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ABSTRACT

This thesis is principally concerned with methods for solving
the linear complementarity problem (LCP) of finding a vector z in
E™ such that z=0, Mz +¢=0, and z7(Mz+q)=0 where M is a given
n-by-n real matrix and g is a given n-vector. A geometric charac-
terization is given for the vector p of the linear program: minimize
pTz subject to z=0, Mzx+q=0, each solution of which solves the
(LCP). It is shown that for some positive (semi) definite matrix M
and some positive matrix M, there is no single fixed p such that
each solution of the linear program solves the (LCP). This result
suggests that solving the (LCP) by a single linear program may be
very difficult in certain cases. Hence an iterative linear program-
ming (ILP) method is proposed in which the vector p is updated.

The method guesses at a vector p, then iteratively updates it while

Sponsored by the U.S. National Science Foundation under Grant No.
MCS-8200832
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applying the simplex method to the linear program. The method
terminates, in a finite number of iterations, for M positive (serni)
definite, for M with positive principal minors, and for some other
matrices M for which current algorithms may fail. Numerical
examples indicate that the method may be more robust than
Lemke's method. An extension of the method is given for solving
linearly constrained convex programs. We also give an SOR-based
ILP method which is suitable for very large scale LCP problems with
a sparse matrix M. The class of matrices for which the SOR-based
ILP converges includes the class of nonsymmetric positive semni-
definite matrices. Finally we give a comprehensive theory for
quasi-diagonally dominant matrices in relation to the linear com-

plementarity problem.
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CHAPTER 1

INTRODUCTION

This thesis is principally concerned with methods for solving
the linear complementarity problem. These methods of solutions
are discussed in the first four chapters of this thesis. In addition
we also give, in Chapter 3, an extension of one of the computational
algorithms to solving linearly constrained convex programrning
problems. In Chapter 5 we present a cornprehensive theory for
quasi-diagonally dominant matrices as related to the linear com-

plementarity problem.

1.1 THE LINEAR COMPLEMENTARITY PROBLEM

We consider the linear complementarity problem (LCP) of

finding z in ™ such that



w=Mz+g=0, 220, zTw=0, (1.1)

where M is a given real nxn matrix and g is a given vector in R™.
Linear programming, quadratic programming and bimatrix games
can be solved as LCP's [Lemke 65, Cottle and Dantzig 68]. One of
the most popular methods for nonlinear programming is the itera-
tive quadratic programming method [Wilson 63, Garcia and Man-
gasarian 76, Han 76,77, Powell 78] where & quadratic program is
solved, usually by an LCP, at each iteration. LCP's arise in other
fields, e.g. in finite difference schemes for free boundary problems

[Cryer 71] and electronic circuit simulation [van Bokhoven 80].

The general LCP is NP-complete [Chung and Murty 81] and
therefore very difficult to solve even for moderate 7. However in
many applications the matrix # has some nice properties, e.g. M is
positive semi-definite or all principal minors of M are positive (i.e.
M is a P-matrix [Murty 72]), and the problem can be solved by
some direct pivoting methods, e.g. the principal pivoting method
[Dantzig and Cottle 67] or Lemke's algorithm [Lemke 68]. Since
the polynomial algorithm for linear programming was proposed
[Hacijan 79], people have tried to modify it for solving LCP and
have succeeded in showing that for M positive definite or positive

semi-definite, (LCP) is polynomial-time solvable [e.g. Chung and




Murty 81, Kozlov, Taransov and Hacijan 79]. But the polynomial
algorithms are very slow. Since the LCP has a vertex solution pro-
vided it has a solution [Mangasarian 78], Mangasarian tried to

reduce the LCP to the following linear program (LP)
minimize pTz, subject to Mz +g=0, 2=0, (1.2)

by finding an appropriate cost vector p [Mangasarian 76,78,79]. An
algebraic characterization of p was given, and for some cases the
vector p can be obtained without great effort. The approach has
many advantages. (1) The simplex method [Dantzig 63] can be
started at any basis, hence in applications where parametric fami-
lies of LCP's are to be solved, we can use prior solutions as starting
points to the next LCP. (R) The simplex method is more robust
than other direct methods for solving the LCP in dealing with
numerical errors , such as loss of feésibility or near singularity of
the basis. Unlike Lemke’s algorithm in which the variable to enter
the basis is uniquely determined, the simplex method can choose,
among those nonbasic variables with negative reduced cost, to
avoid these problems. (3) The simplex method is very popular and
well-documented reliable LP codes are available at most computer
installations. On the other hand a disadvantage of the LP approach
is the difficulty in finding » in some important cases e.g. M is posi-

tive (semi)definite (see Chapter 2). Cottle and Pang have utilized a



least-element geometric interpretation of the LP approach [Cottle

and Pang 78].

