
and receiving the response [SeliB2a]. Therefore, we selected locking as the

concurrency control algorithm.

Locking suffers from the problem of deadlocks, The folklore has it that the
deadlock detection is expensive and thus timeouts or deadlock prevention
techniques are used instead. With a distributed concurrency control scheduler,
the deadlock detection could be expensive particularly if the cost of sending
messages is high. However, for centralized schedulers, we have designed an
efficient deadlock detection scheme [AgraB3a] that has linear time and space
complexity’. Using path compression [Aho75a], the line'ar check can be turned
into an O(log N) check, where N is the number of blocked
transactions [SkeeB3a]. We, therefore, propose using deadlock detection with
locking as the savings that will result by avoiding unnecessary transaction

restarts far outweigh the cost of deadlock detection.

3.3.3. Replicated Data

Replicated data is not an issue in our database machine architecture as
data disks and query processors are not statically bound. A siﬁgle image of data
is kept on disks and data pages are paged frorn disk to the disk cache where

they are assigned to the query processors.

3 For completeness, the deadlock detection scheme has been presented in
Appendix 2.
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3.4. Recovery Design
Recovery has two aspects:
(1) collection of recovery data during the normal execution of the transactions,

(2) use of recovery data to perform necessary recovery actions in the event of

a software or hardware failure.

All transactions, whether they complete or abort, incur the cost of collecting
recovery data. However, only in case of a failure is the recovery data used.
There is a trade-off involved here. A recovery mechanism rmay make collection
of recovery data relatively less expensive at the price of making recovery frofn
failures costly. On the other hand, a recovery mechanism may make recovery
from failures cheaper but pay a large penalty during the collection of recovery
data. Logging belongs to the first category whereas shadow and differential file

techniques belong to the second category.

A simple but very important conclusion that may be drawn from the results
" in Chapter 2 is that from a performance viewpoint the focus should be on
making the normal case efficient. Thus, although transaction undos are more
expensive with logging, it outperformed the shadow or differential file
mechanisms as it places a smaller burden on transactions that complete
successfully, and in reality, a higher percentage of transactions complete than
abort. Thus, in our design of recovery mechanisms, we have optimized
collection of recovery data even if it meant making recovery from a failure

more expensive while insuring that recovery can still be correctly performed.

3.4.1. Parallel Logging

The basic idea is to make the collection of recovery data efficient by

allowing logging to occur in parallel at more than one log disk. We will show how
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recovery from system crashes and transaction failures can still be performed
correctly without physically merging the parallel logs into one log. We assume a

page-level locking scheduler located with the back-end controller.

3.4.1.1. Architecture

We postulate N log processors, where N > 1. Each log processor has
associated with it a log disk. We assume some interconnection between the
query processors and the log processors that allows any query processor to send

a log fragment to any log processor. We also assume a two way communication

facility between the back-end controller and each of the log processors®.

There may be a dedicated connection between the query and log
processors, or the query processors may write the log fragments to the disk
cache and then the log processors may read t.he fragments from there. We will
investigate the effect of different interconnection strategies on the performance

of the logging algorithm.

3.4.1.2. Data Structures

Recall that in our database machine architecture, the back-end controller
is responsible for the movement of pages between the disk, the disk cache and
the query processors. To manage this movement, the back-end controller needs
some form of a page table. In addition to its normal contents, the page table
contains status information for each page in the relation. This status
information could be a dirty bit, for example. Our parallel logging algorithm
requires that, for all updated pages, this status information be augmented with

i) a bit, henceforth called the log-flushed bit, that indicates whether the

4 The algorithm presented here can be trivially adapted to an architecture
where there is only one log processor but more than one log disks are available
to the log processor for logging.
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corresponding log record has been written to stable storage, and ii) an

identifier, henceforth called the log processor identifier, that indicates to which

log . processor the corresponding log record was sent for writing to stable

storage.

3.4.1.3. Collection of Recovery Data

(1)

(2)

To process a transaction, the b’ack~end controller fetches the required data
pages into the disk cache and assigns them to the query processors. We
require that at the time of assigning a page, the back-snd controller in
addition communicate to the query processor the corresponding

transaction number.

When a query processor updates a page, it creates a log fragment for this
page in its local memory. In addition to the before and after values, a log
fragment contains the transaction numi)er and the page number of the
updated page. When the page has been completely processed, the query
processor selects a log processor and sends it the log fragment. The log
processor selection- algorithms have been described below. The query
processor then sends to the back-end controller the updated page and the
identifier of the log processor to which the log fragment for this page has
been sent. The back-end controller records the log processor identifier in
its page-table entry for this page.

The log processor assembles log fragments received from different query
processors in a log page. When a log page is filled up, the log processor
writes it to the log disk and sends the page numbers of all the updated
pages that caused this log page to be created to the back-end controller.

The back-end controller in turn sets the log-flushed bit for each of these

pages.
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(4) If the back-end controller is forced to flush an updated page when the
cache gets completely filled up with updated pages, it first checks the log-
flushed bit for the page to determine whether the log record for this page
has been written to disk. If not, it sends a message to the corresponding
log processor (using the log-processor id in the page table entry) to flush
the log page. Only after the log processor acknowledges that the log page

has been written to stable storage, will the data page be written to disk.

(5) At the time of committing a transaction, the back-end controller first
ensures’that all the log records of the transaction have been written to
stable storage by checking the log-flushed bit of the updated pages. It then
sends the commit record, augmented with the commit-number, to any one
of the log processors. The commit-number gives the order in which the
transactions have been serialized. The back-end controller can obtain the
commit-number by simply appending the current time in its local clock to
the current date. Another alternative would be to use a large sequential
counter or append the counter to the current date: The locks held by the
transaction are released - only after the back-end controller receives
acknowledgement from the log processor that the commit record has been

written to the log disk.

Log Processor Selection

Query processors use one of the following algorithms for selecting the log

processor to send the current log fragment:

(1) Cyclic selection: Each query processor cycles amongst all the log
processors. That is, a query processor sends the first log fragment to the
first log processor, the next fragment to the second log processor, and so

on.
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(2) Random selection: Each query processor uses a random number generator
(with different seeds) to generate the log processor number every time it

has to send a log fragment.

(3) Query Processor Number mod Total Laog Processors selection: A query
processor always sends its log fragment to the same log processor. The log
processor is selected by taking the mod of its query-processor number with

the total number of log processors,

(4) Transaction Number mod Total Log Processors selection: A query processor
determines the log processor number by taking the mod of the transaction

number with the the total number of log processors.

Except for the fourth algorithm, log fragments of a transaction will in
general be distributed over more than one log processor. In Chapter 4, we will
describe the results our evaluation of the performance of the different log-

processor selection algorithms.
Comments

1. In our algorithm, a query processor sends a log fragment as soon as it hasl
updated a page and the log processors are responsible for assembling log
fragments into log pages. Another alternative would be that the query
processors themselves assemble log Ifragments in their local memory and send
only the full log page to the log processors. A simple analysis shows that this is
not a good choice. Assume that there are 10 query processors and 1 log
processor and updating a data\page creates a log fragment that is 1/10 th of the
size of the log page. If the second alternative were chosen then each query
processor would have to update 10 data pages before sending the log page to the

log processor. Thus, there may be 100 data pages in the cache waiting for the
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corresponding log pages to be flushed. With the first alternative, there would be

10 data pages in the cache waiting for the log page to be flushed.

2. From the performance point of view, it is desirable that the back-end
controller not force the log processors to flush out the log page. Therefore, the
page-replacement algorithm for the disk cache may have to be enhanced so that
it it ejects an updated page with the log-flushed bit on before it replaces an

updated page for which the log page has not yet been written to disk.

3.4.1.4. System Checkpoint

We require the back-end controller and each log processor to independently
maintain a current checkpoint number in their memory. When a log processor
writes a log page, it appends its checkpoint number to the log page.
Subsequently, when the log processor communicates to the back-end controller
the page numbers whose log records were written, it also communicates the
checkpoint number. The back-end controller in turn records the checkpoint
number in the page table entries of these pages. We assume that the messages

are not lost and are delivered in the order they are sent.

The checkpointing is coorélinated by the back-end controller. Assume that
the current check point number is N. The back-end controller first records
transaction numbers of all the active transactions in its memory. It then
broadcasts a checkpoint initiation message to all the log processors. At the
same time, it starts writing to disk those updated pages whose log records have

been written with the checkpoint number N.

On receiving the checkpoint initiation message, a log processor ensures
that any log disk 1/0 in progress is completed and the corresponding page

numbers of the updated pages are communicated to the back-end controller. It
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then simply increments its current checkpoint number and sends an
acknowledgement to the back-end controller. Incrementing the current
checkpoint number signals checkpointing at that log processor. The log
processor does not wait for the log page it is currently assembling to fill up or

flush the partially filled log page before incrementing its checkpoint number.

After receiving acknowledgements from all the log processors, the back-end
controller ensures that any updated page, whose checkpoint number in the page
table is N, has been written to disk. It then sends a system checkpoint record to
a predesignated log processor and increments its checkpoint number. The
system checkpoint record contains transaction numbers of the active
transactions that the back-end controller had earlier recorded and the current
checkpoint number of the back-end controller. System checkpointing
completes when the system checkpoint record is written to the log disk by the

log processor.

This algorithm for checkpointing does not require a complete system
quiescing and the checkpointing can be performed in parallel with the normal

data processing and logging activities.

Establishing Checkpoint Locations

In our scheme, the system checkpoint record is written only on one log. In
that log also, the location of the system checkpoint record need not correspond
to the actual checkpoint Io'cation as the log processor may write log records
while the back-end controller is flushing updated data pages for checkpointing.
Thus, at the time of recovery from system crash, each log processor will have to

establish the location of the checkpoint on its log.

To do so, the back-end controller obtains the most recent system

- checkpoint record -and broadcasts it to all the log processors. Recall that the
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system checkpoint record is written only at one predesignated log processor®. A
log processor then finds its checkpoint location by scanning the log backwards
from the end till it finds the the first log page that has the same checkpoint

number as the number in the system checkpoint record.

To avoid scanning the log backwards, a log processor may, before
incrementing its checkpoint number, save a pointer to the current end of the
log in a fixed place on its log disk. However, the log processor will still have to
compare the checkpoint number of the log page preceding the saved address
with the checkpoiht number of the system checkpoint reéord. This is necessary
as the system may fail after a log processor has written the checkpoint location
to its log disk but before the back-end controller completes its checkpointing
operations. If the checkpoint number of this log page is greater than the
checkpoint number of the system checkpoint record, a backwards scan to the

earlier checkpoint location will be required.
3.4.1.5. Recovery from System Crash

Winner-Loser Analysis

(1) Each log processor makes its own list of winners and losers in parallel and
sends it to the back-end controller. To do so, each log processor first
establishes its checkpoint location as described in the previous section. It
then initializes its loser list to all the active transactions whose number
appear in the system check point record, and then scans its log in the

forward direction starting from the checkpoint location. When the log

5 The algorithm may easily be modified so that the back-end controller
sends the system checkpoint record to any one or more than one log proces-
sors. In that case, the back-end controller will obtain from all the log proces-
sors their most recent system checkpoint records. The checkpoint record with
the highest checkpoint number is the latest checkpoint record and the others
may be discarded. .
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processor sees for the first time a log record for a transaction, it adds the
transaction to the loser list, if the transaction is not already in the list. If
the commit record of a transaction is found, then the transaction is moved

to the winner list from the loser list.

(2) The back-end controller intersects the winner-loser lists received from
different log processors and makes one final winner-loser list. Recall that
for committing a transaction, the back-end controller sends the commit-
record to only one log processor. Thus, a transaction which is a winner in
any one of the lists sent by the log processors is the winner in the final list

even if it is a loser in other lists,

Transaction Redo

The algorithm for the collection of recovery data physically splits the log in
as many piecés as the number of log processors. One way of doing transaction
redo would be to first merge these distributed log pieces to create ;)ne log in
which the log records appear in the same order in which they would have
appeared if only one log processor was used, and then perform the redo. This
solution, besides being inefficient, would require that the timing information be
associated with each log record, and the clocks of different query processors be

kept synchronized.

Instead, we propose that the back-end controller take one log at a time and
carry out redo. While this approach is very attractive as it does not require
distributed logs to be merged into one physical log, it suffers from the following

probler:

The Problem: Suppose that an object X is updated from %0 to xl by the

transaction Ti and to x2 by the transaction T2, and T: commits before TZ.
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Further assume that the log record <x0,x1> is on the log L1 and the log record
<x1,x2> is on the log L2. It has to be ensured that after redo processing, X = X2
and not x1 which would happen if the redo processing using log L1 is done after

the redo processing using log L2.

The Solution: Define a data structure <X,t(X)> where t(X) is the commit-number
associated with the commit record of the transaction that updated the object X.
Observe that the commit-number information for the committed transactions
can be collected at the same time as the winner-loser analysis. Furthermore,
each log record has associated with it the transaction number and the page
number that caused this log record to be created. Thus, a log record contains

all the information necessary to access this data structure.

With this data structure, transaction redo is performed using the following
algorithm:
Initialize:

for all X" do t(X):= 0
Redo Algorithm.:

for all logs do §

, scan the log forward
for each log record x; with the corresponding commit-number t; do

if t; < t(X) then ignore this log record
else redo and t(X) := t; .

In the above example, assume that the commit-number of Tl is 1 and that
of T2 is 2. Thus, if log LR is processed first, then t(X) := 2 after processing the
log record <x1,x2> and X = x2. Now when the log L1 is processed, the log record

<x0,x1> will be ignored because the corresponding commit-number, that is 1, is

8 Standard techniques like hashing [Knut73a] may be used for efficient ac-
cess to this data structure.

7 In an actual implementation, initialization will involve nulling only the hash
table entries.
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less than the current value of t(X) = 2.

Transaction Undo

For transaction undo, the back-end controller scans one log at a time
backwards. At first, it seems that the transaction undo will have a problem

similar to redo.

A Hypothetical Scenario: As before, assume that an object X is updated from x0
to x1 by the transaction T1 creating the log record on log L1. Then, X is updated
to X2 by the transaction T2 creating the log record on log L2. Both T1 and T2 are
found to be losers in the winner-loser analysis. It must be ensured that after
undo X is restored to x0 and not x1 which would happen if undo processing using

the Log L1 is done before undo processing using the log L2.

The Solution: This situation cannot arise with proper locking protocol. If T2 has
updated X after T1 has updated it, then T1 must have released its lock on X. But
a transaction does not release its locks before its commit record has been

written to the log and T1 is a loser.

Therefore, the transaction undo can be performed simply by taking one log
al a time, scanning it backwards, and restoring before values of the

uncommitted updates.

3.4.1.6. Recovery from a Transaction Abort

The back-end controller determines the log processors where the log
records corresponding to the pages updated by the aborted transaction exist by
examining the page table entries of these pages. An updated page that has not
yet been written to disk is ignored in this analysis as this page may be undone

by simply discarding its updated version from the disk cache. The back-end
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controller then obtains the log records for the transaction from each log
processor and performs the undo. The order in which the back-end controller
communicates with the different log processors is immaterial as the log record
for a page updated by a transaction exists only on one log. In the next section,
we will describe how the algorithm for transaction undo is modified if a page
may be updated more than once by a transaction, and hence different log

records for the same page may exist on more than one log.

3.4.1.7. An Embellishment

A transaction frequently consists of more than one database operalions.
For exarmple, in System R, a transaction consists of one or more SQL statements
bracketed with Begin Transaction and Commit Transaction commands
[GrayB1a]. We will call each of these operations a transaction-step. We assume
that all the steps have been numbered in the increasing order. Suppose now
that a transaction updates the object X from x0 to x1 by step 1 and to x2 by step
2. 1t is required that at the time of transaction redo, x2 is restored and not x1.

Similarly, transaction undo should restore x0 and not x1.

To handle this situation, we require that the back-end controller, at the
time of assigning a data page to a query processor, in addition to the
transaction number, communicates the step number also to the query
processor. The query processor appends the step number along with the

transaction number to the log fragment before sending it to the log processor.

For redo processing, the only modification required is that in the data
structure <X.t(X)>. t(X) is now defined to be the commit-number appended with
the step number of the corresponding transaction. In the above example,
assume that during transaction redo, X is first restored to x2 and LX) := (L.2)

where 1 is the commit-number of the transaction and 2 is tte step number.
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Subsequently, the log record created by step 1 of the transaction will be ignored
as the step number appended to the transaction number for this log record,

that is (1,1), is less than the current value of t(X).

Undo processing requires building a similar data structure and using an
algorithm similar to that of the transaction redo. The only difference required
in the algorithm is that the decision rule about when to ignore a log record is
changed. For undo, the log is scanned backwards, and if the commit-number
appended with the step number of the transaction that created the current log
recorci of X is greater than the current value of t(X), then this lbg record is
ignored; otherwise, the undo is performed and t(X) is updated. Thus, in the
above example, if X is first undone to x0 and t(X) := (1,1), then subsequently the
log record created by step 2 will be ignored as the transaction number
appended with the step number for this log record, that is (1,2), is greater than

the current value of t(X).

3.4.2. Shadow

In Chapter 2, our evaluation indicated that the major reason for the poor
performance of the shadow mechanism was the cost of indirection through the
page table to access data pages. We have identified two approaches to improve

its performance:
(1) reduce the penalty of indirection,

(R) avoid indirection altogether.

3.4.2.1. Reducing the Penalty of Indirection

The performance penalty of indirection through the page table may be
reduced by keeping page tables on more than one page-table disk {different

from data disks), and using separate page-table processors for them. The page-
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table processors will be under the control of the back-end controller. Thus, if
the accesses are uniformly distributed over the page-table processors, then the
processors may work in parallel reducing degradation in the performance due to

indirection.

This solution requires the back-end controller to know the mapping between
a relation's page table and the page-table processors. However, this information
may be cached in the memory of the back-end controller. More significantly,
this information will not be frequently modified and it need not'survive system
crash., Even if the information becomes corrupted while being updated, it may
be reconstructed by making the data pages self-descriptive. The major proBlem
with this solution is how to decide the distribution of page tables between the

page-table processors.

Recall that in the shadow mechanism, for committing a transaction, a
precommit record containing the disk addresses of the updated pages is first
written to stable storage, and then the page table is updated. We propose that
the precommit records of all the transactions be written on one page-table disk,
1t is possible to devise a scheme so that if a transaction updates page tables on
more than one page-table disk, then a precommit record is written on each of
the disks. However, this will require coordination similar to two-phase commit
in writing the precommit records. In addition, for a random transaction, for all
the accesses to the page-table disks to read or update page-table entries, only 1
access will be required to write thg precommit record. Thus, maintaining only
one precommit list would avoid considerable system implementation complexity -

without creating imbalance in the usage of the page-table disks.




3.4.2.2. Avoiding Indirection
We will describe two approaches that avoid indirection:

(1) Version Selection: Both the current and shadow copies are retrieved in
response to a read request. A version selection algorithm is then applied to
decide which is the current copy. It is expected that the cost of retrieving
both the current and the shadow copies and doing version selection would
be less than the cost of going through a page table to retrieve only the

current copy.

(2) Overwriting: Separate shadow and current copies are kept only while the
transaction is active. On transaction completion, the shadow copy is

overwritten with the current copy.

3.4.2.2.1. Version Selection

We will present a scheme based on [ReutB0a]. This scheme uses the basic
disk property that because of the relatively long time required for head
posﬂitioning and rotational delays, accessing an additional disk block on the same
track req\ﬁres only a small amount of additional time. For examp"l'e. in IBM 3350
disk drive [IBM77a), accessing a random 4 kbyte page on average takes 37.525
ms. Accessing the subsequent block also will only require additional £..75 ms.

We assume a page-level locking scheduler located with the back-end controller.

Each pair of physically adjacent blocks on a disk track constitute a slot. A
slot contains the physical representation of one logical page. At any time, one of

the blocks contains the current version and the other contains the shadow.

For reading a page, both the blocks of the corresponding slot are brought
into the disk cache and a version selection algorithm identifies the block that

contains the current version. For writing an updated page, the block other than
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the one that contains the committed current version is used. Thus, the use of a

block in a slot alternates betweeh holding the shadow and the current copy of a

page.

Version Selection Algorithm

Store with every page updated by a transaction a timestamp composed by
supplemeniing the transaction no. with the hardware timer at the time of
writing the page. The current version is simply then the block with the higher

timestamp.

Recovery from Transaction Aborts

Maintain for each transaction a list of pages updated by the transaction®.
Augment this list with a one bit entry for every page to indicate which block of
the corresponding slot contains the version written by this transaction. If a
transaction aborts, the blocks containing versions created by this transaction
are rewritten with timestamp = 0. As the version selection édgorithm selects the
version with the larger timestamp, the copies written by the aborted transaction

will not be selected.

Recovery from System Crash

Recovery from system crash requires maintaining a list of all uncommitted
transactions which should survive system crash. Recovery involves scanning all
the disk blocks and if any block is found which has been written by an
uncommitted transaction, it is rewritten with timestamp = 0. In[ReutB0a], a
scheme has been described for chaining together the pages updated by a

uncommitted transaction to avoid scanning the whole database.

8 Such a list would be required anyway for efficiently releasing the locks held
by the transaction.




Comments

Note that this scheme requires reading of two adjacent disk blocks for
every retrieval but only one block is written for an updated page. In the
standard shadow mechanism, besides reading and writing the data page, a
page-table page is potentially read for each read and updated for every write.
The significant price that the new algorithm pays is in doubling the disk space

requirement.

Instead of one extra disk block for each data page, a smaller number of
blocks may be shared amongst data pages on a disk track by adding page
numbers to the disk blocks and retrieving the whole track in order to select the
current version. In an on-the-disk database machine architecture, in addition,
retrieval may be restricted to the blocks containing the desired pages by adding
the page number to the search condition which is‘applied by the processor. This
approach has been used in [RoomB2a] for the design of a content-addressable
page manager. The design provides extra blocks for shadowing on per cylinder
basis. It uses parallel-search disks with capabilities similar to the processor-
per-head architecture, and in one revolution, all the versions of a page are
obtained and then the appropriate version is selected. A problem with these
solutions is that overflow will occur if a transaction updates many adjacent

pages and special procedures are required to handle overflow situations.

3.4.2.2.2. Overwriting
We will present two algorithms: one requires no redo and the other requires

no undo at the time of recovery from a system crash®, Both algorithms require

scratch space on disk which is managed as a ring buffer.

% The phrases no-redo and no-undo have been adopted from ‘Bern82b].



No-Redo Algorithm

Before updating a data page, write the original of the page (shadow) in the
scratch space. Commit a transaction only after all its updates have been
written tc; disk. A list of uncommitted transactions is also needed that should
survive system crash. Recovery essentially requires restoring of shadows from

the scratch space.

A recovery scheme similar to this has been implemented in the Wisconsin

Storage System [ChouB3a].

v

No-Undo Algorithm

Unlike the No-Redo algorithm, the shadow pages are kept in their original
location while a transaction is active. All the updated pages are first written to
the scratch space and then the transaction is considered committed. Locks are,
however, released only after the updated pages have replaced the shadow pages.
A list of committed transactions whose updates have not yet overwritlen the

shadows is required to survive system crash. Recovery actions are obvious.

Comment

The above algorithms may be extracted as special cases from the general
logging mechanism by equating the before value to the shadow copy and the
after value to the current version and by assuming page-level physical logging

instead of logical logging.

3.4.3. Differential File

Recall that in the differential file approach, a relation R is considered a view
(B U A) - D, where B is the base relation, A and D are differential relations,

additions to R are appended to the A relation, and deletions to R are appended
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to the D relation. In Chapter 2, it was found that the major cost of the

differential file approach consisted of two components:
(1) 1/0 cost of reading extra pages from A and D relations,

(2) Extra cpu processing cost as a simple retrieval gets converted into a set-

\

union and a set-difference operation.

The number of extra A and D pages read to process a query is a function of
the size of A and D relations and depends on the frequency of update operations
and the frequency with which A and D relations are merged with B relations.
However, parallelism inherent in our database machine architecture may be
exploited to efliciently process the set-union and the set-difference operation.

We will present parallel algorithms for operations on hypothetical relations.

.

3.4.3.1. A Problem and A Solution

Before presenting the algorithms, let us first point out a major limitation of
the differential-file approach. In hypothetical relations, it is impossible to insert
a tuple that has previously been deleted, because the effect of a tuple in D can
never be undone as it applies to the result of (B v A). ‘The same problem makes

it impossible to update a tuple to have a previous value.

We have proposed a simple solution to this problem in _AgraB3b] The
solution requires that each transaction is assigned a unique timestamp and that

the tuples in A and D relations are widened to have an extra field TS. All appends

to A and D relations put the timestamp of the updating transaction in this field!°.

The semantics of the set-difference operator is modified as follows. Let

tuple t_ € A and tuple tj € D. Normally, if t .all = t;.all, then t_ does not belong
a d a d a

10 This change incurs no extra burden because the mechanisma for recovery
from system crash imposes these requirements anyway {see _StcnB: al ).



100

to (A - D). In our approach, we will allow t, € (A- D). although t_.all =t.all, if
t, TS > tg-TS. With this modification, a previously deleted tuple cannot
eliminate a newly inserted tuple as the timestamp of the deleted tuple would be

less than the timestamp of the new tuple.

3.4.3.2. Parallel Algorithms

We will now present parallel algorithms for database operations on
hypothetical relations. The database operations have been presented in QUEL-
like [Ston76a] syntax. In the following discussion, assume that the range of

(r.b.a.d,t) are (R,B,AD . Temp) respectively.

RETRIEVE

The operation
retrieve r where Q(r)
is translated into
(retrieve b where Q(b) v retrieve a where Q(a))
- retrieve d where Q(d)
Algorithm.:
1. Give a different page of B (hencefuorth called, the outer page) to each query
processor {When B is exhausted, give different pages of A).
2. Each query processor with an outer page initializes an array of booleans,
Eliminated{No of tuples on the page], to False.
3. While all pages of D (henceforth called, the inner pages) have not been
exhausted do}
Broadcast an inner page to all the processors;

Each processor executes subalgorithm 1 or 2 in paralleli.

o

. Each processor does the following in parallel:
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for each tuple, o-tup, in the outer page
it (Q(o-tup) is True) And (Eliminated[o-tup] is False) then output

o-tup.

Subalgorithm 1: tuples within a page are sorted!!

o-tup := beginning of the outer page;
i-tup := beginning of the inner page;

while the outer page is not completely scanned do {

while (Key?i-tup) < Key(o-tup)) do i-tup := Next(i-tup);

save-i-tup := i-lup;

while ((Key(i-tup) = Key(o-tup) dof
if (i-tup.TS > o-tup.TS) then Eliminated[o-tup] := True;
i-tup := Next(i-tup);}

i~tup := save-i-tup;

o-tup := Next(o-tup)}

Subalgorithm 2: tuples within a page are not sorted

o-tup := beginning of the outer page;
i-tup := beginning of the inner page:
while the outer page is not completely scanned do {
if ( Q(o-tup) is True) then ¢
while the inner page is not completely scanned do §
if ((Key(i-tup) = Key(o-tup) And (i-tup.TS > o-tup.TS))
. then Eliminated{o-tup] := True;
i-tup := Next{i-tup):}
o-tup := Next(o-tup);}

Comments

1. Complexity of the retrieval algorithm is O[{(DI*('Bi+A)/N) * T], where X is
the size of the relation X in pages, N is the number of processors and T is the
time for one execution of. the subalgorithn; Subalgorithm i would generally
require only one pass over each page of B (or A), and one pass over D page.

Subalgorithm 2, on the other hand, requires one pass over each page of D for

every tuple of B (or A).

2. Certain optimizations are possible in the basic algorithm described above.

11 See {BoraB0a] on how tuples in a page may be kept sorted.
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For example, D may be first restricted and the resultant tuples may be
projected on the Key and TS fields. The resultant relation, which is likely to be
quite small compared to D, may then be used for the set-difference. Similarly, B

& A may also be restricted before the above algorithm is applied.

DELETE
The operation
delete r where Q(r)

is translated into

append to D(b.all) where Q(b)
append to D(a.all) where Q(a)

Algor:éthm:
1. Query processors perform selection in parallel on pages of B and A.

2. The back-end controller appends the result tuples to D.
Comments
1. The complexity of the algorithm is O[(|B|+|A[) /N].

APPEND (Unqualified)

The operation
append to R ({col-i = value-ij)
is translated into

append to A ({col-i = value-i}).

Algorithm.:
1. The back-end controller can handle this operation alone with out any

assistance from any query processor.
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APPEND (Qualified)

The operation
append to R ({col-i = Hi(r)}) where Q(r)
may be translated in two different ways:
1. [a] append to D ({col-i = Hi(d)}) where Q(d)
[b] append to A ({col-i = Hi(a)}) where Q{a)
[c] append to A ({col-i = Hi(b)}) where Q(b)
or,
2. [a] retrieve into Temp(r.all) where Q(r)
[b] append to A({col-i = Hi(t)})
Algorithm.:

Translation 1.

1. Query processors perform se-lections of A and D (steps 1[a] and 1[b]) in
parallel. The back-end controllér appends the transformed resultant tuples
to A and D respectively.

2. Query processors do the selection of B (step iic]) and the back-end

controller appends the resultant transformed tuples to A.

Translation 2:.
1. Query processors perform retrieval using the retrieve algorithm presented
before.

2. The back-end controller appends the transformed result tuples to A.
Comments

1. The query processors may do the necessary transformation on tuples
resulting from selection (Translation 1) or set-difference (Translation 2), before
they send thern to the back-end controller for the append step. The tuples may

be transformed while being written to the output page in the processor’s local
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memory.

2. The time complexity of the algorithm with first translation is O[(|D|+|A])/N +
IB|/N). This time complexity is much better than the complexity with the
second translation. However, the first translation may result in a larger

increase in the size of the differential relations.

REPLACE

The replace oi)eration
replace r({col-i=Hi(r)}) where Q(r)

also may be translated in two different ways:

1. [a] append to D (d.other,{col-i = Hi(d)}) where Q(d)
[b] append to D (a.all) where Q(a)

%c] append to A (a.other,{col-i = Hi(a)}) where Q(a)

d} append to D (b.all) where Q(b)
append to A (b.other, {col-i = Hi(b)}) where Q(b)

e
or,
2. [a] retrieve into Temp(r.all) where Q(r)

[b] append to D(t.all) -
‘c] append to A(t.other,{col-i = Hi(t)})

Algorithm.: )

Translation i:

1. Query processors restrict the D relation and the back-end controller appends
the transformed result tuples to D.

2. Query processors restrict the A and B relations in parallel. The back-end
controller appends the result tuples to D and the transformed result tuples

to A.

Translation 2:

1. Query processors do retrieval using the retrieve algorithm presented before.
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5 The back-end controller appends the result tuples to D and the transformed

result tuples to A.
Commendts

1. The algorithm with the first translation requires only one liner scan of each of
AB and D. For steps 1[b] and 1[c], A is restricted only once and the query
processors output both the selected tuples as well as the transformed tuples for
appending to A. Similarly, 1[d] and 1[e] are done together. In addition,
(1[bl.1[c]) and (1[d],1[e]) are executed in parallel. Therefore, the time
complexity of the replace algorithm with the first translation is O[|D|/N +
(|A]+{B)/N]. Thus, the first translation is much more time efficient than the
second translation. However, the first translation causes a larger number of

tuples to be appended to the differential relations.

3.5. Summary

In this chapter, we presented our design of concurrency control and
recovery mechanisms for database machines. We showed that in the database
machines environment, a ca_antralized scheduler located with the back-end
controller using locking with deadlock detection is the appropriate choice for
concurrency control. We presented a scheme for parallel logging that allows
recovery data to be logged in parallel on more than one log disks. We showed
how recovery can be correctly performed using distributed logs without merging
them into one physical log. We also described how the performance of the
shadow recovery mechanism may be improved for use in a database machine.
We described a scheme that reduces the penalty of indirection through the page
table and schemes that avoid indirection altogether. Finally, we presented

paralle] algorithms for operations on hypothetical relations to alleviate the cpu-
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overhead problem associated with using differential files. In the next chapter,

we will investigate the performance of these different recovery options.
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CHAPTER 4

PERFORMANCE EVALUATION

4.1, Introduction

In this Chapter, we present the results of our simulation experiments to
study the performance of the parallel recovery mechanisms described in

Chapter 3 and their impact on the performance of a database machine.

We begin by explaining in Section 2 why we used simulation instead of queue
theoretic modeling for analyzing the alternative mechanisms. We then present
the structure of the simulation model for the bare (i.e. without recovery)
database machine in Section 3. The stability experiment we performed to
decide when to stop the simulation and some results from the simulation of the
bare database machine are also described in this section. Sections 4 through 8
contain the results of our performance experiments with the logging, shadow,
and differential file mechanisms respectively. In Section 7, we present our

conclusions.

4.2. Performance Evaluation Methodology

We used simulation to experiment with the different recovery mechanisms
and investigate their effect on database machine performance. We did not use
queue theoretic modeling because that would have required analysis of queueing

systems with the following characteristics:

Multiple Resource Holding: In our database machine architecture, to fetch a
data page from disk, a cache frame is first reserved for the page and then the

page is read. Thus, during reading of a data page. the page simultaneously
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possesses a disk and a cache frame. Another instance of multiple resource
holding is during the time when a page is read from cache to a processor’'s local

mermory.

‘Blocking: A query processor may be blocked if it has to output a page and no

cache frame is currently free.

Parallelism.: A transaction "splits” itself into several data pages and these pages
are processed in parallel by different query processors. In logging, updated data
pages, in addition, spawn off log fragments and an updated data page waits in
the cache for the corresponding log fragment to be written to stable storage.
The transaction in turn waits for all the log fragments created by it to be written

to stable storage before it writes the commit-record and terminates.

Nonproduct-form Disciplines and Distributions: Servers in the model of a

database machine use a variety of service disciplines that are not product

form!. For example, allocation of a cache frame to a query processof to output
a page has priority over allocation for reading a page from disk. Priority service
disciplines are not product form. Furthermore in database machines, service
time distributions of some servers depend on the state of another server. For
exarnple, at a log processor, the time between receiving a log fragment and its
assembly into a log page depends on factors such as how many query processors
were updating some data page at that time, size of the log fragments created by
the query processors, and how full was the log page when the log fragment

arrived at the log processor.

! Two most common product-form service disciplines [Chan78a] are 1) pro-
cessor sharing (i.e. when there are n customers in the service center each re-
ceiving service at the rate of 1/n sec/sec), and 2) infinite server (i.e. when the
number of customers in a service center never exceeds the number of servers).
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As observed in [Chan7Ba], obtaining exact solutions for queueing systems
with the above characteristics is computationally intractable as these systems
do not satisfy local balance [Bask75a] and therefore are not amenable to
efficient exact solution techniques like convolution [Denn78a] or mean value
analysis [Reis78a]. Approximate methods have been devised to solve queueing
systems that have some of the above features (see the survey in [Chan78a] ), but
it is not clear how to use these techniques to analyze a queueing system that’
embodies all the above characteristics together. In addition, analytic error
measures for approkimate techniques are extremely difficult to obtain [JacoB2a]

and approximations may introduce an unknown amount of error [SaueBla].

4.3. The bare Machine Simulator

We adopted a modular approach to simulation. As a first step, a simulator
for the bare (i.e., without any recovery mechanism) database machine was
built. Subsequently, modules for the different recovery mechanisms were

"appended" to the bare machine simulator.

4.3.1. Model Description »

The structure of the bare machine simulator is shown in Figure 4.1. Whena
transaction arrives for processing, its size in terms of number of pages and the
reference string is generated. For each page accessed by the transaction, it is

determined whether the page will be updated, whether the page will be found in

the cache (e.g., a page of an intermediate result) or will have to be read from a

disk, and how much query-processor time will be required to process this page®.

2 These parameters are determined for each page at the time of the arrival
of a transaction so that a page has identical routing and processing time across
different simulation experiments.
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Pages accessed by the transaction are put in the queue for the disk cache.
When a page is allocated a cache frame, it is put in the disk queue.. After the

page has been read from disk, the page can be assigned to a free query

processor and it is put in the query-processor queue®. If a page is determined to
be already in the cache, then it is immediately put in the query-processor

queue.

When a processor becomes free, it is assigned the page which is first in the
processor queue. The processor reads this page into its local memory and
releases the cache frame that was holding this page. If the page is read-only,
the processor becomes free after processing the page. If the page is updated,
the query processor requests a cache frame to output the updated page. The
cache request for sending an updated page frorﬁ a processor's local memory has
priority over the request for prepaging data pages from disk. When a cache
frame is allocated to the updated page, the processor writes the page to the

cache. The processor is now available to process the next page.

The updated page is put in the disk queue for writing it to disk. In the disk
queue, updated- pages have priority over the pages to be read. After all the
pages of a transaction have been processed and the updated pages have been

written to disk, the transaction terminates.

Observe that the query execution in our simulation model is page driven
which is similar to the data-flow approach proposed in [BoraBla]. We also model

anticipatory paging or prepaging [DeWi79a] of data pages.

8 There is one queue for all the processors as all the query processors are
identical and a page can be processed by any one of them.
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4.3.2. Model Characteristics

Transactions

A transaction is modeled by the number of pages it accesses. The size of a
transaction is a uniform discrete random variable in the range 1 to 250. The

size of a data page is 4096 bytes.

The reference string of a transaction can either be random or sequential.
To generate the random reference string, the page number and the disk on
which it resides are randomly selected for a page. The page number is between
1 and the maximum number of pages on the disk. For a sequential reference
string, the first page is randomly determined. Subsequent pageis are
determined by incrementing the page number of the first page. All pages
accessed by a sequential transaction reside on one disk which is determined by
takihg the mod of the transaction number with the total number of disks. In one
simulation experiment, all the transactions are assumed to be either random or

sequential to isolate the effect of access pattern on performance.

In database machines, all the pages processed in response to a query are
not necessarily read from disk. Some of the pages may be found in cache. For
example, if a query consists of restricting a relation followed by a join of the
result relation with another relation, then it is likely that at the time of join
some fraction of the pages produced by the selection operation will be present
in the disk cache. The size of a transaction is the total number of pages
processed by the transaction. To estimate the percentage of pages of a
transaction that will be found in cache, we instrumented the simulation of the
database machine DIRECT [BoraBla] and found the average cache-hit ratio to be
20%. We used this number to determine whether a page will have to be read

from disk or it will be found in cache.
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The write set of a transaction is a random subset of its read set. In most of
our experiments, the percentage of pages updated by a transaction was taken to

be 20% of the total number of pages accessed by the transaction.

It was ensured by using different random number streams for generating
different parameters that the size and the reference‘string of a transaction

were same across different simulations.

Query Processors

Query execution in a database machine is characterized by a mix of simple
operations like restrict and complex operations like join. To estimate the
average time to process a page, we again instrumented the sirnulation of
DIRECT [BoraBla] and determined the average times for the restrict and the join
operations on a page. The average processing time for a page was then
estimated by weighting these timings with the corresponding number of pages.
- Thus, 36.65 ms. was determined to be the average time to process a page. Ina
recent benchmark of the commercial version of INGRES running on a VAX
"11/750 [Bitt83a], the average cpu time per page for a selection operation was
measured to be 27 ms. and the time per page for a join operation was found to
be 46 ms. Thus, 36.65 ms. seems to be a reasonable estimate of the average
time required to process a page. Time taken by a query processor to process a
particular page is assumed to be normally distributed with the standard

deviation equal to 1/3 of the average processing time.

The transfer rate between a processor's memory and disk cache was

assumed to be 1/2 megabytes per second [BoraBgal].

For most of our experiments, we assumed a database machine

configuration consisting of 25 query processors.
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Mass Storage Devices

The mass storage devices were modeled after the IBM 3350 disk [IBM77a].
This disk has 30 recording surfaces, 555 cylinders and 4 blocks of 4096 bytes
each on every track. The revolution time is 16.7 ms. and it takes 10 + 0.0772*N

ms to move the head by N cylinders.

To determine the access time for a disk page, the cylinder number on which
the page resides is first computed. The access time is then computed by
accounting for‘ the seek from the current head position to this Acylinder plus

latency and the transfer time.

We have also modeled a parallel-access disk. On such a disk, pages on
different tracks of the same cylinder may be read and written in parallel. Disk
requests are serviced by determining the cylinder number of the page which is
first in the disk queue and then examining the whole queue to ﬁnd if there is
another page belonging to the same cylinder. All such pages are then accessed
in parallel.

We assumed 2 disk drives for all our experiments.

Disk Cache

The disk cache is addressable at page boundaries of 4096 bytes pages. The
unit of access is a full page. For most of the experiments, a disk cache
consisting of 100 page frames was assumed. We assume that the transfer rate
between the cache and the processors, and between the cache and the disk
drives is limited only by the bandwidth of the processor's bus and the disk
transfer rates respectively. Thus, the disk cache has been modeled as a passive
resource [SaueBla]. The disk cache does not have any service time associated

with it; only the number of pages that may be active in the database machine
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are limited by the size of the disk cache.

4.3.3. Stability Experiment

A principal problem in simulation is determining wﬁen to stop a simulation
run. If a simulation is run for an insufficient period, it may lead to erroneous
results. A general rule is to stop when the measurements of interest are within
a predetermined confidence interval. However, successive observations in a
simulation run are often positively correlated. Therefore, the classical
statistical methods for determining confidence interval that are based on the
assumption of independent and identically distributed measurements do not
apply. Three methods have been advanced to circumvent this problem (see
Sarg76a).

1. Replication: Make k independent simulation runs (replications) by using a
different stream of random numbers and the same initial conditions.

2. Batch Means: Make one simulation run and divide the observ;tions from this
run into k batches.

3. Regenerative Method: Divide a simulation run into a sequence of independent
and identically distributed blocks at the regenerative points. A regenerative

point of a systern is a state to which the system returns at intervals of finite

length.

The regenerative method is mathematically most rigorous [Chan78a].
However, the regenerative method is not always practical because a large
number of simulations do not have regenerative points [Sarg76a], particularly, if
there are saturated servers [Schw76a]. The method of batch means is
considered less rigorous than replication [SaueBla]. We, therefore, chose the
method of replication to determine when our simulator can be considered to

have run 'long" enough.
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We made 5 replications each for the following configurations:
1. Conwentional-Random: conventional disks and random transactions.
2. Parallel-Random: parallel disks and random transactions,
3. Conwentional-Sequential: conventional disks and sequential transactions,
4.

Parallel-Sequential: parallel disks and sequential transactions.

There were 25 query processors, 100 disk cache frames and 2 disk drives for

each configuration. Each replication was run for 500 transactions.

Table 4.1 shows the average execution times per page in milliseconds for
the five replications. The average ezecution time per page is defined to be the
time taken by the database machine to execute a given transaction load divided
by the total number of pages processed by the machine, and is a measure of the
throughput of the machine. Total pages processed is given by EI'I‘ii where lTi[ is

the size of the transaction T| in number of pages.

It can be seen from the execution times in Table 4.1 that our simulator was
in the steady state on completion of 500 transactions. In all our future
experiments, therefore, a simulation run was stopped after executing 500
transactions. The future simulations were run with the seeds corresponding to

the first replication.

. Replication i
Configuration 41 P Y 45
Conventional-

Random 18.00 17.75 17.82 17.82 17.89
Parallel-

Random 16.62 16.44 16.50 18.55 16.56
Conventional-

Sequential 11.01 9.53 10.10 9.92 9.97
Parallel-

Sequential 1.92 1.96 1.91 1.91 1.92

Table 4.1. Average Execution Time per Page °
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The major conclusion that we made from the simulation of the bare

database mmachine is that its performance is severely limited by the 1/0

bandwidth. -

Tables 4.2 and 4.3 contain various performance statistics related to the disk

drives and the query processors respectively corresponding to the first

replication. Unless otherwise stated, the unit of time in this chapter is

milliseconds. In Table 4.2, Q-length is the average number of disk requests

pending to be serviced and Q-time is the average waiting time before a disk ”

Disk 1 Disk 2
Configuration Q Q Utili- | Total | Access Q Q Utili- | Total | Access
length| time |zation| [/0s | time |lensth| time |zation| [/0s | time
Conventional-
Random 69.48 | 247021 | 1.00 | 29805| 3555 |26.32 | 95224 | 068 | 20265 | 3551
Parallel- i
Randomn 53.39 | 1753.53 | 1.00 | 27671 | 3548 | 42.11 | 140807 | 1.00 ;27565 35.48
Conventional-
Sequential 4880 | 1055.76 | 0.76 | 30048 | 16.48 | 48,18 | 103105 | 074 29122 | 1655
Parallel- i ' i
Sequential 14,19 53.67 | 0.92 7066 | 14.85 | 13.23 5164 : 091 . 6925i 1501 !
Table 4.2. Disk Characteristics
Q Q %[ax i Max Effec- |
Configuration : Ps Utili- tive i
e length time Used zation i QPs |
Conventional-
Random 0 0) 9 0.15 0.51
Parallel-
Random Q o) 10 Q.15 0.56
Conventional-
Sequential 0 Q 17 0.18 0.82
Parallel-
Sequential 54.47 104.77 25 0.91 22.38

Table 4.3. Processor Characteristics
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request is taken up for servicing. Access time is the average time for
transferring a page between the disk and the cache and consists of seek, latency
and the transfer times. Total 1/0s is the total number of disk requests serviced
by the disk drive. In the case of a parallel-disk, .if more than one page is

transferred in parallel, it is considered to be one 1/0.

In Table 4.3, Q-length is the average number of data pages resident in the
disk cache waiting to be assigned to a query processor and Q-time is the average
time that a page stays in cache before it is assigned to a free processor. Max
Qps Used is the number of maximum query processors in use at any time. Max
Utilization is the maximum utilization of any one of the query processors. For
computing the utilization of a query processor, in addition to the time a query
processor is performing an operation on a page of data, the time during which a
gquery processor reads a page into its local memory or writes a page to cache,
the processor is also considered to be in use. Effective Qps is the sum of the

utilizations of all the query processors.