In Chapter 3 we give an alternative approach, the iterative
linear programming (ILP) method. The ILP method works like a
single LP and has most of the advantages of the LP-approach. It
converges to a vertex solution (or indicates that no solution exists)
for M positive semidefinite. The method also works for M with posi-
tive principal minors and for some other matrices for which

current algorithms may fail.

In many applications where n is very large and M is sparse, the
pivoting methods become impractical because sparsity can quickly
be lost after a few pivots and hence we need to store and process
all nxn entries. Iterative methods that can preserve sparsity [Ahn
81, Cheng 81, Cottle, Golub and Sacher 78, Cryer 71, Mangasarian
77, Pang 81,82] are more suitable. A sparsity-preserving SOR-
based ILP algorithm based on an successive overrelaxation method
(SOR) [Agmon 54] is given in Chapter 4. The algorithm steps are
simple and fast and the method converges for a wide range of

matrices compared to other SOR-based methods.




1.2 ILP FOR LINEARLY CONSTRAINED MINIMIZATION PROBLEMS

At the end of Chapter 3 we extend the ILP method to solve

linearly constrained minimization problems:
minimize f (z) subject to Ax=b, z=0, (1.3)

where f is convex and has a Lipschitz continuous gradient. The
algorithm can employ any pivoting method to solve the LP in each
iteration of the ILP. Hence it is very attractive for problems with
special structure, e.g. network flow problems, where very efficient

pivoting methods exist.

1.3 QUASI-DIAGONALLY DOMINANT MATRICES

In Chapter 5 we give a comprehensive complementarity theory
for quasi-diagonally dominant matrices, i.e. nXn matrices M such

that there exists a positive vector d in ™, such that

J#i

This class of matrices contains H-matrices with positive diagonals
[Pang 79]. A quasi-diagonally dominant matrix is not necessarily a
P-matrix since we do not require strict inequality in (1.4) (see
Chapter 5). We show that if # is quasi-diagonally dominant, then
(LCP) has a solution for all ¢ for which (LCP) is feasible, i.e. there



exists z satisfying £=0, Mz+q=0. We also give a characterization
for the feasibility of (LCP). If the transpose of M is quasi-diagonally
dominant, we give a complete characterization of the set of all
solutions of (LCP), and the solution set can be easily computed. We

also give a characterization of the uniqueness of the solution.

1.4 NOTATION

All matrices, vectors and scalars are real. The following nota-

tion and reference system are used.
1. The n-dimensional Euclidean space is denoted by E™.

2. Colomn vectors are depoted by lower case italic letters:
ab,c,., ors,tuvw,ezy,z2 z;denotes the i—th component
of . x>0 denotes z;>0 for all i, while z=0 denotes 2;=0 for all
i.

3. Superscripts are used to denote different vectors, e.g. zl, zk

and z*¥*!, but the superscript T denotes the transpose, e.g.

2T MT. In the inner product zTy of two vectors z,y, the
superscript T is usually suppressed.

4. Matrices are denoted by upper case italic AB,C,...M,N,....Z.
A; and 4;; denote respectively the i—th row and ij —th element
of A, and M7 denotes the j—th column vector of #. I is the

nXn identity matrix.




Real functions defined on subsets of R™ are denoted by
f.g9.h,..., while Vf (z) and V2f (z) denote respectively the gra-
dient and the Hessian of f at z if f:R™-R, while Vg(z)
denotes the m xn Jacobian if g:R™*>R™.

Lower case Greek letters denote scalars, e.g. a,A.

The Euclidean norm (z7z)¥ of a vector z in R™ is denoted sim-
ply by |z].

References are referred to by author’s name and year (e.g.
[Mangasarian 79]) and are in alphabetical order in the bibliog-

raphy.



CHAPTER II

SOLVABILITY BY A SINGLE LINEAR PROGRAM

2.1 INTRODUCTION

It was shown that the LCP(I.1) is solvable if and only if there
exists a p in R™ satisfying certain conditions such that the LP(1.2)
is solvable. Furthermore for such p, each solution of the LP is a
solution of the LCP [Mangasarian 76,78]. Algebraic characteriza-
tions of the vector p have been given [Mangasarian 76,78,79].
Based on the characterizations, the vector p can be easily deter-
mined for a number of special cases [Mangasarian 78,Table 1].
However for some important cases, e.g. M being positive semi-
definite or M>0, it is not easy to find an appropriate p. Because

for all the explicit cases for which p is given [Mangasarian 78,




Theorem 4], the choice of p is independent of the vector g in (1.1),
i.e. given the matrix M we can find a p which works for every q, the
following question is important. Given a positive semidefinite
matriz M (or given M>0), can we find a vector p which works for
every q? We shall answer this question in the negative in this
chapter. It should be pointed out that Cottle and Pang have given a
least-element geometric interpretation of Mangasarian's results

[Cottle and Pang 78].