Based on the results in Tables 4.1 through 4.3, the following observations

can be made:

1. The average execution time is highly dependent on the type of the disk drive
and the access pattern. A parallel disk may fetch more than one data pages in
one disk access. Thus, for randormm accesses, the execution time using parallel
disks is less than the time required when using conventional disks as a total of
55,236 disk 1/0s are made with the parallel disks compared to 59,170 1/0s
required with the conventional disks. In the conventional-sequential
configuration, the same number of 1/0s as in the conventional-random
configuration are required but the execution time improves as the average

access time is reduced by more than one half.



119

The execution time improves dramatically when parallel disks are used for
sequenﬁial accesses. The improvement is the result of both the reduced access
" time and significantly fewer total 1/0s (only 13,991 1/0s are required in the
parallel-sequential configuration). We conjecture that a disk scheduling
algorithm such as the shortest-seek-time first, instead of first-come first-serve,

will further improve the execution time.

9 Parallelism in the database machine is severely limited by t:he 170 bandwidth.
With conventional disk drives, although there were 25 processors, 16 of them
were never used when the access pattern was random. Out of the 9 processors
that were used, none of them were in use for more than 15% of the time and the
sum of the utilization of these processors was only 51% of a single processor.
When the accesses were sequential, B processors were never used, none of the
processors were used more than 16% of the time, and the sum of the utilization
of the 17 processors was only B1% of a single processor. Even the parallel disk
did not alleviate the problem when the accesses were random. 15 processors
remain unused, maximum utilization of any one of these processors was 15% and
the surm of the utilization of the 10 processors was 56%. Only with parallel disks

and the sequential access pattern, could all the processors be effectively used.

In contrast to processor utilization, the utilization of both the conventional
as well as the parallel disks was nearly 100% for random accesses, and there
were long disk queues with large waiting times. For sequential transactions also,

the disk utilizations were very high.

The lower numbers for disk utilization in the case of sequential access
compared to the random access is explained by the following. We assumed that
a sequential transaction accesses all the pages from the same disk and the

cache frames are allocated to the transactions on first-come first-serve basis.
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Thus, if there is a sequence of large transactions that all access, say, Disk 1
interspread with small transactions that access Disk 2, then a situation will arise

where Disk 2 becomes idle whereas there is a queue at Disk 1.

3. Parallel disks de not necess"arily solve the 1/0 bandwidth problem. If the
accesses are randorn so that at a time there are not many pages beloriging to
the same cylinder in the disk queue, the parallel-accessing capability of a
parallel disk becomes redundant. I-Iowe\;er. if the accesses have sequential

access pattern, parallel disks could be extremely useful.

4.4. Parallel Logging Simulator

We augmented the bare database machine simulator with the parallel
logging of recovery data. We did not model transaction aborts in the simulation
as our performance evaluation study in Chapter 2 showed that the major
overhead of logging was in the collection of recovery data. Compared’to
successful transactions, transaction aborts are relatively too infrequent to have

| any significant effect on the performance results.

4.4.1. Specifications of the logging module

For most of our experiments, we assurne logical logging, that is, the before
and after values of only the updated records on a page are logged. In physical
logging, the complete images of the page before and after the update are saved.
With logical logging, we assume that the size of a log fragment is normally
distributed with average size equal to 1/10 of the size of the data page and
standard deviation equal to 1/3 of the average size. Extra query processor time
required to create the log fragment is also assurmed to be normally distributed
with average time equal to 1/10 of the time to process a data page and standard

deviation equal to 1/3 of the average time.
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We have modeled two types of communication between the query

processors and the log processors:

1. Through an interconnection netqgork,- There is an interconnection network
between the query processors and the log processors (distinct from the
interconnection network between the query processors and the cache), devoted
to the task of transmitting log fragments. This network could be a shared bus,
for example, or there could be a dedicated connection between each query
processor and each of the log processors. We have modeled the interconnection
network as a delay device. The delay between sending a log fragment and its
receipt at a log processor depends on the size of the fragment and the effective
communication bandwidth of the interconnection. The effective bandwidth takes
into account the loss of bandwidth because of the contention. By choosing
appropriate values for the communication bandwidth, different interconnections
may be simulated. For most of our experiments, we assume an effective

communication bandwidth of 1 megabytes per second.

2. Through the disk cache: A query processor, on creating a log fragment,
requests a cache frame for it, and after a frame is allocated, writes the
fragment to cache. A log processor reads the fragment from cache to its
memory where it assembles log fragments into log pages before writing them to
disk. A query processor may not be reading or processing data pages while it is
writing a log fragment to the cache. Similarly, a log processor may not be
assembling log fragments while it is reading a log fragment from cache. The
time to transfer a log fragment between a processor and the cache is a function
of the size of the log fragment and the processor-cache bandwidth which is

constrained by the processor bandwidth of 1/2 megabytes per second.
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We assume that the log processor takes 2 ms. to copy a log fragment
received from a query processor to the log page it is assembling in its log buffer.
This time is based on the average size of the log fragment and the instruction
execution times for VAX 11/750. Time to send/receive a message between a log
processor and the back-end controller is 2 ms. We further assume that while a
page is being written to the log disk, the log processor may receive/send
messages or assemble log fragments into log pages. The log disk specifications

are based on IBM 3350 disk drive.

4. 4.2 Experiments

We performed a number of simulation experiments to determine the
characteristics of our parallel logging algorithm and its impact on database
machine performance. The questions that we attempted to answer from these

experiments include,
=  Effect of logging on the average execution times of the database machine?
*  When is it worthwhile having more than one log processor?

*  Performance of various log processor selection algorithms (eyclic, random,
query processor number mod total log processors, and transaction number

mod total log processors)?

*  Ffect of the communication medium between the query processors and log

processors?
*  Effect of routing the log fragments through the disk cache?
*  Effect of smaller block size for the log disk?
*  Effect of the log fragment size?

*+  Effect of the percentage of pages updated by a transaction?




Effect on Database machine Performance

Tables 4.4 through 4.7 show the effect of logging on different performance
parameters of the database machine. These experiments were performed with
25 query processors, 100 disk cache frames and 2 data disks. There was 1 log
processor and the effective bandwidth of the interconnection network between
the query processors and the log processor was taken to be 1 megabyte/second.
In Table 4.4, transaction completion time is defined to be the time from the

allocation of the first cache frame to a transaction to the writing of the last page
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Executien Transaction
Configuration Time per Page Completion Time
‘ Without With Without With
Log Log Log Log
Conventional-
Random 18.00 17.86 7398.41 7543.20 *
Parallel-
Random 16.62 16.50 6478.04 6649.90
Conventional- 4
Sequential 11.01 11.39 4016.46 4333.46
Parallel-
Seaue‘ntial 1.92 2.05 758.08 BB82.24
Table 4.4. Performance of Parallel Logging
§ : Disk 1 Disk 2
! Co nﬁguration! Without’ [TOE ; — fVith Log * Without ;oe ' - With “og
| Utili- | Total  Access: Utili- | Total 'Access: Utili- : Total Access Utili- Total Access
{zation! 1/0s | time lzation? [/Os? sime |zation! 1/0s ! time ization' 1/0s . time !
Conventional- ! | , |
Random. 1.00 |28005!35.55 | 1.00 |20905|35.20 | 0.98 29265!35.51 | 0.98 129265i35.28 |
Parallel- ' i : '
Rendom 1.00 l27871]35.49 | 1.00 12784113527 1 1.00 1275653549 ! 1.00 ¥27576f35.18
Conventional-
Sequential 0.76 |30048| 16.48 | 0.76_130048|16.91 | 0.74 129122| 1655 | 0.73 129122 16.95
Parallel-
Sequential 0.92 7066] 14.85 | 0.92 68931 18.07 | 0.91 6925]15.01 | 0.91 68681 15.87

Table 4.5. Data Disk Characteristics

(one log disk)



Without Tog With Log
; Max Effec- Max Effec-
Configuration QPs tive QPs tive
Used QPs Used QPs
Conventional-
Random 9 0.51 10 0.55
Parallel-
Random 10 0.56 13 0.59
Conventional-
Sequential 17 0.82 18 0.84
Parallel-
Sequential 25 22.38 25 23.87
Table 4.6. Query Processors Utilization
(one log disk)
WAL Log Processor
y . Disk Total Fragment
Conflguration | © 2 Utili- Wait
ength time . 1/0s .
zation Time
Conventional-
Random 3.92 367.06 0.02 1258 374.60
Parallel- i
Random 392 | 34200 0.02 1257 349.88
Conventional- ' i
! Sequential : 4.31 . 261.52 0.02 1254 254 22
{ Parallel- | : _
|_Sequential 316 | 4739 | 013 1255 49.86

updated by the transaction to disk*®. In Table 4.7, WAL Q-length is the average
number of updated pages in the disk cache that are waiting for the
corresponding log records to be written and WAL Q-time is the average waiting

time. Fragment wait time is the time between the receipt of a log fragment at a

Table 4.7. Log Characteristics

{one log disk)

4 As discussed in Chapter 2, a transaction can be considered to have com-
pleted as soon as its commit record is written to stable storage. However, to
make a comparative study of the different recovery mechanisms and their im-
pact on the database machine performance on a uniform basis, we will consider
a transaction to be completed only after all the changes in the database state

because of the transaction have become permanent (written to disk).
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log processor and the initiation of 1/0 to write the fragment to the log disk. We

make following observations based on Tables 4.4 through 4.7.

1. Although logging causes the average transaction completion time to
increase, the throughput of the database machine in terms of execution time
per page is not significantly degraded. With the recovery architecture that we
have proposed, assembly of log fragments into log pages and writing them to the
log disk is completely overlapped with the processing of data pages, and
therefore, does not affect the execution time. The effect of logging manifests in

two ways:

i) Some updated pages are blocked in the disk cache for the corresponding log
records to be written. This is the main reason for the increase in transaction
completion times. The execution times are, however, not affected because the
blocking of updated pages does not cause the disks or the processox'rs to become
idle. The blocked pages may hinder anticipatory reading of other data pages as
they keep the corresponding cache frames occupied. This will happen only if
cache frames are scarce and the blocked pages are large in number. In our
experiments, more cache frames were allocated for anticipatory paging than the

disks could feed, and on average, there were less than 5 pages in the WAL queue.

ii) Extra query processor time is required to create log fragments. However,
except for the parallel-sequential configuration, the query processors were very
poorly utilized in the bare database machine and the extra processing required
to construct the log fragments did not increase processors’ utilization

significantly.

Thus, the logging did not significantly affect the execution times as the
extra work required for logging could be done either in parallel with the

processing of data pages or it used up the slack capacity of the database
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machine.

2. The execution time per page continues to be limited by the bandwidth
between the cache and the disk, and it is very sensitive to the average time
required for accessing a data page. In Table 4.4, the execution times with
logging for the random transactions, both with the conventional and parallel
disks, are somewhat less than the corresponding times for the bare machine. So
also are the corresponding times for accessing a disk page in Table 4.5. Both~
the averagé execution time and the disk access time with logging are somewhat
higher when compared to the times for the bare machine for sequenéial
transactions. To see how logging may affect the disk access time, consider the

following example.

With a first-come first-serve service discipline, the average disk access time
depends on the order in which pages appear in the disk queue. Suppose that the
page #1 is being read and the page #250 is in the queue for reading. While page
#1 is being read, the updated page #5000 is put in the disk queue. Since in the
bare data base machine, a write has priority over a read, the pages will be
accessed in the or‘dér (#1, #5000, #250). However, if the page #5000 is blocl}«:ed
temporarily for the corresponding log record to be written to disk and
consequently the pages are read in the order (#1, #250, #5000), then the average
access time will decrease as the total seek time for the second ordering is less
than the seek time for the first ordering. Similar examples may be constructed

to show an increase in the average access time due to logging.

When parallel disks are used. the number of disk accesses reduces with
logging. In the bare machine, an updated page is written as soon as the page
becomes available in the cache and the.disk becomes free. Thus, if both pages

#1 and #2 were updated by a transaction, two [/0s may be required to write
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them to disk, even though they belong to the same cylinder, as 1/0 for page #1
may have started before page #2 became available in the cache. With logging,
page #1 may first get blocked and then put in the disk queue together with page
#2 if their corresponding log records are contained on the same log page. Thus,
the number of disk writes may be reduced to one. Furthermore, if more than
one page is written at a time, a corresponding number of cache frames will be
freed simultaneously for reading data pages, and this may increase the
probability that more than one disk page will be read in parallel. These
observations suggest that the design of scheduling policies for parallel disks is

an open area for research.

With a decrease in the number of disk accesses, however, the value of the
average access time may increase. In the above example, when a separate
access was made to write page #2 immediately after writing page #1, no seek
would have been required as the head was positioned on the right cylinder, thus,

decreasing the value of the average access time.

3. The fragment wait time reduces from the conventional-random to the
parallel-sequential configuration as the rate at which log fragments are received
at the log processor is a function of the rate at which the query processors

update data pages.

One would expect that there would be more pages in the WAL queue in the
parallel-sequential configuration compared to the conventional-random
configuration as pages are processed at a higher rate in the parallel-sequential
configuration. At the same time, however, the fragment wait time reduces in the
parallel-sequential configuration and therefore the number and the queueing

time of pages in the WAL queue decreases.
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4. The most striking result from these experiments is the poor utilization
of even one log disk. The rate at which the query processors update pages and
hence create log fragments is just not fast enough to keep the log disk busy. As
pointed out in Section 4.3.4, the 1/0 bandwidth between the data disks and the
disk cache severely limits the rate at which the query processors update data
pages. In the next subsection, we will characterize when is it worthwhile to have

more than one log disk.

Number of Log Disks and Log Processor Selection

Tables 4.8 through 4.11 show the performance statistics when 2 log

processors are used for logging. The results are shown for the four alternative

Log Execu-| Trans- WAL L.og Processor 1 Log Processor 2
Processor tion | action
Selection time | Comp- Q Q Disk |Total|Fragment| Disk |Total|Fragment
Algorithm per le.t.ion length| time Ut:'fli- 1/0s W.’ait Ut.i.li- 1/0s V‘{ait
page time zation Time |zation Time
Cyclic 17.89 |7927.08 | 850 1797.19 | 0.01 633 | 771.91 0.01 625 [ 7983.11
Random 17.84 17916.48 | B.58 80.1 37 1 0.01 632 | 787.97 0.01 625 | 787.19
QpNo mod Totlp 17.88 17952.61 | 8.52 78744 | 001 550 | 898.52 0.01 l 698 | 685.68
TranNo mod TotLp! 17.87 (8306.33 | 8.53 [799.79 | 0.01 617 | B806.01 0.01 i 641 ’ 766.22

Table 4.8. Effect of using 2 log processars
(Conventional-Random Configuration)

Log Execu-| Trans- WAL Log Processor 1 | Log Processor 2
Processor tion | action ; . :
Selection time | Comp- Q Q Disk |Total|Fragment| Disk |TotaliFragment
Algorithm per le"gion length| time Utilli— 1/0s rVVTai‘r. Ut.illi- 1/0s Vfait
page time zation lime ;zation Time

Cyclic 16.56 17082.74 | 8.52 174081 | 001 | 627 | 72827 | 001 | 628 | 73226
Random 16.55 |7097.28 | 8.54 |742.22 1001 (630 | 729.13 | 001 | 625 | 735.00

| QpNo mod Totlp 16.50 17126.83 | 8.50 [738.60 | 0.01 553 | 827.87 0.01 705 | 6851.48
TranNo mod Totlp| 16.57 |7556.79 | 8.48 [737.91 1 0.01 | 617 | 72542 | 001 | 642 | 72881

Table 4.9. Effect of using 2 log processors
(Parallel-Random Configuration)
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Log Execu-| Trans- WAL Log Processor 1 L.og Processor 2

Processor tion | action

Selection time | Comp- Q Q Disk |Total|Fragment| Disk |Total|Fragment

Algorithm per | letion |\ ol yme |Vt qq| Wit | U)o ) Wait
page time zation Time |zation Time |

Cyclic 11.54 [4705.08 | 9.02 1532.85 | 0.01 631 | 518.43 0.01 628 | 537.84

Random 11.51 |4684.87 | 8.95 1529.37 | 0.01 834 | 523.19 0.01 824 | 523.44 °

QoNo mod TotLp | 11,50 14725.13 | 8,96 1527.19 | 0.01 | 573 579.77 0.01 | 688 | 476.80
TranNo mod Totlp| 11.46 14973.15 | 8.47 1465.44 | 0.01 | 616 501.42 0.01 | 641 | 401.81

Table 4.10. Effect of using 2 log processors
(Conventional-Sequential Configuration)

Log Execu-| Trans- A WAL Log Processor 1 Log Processor 2
Processor tion | action
Selection time | Comp-| Q Q Disk |Total|Fragment| Disk |Total|Fragment
Algorithm per 1e.ti on length| time Uti.h- I/0s W"ait Uﬁ.h- [/0s W.'ait
page | time zation Time zation Time |
Cyclic 2.07 194107 | 7.28 9593 | 0.06 | 6828 | 102.11 0.08 | 829 | 100.24
Random 2.07 104097 | 7.21 | 9534 | 0.07 | 635 9038 |1 0.08 | 624 | 101.27
QpNo mod Totlp | 2.06 1933868 | 7.19 | 9530 | 0.08 | 615 | 100.89 10.07 | 843 97.18
TranNo mod TotLp!| 2.06 [988.79 | 7.39 [100.74 | 0.08 | 616 100.96 0.07 | 842 97.26

Table 4.11. Effect of using 2 log processors
(Parallel-Sequential Configuration)

log processor selection algorithmms described in Chapter 3, viz.,  the cyclic -
selection, the random selection, the query processor number mod total log
processors selection, and the transaction number mod total log processors

selection.

It can be seen that using 2 log processors did not improve the average
execution time per pag. On the contrary, the transaction completion times
became worse. The fragment wait time, WAL Q-length and WAL Q-time almost
doubled and the utilization of the log disk reduced by half. This is not very
surprising considering that with only one log processor, the utilization of the log
disk was already very poor. When 2 log processors are used, the log fragments

created by the query processors are distributed over two log disks. Since the
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rhate at which query processors update data pages does not increase by using an
additional log processor, the effective rate at which the log fragments arrived at
a log processor became half of what was before. Thus, the utilization of the log
disks decreases and a log fragment waits for longer time before it can be written
to the log disk. This increases the WAL Q-time for the updated -pages that are
waiting for the corresponding log fragments to be written to disk. Since there
are two unassembled log pages now, the number of pages in the WAL queue

increases.

We will present a simple analysis to characterize when is it worthwhile to
have more than one log disks. Assume that in a given period of time, the
database machine processes a total of N pages, where N = X lTil and !Til is the
size of the transaction Ti' The average execution time per page for the bare
database machine is E and a transaction up&ates u% of the data pages it
accesses. The average size of a log fragment is f% of the size of a data page. and
the average time to write a log page to the log disk is t. Finally, assume that the
log pages may be written to the log disk in parallel with the processing of data
pages by the database machine, and the execution time per page is not affected

by logging. Thus, with only one log disk.

Total database machine time to process N pages = N*E

Number of log fragments = u% * N

Number of log pages = % * (u% * N)

Tirne required to write the log pages to the log disk = (% *uZ*N)*t

Therefore,
frruz*t
E

In our experiments, £% = 10%, u%Z = 20%, and t = 12.61 ms. It may be

Log disk utilization =

verified, by substituting different values of E from Table 4.1, that the above
equation quite accurately estimates the numbers in Table 4.7 for the log disk

utilization. Thus, as long as the execution tirne of the database machine is
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limited by the I/0 bandwidth, more than 1 log processor will be necessary only if
the database machine has a very high degree of update activity (updates all the
pages, for example) or the size of the log fragments is large (physical logging
instead of logical logging). However, a higher number of updated pages wiil
require additional I/0s to write the updated pages and this may increase the
value of the execution time per page. Later we will present the results of our
ex;;eriments to determine whether the log disk may become a bottleneck for

high values of u% while maintaining a constant value of {%.

One cannot make very meaningful conclusions about the relative
performance of the various log processor selection algorithms from this set of
experiments as the log disks were so underutilized. To compare the
performance of different log processor algorithms'and to test the usefulness of

parallel logging, we designed another experiment.

In the simulation of the bare database machine, the utilization of the query
processors was quite high when the parallel disks were used to process
sequential transactions (Table 4.3). We, therefore, simulated the data base
lmachine with 75 query processors and 150 disk cache frames, iﬁstead of 25
query processors and 100 disk cache frames, in the parallel-sequen‘tial
configuration. We still assumed that there were 2 data disks and that each
transaction updated R0% of pages that it accessed. However, instead of logical
logging, the physical logging was modeled. In physical logging, for each updated
page, two log pages are written; one contains the before image and the other
contains the after image of the updated page. The effective bandwidth of the
interconnection between the query processors and the log processors was

assumed, as before, to be 1 megabyte per second.
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The results of the experiment are summarized in Tables 4.12 and 4.13. In
Table 4.13, the utilization, Q-length and Q-time are the averages of the mean
values for the different units of the corresponding devices. Total 1/0s is the sum
of the disk accesses made on the two data disks. For computing the queue
length at a log disk, the before and after value log pages corresponding to a data

page have been counted as one.

The average execution time per page and the average transaction
completion time degrade considerably in presence of physical logging, and using
more than one log disks in parallel significantly improves the performance. The

main reason for the degradation, when one log disk is used, is that the log disk

| No. Execution Time per Page Transaction Completion Time i
of ! §
Log QpNo | TranNo QpNo | TranNo ;
Disks cyclic | random | mod mod cyclic | random ! mod moa !

! Totlp | Totlp | Totlp | Totlp |

Q 091 ' 091 : 091 0.91 430.56 , 430.56 | 430.561 430.55°

i 5.08 5.08 5086 5.06 4518.07 | 4518.07 | 4518.07 | 45:8.07 ;
2 2.53 255 2.56 2.69 1999 51 i 2104 28 ! 2231.98 2186.45 .
3 | 174 1.80 1.80 2.11 1078.94 1 1137.18 1135721 1381.76 i
. 147 151 - 149 . 197 | 83071 | B546: 83775 1.27.50
5 1133 ) 1035 | 132 ] 198 | 71628 741731 71412 1128.37:
Table 4.12. Performance of the log processor selection algorithms
! No.;Log gQuery Processorsj Data Disks Log Disks ; WAL

of ! Processor ; i ; ; :
Log | Selection Utili-] Q | Q Utili-|Total| Q IUtu Q i Q { Q ‘ Q

Disks Algorithm zationlengthitimezation i/0s lengthzamon engm» time ggm time
0| 0.205 [9.56 18.680.95 | 5849137.38 ‘ . , . i
1 0.061 | 0.02 10.1010.86 I25003| 3.45 {1.00 256.82 3246.72128.8‘? 3250.84 |
Cyclic 0.134 |4.54 802|097 | 8348/41.1010.76 | 279] 67.95| 9.55! 78.83
; [Bandom 0.132 | 4.29 b5.79]0.97 | B550(41.48|0.75 | 400! 72.63. 9.97! 84.43
aoNo mod Totle 10137 |4.61 .07 0.08 | 8067/40.85 l0.77 | 3.06] 70.36! 9.92. 80.80!
TranNo mod TotLp|0.080 | 1.79 13.500.95 [11203]41.6210.52 | 10.73 269.31 | 27.53 | 284.97 |

Table 4.13. Effect of log processor selection algorithms on device,characteristics
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becomes the bottleneck. Consequently, the log pages wait for a long time in the
log-disk queue before they are written. This in turn increases the number of
updated pages waiting in the cache for the corresponding log pages to be
written. In our experiment with one log disk, out of 150 cache frames, on
average 129 frames were occupied by the updated pages blocked in the WAL
queue, and thus only 21 frames were available for reading new data pages from
data disks. Availability of fewer cache frames for reading new pages severely
affects the performance of the parallel disks. As compared to the no logging
case, when 5849 disk accesses were made, a total of 25993 disk accesses are
required with logging. Furthermore, with logical logging, when a log page is
written, all the corresponding updated data pages are moved from the WAL
queue to the disk queue at the same time and if they belong to the same
cylinder, they may be written to disk in one 1/0. With physical logging, only

page at a time is transferred from the WAL queue to the disk queue.

Amongst the log processor selection algoritp.ms. performances of the
eyclic, random, and query proﬁessor nurnber mod total log processors selection
are comparable, whereas the transaction number mod total log processors
selection turns out to be a loser. A log processor selection algorithm should
avoid congestion at some log processor while the other log processors are idle.
Table 4.14 shows the standard deviation in the mean queue length, queue time,
utilization and total 1/0s at five log disks for each algorithm. For the
transaction number mod total log processors selection, .the deviation in the
average values at five log disks for all the four parameters is largest indicating
that the log pages were not evenly distributed by this algorithm. For each
algorithm, we have also tabulated the averages of the standard deviations in the
queue lengths and the queue times at five log disks. The deviations in the queue

length and the queue time at a log disk are largest for the transaction number
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Log Standard Deviation Average of the
Processor of the Averages Standard Deviations
Selection
Algorithm Q Q Utili- Total Q Q
length | time | zation 1/0s length time

Cyclic 0.09 1.52 | 0.0 2.45 4.56 80.70
Random 0.40 8.07 | 0.01 29.67 5.07 87.99

| QpNo mod Totlp 0.16 2.45 | 0.005 15.34 477 63.29
TranNo mod TotLp 1.71 2722 1.003 141.00 | 16.21 220.13

Table 4.14. Variances in the log processors’ characteristics
(5 log processors)

mod total log processors selection indicating that this algorithm not only
unevenly distributed the log pages but also the pattern of arrival of log pages at
a log disk was irregular. There were too many log pages sometimes and too few
the other times. The uneven usage of the log disks is the main reason for the
higher values of the average queue length and time for the WAL queue and the

log disk queues with the transaction number mod total log processors selection.

An exe;mple will illustrate why the transaction number mod total log
processors selection results in an uneven and irregular distributien of log pages.
Suppose that the transactions T1, T<, alnd T3 arrive in that order. Their sizes are
250, 1, and 250 pages respectively. For simplicity, assume only 2 log disks.
After T2 has been processed, if all the query processors are processing pages of
either T1 or T3 then they will all send the log fragments to the first log processor

while the second log processor is idling.

The good performances of the cyclic and query processor number mod total
log processors algorithms relative to the random selection was rather
surprising. One would suspect that, in the cyclic selection, the log processors
may get lock-stepped so that all of thern send their log fragments to the first log

processor and then to.the second and so on. The reason for the good
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performances of the cyclic and the query processor number mod total log
processors selections is that all the query processors have equal probability of
updating a page and there is a random time interval between the two updates by
a query processor. The random selection only further randomizes this already
random phenomenon. Although over a long period of time, the random selection
of log processors will result in an equal number of log fragments at all the log
processors, yet during some short interval, the number of log fragments sent to
the different log processors may differ. The advantage of e¢yclic method is that
since each query processor sends equal number of log fragments to each log
processor, each log processor will get equal number of log fragments. With the
query processor number mod total log processors selection, if the query
processors update equal number of data pages, then each log processor will get

equal number of log fragments.

The query processor number mod total log processors selection may also
simplify the parallel logging algorithm. Recall that in the parallel logging
algorithm given in Chapter 3, a query processor, after sending a log fragment to
a log processor, sends the log processor identifier to the back-end controller.
The back-end controller will no longer need this information as it can itself
compute the log processor number from the query processor number.
Furthermore, if the network connecting the query processors and the log
processors is a dedicated interconnection, the query processor number mod

total log processors algorithm will simplify this interconnection.

Connection Between the Query and the Log Processors

To explore the effect of the medium connecting the log processors to the
query processors on the database machine performance, we performed 3 sets of

experiments. In the first two sets of experiments the eflective bandwidth of the
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interconnectioﬁ was taken to be 0.1 and 0.01 megabytes/second respectively. In
the third set of experiments, the log fragments were routed through the disk
_ cache. The results of the experiment are summarized in Tables 4.15 through
4.18. We assumed 25 query processors, 100 disk cache frames, 2 data disks, and
1 log processor. We assumed logical logging with the average size of the log

fragment set equal to 1/10 of the size of the data page.

The performance of the database machine is quite insensitive to the
communication medium. The reduced bandwidth of the interconnection slightly
increases the average fragment waiting time which in turn causes the average

WAL queue length and time to marginally increase. The fragment waiting time

Band- Execu-‘ Trans- |Query Processors Date Disks Log | Frag- WAL
width | tion | action Disk | ment
(Mbyte/s time time Utili- Q Utili~ | Total q Utili | Wait Q Q
|__sec) zation | length |zation| [/Os |length|zation| time !length! time
I NolLog | 18.00 17398.41 10.0204 Q 0.99 159170! 85.80 -
1.0 17.86 [7543.20 |0.0220 4] 0.89 15917019150 | 0.02 (37460 | 3.92 [367.06 !
0.1 17.83 |7487.58 10.0224 Q 0.99 150170191.46 | 0.02 :374.49 | 3.96 36862
0.01 17.86_'7548.53 10.0218 Q 0.99 159170]80.92 | 0.01 l3g5.30 | 4.49 1400.91 »
 Cache | 17.86 |7485.28 00224 | 0 | 099 |50170(91.50 | 0.01 !373.40 1 3.89 1367.50 .

Table 4.15. Effect of the cornmunication medium
(Conventional-Random Configuration)

f T T

I Band- ‘Execu—i Trans- ;Query Processors | Data Disks Log : Frag- WAL i
width | tion ; action Disk | ment : .
(Mbyte/ time | time Utili- Q Utili- | Total | Q Utili | Wait Q Q i
sec) zation | length lzation| [/Os |length|zation| time ilengthi time
No Log | 16.62_|6476.04 |0.0224 0 1.00 55238 85.50,
1.0 16.50_|6649.90 :0.0236 [¢] 1.00 _155217191.11 | 0.02 i34p.88 | 3.92 [342.00
0.1 18.51 |8646.80 |0.0240 0 1.00 |552268/91.10 | 0.02 1348.45 | 3.94 1340.38
0.01 16.54 | 6686.15 [0.0236 0 1.00_ 155227190.49 | 0.02 '362.43 | 4,54 [375.24
Cache | 16,51 16662.47 |0.0240 Q 1.00 {55206]91.99 ‘ 0.02 35036 | 3.91 [342.29

Table 4.16. Effect of the communication medium
(Parallel-Random Configuration)
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Band~ |Execu-| Trans- |Query Processors Data Disks Log | Frag- WAL
width | tion | action Disk | ment
(Mbyte/ time | time Utili- Q Utili- | Total | Q Utili | Wait qQ Q
| _sec) zation | lenath |zation| [/0s |lengthization! time llength| time |
Nolog | 11.01 14016.48 10.0328 9 0.75_159170| 94.98
1.0 11.39 [4333.48 10.0338 0 0.75 15917019037 | 0.02 125422 431 125152
0.1 11.42 1434542 [0.0332 0 0.74 150170/60.28 | 0.02 |256.85 | 4.4] 1254.83
0.01 11.42 14384.94 10.0338 0 0.75_159170189.47 | 0.02 1266.33 | 5.22 297,47
Cache | 11.39 [4341.58 10.0352 0 0.75_159170190.36 | 0.02_|254.69 | 4,30 [253.29 |
Table 4.17. Effect of the communication medium
(Conventional-Sequential Configuration)
Band- |Execu-| Trans- |Query Processors Data Disks Log |Frag- WAL
width | tion | action Disk | ment
(Mbyte/ time | time Utili- Q Utili- | Total | Q Utili | Wait Q Q
sec) zation| length |zation| [/Os |length|zation; time |lengthi time
Nolog | 1.92 |758.06 0895 54.47 092 113991/27.42
1.0 2,05 1862.24 10.855 87,2 0,92 11376111997 10.13 14986 | 3.16 147,39
0.1 2,05 1865.894 10.850 55.71 0.01 |13868120.88 | 0.13 150.00 | 3.37 140.54
0.01 2.08 1899.47 10.928 50.38 0.91 113693121.42 [ 0.13 5058 | 6.25 |77.45 |
Cache | 2.08 1868.78 10.947 58.80 0.91 11396112075 |1 0.13 (40.63 | 303 [47.54

Table 4.18. Effect of the communication medium
(Parallel-Sequential Configuration)

increases only marginally with a slower medium if there is a time gap between

arrivals of fragments. As shown in Figure 4.2, after a log fragment arrives at a

log processor, the delay in the arrival of subsequent log fragments is absorbed

in the interarrival gap.

The performance of the database machine was not affected even when the

log fragments were routed through the disk cache. Routing the fragments

through the cache causes the usage of the query processors to increase and

some cache frames get tied up to hold the in-transit fragments. However, the

query processors or the number of cache frames are not the constraining

factors for the performance of the database machine.
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(U: Update time T: transmission time)

Page 1 Page 2 Page 10
U T U T U T
s e T s e S
U T U T U T
| | { | | FOUCIU F——
i 1 l f ! l | | |
H - H
1st fragment ‘ last fragment
arrives arrives

Figure 4.2. Effect of slower communication medium on fragment wait time

To examine if the communication medium will affect the database machine
performance if the data pages were processed at a higher rate, we repeated the
above set of experiments for 75 query processors and 150 disk cache frames in
the parallel-sequential configuration of the database machine. We still assumed

2 data disks, 1 log processor, and logical logging with the average fragment’size

Band- |Execu-| Trans- |Query Processors Data Disks Log | Frag- WAL
width | tion | action Disk | ment
(Mbyte/ . Utili- Q Utili- | Total| Q Utili | Wait Q Q

sec) time | time sation| length lzation]|[/Os|lengthization| time length| time
No Log | 0.81 1430.58 {0.205 9.56 0.95 |5849174.76
1.0 0.85 1498.17 10.220 10.47 0.6 {5334/66.45 | 0.28 12554 | 3.18 28.53
0.1 0.98 |512.94 [0.221 10.36 0.068 |5410/68.50 | 0.28 12550 | 3.51 [28.85
0.01 1.02_1557.88 10.201 8.17 0.8 [57171684.81 | 0.26 126.31 | 8.31 53.63
Cache | 095 [405.23 {0.229 10.78 0.98 |5303|66.13 | 0.28 {23.17 | 2.74 [26.51

Table 4.19. Effect of the communication medium
(75 Query Processors, 150 Cache Frames, Parallel-Sequential Configuration)
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equal to 1/10 of the data page. The results of this experiment are presented in
Table 4.19. It may be observed that at this higher data processing rate also, the
communication medium does not significantly affect the performance of the

database machine.

Size of the Log Pages '

In all of the experiments so far, the block size of the log disk was assumed
to be the same as the block size of the data disks (4098 bytes). We also
experimented with the smaller block sizes of 2048, 1024, and 512 bytes for the
log disk. The database machine consisted of 25 query proceésors, 100 disk
cache frames, 2 data disks, and 1 log disk. In one experiment, we considered 75
query processors and 150 cache frames in the parallel-sequential configuration
of the database machine. In all the experiments we assumed logical logging with
an average log fragment size of 400 bytes. The results of this set of experiments

have been summarized in Tables 4.20 through 4.24.

With 25 query processors, as the block size of the log disk decreases, the
average fragment waiting time also decreases, as fewer log fragments are

needed to fill a log page. Consequently, the average WAL queue length and time

Block | Execu-| Trans- QPs Data Disks Log Disk Frag- WAL
Size tion | action ment
Utili~ Q Utili- | Total Q Utili | Total | Wait Q Q

byte ; .
(byte) | time time sation |lensth|zation| [/0s |length|zation| [/0s | time !length| time |

No [og| 18.00 i7398.41 | Q.02 Q 0.99 159170 95.80
4096 : 17.86 17543.20 | 0.02 ) 0.88 15917019150 | 0.02 1258|374.60 | 3.92 :367.08
2048 | 17.89 1742691 | 0.02 9 0.99 1591709355 | 0,03 | 2676/193.59 | 1.93 1106.43
1024 | 17.89 17403.98 | 0.02 Q 099 |59170/94.74 | 0,05 | 6070| 85.28 | 0.79 |102.81
512 |17.93 |7380.58 | 0.02 Q 0.89 159170/95.44 | 0.10 [11435| 20.22 | 0.16 | 4851

Table 4.20. Effect of the block size of the log disk
(Conventional-Random Configuration)
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Block |Execu-| Trans- QPs Data Disks Log Disk Frag- WAL
Size | tion | action ment. |’
Utili- Q Utili- | Total | Q Utili | Total | Wait Q Q
zation |lengthlzation| [/0s |lengthization| [/0s | time |length| time |

(byte) | time | time

Nolog) 18.62 |68476.04 | 0.02 0 1.00 }55238) 95.50

4098 | 18.50 |6649.90 | 0.02 0 1.00 |55217191.11 | 0.02 12571349.88 | 3.62 1342.00

2048 | 18.53 (653839 | 0.02 (¢] 1.00 |55241/93.22 | 0.03 | 2670|180.67 | 1.92 |1182.68

1024 | 16.55 1849654 | 0.02 4] 1.00 1552091984.45 | 0.06 8108, 78.72 | 0.78 | 94.87

512 |16.57 [6468.28 | 0.02 0 1.00 (55204 95.14'0.10 11442 1873 | 0.15 | 45.05

Table 4.21. Effect of the block size of the log disk
(Parallel-Random Configuration)

Block |Execu-| Trans- QPs Data Disks Log Disk Frag- WAL
Size | tion | action ment
Utili- | Q Utili- | Total | Q Utili | Total | Wait Q Q

2ation|lengthization! [/0s |lengthization! [/0s | time !length| time

(byte) | time | time

No Log| 11.01 1401646 ' 0.03 0 0.75 158170/94.98

40086 | 11.39 1433346 | 0.03 (0] 0.75 |59170180.37 | 0.02 1254125422 | 4.31 251,52

2048 | 11.29 14198.85 | 0.03 (¢] 0.75 59170192681 | 0.04 2671]125.57 | 2.10 1128.39

1024 |11.15 {4106.1C | 0.04 0] 0.75_159170/93.83 | 0.09 6083| 54.02 | 0.88 | 61.29

512 ]11.03 14031.30 | 0.04 0 0.75 15917019448 | 0.16 111410{ 14.18 | 0.21 20.82

Table 4.22. Effect of the block size of the log disk
(Conventional-Sequential Configuration

T

i Block iExecu-:; Trans- | QPs J Data Disks Log Disk [ Frag-
Size : tion | action | : :
i ' Utili- Q Utili- | Total ! Q | Utili

i

i te); time | time X . T
(byte) | zationilength|zation! [/0s !length zatlon!
1

i

WAL

1
" ment

' Total | Wait | Q : Q
[/0s ! time !lengthi time !

No Logl 1,92 |758.08 | 0.90 !54.47 | 0.92 [13991!27.42 i i
" 4006 | 2.05 |862.24 | 006 |57.22 | 0.02 1376101097 | 0.13 | 1255/49.86 | 3.16 |47.39
o048 | 2.05 |853.18 | 0.93 |57.89 | 0.2 114137/22.39 | 0.23 | 26712464 | 1.33 |24.38
1024 | 2.06 |827.59 | 0.93 158,09 | 0.93 |14515|23.48 | 0.47 | 6110[13.27 | 0.61 [13.16
| 512 | 2.08 |B38.21 | 0.688 |52.33 | 0.03 |15128]27.45 | 0.82 [11434[24.45 | 1.31 [23.38

Table 4.23. Effect of the block size of the log disk
(Parallel-Sequential Configuration)
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Block | Execu-| Trans- QPs Data Disks Log Disk Frag- WAL
Size | tion | action ment
Utili~ Q Utili- | Total| Q Utili | Total | Wait Q Q

(byte) | time time zation!length|zation| [#0s |length!zation| [/0s | time |length! time

No Log!| 0.91 430.56 | 0.21 9.68 | 0.95 58401 74,78
4008 | 0.95 498.17 | 0.22 11047 | 098 | 533416845 | 0.28 1258| 2554 | 3.16 | 28.53
2048 | 0.98 484,72 | 0.22 110.27 1 Q.96 5630} 70.05 | 0.49 | 2687 1523 | 157 | 16.05
1024 | 1.11 568.97 | 0.17 8.57 1096 | 7172173.84 | 0.88 6081, 67.48 | 7.28 | 56.53
512 1.72 1115781 [ 0.08 | 094 | 095 11161114998 | 1.00 [11423/528.50 [56.19 |487.60

Table 4.24. Effect of the block size of the log disk
(75 Query Processors, 150 Cache Frames, Parallel-Sequential Configuration)

decrease, which in turn reduces the transaction completion times. The
execution times do not improve as the logging actions were already completely

overlapped with the processing of data pages.

A side effect of decreasing the block size is that the number of log pages
increases. This is not a problem as long as the log disk does not become a
bottleneck. In parallel-sequential configuration (Table 4.23), however, when the
block size of the log disk is reduced to 512 bytes, the utilization of the log disk
reaches 82%. Thus, compared to the block size of 1024 bytes, the fragment wait
time increases as a queue begins to form at the log disk. The problem becomes
still severe when 75 query processors and 150 disk cache frames are used in the
parallel-sequential configuration. As the block size is decreased, the number of
log pages steadily increases. With a block size of 512 bytes, the log disk
becomes the bottleneck. The fragments wait for long time in the log disk queue
before they are written to disk. Consequently, the nurnber of updated pages in
the WAL queue and the transaction completion time also increases. A large
number of pages in the WAL queue results in fewer free cache frames for reading
new data pages. This affects the performance of the parallel disk and the
number of disk accesses increases considerably. Thus, the average execution

time increases by almost a factor of two.
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Size of the Log Fragments

Tables 4.25 through 4.29 summarize the results of our experiments to test
the sensitivity of the performance of the database machine to the average log

fragment size. We assumed 25 query processors, 100 disk cache frames, 2 data

Frag- |Execu-| Trans- QPs Data Disks Log Disk | Frag- WAL
ment | tion | action ment
Utili- ] Q | Utili- | Total | Q Utili | Total| Wait Q
zation|length|zation| [/0s |length|zation| [/0s | time llength| time
No Log!| 18.00 [7398.41 | 0.02 0 0.89 |59170| 65.80
10% | 17.86 {7543.20 | 0.02 0 0.98 159170/91.50 | 0.02 | 1258 1374.60 | 3.92 |367.08
20% | 17.86 17405.14 | 0.02 0 0.98 |59170/93.28 | 0.03 |2671/21580 1 2.20 1210.15
50% | 17.85 17306.39 | 0.02 0 0.99 |58170/94.49 | 0,10 [82701104.22 | 1.03 1105.14

Table 4.25. Effect of the size of the log fragments
(Conventional-Random Configuration)

Size | time time

ﬁrag- Execu-| Trans- QPs Data Disks Log Disk Frag- WAL
ment | tion | action T ment
Utili-1 Q | Utili- i Total| Q Utili jTotal| Wait’ Q Q

. Size | tme tme zation!length |zation| [/0s |length|zation|[/0s | time llength! time |
No Log!| 18.62 16476.04 ! 0.02 0 1.00 |55238! 95.50

10% | 16.50 :6648.90 ;. 0.02 0 1,00 15521719111 ' 0.02 11257:340.88 : 3.92 !'342.00
20% |16.51 :6517.88 | 0.02 0 ! 1.00 i55240192.92 | 0.03 ! 2677 :200.65 219 ;195.05

50% | 16.52 |6463.19 | 0.02 o | 1.00 |55323| 04.19 | 0.11 |8202| 97.07 | 1.02 | o7.61

Table 4.26. Effect of the size of the log fragments
(Parallel-Random Configuration)

Frag- |Execu-| Trans- QPs Data Disks Log Disk Frag- WAL
ment | tion | action ment
Utili- Q Utili- | Total | Q Utili |Total| Wait Q Q

Size | time time . . . : .
2ation]|length | zation | [/0s |length!zation| [/0s | time |length| time

No Log| 11.01 1401846 | 0.03 (0] 0.75 |59170|94.98
10% [ 11.39 14333.48 | 0.03 0 0.75 |50170/90.37 |1 0.02 11254125422 | 4.31 1251.52
20% 111,30 14209.16 | 0.03 Q 0.75_159170{92.33 | 0.05 | 2686 139.08 | 2.37 |139.34
50% |11.19 14113.16 | 0.03 a 0.75 15917019354 | 0.16 [8317| 6851 | 1.17 | 68.29

Table 4.27. Effect of the size of the log fragments
(Conventional-Sequential Configuration)
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Frag- |Execu-| Trans- QPs Data Disks Log Disk | Freg- WAL
ment | tion |action ment
Utii-| Q | Utili- | Total | Q Utili |Total| Wait Q Q

sation|leneth|zation! [/0s |length|zation| [70s | time !length! time
Nolog| 1.92 |758.08 | 0.90 |54.47 0.92 113991 27.42
10% 205 i862.24 | 096 |57.22 | 0.92 11376111987 | 0.13 1255149.86 | 3.16 147.38
20% 208 |839.20 | 0.04 |57.81 | 0.92 114031/22.03 | 0.28 |2666 28.53 | 1.59 127.12
50% 200 1860.85 | 0.87 |50.20 | 0.93 114978/26.88 | 0.85 |6290 42.8] | 2.83 141.74

Table 4.28. Effect of the size of the log fragments
(Parallel-Sequential Configuration)

Size | time | time

Frag- | Execu-| Trans- QPs Data Disks Log Disk | Frag- " WAL
ment | tion | action ment
Utili-| Q | Utili~ |Total{ Q Utili |Total| Wait Q Q
zation|length|zation| [/0s |lengthization! [/0s | time length| time
No Log| 0.91 430.56 1 0.21 9.56 | 0.85 58490 74.78
10% | 0.95 499.17 | 0.22 11047 | 0.96 5334|66.45 | 028 112568 2554 | 3.16 | 28,53
20% | 0.98 497.72 1 021 11032 | 0.96 5855170.26 | 058 | 2664 19.89 | 2.28 | 2096
507 1.78 11248.57 1 0.08 0.41 | 0.95 111516141.24 | 1.00 | 8315162543 66.97< 595.04

Table 4.29. Effect of the size of the log fragments
(75 Query Processors, 150 Cache Frames, Parallel-Sequential Configuration)

Size | time time

disks, and 1 log processor. The sensitivity experiment was also performed for
the parallel-sequential configuration with 75 query processors and 150 cache

frames.