In this chapter a geometric characterization of p is given,
which may not be as useful in finding p as Mangasarian'’s character-
ization, however it does lead to a greater understanding of the LP
approach. Consequently we are able to show that for some positive
definite matrices M and some M >0, the choice of p must be depen-

dent on the vector q.

(2.1.1) Notation From now on we use the symbol (M,q) to denote

the LCP
Mz +q=0, =0, =T (Mz+q)=0, (M,q)
and use (M,q,p) to denote the LP

minpTz subject to Mz+q=0, 220 (M,q,p)
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2.2 NECESSARY AND SUFFICIENT CONDITIONS

(2.2.1) Definition (#,q) is LP—solvable by a given fized p#0 iff
the following statement holds,
(M,q) has a solution if and only if (1) (M,q,p) is solvable and ()
every solution of (M,q,p) solves (M,q).
In short, we can either get a solution of (M,q) or conclude that (M,q)
is not solvable by solving (M,q,p). Note that (2) of the definition is
required only when (M,q) has a solution. Hence we know that (M,q)
has no solution either when (M,q,p) has no solution or when we get
a solution of (M,q,p) which is not a solution to (M,q).
We say that M is LP—solvable by a given fized p if (M,q) is LP-
solvable by p for all g. Note that in this case, p is independent of

q.-®

Here we review some linear programming terminology which will be
frequently used in the sequel. By introducing slack variables, the

system

Mzx+q =0,z =0,

can be written as

w—Mxr =q,z=0, w=0 (I1.1)
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(2.2.2) Definition A basis is a set of n linearly independent column
vectors of [ and —M in (IL.1), a variable z; or w; is basic (with
respect to the basis) if its corresponding column vector is in the
basis. A basic solution is the unique one found by solving for the
values of basic variables when the nonbasic variables are set to
zero. A basis is feasible if the corresponding basic solution is non-
negative, hence it satisfies (I.1), in which case the basic solution is
called a BFS (Basic Feasible Solution). A basis is complementary
if exactly one of z; or w; is basic for i=1,2,...,n, hence zTw=0, and
the complementary basic solution is a solution to (M,q) iff it is

feasible.

(2.2.3) Definition Let # be an n.Xn matrix. Let S be a subset of the
index set J={1,2,...,n}, let §=J—-5, define Py(S) and Q(S) as fol-

lows,

Py(S):=1{p | p = Y siMy+ 3}, s;l;, s=0}
RES jel

= conwex cone generated by {M;|i€S}Ytl;|j€S]
Qu(S) := convezr cone generated by {—M/ |jeSyirt|ies)
Note that vectors in Py(S) are row vectors. @y(S)'s are called

complementary cones [Murty 72]. For significance of Py(S) see

Remarks (2.2.5).
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(2.2.4) Lemma

qe@y(S) if (Mq) has a solution =z such that
z;=0 for i€S and (Mzx+q);=0for j€S.

Proof. Let qe@y(S), ie. there exists s=0 such that

q= Z --stj + Esjfj. Hence

jes jes
q = —Mz+Iw, where (1I1.2)
z; 1= s; =0, w; := 0for jES5, and (11.3)
z; := 0, w; :=s; = 0for jES. (11.4)

Hence z is a solution of (M,q) with the asserted properties.

The other part of the Lemma can easily be proved by reversing

the argument. ®

(2.2.5) Remarks

(i) From now on throughout this chapter, we consider M is
given and fixed, and suppress the subscripts of Py(S) and
Qu(S)

(ii) Given subset S of J, we can define a complementary basis
B:={—M7 | jeSjuy{l? | jeS}, provided B is linearly
independent. From now on when we say basis S, we are

referring to the complementary basis B.
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(iii) Given basis S, @(S) is the set of all g-vectors for which S is
feasible [see (2.2.2)], so the BFS is a solution of (M,q). On
the other hand, P(S) is the set of all p-vectors for which S
is optimal for the linear program (M,q,p). Hence if q€Q(S)
and p€P(S) then the BFS is a solution to both (M,q) and
(M,q,p). However, this does not imply that every solution to
(M,q,p) is a solution to (M,q). To handle this, we introduce

P°(S) which is the relative interior of P(S).