Increasing the log fragment size is logically equivalent to decreasing the
size of the log page as far as the impact on the fragment wait time and the log
disk utilization are concerned. Therefore, the results of this set of experiments
are similar to the results of decreasing the block size of the log disk. The
difference is that a larger amount of time is required for transmitting a bigger
log fragrment between a query processor and a log processor. This is equivalent
to using a communication medium with a lower bandwidth. However, we have
seen that the bandwidth of the communication medium has marginal impact on

the performance.
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Tables 4.30 through 4.33 characterize the behavior of logging as the

percentage of pages updated out of the total pages accessed by a transaction

increases. The results in Tables 4.30 through 4.33 assume 25 query processors,

100 disk cache frames, @ data disks, and 1 log disk.

% of |Execu-| Trans- QPs Data Disks Log Disk Frag- WAL
Update| tion | action - ment
. . Utili- Utili- | Total Utili {Total| Wait
Pages | time time zation lenggth zation| [/0s lencfzth zation|[/0s | time lenqeth tigv,_e_:___
20% | 17.86 | 7543.20 | 0.02 0 0.99 59170 91.50 | 0.02 |1258|374.60 | 3.92 |367.08
50% 12322 ! 971601 | 0.04 0 0.99 176840191.82 | 0.03 [31361207.58 | 3.47 1173.42 |
80% 12859 11191827 | 0.08 0 0.99 |94650/91.56 | 0.04 15028118295 | 3.34 [(130.31

Table 4.30. Effect of the percentage of the pages updated by a transaction
(Conventional-Random Configuration)

% of Execu-! Trans- QPs Data Disks Log Disk Frag- WAL 3
Update| tion | action ment
. : Utili- Utili- | Total Utili |Total| Wait
Pages | time time zation len?zth zation! [/0s 1enqg‘d'1 zation| [/0s | time leanth tirQne
20% 116.50 | 6648.90 ! 0.02 0 1.00 155217191.11 1 0.02 :1257:349.88 : 3.92 :342.00 :
50% 121.48 | 8486.24 | 0.05 Q 1,00 {71800:91.38 | 0.03 3135!185.68 | 3.47 1162.14
807 | 26.24 !10203.90 0.08 0 1.00 |87874190.94 | 0.04 15028117225 | 3.34 112233 ;

Table 4 31. Effect of the percentage of the pages updated by a transaction
(Parallel-Random Configuration)

% of |Execu-| Trans- QPs Data Disks Log Disk Frag- WAL
Update| tion | action ment
: . Utili- Q Utili- | Total Utili |Total| Wait
Pages | time time zationilengthization| [/0s len?zth zationi [/0s | time len?zth ti?ne
20% 11,39 [4333.48 | 0.03 Q 0.75 15917019037 | 0.02 112541254.22 | 431 |251.52 |
50%_ | 14.47 532537 | 0.07 [0} 0.75 |76840190.86 | 0.05 13139/133.66 | 4.01 1122.04
80% | 17.98 1654454 | 0.09 0] 0.74 194650191.32 | 0.06 15025/104.42 | 3.58 91.08

Table 4.32. Effect of the percentage of the pages updated by a transaction
(Conventional-Sequential Configuration)
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% of |Execu-| Trans- QPs Data Disks Log Disk | Frag-| - WAL
Update| tion | action ment
Utili- | Q | Utili- | Total| Q Utili {Total| Wait Q Q
sation|lensth|zation| [/0s |length!zation|1/0s| time |length] time
20% 205 |882.24 | 0.08 [57.22 | 092 [13761]19.87 0,13 1125514988 | 3.16 147.39
50% 2168 |828.89 | 0.97 15063 | 0.92 |13504 21,46 | 0.31 3142122.28 | 3.37 121,33
80% 227 183684 | 0.98 14711 | 0.90 113522|20.85 0.47 |5028118.50 | 4.04 [15.75

Table 4.33. Effect of the percentage of the pages updated by a transaction
(Parallel-Sequential Configuration)

Pages | time | time

With an increase in the percentage of pages updated by a transaction, the
fragment wait time decreases because of the higher arrival rate of the log
fragments at the log processor. There is a corresponding decrease in the time
for which updated pages wait in the cache in the WAL queue. However, the
number of pages in the WAL queue does not change significantly as the reduction
in the fragment wait time is offset by the higher rate of arrival of the updated
pages to the cache. The transaction completion time and the execution time
increase with the conventional disks and the parallel-random configuration as

the number of disk accesses increases with the increased update activity.

A surprising phenomenon is that the number of disk accesses in the
parallel-sequential configuration decreases with an increase in the percentage of
updated pages (Table 4.33). In our parallel disk, there are 120 pages per
cylinder that can be read in one disk access. The reference string of a
sequential transaction consists of physically adjacent pages on a disk. Thus, if a
transaction references 100 pages, potentially all the pages can be read in one
disk access. However, at a time, only as many pages as the number of free
frames can be read. An 1/0 begins as soon as the disk becomes free, if there is a
page to be accessed and a free cache frame. The number of accesses required

to read all the pages of a transaction, therefore, depends crucially on how many
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cache frames become available at a time. When a log page is written, all the
data pages waiting for the log fragments in this log page to be written become
available for writing. When the update percentage is high, these pages are likely
to belong to the same transaction and hence to the same cylinder and may be
written in one disk access. Thus, a higher percentage of updated pages may not
result in an increase in the number of disk accesses, but may cause several
cache frames to become free at the same time. On the other hand, if the
percentage of updated pages is low, the cache frames holding the pages that are
read but not updated become free one at a time at random times. This
discussion further confirms that 'first-come first-serve' and 'service as soon as
can' are not appropriate for parallel disks and the scheduling strategies for

parallel disks is an open area for research.

With 75 query processors and 150 cache frames in the parallel-sequential
configuration (Table 4.34), however, the fragment wait time increases as the log
disk becomes the bottleneck. This in turn increases the number of pages in the
WAL queue resulting in fewer cache frames for reading data pages from disk.
Consequently, the performance both in terms of the execution time and the

transaction completion times degrades.

% of |Execu-| Trans- QPs Data Disks Log Disk Frag- WAL
Update| tion | action ment
Utili- Q Utili- | Total] Q Utili {Total| Wait Q Q

zation|lensth|zation| [/0s |length|zation!| [/0s | time |length| time
20% 085 1489.17 | 022 11047 | 0.86 15334 686.45 | 028 |1258| 2554 | 3.16 | 2853
50% 1.17 _1554.20 | 0.33 4,19 | 0.95 |7077.1508.58 | 0.57 3137 51.27 |15.18 | 46.65
80% 1.83 1698.92 | 0.33 0.75 | 0.91 |910536.08 | 0.68 |50291123.99 154,88 1113.74

Table 4.34. Effect of the percentage of the pages updated by a transaction
(75 Query Processors, 150 Cache Frames, Parallel-Sequential Configuration)

Pages | time | time
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4.5. Shadow Mechanism Simulator

As in the case of parallel logging, in our simulation of the shadow
mechanism, we have only modeled the recovery actions during the execution of
a successful transaction. We will first describe our experiments to study the
effect on the database machine performance when one or more page-table

processors are used to obtain disk addresses of the data pages.

4.5.1. Specifications of the Shadow Mechanism Module

The page tables are maintained on disks separate from the data disks. The
characteristics of IBM 3350 disk drives have been assumed for the page-table
disks. Associated with each page-table disk is a processor whose function is to
read and update the page tables. There is a page-addressable buffer comumon to
the page-table processors for holding thc; page-table pages. Pages in the buffer
are managed using the least recently used (LRU)'replacement policy. This
buffer is different from the disk cache for reading data pages. For most of our
experiments, we assume a buffer of 10 pages of 4096 bytes each. Pages can be
read from the page-table disk m blocks of 4096 bytes. We will present the
sensitivity results of varying the the block size and the buffer size. We assume

that a page-table entry is 4 bytes long.

In all our experiments, we assume 2 data disks, and either 1 or 2 page-table
disks. The mapping problem when 2 page-table disks are used is solved by
assuming one to one correspondence between the data disk number and the
page-table disk number. We also assume that the back-end controller requests
the disk-address of a data page from the page-table processor only if the page is

not available in the disk cache.

For committing a transaction, all the pages updated by the transaction are

written to the data disks and then a precommit record is written to a page-table
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disk. As discussed in Section 3.4.2.1, all the precommit records are written to
one page-table disk. We assume that after the precommit record of a
transaction has been written, the page-table processors write the page-table
pages updated by the transaction to disk. A transactionis considered complete
only after all the page-table entries updated by the transaction have been
written to disk. In an actual implementation, an updated page-table page would
not be written to disk until the buffer replacement algorithm so requires.
However, this assumption is consistent with the assumption made while
modeling the logging mechanism that a transaction is considered complete only
after all the changes effected in the database state by the transaction have

become permanent.

4.5.2. Experiments

We performed a number of experiments with cur simulator of the shadow

mechanism to investigate the following issues:

*+  Effect of the shadow mechanism on the average execution times of the

database machine?
* s it worthwhile having more than one page-table pr‘oceésor‘?
*  Effect of the size of the page-table buffer?
*  Effect of smaller block size for the page-table disk?

*  What if the logically adjacent pages are not physically adjacent on data disk

as a result of the shadow mechanism?

*  When should the version selection or the overwriting scheme described in

Chapter 3 be used?
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Fffect on Database machine Performance

Tables 4.35 through 4.38 show the effect of the shadow mechanism on
different performance parameters of the database machine when 1 and 2 page-
table disks are used. These experiments were performed with 25 query
processors, 100 cache frames and 2 data disks. In Table 4.36, Utilization is the
average of the mean values of the utilization of the two data disks; whereas, Q-
length and Total 1/0s is the total of the queue length and the number of disk
accesses respectively. Inthe case of 2 page-table disks in Table 4.38, Utilization,
Q-length, and Total I/0s are similarly defined, and Q-time is ihe average waiting
before a page-table access request is accepted. We make following observations

based on Tables 4.35 through 4.38.

1.  With random transactions, when | page-table processor is used, the
performance of the database machine degrades both in terms of the execution
time per page and the transaction completion time. The degradation, however,‘
is ameliorated because the page table accesses and the processing of data pages
is pipelined. While a data page is being read from the disk and being processed
by a query processor, the page-table processor fetches the disk-address of the

next data page.

Execution Transaction :
c . Time per Page Completion Time
onfiguration Bare 1 PageTable | 2 PageTable Bare 1 PageTable | 2 PageTable
Machine Disk Disks Machine Disk Disks
Conventional-
Random. 18.00 20.51 17.99 7398.41 8367.19 7758.92
Parallel-
Random. 16.62 20.48 18.89 6476.04 8352.91 8862.23
Conventional-
Sequential 11.01 10.98 10.99 114018.48 4086.86 4061.18
Parallel-
Sequential 1.92 1.94 1.93 758.06 829.34 816.29

Table 4.35. Performance of the Shadow Mechanism
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e Machine 1 PageTable Disk 2 PageTable Disks
Configuration | Utili- Q Total | Utili- Q Total | Utili- Q Total
zation | length | 1/0s | zation | length | [/0s | zation | length | [/0s
Conventional-
Random 0.88 94.98 | 59170 | 0.88 17.85 | 59170 | 0.99 91.07 | 59170
Parallel-
Random 1.00 95.50 | 55236 | 0,85 15.53 | 58045 | 1.00 89.85 | 55455
Conventional-
Sequential 0.75 95.80 58170 | 0.75 94.894 59170 | 0.75 94.94 58170
Parallel-
Sequential 0.92 .| 27.42 13991 | 0.90 28.28 13818 | 0.91 27.81 13812
Table 4.38. Data Disk Characteristics
Bare Machine 1 PageTable Disk 2 PageTable Disks
Configuration | Max QPs | Effective | Max QPs | Effective | MaxQPs | Effective
Used QPs Used QPs Used QPs
Conventional-
Random g 0.51 10 0.44. 11 0.51
Parallel-
Random 10 0.58 9 0.44 11 0.56
Conventional-
Sequential 17 0.82 17 0.83 17 0.83
Parallel-
Sequential 25 22.38 25 21.40 25 22.12
Table 4.37. Query Processors Utilization
)
1 PageTable Disk 2 PageTable Disks :
Configuration | Utili- | Q Q %Total Access| Utili- | Q ‘ Q l’I‘otal!Access!
{zation)lenpthl time | [/0s | time lzationilengthi time ! 1/0s ' time -
Conventional- : ;
Random 1.00 |81.65 11796.95 16139211971 1 060 | 6.18 1119.08 163845] 19.81
Parallel-
Random 1.00 |B4.10 11849.92 161342]19.71 | 064 | 7.43 1132.86 (63675 19.81
Conventional-
Sequential 0.08 0.02 8.7 | 155912568 | 0.03 | 0.01 5.08 | 1559| 22.75
Parellel- -
Sequential 0.34 1.38 31.36 | 1559]24.96 | 0.16 | 0.57 13.88 | 1558| 22.66

Table 4.38. Characteristics of the PageTable Disks
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With 1 page-table disk, the page-table processor becomes the bottleneck as
evidenced from the utilization of the page-table disk and the relative queue
lengths at the page-table disk and the data disks. The average utilization of the
data disks decreases from 100% to B5% utilization. Thus, there were times when
a page was to be accessed from the data disk and the disk was free but the 1/0
could not be performed as the disk-address of the page had not yet been fetched
from the page table. This forced idleness of the data disks is the main reason

for the increase in the execution time per page.

The relative degradation is higher with the parallel data disks than with the
conventional disks. The reason is that not only are the parallel disks under-
utilized but the number of accesses also increases. With parallel disks, the
probability that more than one data page will be accessed in one access depends
on the number of pages in the disk queue. The indirection through the page
table causes more pages to wait in the page-table disk queue and there are

relatively less pages in the data disk queue.

When 2 page-table disks are used, the task of fetching and updating the
page-table entries is shared betwee“n two page-table processors. The page-table
processors are no longer the bottleneck and the performance of the database
machine again becomes limited by the 170 bandwidth between the disk and the

cache.

With 2 page-table processors, the buffer size to hold page-table pages was
still assumed to be 10 pages. Thus, when compared to 1 log processor, a page
could stay in the buffer for smaller duration. This is the reason for the increase
in the total number of accesses to the page-table disks with 2 page-table

processors.
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2. Compared to the random transactions, very few accesses to'the page-table
disk are required when the transactions are sequential. With 4096 byte page-
table pages, 1000 page-table entries are contained on one page. We have
assumed that a transaction accesses at most 250 data pages. Thus, when the
access pattern is sequential, at most 2 page-table pages will have to be accessed
to get all the disk addresses. Therefore, the utilization of even 1 page-table disk
is very low with the sequential transactions and the queue length is almost
negligible. Thus, the execution time of the database machine is not affected at
all by the shadow mechanism as the small amount of time spent in reading and
updating of page-table entries is completely overlapped with the processing of

data pages.

A consequence of using the shadow mechanism is that logically adjacent
pages may not be physically adjacent. Thus, although accesses may be logically
sequential, getting the next page may involve a disk seek. A crucial assﬁmption
in this set of experiments was that it is possible to maintain physical clustering
of logically adjacent pages within a cylinder. Later on, we will present the
results of the simulation of the impact of the shadow mechanism on the

database machine performance if this assumption does not hold.

Size of the Page-Table Buffer

The number of accesses to the page-table disks depends on the size of the
buffer available Lo hold the page-table pages. If the buffer size is large, a page-
table page may stay in the buffer for a longer time and the probability of a page
hit increases. On the other hand, if the buffer size is insufficient, then at the
time of updating the page-table entries when a transaction commits, those
pages that are to be updated and that are no longer available in the buffer will

have to be reread.
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Tables 4.39 and 4.40 show the reduction in the number of accesses to the
page-table disk with an increase in the page-table buffer size for random and
sequential transactions respectively. We assumed 25 query processors, 100 disk
cache frames, 2 data disks, and 1 page-table disk. Data pages read from the
data disks gives the number of data pages for which the back-end controller
sought the disk-addresses from the page-table processor. The sum of the
distinct page-table pages referenced by each transaction is given by the
numbers in the page-table pages referenced column. Page-table pages read
gives the acfual number of pé\ges that are read to satisfy all the disk-address
reqﬁesté. Page-table péges updated is the to‘t,al number of pages updated, and
page-table pages reread is the number of pages that had to be reread for
updating because of the buffer size constraint. Observe that the page-table

pages read in the case of sequential transactions is less than the. pages

Buffer | Data Pages PageTable Pages ‘
Read from |
Pages | Data Disks Conventional _ Parallel g
Referenced | Updated | 7..4 | Reread | Read ' Reread !
10 47325 30639 10506 | 40613 1 9773 : 405986 L 9740 ¢
25 47325 30639 10508 | 327121 8550 !'31554 ' 8578
50 47325 | 30639 | 10508 | 26377 8585 1 25541 ' 6573
Table 4.39. Reduction in the number of page-table accesses
(Random Configurations)
Buffer | Data Pages PageTable Pages
Read from
Pages | Data Disks Conventional Parallel
Referenced | Updated Read | Reread | Read | Reread
10 - 47325 552 544 514 1 514 1
25 47325 562 544 459 0 459 0
50 47325 552 544 388 0 368 0

Table 4.40. Reduction in the number of page-table accesses
(Sequential Conﬁgurations%
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referenced as some transactions could use the page-table pages in the buffer
brought in by the previous transactions. There would be page hits in the case of
random transactions also. But a random transaction may request disk-
addresses that belong to the same page-table page far apart in time, and
therefore, the same page-table page may be read from disk more than once by a

long random transaction.

With an increase in the buffer size, the number of page-table pages that are
accessed to get the disk addresses decreases substantially. For random
transactions, the number of pages reread also decreases. Tables 4.41 through
4.44 show the effect of the reduction in the number of page-table disk I/Oé on

various performance parameters of the database machine. It can be seen that

Buffer|Execu-| Trans- QPs Data Disks PageTable Disk
tion | action *
Pages time time Utili- Q Utili- | Total Q |Access| Utili~ | Total Q lAccess

zation|length | zation| [/0s |length| time |zation| 1/0s !length| time |

Bare | 18.00 |7398.41 | 0.02 0 0.98 159170(95.80 | 35.53
10 12051 |8367.18 | 0.02 (4] 0.86_159170:17.95 | 3532 | 1.00 161392 B1.65 [19.71
25 118.02 17863.42 | 0.02 0 0.98 159170166.73 135.35 | 0.97 |52268}32.86 119.69
50 % 18.01 |7971.00 1 0.02 0 0.99 59170‘ 8504 (3548 | 0.82 ]43968i 14,35 119.85 |

Table 4.41. Effect of the size of the page-table buffer
(Conventional-Random Configuration)

Buffer Execu-E Trans- | QPs ‘ Data Disks i PageTabie Disk
tion | action
Pages time time Utili- Q Utili~ | Total Q lAccess| Utili-  Total Q !Access

zation|length|zation| [/0s llensth| time ization! I/0s |length| time |
Bare | 16.62 16476.04 ; 0.02 Q 1.00_|55238185.50 | 35.48 ;
10 12049 1835291 | 0.02 0 0.85 580451553 | 3527 | 1.00 161342/84.10 |18.71
25 17.18 17480.42 | 0.02 0 0.90 56320/54.86 135368 | 098 15113614522 | 19.64
50 18.70 17330.73 | 0.02 Q 1.00 155429|81.72 13538 | 0.87 143120, 17.67 | 19.83

Table 4.42. Effect of the size of the page-table bufler
(Parallel-Random Configuration)
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Buffer | Execu-| Trans- QPs Data Disks . PageTable Disk
tion | action
Pages time time Utili- Q Utili- | Total Q |Access| Utili- |Total] Q |Access

zation|lengthlzation! [/0s llength| time lzation) [/0s llength| time
Bare | 11.01 [4018.48 | 0.03 0 0.75 (58170 94.98 | 16.52
10 _110.98 4088.86 | 0.03 0 0.75 159170194.94 11848 | 006 11559 0.02 | 25.68
25 10.98 14068.14 | 0.03 Q 0.75 150170/ 94.94 | 16.48 | 0,08 |1503! 0.02 |25.88
50 10.99 14071.68 | 0.03 0 0.75 15917019495 | 16.48 | 0.06 {1412 002 |26.12

Table 4.43. Effect of the size of the page-table buffer
(Conventional-Sequential Configuration)

Buffer | Execu-| Trans- QPs ’ Data Disks PageTable Disk
tion | action i

Pages time | time Utili- Q Utili- | Total Q |Access| Utili- |Total] Q |Access
zationl|length|zation! [/0s |length| time |zation!|[/Qs |length! time

Bare | 192 1758.06 | 0.90 154.47 | 092 113691|27.42 |14.93
10 1.04 182934 ] 086 5202 | 0,90 113818{28.28 11487 | 0.34 11559 1.39 12496
25 1.04 lB82555 | 0.87 5248 | 000 (1384312822 11494 1033 11503] 1.04 |2520
50 1.93 |B2081 | 0.87 15317 [ 091 113860(28.02 | 1497 | 032 {14121 065 |25.43

Table 4.44. Effect of the size of the page-table buffer
(Parallel-Sequential Configuration)

the degradation in the execution time with random transactions due to the
shadow mechanism may be annulled by choosing a suitably large page-table
buffer, even when only 1 page-table processor is used. For sequential
transactions, the reduction in the number of page-table disk accesses with a
larger buffer was not very beneficial as the utilization of the page-table disk was

already very poor.

Size of the Page-Table Pages

Reducing the size of the page-table pages causes the average time to access
a page-table page from the page-table disk to decrease as the transfer time
decreases. The disadvantage, however, is that the number of page-table

accesses to satisfy the disk-address requests may increase. Choice of an
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appropriate block size for the page-table disk is a trade-off between these two

conflicting requirements.

Tables 4.45 and 4.48 show the effect of reducing the size of the page-table

pages on different performance parameters in the case of random transactions.

The database machine consists of 25 query processors, 100 disk cache frames, 2

data disks, and 1 page-table disk. The page-table buffer is always assumed to be

able to hold 10 page-table pages. Table 4.47 shows the effect on the number of

accesses to the page-table disk with the reduced page size. As expected, the

average access time decreases but the number of accesses increases. However,

using a smaller block size for the page-table disks seems to be preferable as

Block Execu-‘ Trans- | QPs Data Disks PageTable Disk i
Size tion | action
. . Utili~ Utili- | Total Access| Utili- | Total Access

(bytes)| time | time zation lenqgth zation| [/0s lenz‘th _time |zation| [/0s 1enczzth timg_‘

Bare | 18:00 17398.41 | 0.02 6] 0.99 159170/95.80 | 35.53 ; :

4096 | 20.51 |8367.19 | 0.02 0 0.86 {59170117.95 13532 | 1.00 !61392181.65 | 19.71 !
i 2048 20.05 18118.08 | 0.02 (4] 0.89 159170[20.65 |35.42  1.00_ 168365!78.99 | 17.81 1
! 1024 | 19.72 17964.44 | 0.02 o] 0.90 ,59170 2205 13548 | 1.00 168900!76.80 | 168.87 |
512 18.50 E7B71.68‘| 002 | o lom |59170 24.81 13547 | 1,00 701521 74.93 : 16.39 .

Table 4.45. Effect of the block size of the page-table disk
(Conventional-Random Configuration)

r N j : i . S |
| Bleck |Execu-| Trans- | QPs I Data Disks PageTable Disk i

Size | tion | action | T 7

. . Utili- Utili~ | Total Access| Utili~ | Total Access

(bytes)) time time zation len?zth zation! [/0s len?gth time |zation| I/0s len?zth time

Bare | 18.62 16476.04 | 0.02 Q 1.00 [55236195.50 | 35.49

4088 | 20.49 18352.91 | 002 0 0.85 {58045]15.53 | 35.27 | 1.00 i61342184.10 118.71

2048 | 20.03 18073.36 | 0.02 0 0.87 |58036|17.47 13530 | 1.00 166362/82.24 | 17.81

1024 [ 19.71 |7921.82 | 0.02 Q 0.80 157961]19.35 135.45 | 1.00 .68814!80.37 |16.87

512 19.49 |7827.32 | 0.02 Q 0.89 157914120.84 13547 | 1.00 |7016278.89 |16.38

Table 4.46. Effect of the block size of the page-table disk

(Parallel-Random Configuration)
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Block |Data Pages PageTable Pages
Stze gegdlf)?olin AC tional Parallel
ata Disks onventiona aralle
(bytes) Referenced) Updated Read |Reread| Read |Reread
4096 47325 30839 10506 140613| 9773 (40596 9740
2048 47325 37511 11137 143967 10761 1439681 10764
1024 47325 42033 11499 |45615| 11286 142033! 11274
512 47325 44546 11665 |46456| 11531 1464401 11557

Table 4.47. Increase in the number of page-table accesses
(Random Configurations)

evidenced by somewhat reduced execution times and the transaction
completion times. In the case of parallel disks, the queue length at the data
disks increases somewhat as the disk-address requests are satisfled at a faster
rate. This increase in queue-length causes total data 1/0s to decrease as the
probability of accessing more than one page in parallel increases with an

increase in the queue length.

The reason for the improvement in the performance with the smaller block
sizes is that the product of total page-table disk accesses with the average
access time decreases with the smaller block sizes indicating that the gain in
the reduced access times outweighs the loss due to a higher number of
accesses. Another positive aspect of using smaller block size, not shown here, is
that for the same size of the page-table buffer in bytes, a larger number of

pages can fit in the buffer which would improve the page-hit ratio.

Tables 4.49 through 4.51 show the effect of reducing the size of the page-
table pages in the case of sequential transactions. Again, with smaller block
sizes, the number of accesses increases and the access time decreases.
However, unlike random transactions, with sequential transactions, the product
of the page-table disk accesses and the average access time decreases for the

block size of 2048 bytes but then starts increasing for smaller sizes. With
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Block |Execu-| Trans- QPs Data Disks PageTable Disk
Size tion | action -
. . Utili- Q Utili- | Total Q |Access| Utili- |Total| Q |Access
(bytes)| time time zation |length|zation| [/0s |length| tifne |zation] [/0s !length! time
Bare | 11.01 {4016.48 | 0.03 Q 0.75_159170]984.96 | 18.52
4028 |10.98 |4066.88 | 0.03 (4] 0.75 159170/94.94 (1848 |0.08 | 1559 0.02 | 25.68
2048 110.98 14061.33 | 0.03 g 0.75 |59170194.94 (18498 1006 [1858]| 0.02 |21.30
1024 | 10.99 [4056.84 | 0.03 0 0.75 15917019493 11648 10.08 ‘1822 0.02 |18.52
512 ] 10.98 14050.05 ] 0.03 |0 | 0.75 159170/ 04.93 | 16.40 | 0.06 |2428] 0.04 | 16.53
" Table 4.48. Effect of the block size of the page-table disk
(Conventional-Sequential Configuration)
Block |Execu-| Trans- QPs Data Disks PageTable Disk
Size tion | action
. . Utili- Utili~ | Total Access| Utili- | Total Access
(bytes)| time | tme zation len?zth zation| [/Os lenqzth time ization|[/Os _l_e_gzth time
Bare 1.92 1758.06 | 0.90 154.47 l 0.92 113991|27.42 ; 14.93
4086 | 1.94 182934 | 0.868 |52.02 0.0 |13818128.28 | 1487 | 0.34 115591 1.39 |24.96
2048 | 1.83 1811.89 | 0.87 |52.62 | 0.90 |13800|28.14 | 14.80 0.31 116571089 12111
1024 | 1.94 i809.71 | 0.86 152,51  0.90 11388812835 |14.88 | 0.31 19211 094 |[18.28
512 1.93 [809.94 | 0.88 |52.40 | 0.90 |13700|27.54 |14.98 | 0.35 12403 1.62 118.57

Table 4.49. Effect of the block size of the page-table disk
(Parallel-Sequential Configuration)

[ Block |Data Pages|

Size ! Read from

PageTable Pages

1
i

|

!Conventionali _ Parallel .

Data Disks;
(bytes) ! Referenced | Updated Read Reread Read!Reread|
| 4006 . 47325 | 552 544 15140 1 15141
| 204B | 47325 594 585 15701 3 15700 2 |
1024 47325 719 704 | 709 9 {709 8
512 47325 946 910|938 | BO |938| 55

Table 4.50. Increase in the number of page-table accesses
(Sequential Configurations)

random transactions, when a page-table page is read, only a few entries on the

page are of interest. Therefore, smaller block sizes may actually cut down the

redundant information read. We have assumed that a transaction may access
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250 page-table entries and each page-table entry is 4 bytes long. Therefore,
with the page sizes of 4096, 2048, 1024, and 512 bytes, a sequential transaction
may potentially access 25%, 50%, 100% and 100% entries respectively on a page.
Hence, the increase in the number of 1/0s with smaller block sizes is relatively

larger for sequential transactions.

The impact of the shadow mechanism on the sequential configurations of
the database machine was very marginal, and the page-table disk was under-
utilized. Thus, small variations in the usag.e-pattern of the page-table disk has

almost negligible effect on the database machii:e performance.

Logically Adjacent Pages not Physically Clustered

In all our simulations of the shadow mechanism so far, we had assumed that
the logically adjacent pages can be kept physically clustered. We will now
examine the efflect on the database machine performance if the disk-page
allocator assigns the first free page to the reque;t for a new disk block, thereby

scrambling logically sequential pages all over the data disk.

The effect of scrambling of the logically adjacent pages on sequential
transactions is shown in Tables 4.51 and 4.52. We assurme 25 query processors,

100 cache frames, 2 data disks, 1 page-table disk, and a page-table buffer of 10

Execu~| Trans- QPs Data Disks PageTable Disk
tion action

Utili~ Q Utili~ | Total Q |Access| Utili- [Total| Q
zation|lengthization| 1/0s |length| time |zation|[/Os |length

Bare 11.01 | 401648 | 0.03 0 0.75 15917019498 | 16.52
Clustered | 10.98 | 4086.86 | 0.03 90 075 15917019494 | 18.48 | 0.08 11559| 0.02
Scrarnbled | 20.74 | 748851 | 0.02 0 0.85 [58170(988.37 [3543 | 003 |1559! 0.01
Overwriting | 24.08 110372.52 | 0.01 0 0.82 |83360!96.72 | 27.83

Table 4.51. Effect of logically adjacent pages not being physically clustered
(Conventional-Sequential Configuration)

time time
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Execu-| Trans- QPs Data Disks . PageTable Disk
tion | action

Utili- Q Utili- | Total Q |Access| Utili- |Total] Q
zation |length |zation| 170s llength| time |zation|[/0s |length
Bare 1.02 | 758.06 | 0.90 |54.47 | 0.92 |13991 27.42 | 14.93
Clustered | 1.94 | 829.34 | 0.868 152,02 | 0.80 |13818/28.28 | 14.87 | 0.34 | 1558 1.38
Scrambled | 18.54 1687345 | 0.02 0 0.88 |54485195.94 | 3541 | 0.04 | 1558 0.01
Overwriting| 2.31 913.80 | 0.50 |24.66 | 0.94 112886{47.24 | 18.86

time time

Table 4.52. Effect of logically adjacent pages not being physically clustered
(Parallel-Sequential Configuration)

pages. The performance of the database machine, both in terms of the
execution time and the transaction completion time degrades significantly. The
average time to access a data page increases by a factor of more than 2 as the
logically adjacent pages are physically scattered over the whole disk. In
addition, for parallel disks, this scattering causes the number of disk accesses
to increase considerably as the logically sequential pages can no longer be
fetched in one disk access. Since the performance of the database machine in
these configurations is limited by thé data disks, the adverse usage of the data

disks results in a dramatic degradation of the performance.

For random transactions, accesses to the data disks are already scattered,

and therefore, the scrambling due to the shadow mechanism has no adverse

effect.

Overvwriting Algorithm

When a shadow recovery mechanism -is employed, physical clustering of
logically sequential pages is not achievable unless one is willing to pay
substantial disk storage penalty. If the physical clustering is not maintained,
the performance is very severely affected for.the sequential transactions. We,

therefore, experimented with the no-undo version of the overwriting algorithm
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described in Chapter 3. Recall that in the overwriting algorithm, a current copy
separate from the original (shadow) is kept only while the transaction is active.
Once the transaction commits, the shadow is overwritten with the current copy.
Thus, the overwriting maintains the correspondence between the physical and
logical sequentiality. This makes the page-table required with the standard
shadow mechanism redundant. In the no-undo versicn, when committing a
transaction, all the pages updated by the transaction are first written to a
scratch area and then a precommit record is written to a commit list. This is

followed by overwriting the original pages with the updated pages.

We made the following additions to the bare machine simulator in order to
simulate the overwriting algorithm. We postulated that the commit list exists on
the first data disk. Also, each disk has a scratch area for writing updated pages
which is used in a circular fashion. On receipt of an updated page in the disk
cache from a query processor, the page is put in the queue for the same data
disk on which the shadow exists. The cache frame is released after the updated
page has been written to the scratch area. When all the pages updated by a
transaction have been written to disk, a precommit record is written for the
transaction. Afterwards, cache-allocation requests are made for reading the
updated pages from the scratch area. Once a frame is allocated, an updated
page is read from the scratch area and the shadow version is overwritten with
the current updated copy. The cache frame is then released. The allocation of
cache for reading an updated page from the scratch area has priority over the
allocation of cache for reading an updated page from a query processor’s
memory or for prepaging a data page for processing. We assumed 25 query

processors, 100 cache frames, and 2 data disks.
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The results of the performance of the overwriting algorithm for sequential
transactions are presented in Tables 4.51 and 4.52 along with the effect of
scrambling of logically sequential pages. The performance of the overwriting
algorithm is very different for the conventional disks and for the parallel disks.
With the conventional data disks, the overwriting performs much worse than the
standard shadow mechanism even when the logically adjacent pages are
scattered. The reason for the poor performance of the overwriting algorithm is
the large increase in the number of disk 1/0s. Also, the average access time
increases because of the movement of the disk arm between the scratch areé

and the data area during the overwriting of the shadows.

With parallel disks, however, after a transaction completes, all the updated
pages may be read from the scratch area potentially in one access. Similarly,
all the shadows may also be overwritten in one or very few accesses. An
additional advantage is that after the shadows have been overwritten, as many
cache frames as the pages updated by a transaction will become free at the
same time. This is very attractive for the parallel disks as the number of data
- pages fetched in parallel in the next access will increase. Thus, in Table 4.52,
the number of disk accesses with the overwriting algorithm are less compared
to the total disk accesses with the bare machine. However, the overwriting
algorithm may result in a non-uniform usage of the query processors. While the
shadows are being overwritten, the query processors may became i_d,le as new
data pages are not being read from disk during this time. Then, alarge number
of pages may be read simultaneously making all the query processors busy. The
poorer utilizétion of the query processors and the higher average disk access
time were responsible for the degradation in the execution time with the
overwriting algorithm when compared to the bare machine in the parallel-

sequential configuration. However, the overwriting algorithm performs much
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better than the standard shadow mechanism when logical sequentiality can not

be maintained on disk because of the smaller access time and less 1/0s.

We experimented with the overwriting algorithm for the random
transactions also. The results of the experiment are summarized in Tables 4.53
and 4.54. Compared to the standard shadow mechanism, the overwriting
algorithm has poorer performance as the result of the higher number of disk
1/0s. With the parallel disks, the updated pages can still be read from the
scratch area in one access, as was the case with the sequential transactions.
However, unlike the sequential transactions, where the shadows could also be
overwritten in one access, the overwriting with the ranciom’ transactions may

require as many accesses as the number of updated pages.

! I

Execu-| Trans- | Processors Data Disks PageTable Disk |
tion action

Utili~ Q Utili- | Total Q |Access| Utili~ | Total Q
zation |lengthlzation| [/0s llength| time 'zation [/0s ilength
{___ Pare 18.00 ' 7398.41 ! 002 i O | 099 15917019580 :35.53 | i , =
Save Tablo | 20.51 | 8367.19 | 002 | 0 | 086 [59170|17.95 |35.32 | 1.00 61302/81.65
Querwriting | 26.94 112386.94 | 0.01 o | o099 |83360/96.36 |37.57 | | ;

Table 4.53. Effect of the overwriting algorithm
(Conventional-Random Configuration)

time time

Execu-| Trans- QPs Data Disks PageTable Disk }
tion action | !

Utili- Q Utili- | Total Q {Access| Utili- ' Total Q
zation! lensth|zation! [/0s |length: time |zation| I/0s length|
Bare 16.62 16476.04 | 0.02 0 1.00 1552361 95.50 | 35.49
|_Page Table | 20.48 8352.81 | 0.02 0 0.85 |58045|15.53 | 3527 | 1.00 1613428410
Overwriting| 21.65 19341.52 | 0.02 0 1.00 |716831/95.88 | 35.58

Table 4.54. Effect of the overwriting algorithm
(Parallel-Random Configuration)

time time
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Version Selection Approach

The version selection approach to avoid indirection through the page-table
described in Chapter 3 is not appropriate from the performance view-point for
the multiprocessor-cache class of database machines. We have shown that for
randorn transactions, either by using large page-table buffer with 1 page-table
processor or by using 2 page-table processors, the page-table accesses can be
completely overlapped with the processing of data pages. The version selection
approach requires that for reading a data page, all the versions of the page be
fetched and then a version selection algorithm be applied. Thus, unless the disk
heads are augmented with enough intelligence to perform "on-the-fly" version
selection, the average time to access a data page will increase. Since the
performance of- our database machine architecture is limited by the 1/0

bandwidth, the version selection algorithm will have poor performance.

The standard shadow mechanism performs very poorly with the sequential
transactions if the mechanism causes the logically adjacent pages to scatter.
The logically adjacent pages can be kept physically clustered if one is prepared
to pay the disk storage penalty, and in that case, the standard shadow
mechanism performs very well. The version selection approach requires
substantial redundant storage to hold versions, and hence for sequential
transactions also, the standard shadow mechanism is preferable compared to

the version selection approach.

4.6. Differential File Simulator

As in the case of the simulation of the parallel logging and the shadow
mechanism, we have only modeled the recovery actions during the execution of

a successful transaction in our simulation of the differential file mechanism.
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4.6.1. Specifications of the Differential File Module

Recall that in the differential file approach, a relation R is expressed as (B v
A) - D, where B is the base relation, and A and D are the differential relations.
Additions to R are appended to the A relation and the deletions are appended to
the D relation. As compared to the no recovery case, where a transaction can be
thought of as accessing only the B relation, with the differential file mechanism,
the transaction will also have to access A and D relations to prcéess a query. We
assume that the number of A and D pages accessed by a transaction is a
function of the size of A and D relations relative to the size o'f the base relation
B. ’[hé size of A and D relations depend on the level of update activity and the
frequency with which A and D relations are merged into the B relation. We
assﬁme that the A and D relations are equal in size and take this size to be 10%
of the size of the B relation. We will present the results of the sensitivity
analysis of the effect of the sizes of A and D relation on the performance of this

recovery mechanismi.

The base relation pages accessed by a transaction are considered to be
same as the pages accessed Sy the transaction in the bare machine. When a
transaction arrives, in addition to the pages of the B relationl accessed by it, the
A and D pages referenced by the transaction are also determined. It is ensured,
by using separate random number streams, that the pages referenced by a

transaction from the B relation are identical to the pages in the reference string

of the transaction in the bare machine simulator.

Another consequence of the differential file mechanism is that a retrieval
operation is translated into a set union and a set difference operation. We
presented in Chapter 3 the algorithms that exploit the parallelism inherent in

our database machine architecture to efficiently perform the operations on the
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differential files. We will now describe how we model the update processing when
using differential files in our simulator. All the D pages referenced by a
transaction are first read in the cache. The B and A pages are then read and are
assigned to the query processors when they become free. After reading a B (or
A) page from the cache into its local memory, a query processor reads one D
page at a time and takes the set difference of B page with this D page. In
Chapter 3, we described two algorithms to perform the set-difference of the
tuples in two pages depending upon whether the pages are sorted or not. 1If the
pages are sorted, a linear scan over the B page and a linear scan over the D page
" will be required. If the pages are not sorted, for each tuple in B page, a scan
over the D page is required. Therefore, the processing time required for this
step can be approximated by the time for a selection operation on a page if the
pages are sorted, and by the join time on a page if the pages are not sorted.
Thus, we have assurmed the time required to perform the set-difference between
two pages to be 36.65 which is the same as the time required for an average

operation on a page in the bare database machine (see Section 4.3.2).

Once a query processor has taken the set d'xﬁereﬁce of the B page with all of
the D pages that the transaction refers to, it can create the resuit tuples for this
page. For the update operation, the result tuples consist of new values of the
tuples that will be appended to the A relation and the old values of the tuples
that will be appended to the D relation. We assume that if a page is updated, 10%
of the tuples (standard deviation equal to 1/3 of the average) on the page are
updated; otherwise, no result tuple is created. Recall that in the simulation of
parallel logging, we had also assurned the size of the log fragment that is created
when a page is updated to be 10% of the size of the data page. We will present
the results of a sensitivity analysis of varying the size of the fraction of the

output page that is created when a page is updated. The result tuples are
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collected in the memory of the query processor. When a query processor has a
page full of the resultant A or D tuples, it makes a cache-frame request, and
upon allocation of the cache-frame, writes the A or D page to the cache.

Subsequently, these A and D pages are written to disk.

We also modeled an optimization in this processing strategy. The only
effect of the D relation is to eliminate some of the tuples that are otherwise in
the result of a query. Therefore, before taking the set-difference of a page of B
with each page of the D relation that the transaction references, a query
processor may first make a scan over the B page. The set-difference with D
pages is taken only if this scan yields a result tuple. To model this optimization,
we take the set-difference for each B or A page that is to be updated®. However,
the set difference is taken only for a few read-only B and A pages. A read-only
page for which the set-difference will be taken is randomly determined with a
probability which is equal to the fraction of the size of the D relation to the size

of the B relation.

We have assumed that when a page is updated, only a fraction of an output
page is created. This may lead to the problem of page-fragmentation if the data
pa;ges are not allocated to the processors judiciously. Assume that a transaction
T is accessing a page P, and P is available in cache for assigning to a free query
processor. Further assume that two query processors, QP1 and QP2, are free.
We use the following query-processor allocation strategy algorithmn to reduce

fragmentation:

(1) If QP1 has a partially-filled output page belonging to T in its local memory
whereas QP2 has a partially-filled output page belonging to some other

5 As explained in Section 4.3, at the time of the transaction arrival itself, it is
determined which of the pages referenced by the transaction will be updated by
it.
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transaction (or no output tuples), then P is assigned to QP1.

(2) If both QP1 and QPR have partially-filled output pages belonging to T, then P

is assigned to the processor whose output page is relatively less full.

-

(3) If all the free query processors have partially-filled output pages belonging
to transactions other than T, then P is assigned to the processor whose
output page is filled maximum. The processor first writes the output page

to the cache and then reads P for processing.

While this strategy will minimize fragmentation, there will still be some
fragment':ed pages. It is possible to use a compress operation [DeWi79b] to
combine partially filled pages before writing them to disk. We have not modeled

the compress operator in our simulation.

4.6.2. Experiments

We performed a number of experiments with our simulator of the

differential file mechanism to explore the following issues:

*  Effect of the differential file mechanism on the average execution times of

the database machine”

!

*  Effect of the fraction of the output page that is created when a data page is

updated.

* Effect of the size of the differential relations

Fffect on Database machine Performance

Tables 4.55 through 4.57 show the effect of the differential file mechanism
on different performance parameters of the database machine. We have
presented the results both for the basic query processing approach wherein a

set-difference operation is performed on every page of the B and A relations, and
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Execution Transaction
Configuration Time per Page Completion Time
Bare Basic Optimal | Bare Basic Optimal

Machine | Approach!|Approach!Machine |Approach|Approach
Conventional-~
Random 18.00 37.81 1923 [7398.41111589.77| 6634.34
Parallel-
Random 16.62 37.67 17.99 1647604 11565.101 6207.64
Conventional-
Sequential 11.01 3'?.}65 17.75 4016.461 11443.69 1 5795.54
Parallel-
Sequential 1.92 37.55 13.90 758.061 11368.76 | 4573.48

Table 4.55. Performance of the Differential File Mechanism

Bare Machine Basic Approach Optimal Approach
Configuration Utili- Q Total Utili- Q Total Utili- Q Total
zation | length [/0s zation | length [/0s zation | length [/Q0s
Conventional-
Random 0.99 94.08 59170 0.51 1.93 62113 0.98 48.70 61548
Parallel-
Random 1.00 95.50 55238 0.49 1.67 81802 0.99 48.33 59262
Conventional-
Sequential Q.75 94.98 59170 0.27 2.36 62082 0.58 29.42 62386 !
Parallel-
Sequential 0.92 27.42 13981 0.20 0.14 55234 i 0.40 Q.72 45216
Table 4.56.-Data Disk Characteristics
. i | Bare Machine Basic Approach t Ortima’ Approach l‘
. Configuration Max ; Elf?‘ec- ; Q Max Ef?ec- ; Q ' Yax | E!Tfec- ’ Q :
[ QPs | tive ‘ ! b QPs tive |, . | QPs dve oy
| Used - gPs | T8 | Gsed | ey PE™' ) Ysed  QBs engen
Conventional- ' Il ' ] :
Random 9 051 | © 25 | 2500 | 56.61 25 | 1425 | 393
Parallel- }
Random 10 0.56 0 25 25.00 58,73 25 15.56 5.73
Conventionai-
Sequential 17 0.82 o] 25 24.99 56.80 25 18.82 26.48
Parallel-
Sequential 25 22.38 54.47 25 25.00 59.51 25 24.78 55.53

Table 4.57. Query Processors Utilization

the optimal approach wherein the set-difference is taken only on those pages of

B and A relations that have at least one tuple that satisfies the qualification in
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the query. These experiments were performed with 25 query pro'céssors. 100
cache frames and 2 data disks. In Table 4.56, Utilization is the average of the
mean values of the utilization of the two data disks; whereas, Q-length and Total
1/0s is the total of the queue length and the number of disk accesses
respectively. We make the following observations based on Tables 4.55 through

4.97.