(2.2.6) Definition Let .S and S be as in (2.2.2), define

P°(S):={p |p= Y s My+3 s;I; s>0
ies je&
(2.2.7) Lemma Let g€@(S), peP°(S). Then (M,q,p) has a solution
and every solution is a solution to (M,q). Moreover, if S is a basis,
i.e. the corresponding m column vectors are linearly independent,
then the solution to {(M,q,p) is unique.
Proof Since g€@(S), as in Lemma (2.2.4), there exist z and w

satisfying (11.2,3,4). Hence z is feasible in (M,q,p). Since p&P?° (S),

P = Zt‘iM‘i"- 2 t]'[J' t>0.
jes

1€S
Hence for all feasible 2,

plx—2)= Y t; Mi(z—2z) + 3, t;(z;—2;) (11.5)
icS jeS
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ieS jes
since M;x = w;—q; = g; for i€S (IL.2,3), and z; = 0 for jeS (11.4).
Hence z is optimal for (M,q,p)-
Let z be any solution to (M,q,p), let v:=Mz+q. Then p(z —2z)=0. By
(IL.5,6), note that ;>0 for i=1,...,n, we have »;=M; 2 +;=0, z;=0 for
i€S, je5. Hence z is also a solution to (M,q). If, in addition, that

S is a basis, then since
I(w—-v)—-M(x—z)=(w-—Mx)-—(v—Mz)=q —q =0
and the m column vectors {I7|jeSjyU{—M7|jeS] are linearly

independent, we have w=v and z=z. Hence the solution to (M,a,p)

is unique. ®

(2.2.8) Theorem (Sufficient Condition) For a given p, let
4°(p) = ULQ(S)|lpeP(S)}). I Q(T)c4A°(p) for every
index subset T, then M is LP—solvable by p.

Proof Given any g such that (M,q) has a solution, we have qe(T)
for some index set T, hence q€A°(p), i.e. €Q(S) for some S such

that p €P°(S). The theorem then follows by Lemma(2.2.7). ®

(2.2.9) Theorem (Necessary Condition) I M is LP —solvable
by p (p#0), then (7)< A(p) for every basisT, where
A(p) = UtQ(S) lpeP(S).
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Proof Let M be LP—solvable by p. We suppose there is a basis T
such that @(T) is not contained in A(p), and shall show a contrad-
iction. Note that the (topological) interior of @(T), denoted by
Q(T)°, is nonempty (an open cone generated by
n linearly independent vectors) and not contained in A(p) (since
A(p) is closed and the closure of Q(T) is Q(T) ). Hence
Q(T)°—A(p) is a nonempty open set, which contains some open
ball, say, B(g,5) with center g and radius 6. If (M,q,p) has no solu-
tion, we are done since the basic solution of T is a solution to (M,q).
So we assume (M,q,p) has an optimal BFS (z,w) with basis B. For
any complementary basis S which is feasible, i.e. g€Q(S), we have
p& P(S) (for g2 A(p)), so S is not optimal in (M,q,p) and hence can
not be the basis B. Therefore B is not complementary. If necessary
we perturb the g vector a little (keeping it in the open ball) to

make B nondegenerate, e.g. let (Z,,7) be defined as follows:

z;:=z;+e, W;:=w;+e for basic variables z; and wy,

the rest components of £ and W remain zero, and
g:.=lw—-MZz,

where £>0 is sufficiently small so that § €B(g,6). Note that after
the perturbation, it is still true that the basic solution with basis T

is a solution to (M,g). Since B is nondegenerate and is not comple-
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mentary, £ w#0. Hence (Z,w) , which is a solution to (M,§,p), is

not a solution to (M,§), which contradicts the assumption that M is

LP-solvable by p.®

(2.2.10) Remarks

(i)

(ii)

(i)

Note that the A°(p) in Theorem (2.2.8) is slightly different
from the A(p) in (2.2.9).

Also note that we use the phrase indez set in Theorem
(2.2.8) but, in (2.2.9) we can only prove Q(S)cA(p) for
basis S. If, in (2.2.9), we assume that for every qeA(p),
(M,q,p) has a nondegenerate optimal BFS whenever it has a
solution, then we need no perturbation in the proof and we
can have the stronger conclusion that @(S )JCA(p) for every
index set S.

The stronger conclusion in (ii) is also true if we simply
change the definition of being LP —solvable in (2.2.1) as fol-

lows.