1. With the basic approach, the performance of the database machine both for
the random and parallel transactions with the conventional as well as the
parallel disks degrades very significantly. The execution time per page is almost
the same for all the four configurations. The reason is that, unlike the bare
machine, the performance is not limited by the 1/0 bandwidth between the disk
drives and the caéhe. but rather by the query processors. Each of the 25 query
processors are almost 100% utilized, whereas the utilization of the disk drives is
very low. Hence, the access pattern is not a determining factor for the
execution times. Since there is hardly any queue at the disk drives, with the
parallel disks, only one or two data pages are accessed most of the times in each
1/0 operation. Thus, the total number of I/0 operations when ﬁsing the parallel
disk drives is almost equal the number of 1/0 operations with the conventional

disk drives.

2. Compared to the basic approach, the optimal approach reduces the
degradation in performance as the set-difference operation is performed on
significantly less pages. For random transactions, the query processors are no
longer the bottleneck and the performance is again bound by the I/ O bandwidth
available from the disk drives, as evidenced by almost 100% utilization of the
disk drives and about 60% utilization of each of the query processors. Compared

to the bare machine, the execution times are somewhat poorer for random
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transactions because of a slightly higher number of disk operations. The higher
number of disk 1/0s are caused by the extra accesses to the differential
relations. In addition, in the parallel-disk case, the average queue length is
smaller when compared with the bare machine and this decreases the average
number of pages that are accessed in one 1/0. The reason for the smaller queue
lengths at the disks with the differential file approach is that the D pages keep
the cache frames occupied until all the B and A pages for the transaction have

been processed.

For sequential transéctions. the average disk access time is less than half
compared to the access time with the random transactions. Thus, if there are
many B or A pages at one time in the cache that require set-difference
operation, the query processors become the bottleneck. With the parallel disks,
all the query processors are almost 100% utilized whereas each of the disks is
busy only 50% of the time. With the conventional disks, the query processors are
about 75% utilized and the disk drives are 58% utilized. This suggests that in the
conventional-random configuration, there were instances when a disk drive was
idle and query processors were busy as many set-difference operations were in
progress and no cache frames were free, and at times, some query processors
were forced to be idle as the data pages were not available from disk. On the
other hand, in the parallel-sequential configuration, the query processors were
not able to keep up with the rate at which the data pages were available from
disk as the result of the extra processing required for performing the set-
difference operation and the fact that, with the parallel disks, relatively fewer
disk 1/0s are required for accessing the same number of disk pages. However,
both for conventional as well as parallel disks, the execution times for the

sequential transactions are much poorer than the bare machine.
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3. There is a substantial increase in the number of disk accesses due to extra
differential file pages. However, this increase is somewhat ameliorated by the
reduced number of updated pages. Recall that we have assumed that on
average only 10% of the output page is created when a page is updated. Thus, if
a transaction accesses N pages and updates u% of them, then with the
differential file approach, potentially (N*u% - 0.1*N*u%) fewer updated pages will
be written to disk. In practice, however, the decrease in the number of updated
pages will be less than the number given by the above expression as the result of
the page fragmentation. In the following subsections, we will present the results
of the experiments to investigate the effect of the size of the output page
created when a page is updated, and the effect of the size of the differential
relations. These sensitivity experiments were performed assuming the optimal

approach for performing the set-difference operation.

Fraction of the Output Page

Tables 4.58 through 4.61 show the effect of assuming that a larger fraction
of the output page is created when a data page is updated. In these tables, the
total number of output pages that are created is given by the Output pages, and
Input pages is I|T;; where |Til is the size of the transaction T;. These experiments

were performed assuming 25 query processors, 100 cache {rames, and 2 data

Output Execu- | Trans- QPs Data Disks Total Pages
tion action

fraction time time Utili- Q Utili- Q Total In- Qut-

zation | length | zation | length I/0s put put
No Recovery | 18.00 7308.41 0.02 (1] 0.99 95.80 50170 | 59083 | 11845
10% 19.23 6634.34 0.57 3.93 0.98 48.70 81548 | 59083 4401
20% 19.25 6650.12 0.57 3.80 0.98 48.72 61793 | 59083 4648
50% 20.33 7028.50 Q.52 2.05 0.98 50.95 65411 59083 8264

Table 4.58. Effect of the output fraction
(Conventional-Randorn Configuration)
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Output Execu- Trans- QPs Data Disks Total Pages
tion action
fraction time time Utili- Q Utili- Q Total n- Out-~
zation | length | zation | length | [/0s put put
No Recovery 16.62 6476.04 0.02 4] 1.00 85.50 55238 59083 11845 |
10% 17.99 6207.64 0.62 5.73 0.89 46.33 50282 | 58083 4534
20% 17.99 6212.46 0.62 5.56 0.99 46.51 593768 | 59083 4731
50% 18.90 6531.07 0.57 3.38 0.98 48.94 62877 | 598083 8360

Table 4.59. Effect of the output fraction
(Parallel-Random Configuration)

Qutput | Execu- | Trams- " Query Processors Data Disks Cutput
tion action

fraction . , Utdli- Q Q Utili- Q Q Total | Pages
time ume zation | length | time | zation | length | time I/0s

10% 16.71 5252.49 | 0.78 2083 |450.92 | 0.59 26.63 | 418.30 | 12088 | 1063
20% 16.86_ | 5308.08 : 0.78 2094 | 45670 | 0.59 26.63 | 420.26 | 12115 1112
50% 18,76 | 5244.15 | 0.78 2621 139208 | 0864 20.30 | 432.05 [ 120451 1713

Table 4.60. Effect of the output fraction
- (Conventional-Sequential Configuration)

Output Execu- | Trans- Query Processors Data Disks Total Pages
tion action % !
fraction . . Utli- Q Utili- Q | Total ! In- | Out- ‘
time tme zation length zation | length | 1/0s | out i pur |
No Recovery’ | 192 | 758.06_| 0.90 54.47 092 | 27.42 | 13991 | 59083 | 11845 !
: 10% | 13.00 | 457348 | 099 | 5553 | 040 | 072 | 45216 i 50083 ~ 5519
E 20% ! 1390 ‘456743 ' 0.99 55.47 041 | 074 | 45330 ' 50083 ' 5694 |
i 50% ! 13.65 : 4503.98 ; 1.00 54.28 0.46 | 0.88 47373 | 59083 : 9177 i

Table 4.61. Effect of the output fraction
(Parallel-Sequential Configuration)

disks.

The number of output pages does not increase linearly with an increase in
the output fraction. Particularly striking is the small increase in this number
when the output fraction is increased from 10% to 20%. As alluded earlier, this
small increase is explained by the page-fragmentation with the smaller output

fractions. Also, relatively a larger number of output pages are created when the
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transactions are sequential rather than random. This is because the processing
of a sequential transaction is spread over a larger number of query processors
compared to the case when the transactions are random, and therefore, for the

same number of output tuples, there is a larger page-fragmentation.

In our query-processor allocation strategy, if a page P of transaction T is
available and a query processor QP! is free, then P is immediately assigned to
QP1 even though QP1 may not have yet updated any page of T. It might be
advantageous from the point .of view of reducing the fragmentation to allow QP1
to idle for a while if there is another processor QP2 which is about to become
free and QP2 has a partially filled output page corresponding to T. Investigation
of the query-processor allocation strategies is beyond the scope of this thesis.
However, since the performance of our database machine is bound by the 1/0
bandwidth provided by the disk drives, examining query-processor allocation
strategies that minimize fragmentation appears to be an interesting research
topic.

The higher number of 1/0 operations due to the increase in the number of
output pages with an increase in the output fraction manifests itself in
somewhat higher corresponding execution times for the random configurations,
as in these configurations, the performance of the database machine is bound by
the 1/0 bandwidth. In the sequential configurations, since the disk drives were
under-utilized, the execution times are not affected significantly by a little

higher number of disk 1/0s.

Size of the Differential Relations

The effect of the increase in the size of the differential relations manifests

in three ways:
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(1) There are a higher number of disk 1/0s as we have assumed that the

number of the differential relation pages accessed by a transaction is a

function of the size of the differential relations relative to the size of the

base relation.

(2) The set-difference operation is performed on a higher number of B and A

pages as we assume that the probability that the set difference will be

performed on a read-only B or A page depends on the size of the differential

relations.

(3) The time required to perform the set-difference on one page of B or A

relation increases as the set-difference will have to be performed with a

larger number of D pages.

The results of the simulation experiments for the higher values of the size of the

differential relations expressed as percentage of the size of the base relation

have been summarized in Tables 4.62 through 4.65. We assumed 25 query

processors, 100 cache frames, and 2 disk drives.

The performance of the database machine, both in terms of the execution

times and the transaction completion times, degrades nonlinearly in all the four

configurations as the size of the differential relations increases. For higher

values of the size of the differential relations, utilization of both the disk drives

Execu- Trans- Query Processors Data Disks
Size tion action N N l .
time time Utili~ Q Q Utili- Q Q ! Total |
zation | length | time zation | length time [/0s
No Recovery | 18.00 7308.41 0.02 Q Q 0.99 95.80 1711.23 1| 598170
107 19.23 6634.34 0.57 3.83 88.51 0.98 48.70 898.18 | 61548
15% 24.81 7875.32 0.77 15.93 | 342.22 0.84 21.10 460.80 ‘@ 67084
20% 37.01 10871.48 0.77 15.37 472.81 0.61 8.27 251.47 i 71883

Table 4.62. Effect of the Size of the differential relations

(Conventional-Random Configuration)
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Execu- Trans- Query Processors Data Disks
Size tion action N N
time time Utili- Q Q Utdli~ Q Q Total
zation | length | time | zation length time [/0s
No Recovery | 18.62 8476.04 | 0.02 o o 1.00__| 9550 | 1580.80 | 55236 |
10% 17.99 6207.64 | 0.62 5.73 9331 | 099 | 4633 | 797.81 | 59282
15% 24.41 7608392 | 080 | 1842 | 38946 | 0.81 18.38 | 394,83 | 65848
20% 9701 | 1085280 | 078 | 1862 | 511.46 | 0.58 6.88 | 20001 | 71202
Table 4.63. Effect of the Size of the differential relations
(Parallel-Random Configuration)
Execu- | Trans- Query Processors Data Disks
Size tion action N .
time time Utili- Q Q Utili- Q Q Total
zation | length | time | zation | length time 1/0s
No Recovery | 11.01 4016.48 0.03 0 0 _0.75 94.98 1043.40 | 59170
10% 17.75 5795.54 | 075 | 26.46 | 42535 | 058 | 2042 | 49448 & 62386
15% 25.79 7881.45 0.82 25.93 579.25 0.44 13.68 309.37 | 67351
20% 9956 | 11337.05 | 077 | 2024 | 66540 | 0.33 5.93 192.41 | 72065
Table 4.64. Effect of the Size of the differential relations
(Conventional-Sequential Configuration)
Execu- Trans- Query Processors ' Data Disks |
Size tion action T t !
time time Utili- Q Q Utili- | Q Q | Total |
sation | lenpth | time | zation ! length | time | [/0s
No Recovery . _1.92 758.06 | 0.90 | 5447 | 10477 | 092 2742 | 5265 ' 13001 |
1% | 1300 ' 457348 | 099 | 5553 . 699.14 | 040 " o7z ' o4z 'as216
f 5% | ons3 | 719468 | 096 | 3949 | 8022 | 028 | 040 | 822 51168
! o0 | 3644 | 1051656 | 088 | 2480 | 75108 | 021 | o024 | 733 | 56041

Table 4.65. Effect of the Size of the differential relations
(Parallel-Sequential Configuration)
and the query processors starts decreasing. This is because, during the time
the D pages referenced by a transaction are being read from disk, the query
processors become idle, and a disk drive becomes idle after reading a B or A
page into cache while the query processors are performing the set-difference

operations.
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In order to keep the size of the differential relations small, the differential
relations will have to be merged with the base relation frequently. In our
simulation, we have not modeled the effect of merging of differential relations
with the base relation. Designing optimum merging {requencies is an intersting

open issue.

4.7. Comparison of the Recovery Mechanisms

Tables 4.66 shows the comparative performance of the three recovery
mechanisms in terms of their impact on the average execution time per page of
the database machine. The bare database machine consisted of 25 query
processors, 100 cache frames, and 2 data disks. The logging results assume only
one log disk and an effective bandwidth of 1 megabytes per second between the
query processors and the log processor. The results for the shadow mechanism
have been presented for i) one page-table disk and a page-table buffer capable
of holding 10 page-table pages, ii) one page-table disk and a page-table buffer of
50 page-table pages, and iii) two page-table disks and a page-table buffer of 10
pages. It is assumed in the above three cases that the logically adjacent pages

may be kept physically clustered. The numbers under the scrambled column

Bare ) Logging | Shadow : Differ- l‘
i . :
Conﬁguration: . ‘ . i ' . enial :
Hachine| 1log 1 PageTable Disk |2 PageTable Scram-~! Over- {
disk | bufier=10| buffer=00| Disks | bled |writing| "°
Conventional~ L !
Random 1800 | 17.88 | 2051 | 1801 17.00 | 2051 2604 |1925 |
Parallel-
Random 16.62 16.50 20.49 18.70 16.68 20.48 | 21.65 |17.99
Conventional-
Sequential 11.01 11.39 10.98 10.99 10.98 2074 2408 [17.95
Parallel-
Sequential 1.92 2.05 1.94 1.93 1.93 18.54 2.31 11390

Table 4.66. Average Execution Time per Page
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correspond to the case when this assumption is not satisfied, and the logically
adjacent pages are scattered all over the disk. For this case also, we assume
one page-table disk and a page-table buffer of 10 pages. The results of using the
overwriting algorithm, wherein on transaction completion the shadows are
overwritten with the current copies, are summarized under the overwriting
column. For the differential file mechanism, the results have been presented
assuming the size of the differential relations to be 10% of the size of the base

relation.

The differential.file mechanism degrades the throughput of our database
machir}e architecture even when the size of the differential relations was
assumed to be only 10% of the base relation: The degradation increases
nonlinearly with an increase in the size of the differential relations. The
degradation in the throughput is due to the extra disk 1/0s to access the
differential relation pages and the extra processing requirements for the set-
diffeg'ence operation. Since the 1/0 bandwidth available from the disk drives is
the factor limiting the throughput of the database machine, the extra disk
accesses have negative impact. The extra processing requirement would not be
a problem so long as the quéry processors do not become the bottleneck.
However, for the sizes larger than 10%, and in the case of sequential
transactions, even for 10% size, the query processors become saturated and

adversely affect the throughput of the database machine.

In the case of the shadow mechanism, for random transactions, the
throughput degrades somewhat when 1 page-table processor is used with a
page-table buffer of 10 pages. However by increasing the buffer size to 50 or by
using 2 page-table processors, the reading and updating of page-table entries

may be overlapped with the processing of data pages and there is virtually no
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degradation in the performance due to the recovery mechanism. For sequential
transactions, if it is assumed that the logically adjacent pages may be kept
physically clustered, then the performance of the shadow mechanism is very
good. In practice, this assumption is difficult to justify, and if the physical
clustering of the logically sequential pages cannot be maintained, then the
shadow mechanism performs very poorly for sequential transactions. The poor
performance is due to the relatively large seek times. if the data pages are
scattered on disk. The overwriting algorithm maintains the correspondence
between the physical and logical sequentiality and avoids the need of indirection
through a page table. However, the overwriting algorithm performs poorer than
the standard shadow mechanism for random transactions and also in the case of
sequential transactions when the data disks used are the conventional disk
drives. The reason for the poorer performance is the extra accesses to the data
disks that are required with the overwriting algorithm. Whereas accesses to the
page-table disk in the standard shadow mechanism may be overlapped with the
processing of data pages. the overwriting algorithm is not amenable to such
ox;erlappingﬂ When parallel disks are used in the processing of sequential
transactions, however, current copies may be read from the scratch area and
the shadow copies may be overwritten in very few disk 1/0s, and hence, the

overwriting algorithm has quite good performance.

Overall, the parallel logging emerges as the best recovery mechanism for
oxir database machine architecture as the recovery actions may be completely
overlapped with the processing of data pages. We have seen that the
communication medium between the query processors and the log processor
have no significant effect on the performance of logging. In particular, the
performance of the logging was not degraded when the log pages were routed

through the disk cache, and hence, an interconnection dedicated to
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communicating the log pages is not necessary between the query processors
and the log processor. Therefore, the parallel logging can be implemented with
no modification in the hardware architecture of our database machine by simply
designating one or more gquery processors as the log processor and
supplementing them with the log disks. It was shown in Section 4.3.2 that the
rate of processing of data pages is not fast enough to warrant more than one log
disk. However, if the data processing rate is improved in the future by solving
the problem of 1/0 bandwidth available from the mass-storage tdevices, then
logging can still be performed in parallel by using more than one log disk and

our parallel logging algorithm.
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CHAPTER 5

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

In this dissertation, we have presented mechanisms for concurrency
control and recovery in multiprocessor database machines. We have also
analyzed the relative performance of various mechanisms and their impact on
database machine performance. While the multiprocessor-cache class of
database machines have been the focus of our research, we have also
enumerated how our design can be adapted to the other classes of database

machines.

We showed that for concurrency control, a centralized 2-phase locking
scheduler with deadlock detection is most appropriate. The scheduler may be
located with the back-end controller or a separate processor may be entrusted
with the task of concurrency control to whom the back-end controller may
inquire before assigning a data page to a query processor. Amongst recovery
mechanisms, the parallel logging was found to have the overall best
performance. With the ar.chitecture that we have proposed for logging, it is
possible to completely overlap the recovery actions with the processing of data
pages so that the throughput of the database machine is not degraded by the

recovery mechanism.

Some other very useful results emerged as a consequence of this research.
In Chapter 2, we proposed that the concurrency control and recovery are
intimately related and described the interaction between different concurrency
control and recovery mechanisms. We also designed six integrated concurrency

control and recovery mechanisms in the context of centralized database
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management systems and evaluated their performance. We developed an
analytical model for this evaluation that helped us in isolating and quantifying
the costs of the various components of a mechanism. Thus, in addition to saying
that a particular mechanism is expensive, we were able to determine why it is
expensive and where the efforts should be concentrated to improve its
performance. This analysis provided us with the framework for designing the

parallel recovery algorithms presented in Chapter 3.

We have extended the shadow and differential file mechanisms for use in a
multi-transaction environment. We also designed a linear deédlock‘ detection
algorithm [AgraB3a] which can be used by the concurrency control module of
the back-end controller. In addition, we have proposed a solution to the update
problem in hypothetical databases [AgraB3b] that permits the reinsertion of a
previously deleted tuple, while preserving the append-only nature of the
differential and addition and deletion relations, which is necessary for using this

approach as a recovery mechanismi.

In Chapter 3, we presented parallel recovery mechanisms. Particularly
intéresting is the parallel logging algorithm that allows logging for a transaction
to be performed asynchronously at more than one log disks, and yet does not
require physical merging of distributed logs to recover from failures. We have
also shown how to take system checkpoints in parallel with the normal data
processing and logging activities. Although these mechanisms have been
designed in the context of database machines, they may easily be adapted for
use in any high performance database management system. For example, the
main-frame computers with the main memory in the order of gigabytes are on
the horizon. It will be possible to store the entire database in the main memory

of such computers [Gray83a]. Our parallel logging algorithm can be gainfully
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used to log updates in parallel in such a high performance environment.

Besides presenting the results of the comparative performance evaluation
of the parallel recovery mechanisms and their impact on database machine
performance, Chapter 4 contains an interesting result that the performance of
the multiprocessor-cache class of database machines is severely limited By the
170 bandwidth of the disk drives. It has been suggested that in such machines
several query processors (hundreds of them) may be used to process a database
query in parallel. We demonstrated that if the current state-of-art disk drives,

like IBM 3350 disks, are used for storing the database, then for 2 disk drives, not

even 10 query processors are adequately utilized?.

One way of increasing the 1/0 bandwidth is to use parallel-readout disk
drives. For sequential transactions, when parallel disks were used the
throughput of the ‘database machine increased by a factor of more than 5
compared to the conventional disks. We determined that by using 75 query
processors and 150 cache frames, instead of 25 query processors and 100 cache
frames, throughput in the case of sequential transactions can be improved by a
factor of more than 10. However, parallel di:;ks do not necessarily solve the 1/0
bandwidth problem. If the accesses are random so that there are not many
pages belonging to the same cylinder in the disk queue, the parallel-accessing
capability of a parallel disk becomes redundant. Similar results are expected if
the disk controller is augmented with a large internal cache so that it reads the

whole cylinder at a time instead of reading one block at a time.

! For random transactions, the throughput of the database machine using 2
query processors was found to be the same as the throughput obtained when 25
query processors were used. For sequential transactions, the same throughput
as 25 query processors could be achieved by using B query processors.
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What then is the solution to the 1/0 bandwidth problem? May be, build a
database machine so that the whole database or a very large part of it is always
memory resident and use our parallel logging algorithm to log all changes. As
rmiany log disks as necessary may be used to avoid degradation in the
throughput. This will, in addition, require efficient algorithms for incrementally
saving the image of database on stable storage while the database is in operation
so that the database may be reconstructed in acceptable time after a system
crash. The feasibility and the details of the architecture, the incremental
dumping’and the database reconstruction algorithms, the query processing
strategies in such an architecture, all appear to be very promising subjects for

future research.

The conventional wisdom is that, for best results, if a device is free and
there is a task to be performed, let the device start working on the task
immediately. In our simulations, we observed many situations where the forced
idleness was a better choice. For example, suppose that two adjacent pages P1
and P2 are to be read from the same cylinder of a parallel disk. Further,
suppose that two cache frames become free at time t and t+At respectively
where At'is very small compared to the disk access time, and disk is free at time
t. If the disk begins accessing P1 at time t, then a separate access will be
required to access P2. However, if the disk is kept idle for At time, then both Pi
and P2 may be read in one disk access. Similarly, suppose that a page P
referenced by transaction T has been read into the cache. For avoiding
fragmentation of output pages, it may be desirable to let a free processor idle
and assign P to another processor which is currently busy processing a page
belonging to T. It will be interesting to explore further the scheduling of parallel

disks and the query processor allocation from this point of view.
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On conventional disks also, for servicing access requests, we defined various
classes of customers with different class priorities, but in all our simulations,
the service discipline within a class was assumed to be first-come first-serve. It
will be worth investigating the effect of other disk-scheduling strategies on

database machine performance.