(M,q) is (strongly) LP—solvable by p iff (1) (M,q) has a
solution if and only if (M,q,p) has, and () every solu-

tion of (M,q,p) is a solution of (M,q).

Note that in Definition (2.2.1), (2) is required only when (M,q)
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has solutions.

Proof of (iii). With the strong version, i.e. assuming (1) and () hold
for all vector q, let T be any index set (not necessarily a basis)
such that @(T)—A4(p) is not empty. We shall show a contradiction.
Let g€Q(T)—A(p). Then by Lemma (2.2.4), (M,q) has a solution . By
(1) (M,q,p) must also have a solution, hence has one which is a BFS
with basis B, say. By the same reason as before B is not comple-
mentary. Again, we perturb g to § so that B is not degenerate,
and we have a solution to (M,g,p) which is not a solution to (M,3),
contradicting to (2). {Note that (M,3) may have no solution, so we

can not have any contradiction to the old Definition (2.2.1).] =

2.3 APPLICATIONS

(2.3.1) Example

11 1
M= [1 -1 12
It is clear from fig. 1 that {@(¢), @({1})} isa m)

. oL{1in ¢ 1
covering of the union of all @(S)’s. It fol- \ \ I
lows by (2.2.8) that M is LP-solvable by any
vector Figure 1.

p € P°(¢)NP° ({1}) = {a[1,1]+B[0,1] | o,B>0)
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(2.3.2) Example (of a positive definite matrix not solvable by any
p-vector)

M=K 2 -1
1 -1 1

1 1 —1]
is positive definite, hence (1) for any index set S, S is a basis and
Q(S) has nonempty interior and (2) the class of all Q(S) is a parti-
tion of B™ [Samelson et. al. 58]. Therefore, @(T) is not contained
in U{@Q(S)|S#T} for any T. On the other hand, it is straightfor-
ward to see that P({1})NP({23)NFP(¢) = {0]. Hence for any p#0,
there exists T such that pg P(T). So it follows by (2.2.9) that M is

not LP-solvable by p. Thus for example, let

€ @({1)°,

[-1
qli= —M+I*+I3 = l%ﬁ

1
q2 = JlefR— 3 = I‘al € Q(i2,3;)°,
I1]
g3 = I'+I3+[3 = H € Q(9)°,

then for (M,q!), p must be in P({i}), but for (M,q?), p must be in
P(§2,3}), and for (M,q%), p must be in P(¢), so no single p can solve
all of (M,q1), (M,q?) and (M,q3). =

(2.3.3) Example (of a positive matrix not solvable by any p -vector)

u-h
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is a positive matrix. It is easy to see that P({13)NP({2)) = {0} and
neither @({1}) nor @({8)) is covered by the union of those @(S)
other than itself. So by the same argument, note that both {1} and
{2} are basis, M is not LP-solvable by any p #0. Thus for example,

let

ql:= —M+2/% = {';)1] € Q({13)°,
¢ :=2r-u2 = | 9] € quay,

then no single p can solve both (M,q') and (M,q®).

2.4 SUMMARY

We considered the problem of reducing the linear complemen-
tarity problem (M,q) to a linear program (M,q,p) by choosing p
appropriately. In Mangasarian’s results, we observed that p is
independent of g in all cases where p can easily be found. So we
concentrated on the problem of finding a single p, given M, so that
solving (M,q,p) will give answer to (M,q) for all g. We gave neces-
sary and sufficient conditions for the existence of such a p. Based
on the results, we gave examples showing that there exists no such
p for some positive definite matrices M and some positive matrices

M.
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So it seems difficult, in general, to find a p in one shot for solv-
ing (M,q) when M is positive (semi-) definite or positive. In the next
chapter, we give an algorithm that guesses a p, and then modifies

it along the way when (M,q,p) is being solved.
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CHAPTER III

THE ITERATIVE LINEAR PROGRAMMING METHOD

3.1 INTRODUCTION

Although the LP approach has many nice properties, it is in
general very difficult to find the cost vector p. This is the case, as
example (2.3.2) suggests, even when M is positive (semi-) definite.
In this chapter we give another approach, called iterative 1inear
programming (ILP), which allows p to vary along the way while solv-
ing the linear program (M,q,p). In general the method does not
solve a sequence of linear programs as its name suggests, but
rather it solves a single linear program with a variable cost vector