For many recovery algorithms, it is necessary to maintain a list in stable
storage that should survive system crash. For example, in the version-selection
selection approach described in Chapter 3, a list of transactions active at the
time of crash is required to recover from system crash. The transaction-id is
added to this list when a transaction starts, and on transaction completion, the
transaction-id is deleted. Maintaining such a list on a pseudo-random device like
disk where the unit of access is a block is ineflicient and clumsy. It will be very

advantageous if the database machine is augmented with some truly random-

access storage that survives power failures (for example, nonvolatile RAM®) for
such functions. This stable random-access storage will have other interesting
consequences for the recovery mechanisms in the conventional database

management systems also.

We adopted a modular approach to building simulator‘s for performance
analysis. We first built modules for the different devices like disk, cache, and
query processors and then these modules were glued together to realize the
simulator for the bare database machine. The bare database machine simulator
was in turn augmented with the modules for different recovery rmechanisms.

Besides cutting down on the development time, this approach ensured that we

2 One kilobit nonvolatile RAMs that are hybrids of static RAM and EEPROM
are currently available, and 4K units are in development at Xicor (Milipitas, Cali-
fornia) and elsewhere. Recently, a cell combining a dynamic RAM and an
EEPROM has been designed at United Technologies’ Mostek subsidiary {Carroll-
ton, Texas), and a 16K nonvolatile RAM may soon be readily realizable [PosaB3a].
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were not comparing apples with oranges. We used SIMPAS [BryaBOa], a
simulation language based on PASCAL [Jens74a], for constructing our
simulators. While SIMPAS was of great help and saved many months of
programming effort, we felt constrained on two counts. First of all, PASCAL does
not provide sufficient information hiding, and secondly, PASCAL being a
sequential language, some of the parallel processing constructs are difficult to
code in it. At one level, it will be nice to have a simulation language based on a
programming language like Ada [Ichb¥9a] that supports the notion of
parameterized modules, provides separate compilation and library facility, and
contains language constructs for expressing parallel processing. On another
level, it will be very useful to build a library of modules using such a simulation
language that a performance analyst may use off-the-shelf. Such tools will be
very useful to a database-machine designer also to balance the different
components of the design and examine its performance under various load

conditions.
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APPENDIX 1

NOTATION

BX Total extra cost in running a transaction because of recovery &
concurrency control

Bf ail Extra cost incurred when a transaction is aborted by the user

Brerun Extra cost incurred when a transaction is aborted by the :system

Bsetup Eixed extra cost irrespective of the ultimate fate of the transac-
tion

Bguce Extra cost incurred when a transaction succeeds

DBSize Size of the database

DBufi Number of Data buffers allocated to a transaction

DFlush The function that returns the number of updated data pages

that have been flushed to the disk at some time, given the total
number of updated pages

Comprs% The number of differential file pages generated by a transaction
is Comprs% of the data pages updated by it.

CpuOHZ With differential files, extra cpu time required to process a tran-
saction is CpuOHZ% of the cpu time consumed if the transaction
was run alone without any provision for recovery

LBuff Number of buffers available to a transaction to collect log
records

LogZ The number of log pages generated by a transaction is log% of
the data pages updated by it.

LFlush The function that returns the number of log pages that have
been flushed to the disk at some time, given the total number of
log pages

MPL Level of multiprogramming

NPt Total number of pages accessed by a transaction

NP Number of pages updated by a transaction
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; Probability that an access request of a transaction would
Peonflict y
conflict with that of another transaction
Pdadik Probability that a lock request of a transaction would result in a
deadlock
Pfail Probability that a transaction would be aborted by the user
péerun Probability that a transaction would be aborted by the system
Psucc Probability that a transaction would complete
Puait Probability that a lock request of a transaction would be
blocked
PtPages The function that determines the number of page-table pages
that would be accessed to access certain number of data pages
SBuff Number of buffers available to a transaction to get pagetable
pages
SFlush The function that returns the number of page-table pages that
are no longer available in the memory, given the total number of
page-table pages read by the transaction
Size% The size of the differential files is Size% of the number of pages
in the base file
Tal Time to process a grant-lock request
Tas Tirme to create control sets (read, write, active etc.) in the op-
timistic method of concurrency control, if NPt“= i
l-io Timme to read/write a disk page with disk seek
Tpage Cpu time to process a page in memory
Trec Cpu time to process a record in memory
Trl Time to process a release-lock request
Ts-io Time to read /write a disk page without a seek
Tvalid Time to validate a transaction in the optimistic method of con-
currency control if there is only one concurrent transaction
T Wait time for a blocked lock request
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APPENDIX 2

LINEAR DEADLOCK DETECTION

1. Introduction

Deadlocks arise in database systems in the context of concurrency control
algorithms based on locking. Deadlocks are typically characterized in terms of
a waits-for graphﬁ[Holt’?Za;Iiing’?{Ba], a directed -graph that represents vs}hi,ch
transactions are waiting for which other transactions. In this appendix, we will
present some special properties of the waits-for-graph in the context of
database systems, and present very efficient linear deadlock detection

algorithms.

The organization of the appendix is as follows. In Section 2, we describe our
assumptions reéarding the locking protocol used for concurrency control. In
particular, we assurme all locks to be exclusive: Wen outline some impeortant
* properties of a waits-for-graph in Section 3. Our continuous deadlock detection
algorithm is presented in Section 4. The theoretical basis for the algorithm is
presented in Annexure 1. In Section 5, we relax our assumption about the locks
being exclusive to allow shared read-locks and present our modified deadlock
detection algorithm. The proof of correctness of the modified algorithm is given
in Annexure 2. In Section 6, we extend our algorithm to perform periodic

deadlock detection.

2. Assumptions

We make the following assumptions about the locking protocol:
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(1) The locking protocol is the strict two-phase protocol, that is, a transaction
holds all its locks till its completion®.

(2) A transaction requests one lock at a time and is blocked if a lock cannot be

granted.

(3) All locks are exclusive.

3. Waits{for Graph in Database Systems

Deadlocks have been expressed in terms of waits-for graphs. It has been
shown [Holt72a, King73a] that there ezists a deadlock if and only if there is a
cycle in the waits-for graph. A waits-for graph G is a directed graph whose
vertices represent transactions and an edge (Ti'Tj) € G if the-transaction T; is
waiting for a lock owned by T,. We will say that T is *waiting on T. if there is a

J J

path from T.1 to 'I‘j in the waits-for graph.

Management of the Waits-for Graph

The waits-for graph is maintained by the lock manager. For each locked
object, the lock manager keeps the transaction number of the owner of the lock
and a queue of the transactions that are waiting for the object to become free.
We will assume that the queue discipline is 'first in first out (FIFO)'2. Before
allowing a transaction T; to wait for a transaction Tja. the lock manager checks
that the addition of the edge (Ti'Tj) to the waits-for graph will not result in a
cycle in the graph. The edge (Ti‘Tj) is added to the graph and T, is blocked, only

if this test succeeds. When a lock is released and a blocked transaction is

! Gray [Gray78a] has shown that to avoid a cascade of transaction aborts, a
transaction must hold all the locks until it executes the commit action, and then
release all the locks together.

2 Other queue disciplines can be implemented with straight forward
modifications to the algorithm presented in this paper.

3 Tj is the transaction immediately preceding Ti in the FIFO queue.
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activated, or when a transaction completes, the waits-for graph is appropriately

modified.

Properties of a waits-for graph
(1) A cycle-free waits-for graph is a forest of trees (Theorem 2 in Annexure 1).

(R) If the transaction T; waits for Tj. then deadlock can occur if and only if T; is

an ancestor of Tj' that is, Tj is *waiting for T;. (Theorem 4 in Annexure 1).

(3) Only the transactions corresponding to the roots in a cycle-free waits-for
graph are active. All descendanté of each of the roots are blocked *waiting
for the root (Theorem 3 in Annexure 1). Thus, a cycle is created only when

the transaction corresponding to a root waits for one of its descendants.

(4) Any connected subgraph of a waits-for graph can have at most one cycle

(Theorem 5 in Annexure 1).

4. Continuous Deadlock Detection Algorithm

The basic idea of the algorithri is that whenever a transaction T; requests a
lock owned by Tj' test if ’[‘j is *waiting for Ti‘ This test is performed by taking a
directed walk starting from Tj to the root of the tree. A deadlock occurs, only if

the root corresponds to T;.

Data Structures

Assume that each transaction is assigned a unique transaction number.
Define the following data structure:
Tran : Array{0..N-1] of {
Waiting-for : transaction#

SomeOne-waiting : boolean].

N is a prime number that is used to map a transaction number (by taking mod)
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to an array index® If the transaction t is blocked for a lock held by tj. then
Tran[ti].Waiting-for = tj. Tran[ti].SomeOne-waiting is true only if at least one

transaction is waiting for ¢ to complete.
Deadlock Management Module
Chl«:-cycle(ti.tj i transactiong) { -- t; requests a lock held by tj

if (Tran[t;].SomeOne-waiting is false) then § — deadlock not possible (Theorem 4)
Add~edge(ti.tj); ~
return(o.k.)}

else | - take a directed walk from tj
ancestor := Tran[tj].Waiting-for:

loop §

if (ancestor = t;) then - tj *waiting for t;
return{deadlock)

else if (ancestor = Null) then § -- tj not a descendant of t;
Add-edge(ty.t)); ”
return(o.k.)i:

ancestor := Tran[ancestor] Waiting-for;

} - end loop

Activate(ti: transaction#) §
Tran(t,]. Waiting-for : = Null;
J

4 Collisions may be handled using standard techniques [Knut73a].
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Terminate(ti : transaction#) {
Tran(t;] SomeOne-waiting := false;

}

Add-edge(t;,t; : transaction#) {
i

J

Tran(t;] Waiting-for := b

' Tran[tj].SomeOne-waiting 1= true;

!

Initialize {
for i:=0 to N-1 do {
Tran[i]. Waiting-for := Null,

Tran[i]. SomeOne-waiting := false};

Observations

!

Note that the loop in the function, Chk-cycle, always terminates because of

q

Theorem 6 in Annexure .. The loop is executed as many times as the path

i to the root of the tree®. In the worst case, PL = number of

blocked transactions in the connected subgraph of the waits-for graph that

length, PL, from t

contains the vertex at which the function Chk-cycle begins the search.

An optimization has been built into the algorithm by keeping track for each
transaction whether any transaction is waiting for it. Theorem 7 in Annexure 1

provides the basis for maintaining this information. The field, SomeOne-waiting,

5The tree that contains the vertex corresponding to tjﬂ
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will avoid the execution of the loop in all the cases where there is no transaction

waiting for ti' Thus, the deadlock detection will be still more efficient.

The space complexity of the algorithm is O(N).

5. Shared Read Locks - An Embellishment

The deadlock detection scheme presented in the previous section is based
on the assumption that all locks are exclusive. However, many real systems
allow read-locks to be shared and only write-locks are required to be exclusive.
[n such an environment, the number of outgoing edges from a vertex in the
waits-for graph is not bounded by one (Lemma 1 in Annexure 1) and the
deadlock detection scheme described in the previous section is not directly

applicable.

Modified Deadlock Detection Scheme

We will present a modification in the way the waits-for graph is managed
that will guarantee that there is at most one outgoing edge from each of the
vertices of the waits-for graph. With this modification, the deadlock detection

scheme presented in the previous section can be used.

When a writer '1’.‘.1 wishes to wait on a read-lock and there are more than one
readers, the lock manager selects one of the current readers, Tj. ensures that
the addition of the edge Ti'>Tj would not create a cycle, and adds ’I‘i->’I‘j to the
waits-for graph, Later, when '1‘j commits, the lock manager checks if there are
still readers. If not, T; is granted the lock and is allowed to proceed. If yes, T}-
>T, is changed to Ti'>Tk for some ongoing reader T}, if it does not introduce a

J
cycle.
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Observations

With this modification, the deadlock detection algorithm is still linear in
time. However, we loose the immediate deadlock detection property, that is, a
deadlock may not be detected as soon as it arises, although all deadlocks are
eventually detected. To see this, suppose that 'I‘l and Tz have read locks on X
and T, is blocked for Tg. If Tg now wants to update X then we have a deadlock
situation. However, if the lock manager adds T3->T2 then the deadlock will not
be detected until T2 completes, at which time the edge ’I'3->T1 is added and the

cycle is found.

The proof of correctness is presented in Annexure 2.

6. ‘Periodic Deadlock Detection

In this section, we present an outline of the extension to the continuous
deadlock detection scheme that enables periodic deadlock detection in linear
time. With periodic detection, instead of checking for a cycle before adding an
edge to the waits-for graph, edges are added to the graph without any test and

the graph is periodically examined for cycles.

Define a function Detect-cycle(v) analogous to the Chk-cycl‘e function
defined previously that causes a directed walk in the waits-for graph starting
from the vertex v. The walk will either terminate at a root or will again reach v,
in which case, a cycle has been detected. Detect-cycle marks every vertex that
it touches in the process of searching for a cycle as visifed. We will now present

the periodic deadlock detection algorithm.
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Periodic-detection §
for index := 0 to N-1 do Tran[index].Visited := false; -- initialize

index := 0;

while (index < N) §
Detect-cycle(index);
while ((Tran[index].Visited is True) And (index < N)) index := index +1;
}

!

The algorithm simply runs the function Detect-cycle on the first vertex,
advances to the next unvisited vertex, runs Detect-cycle there, etc. In other
words, it runs our linear deadlock detector at every connected subgraph of the
waits-for graph. The time complexity of the algorithm is O(N), that is, it is linear

in the total number of blocked transactions.
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Annexure 1

Definitions
We will first introduce some graph-theoretic definitions adapted

from [Deo74a, Hara72al.

A directed graph (or a digraph for short) G consists of a set of vertices V =
ivl.vz,...g, a set of edges E = iel,ez....i. and a mapping that maps every edge
onto some ordered pair of vertices (Vi’vj)" A vertex is represented by a point and
an edge by a line segment between v; and v, with an arrow directed from v, to v;.

J J

The vertex v; is called the initial verter and vj the terminal vertez of the edge.

The number of edges incident out of a vertex v, is called the out—degree.of v; '

and is written do(v.l). The number of edges incident into v; is called the in-

degree of v, and is written di(vi). A sink is a vertex v; with d°(v.l) =0 -

A (directed) walk in a digraph is an alternating sequence of vertices and
edges, Eva,el,vl...aenﬁng in which each edge e, is (Vi‘-l'vi)‘ A closed walk has v, =
vg- A path is a walk in which all vertices are distinct; a cycle is a nontrivial
closed walk with all vertices distinct (except the first and the last). An edge
having the same vertex as both its initial and terminal vertices is called a self-
loop. If there is a path from v; to v;, then v. is said to be reachable from v;. The

J J i
length of a path is the number of vertices involved in the path.

Each walk is directed from the first vertex vq to the last vertex v,. We need
a concept that does not have this directional property. A semiwclk is again an
alternating sequence ivo.el,vl...ﬂen,vni of vertices and edges but each edge e
may be either (Vi-l’vi) or (vi'vi-l)' A semipath and a semicycle is analogously

defined.
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A digraph is said to be connected if there is at least one semipath between
every pair of its vertices; otherwise, it is disconnected. It is easy to see that a
disconnected graph consists of two or more connected subgraphs. Each of these

connected subgraphs is called a component.

An in-tree is a digraph G such that 1) G contains neither a cycle nor a

semicycle, 2) G has precisely one sink. This sink is called the roat of the in-tree.

Characteristics of a waits-for graph®

THEOREM 1. A waits-for graph does not have any self-loop.

Proof. A transaction does not wait for a lock that it owns itself.

LEMMA 1. Assuming all locks to be ezclusive, for all vertices v; in a waits-for

graph, do('ui) <1

Proof. A transaction cannot wait for more than one transaction at a time.

LEMMA 2. Gis a digraph with n vertices. If there is a unique semipath between
every two vertices of G, then the number of edges in G=n-1.

Proof. Theorem 4.1 in [Hara72a].

LEMMA 3. /n a digraph, the sum of the aut-degrees of all vertices is equal to the
number of edges in the digraph.

Proof. Each edge contributes exactly one out-degree.

LEMMA 4. Any component of a waits-for graph cannot have more than one sink.
Proof. Suppose a component G has two sinks Yo and Vi Since G is connected,
we can find a semipath'between v and Yy Extract the subgraph G' that has

only the vertices and the edges comprising this semipath. Let there be p

6 We will assume through out that the graph is non-empty
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vertices in G'. By Lemma 2, number of edges in G' = p-1 and by Lemma 3, the
sum of out-degrees of all vertices in G’ = p-1. However, since d°(v0) = do(vn) =
0, there must be some vertex v in G', and hence in G, that has d®(v) > 1. But,

this contradicts Lemma 1.

LEMMA 5. An acyclic digraph has at least one vertez of oul-degree zero.

Proof. Theorem 16.2 in [Hara72a].

LEMMA 6. A connected digraph G is an in-tree if and only if exactly one vertez
of Ghas out-degree 0 and all others have out-degree 1.

Proof. Theorem 16.4’ in [Hara72a].

THEOREM 2. A cycle-free waits-for graph is a forest of in-trees.

Proof. Follows from Lemma 1, Lemma 4, Lemma 5 and Lemma 6.

LEMMA 7. In anin-tree, there is a unique path from every vertez to the root.

Proof. Theorem 9.3 in [Deo74a]

THEOREM 3. The root v of each of the in-trees in a cycle-free wails-for graph
corresponds to an active transaction for which all éthe'r: transactions in the iree
are *waiting.

Proof. 1fv corresponds\ to a waiting transaction, then d®v) = 1, a contradiction.

The second part of the theorem follows from Lemma 7.

LEMMA 8. Blocking of a transaction that has no other transaoction waiting for it
cannot create a cycle in the waits-for graph.
Proof. The vertex corresponding to a transaction that has no transaction

waiting for it has no incoming edge.

LEMMA 9. Waiting for a lock owned by an active transaction cannot result in a
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cycle in the waits-for graph.

Proof. The vertex corresponding to an active transaction has no outgoing edge.

THEOREM 4. Wait by a transaction T; for a lock held by 7} will result in a cycle
in the waits-for graph if and only if 7} is *waiting for T,.
Proof. First, if T, is *waiting for Ti' then there is a path from T.i to T.l. aﬁd the

J
addition of the edge (Ti'Tj) will create a cycle in the waits-for graph.

Suppose now that 'I‘j is not *waiting for T; and the addition of the edge (Ti'Tj)
creates a cycle in the waits-for graph. We will show a contradiction. If Tj is

active, waiting for Tj cannot create a cycle by Lemma 9. If Tj is *waiting for a
transaction T (# Ti)' let us traverse the cycle created by the addition of the edge
(Ti'Tj) starting from T;. Since, there is a unique path between 'I‘j and T (Lemma
1). the cycle should have a path between T and Ti’ But that would imply that Tj

is *waiting for Ti'

LEMMA 10. Awvertex can be on at most one distinct cycle in a waits-for graph.

Proof. Let a vertex v be on more than one distinect cycles. Starting from v and
moving along the cycles, a vertex v' (v' may be v) will be reached‘such that there
are two out-going edges from v'. But, then d°(') > i, and that contradicts

Lemma 1.

THEOREM 5. Any component of a waits-for graph can have at most one cycle.

Proof. The transaction T corresponding to the root of a cycle-free component of
a waits-for graph is the only active transaction amongst the transactions
involved in the component. Hence, by Theorem 4, only a wait by T can cause a

cycle in the component, and by Lemma 10, T can cause at most one cycle.

THEOREM 6. A directed walk from any vertex in a component of a wails-for

graph would result either in detection of the cycle or termination at the root.
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Proof. Follows from Lemma 7 and Theorem 5.

THEOREM 7. The in-degree of a vertex in the wails-for graph of a database
system increases monotonically until the vertezx is removed from the graph with
the completion of the corresponding transaction.

Proof. A transaction holds all the locks until its completion [Gray78a].
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Annexure 2

Model

We postulate a waits-for graph, as before, whose vertices are transactions
and edges (called ezplicit edges from here on) of the form Ti->'1‘j indicate that T;
is explicitly waiting on Tj. For proof purposes, there is also a coillection of
implicit edges of the form T;->T),. indicating that T} is one of the other readers
of some object X that 'I‘.l wishes to write. These implicit edges would be present
in a waits-for graph, if we were not trying to bound the out-degree of vertices by
one. Let the graph with just explicit edges be called the E-graph, and the graph

with both explicit and implicit edges be called the El-graph.

Proof of Correctness

Our algorithm will be deemed correct if it can be shown that no cycle

(implicit or explicit) in the El-graph can persist forever.

LEMMA 1. If a vertex in the El-graph has an outgoing implicit edge, there must

be af least one outgoing explicit edge from it.

Proof. A transaction Ti can implicitly wait for a transaction Tk if T; requests a
write-lock for some object X that has been read-locked by Tk and by at least one
other transaction Tj (j # k), and Ti chooses Tj to explicitly wait for. The other
scenario where T. can implicitly wait for Tk is when T. is already explicitly
waiting for some transaction T that holds a read-lock on X, and T}, arrives later

on and is also granted a read-lock on X. In both situations, the implicit edge T -

>'I‘k cannot be present without the explicit edge 'I‘i->Tj being present as well.
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Now, when transaction ’[‘j commits, the explicit edge ’I‘i->'[‘j is removed and
an implicit edge T;->T, is made explicit. If k = m, the implicit edge T;->T is
now explicit; otherwise, the implicit edge Ti'>Tk remains implicit, but still has a

related outgoing explicit edge.
LEMMA 2. Sinks in the E-graph are also sinks in the El-graph.

Proof. Suppose there is a vertex v that is a sink in the E-graph but not in the
El-graph. The vertex v cannot have an outgoing explicit edge in the El-graph
because, by definition of the E-graph, the same edge would be outgoing fromvin
the E-graph and v is a sink in the E-graph. If v has an outgoing implicit edge,
then by Lemma 1, there must be an outgoing explicit edge from v as well, and

that is not possible. Hence, v is a sink in the El-graph as well.

LEMMA 3. If our deadlock detection algorithm is applied to the E-graph, then, at

any time, the E-graph will have at least one sink.

Proof. By Theorem 2 in Appendix A, a cycle-free E-graph is a forest of in-trees
and our deadlock detection algorithm never allows any cycle to be formed in the

E-graph.

THEOREM 1. If our deadlock detection algorithm is applied to the E-graph, we

cannot reach a state in which no transaction can proceed.

Proof. Either no transaction is waiting, or by Lemmas 2 and 3, at any time,
there is at least one sink in the El-graph that corresponds to a runnable

transaction.
COROLLARY 1. Cycles in the El-graph cannot persist forever.

Proof. Assume that we quiesce the systern, in the sense that no new
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transactions are allowed to enter. By Theorem 1, at any time, there is at least

one runnable transaction in a non-empty system. Assuming that transactions
are finite in length, all transactions will eventually either commit or abort.

Either way, all vertices are eventually removed from the graph, and hence, all

cycles eventually go away.
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