p which is changed whenever a certain criterion is met.
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In this chapter we give a simplex based ILP method which uses
the primal simplex method to solve (M,q,p). Starting at a basic
feasible solution (BFS), we apply the primal simplex method to
(M,q,p) until either (1) the current BFS is a solution to the LCP or
(2) the objective value is lower than certain level which is easily
calculated at the beginning of each iteration, or (3) the current
BFS is a solution to (M,q.,p). In cases (2) and (3), we update the
cost vector p and the level, then begin the next iteration. The
algorithm is a generalization to a nonconvex linear complementar-
ity problem of a finite algorithm by Frank and Wolfe for solving con-
vex quadratic programs [Frank and Wolfe 56]. This should not be
confused with the potentially slowly convergent Frank-Wolfe algo-
rithm for solving linearly constrained convex programs. In fact, if
(M,q) is formed by the Karush-Kuhn-Tucker conditions for a convex
quadratic program then the two algorithms are equivalent. How-
ever for the nonconvex case both our algorithm and the conver-
gence proof are different from the Frank-Wolfe algorithm with a
cutting plane. We will derive the algorithm directly for LCP (M,q)
for which the quadratic function zT Mz is convex at some solution,
and then generalize it for a general M without any convexity
assumption. It is shown that the algorithm converges for matrices

with positive principal minors, for positive semidefinite matrices




23

and for some other matrices for which current algorithms may fail.
The convergence is finite and very fast. According to our computa-
tional experiments, the number of iterations is around 5 for
n=40~50 and M being positive semi-definite. Some numerical
 results for general M are given in Section (3.5) which indicate that
our method can solve problems which cannot be solved by Lemke’s

method [Lemke 68].

In Section 3.6, the simplex based ILP algorithm is modified for
solving linearb.r constrained convex programming problems. Since
the algorithm does not change the original linear constraints, it is
very attractive for problems with specially étmctmed constraints
for whose linear programming approximation very efficient simplex

codes exist.

3.2 THE BASIC IDEA OF THE ILP METHOD

Let us first concentrate on problems where M is positive semi-

definite. Consider the following quadratic programming problem,

min f (z) := 2T (Mz+q)
s.t. Mx+q =0, (QP)

x = 0.

It is obvious that the linear complementarity problem (M,q) has a
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solution iff (QP) has a solution with objective value 0, in which case
the two solution sets are equal. (QP) is considered an easy problem

because of the following.

(3.2.1) Remarks Assume that M is positive semi-definite and that

(M,q) has a solution Z. Then (QP) has the following properties.
(i) f is convex.
(ii)  The optimal value is known to be 0.

(iii) (QP) has a vertex solution since (M,q) does.

When solving a problem with iterative methods, the conver-
gence is usually much faster if the problem has a vertex solution.
In fact, (iii) enables us to show that the simplex based ILP algo-
rithm terminates in finite number of iterations. (i) and (ii) give us
a hyperplane that separates a given feasible but not complemen-

tary point from the solution set, as the next lemma shows.

(3.2.2) Lemma Let z*¥ be feasible but not complementary, i.e.

z* = 0, Mz*+q = 0 but f (z*¥) > 0. Then the linear inequality
f(x*)+9f (z*)(z—z*) =< 0 (1IL.1)

which is violated by z* is satisfied by every solution Z of (M,q)

satisfying




(zF—2)TM(z*-%)=0
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(111.2)

Proof It is obvious that z* violates (IIL.1) because f (z*)>0. Let Z

be any solution of (M,q) satisfying (III.2).

Let v¥:=Mz*+q, 7:=MZ+q, we have
f (z*) + Vf (zF)(2—2*)
= vkzk + (v + YT %) (2 -z*)
= vkzk 4+ vk (F—zk) + ¢ M(Z—x*)
= vkz + 2 (MZ+q—Hz*—q)
= (vk—0)Z + zF (k) (* since vx=F (£)=0 *)
= (—z*)(v*-7)
= —(z*—z)(Mz* +q—-MZ—q)

= —(zk-Z)M(z*¥-2)<0 (*by IIL2 *)

So ¥ satisfies (I11.1). ®

Note that (IIL.2) is automatically satisfied if M is positive semi-

definite.

So we have a simple algorithm —the cutting plane method:
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(3.2.3) The Cutting Plane Method

(1) Start at any feasible point z°, (2) Given z*, add the constraint

(II1.1) and solve for z**1. =

It is easy to establish that any accumulation point of {z¥} is a

solution.

Convergence Theorem of The Cutting Plane Method

Let {z*] be generated by the cutting plane method defined above.

Then any accurnulation point Z of {z*] is a solution of (M,q).

Proof. Let ix"’i be a subsequence converging to Z. Since ki
satisfies all previous cuts, i.e. all the cuts (Il.1) for which k <k;,,,

we have
£ (z")+vf (zF)(zMm—zb) < 0

Taking the limit as j approaches infinity, we get f (£)=<0. On the

other hand, it is obvious that Z is feasible. So f (Z)=0. ®

However, this algorithm, like other cutting plane methods,
suffers from the following diffculties. As the number of contraints
increases, the system becomes bigger and the number of vertices
increases exponentially. Therefore it not only takes more comput-
ing time and storage space at each iteration, it may very well slow

down the speed of convergence. Consequently more iterations are
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needed and more cuts (constraints) are added and the system

becomes even bigger.

Fortunately, we have found a solution in our ILP method. By
simply doing a line search, we will show that none of previous cuts
is needed. Even the current cut, that is (IIl.1) in the k-th iteration,

is not needed if we use the following LP to find the next point,

minimize Vf (z%)(z—zk)+f (z¥) (LPk)

subject to Mz+q = 0,z = 0.

By considering the cut as an objective function to be minimized, we
keep the feasible set fixed. Hence any vertex we get, when we solve
(LPk) by the primal simplex method, is a vertex of the original LCP.
This is desirable because the LCP has a vertex solution. Since all
we really expect at each iteration is the satisfaction of (II.1), we
need not completely solve (LPk) and get an optimum of (LPk).
Instead we can stop as soon as current BFS satisfies (II1.1). This is
bound to oceur if there is any vertex satisfying (IIl.1) since (LPK) is
bounded (see Lemma (3.2.4)) and the left hand side of (II1.1) is the
objective function to be minimized. Note that should (LPk) be
unbounded, the simplex method might terminate at a unbounded

ray without finding any vertex satisfying (111.1).
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(3.2.4) Lemma Let z* be feasible. Then (LPk) is bounded (without
any convexity assumption).

Proof. Let d be any direction of the feasible region, i.e. there is a
vector ¥ such that y+Ad is feasible for all A=0. Then d>0 and

Md>0. Hence
Vf (z*)d = (MzF+q)Td + (Md)Tz* = 0

Therefore any direction of the feasible region is not a descent

direction, so (LPk) is bounded. ®

There is another reason why we do not want to waste time going
all the way to an optimum. We can view (LPK) as the linearization of
(QP) at z*, and usually a linearization is a good approximation only
locally. So there is no point going to an optimum of (LPk) which

may be a poor approximation of the objective of (QP).

We are now ready to give the formal definition of the simplex

based ILP algorithm and its convergence proof for the convex case.

3.3 THE SIMPLEX BASED ILP ALGORITHM—THE CONVEX CASE

(3.3.1) Definition Of The Algorithm
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(0) Find any BFS, say z° (e.g. by phase one of simplex method).

Repeat next two steps until z* is complementary.

(1) Given z*, use the primal simplex method and partially solve

(i.e. take pivot steps)
min Vf (z%)Ty
s.t. My+q =0, y=0.
until
Vf (z*)Ty = Vf (z*)zF—f (z¥) (111.3)
Let y* be the BFS obtained satisfying (111.3).

(2) Line-search along the direction p*.=yk —z¥ using the minimi-

zation stepsize z¥+1:=z* +f, p¥ where

- T3Y) k+ k
.= arg minimum f(z*+tp*)
In the following lemma we do not assume any conveXxity of f.

(3.3.2) Lemma Assume p* is a descent direction, i.e.
Vf (z*)p* <0 (111.4)

Let z%*1 and #, be defined as in (2) of Algorithm (3.3.1).
Then
—Vf (z*)pk/2pFMp* =T if 0<i<1

1 otherwise
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and
7 (zE*Y)—f (z*)<lt, VS (z*)p* (111.6)

Proof. Since the function ¥(t):=f (z*¥+tp*), t€R, is quadratic, its
Taylor expansion at ¢=0 up to second order terms has residual

equal to zero. Hence

o(t) = f (zk+tp*) = f (z*)+tVf (z*)p* +t%p* Hp® (111.7)
= a+pt +7t?2

where
a:=f (z*)>0, B:=Vf (z*)p*, v:=p* Mp*.

Casel. y= 0.
Since §<0 by assumption (IIl.4), ¢(¢) is strictly decreasing on

the unit interval. So t,=1 and f (z¥*1)=¢(1). So

I (z*+)—f (z%) = Bty = B = KB
which is (III.6). Note that t=—8/ 2y<0 is not in the open interval
(0,1) which results in the second case of (I11.5).

Case2. ¥ > 0 and 7= —¥8.
So F=—B/2y=1 is the unique root of ¢'(¢)=0. Since @(t) is
strictly convex, t is the global minimum and @(t) is strictly

decreasing on interval [0,£]. Hence £, =1, and

f(ak*l)—f (zF) = B+y = Y8 < Vit B
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proving (I11.8).

Case3. vy > 0and ¥ > —¥8.
So 0<E<1 and t,=f because f is again the global minimum of
¢(t). Since
ty=fy=—B/2 (I11.8)
we have

f (B —f (z%) = b (B+tey) = L (B—1B) = ¥etrB

and the proof is complete. ®

(3.3.3) Theorem (Convergence of Simplex Based ILP Algorithm)
Assume that there exists a solution, say Z, of the LCP (M,q) such

that
(y—2)TM(y—z)=0 for all feasible y. (111.9)
Then for each £>0 there exists N=0, depending on &, such that
F@%> fx)> - - > f(z¥), and
o= f(zV)<e

where {z*} is the sequence generated by Algorithm (3.3. 1).

(We did not say llcim f (z*¥)=0 because, as the next theorem shows,

only finite terms of {x*] are generated before we get a solution.)
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Proof. First, let us show that each iteration , i.e. steps (1) and (R),
of Algorithm (3.3.1) will successfully generate zk+1, given f (z*)>0.
By Lemma (3.2.2) Z satisfies (IIL.3). Since the LP in step (R) of Algo-
rithm (3.3.1) is bounded by Lemma (3.2.4), and since we are minim-
izing the left hand side of (II1.3), we will find y* satisfying (II.3) by
the simplex method. So pk.=yk —z* is a descent direction, there-

fore z¥*1 will be generated successfully and
I (@®)>f (=), (1I1.10)
Next, we show that f (z7) can be arbitrarily small provided j is
sufficiently large. Given £>0, suppose that
f(z®¥)=¢&>0, forallk, (1I.11)
and we shall exhibit a contradiction. Indeed, by (II1.6) and (111.3),
1 (zF+1)—f (zF) < Yot (—F (z*)) (1I1.12)

It is easy to see, by induction, that z* is a convex combination of
£0 and vertices of (M,q). Since y* is also a vertex of (M.q),
pk:=y*—z* remains in a compact set, hence p* Mp* is bounded
above by a number, say V, which is independent of k and j. So by

(1I1.5) and (WI.3), if {,<1, we have
t, = —Vf (z*)p*/2V = f(z*)/ 2V (I11.13)

which, togeher with (II.11), implies
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t, = min[1,f (z*¥)/2V] = min[1,6/2V] =: 6 (111.14)

Summing up (I11.12) for k from 0 to j, then applying (I.14), we

have

7 (&)~ (=) = 48 £ 7 (@) (I.15)

< Y6(j +1)e (* by II1.11 *#)

Dropping the term f (z7*1), since it is nonnegative, we have

f(z°) = ¥%(j+1)0¢, for all j (111.186)
which is impossible since, as j approaches to infinity, the right
hand side becomes arbitrarily large while the left hand side

remains fixed. ®

The above theorem says that Algorithm (3.3.1) either (1) finds a
solution in a finite number of iterations or (2) generates a sequence
{z*}] such that {f (z*)} decreases to zero. The next theorem shows
that only (1) can occur. The proof employed here is similar to that
of [Frank and Wolfe 56] which shows the finiteness of the Frank-
Wolfe algorithm when applied to the complementary condition of a

convex quadratic program.

(3.3.4) Theorem (Finite Termination of Simplex Based ILP Algo-

rithm) Under the same assumption as Theorem (3.3.3), i.e. there
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exists a solution Z of the LCP (M,q) satisfying (II.9). Then there

exists N=0 such that

f(@)>f@E)> - - >r@EV)=0
where {z*] are generated by Algorithm (3.3.1).

Proof. Let
U:={ z | z is a vertex of (M,q), but not a solution }
V:= { z | 2z is a vertex solution of (M,q) }

S := { z | z is a solution of (M,q) }

Since U and V are finite, their convex hull, denoted by conv(U) and

conv(V) respectively, are compact.
Claim (1) : if z€conv(U) then z is not a solution.

Indeed, suppose ::=Eskz’° were a solution, where z*¥€U, s;,>0,
Y'se=1. Then for i=1,..n, either z=0 or/and w;=0, where
w:=Mzx+q. If z;=0, then

0=uz; =Ys2f=0,
so z¥=0 for all k. Similarly, if w;=0,
0=w; = (MYspz*+q); = s (MzF+q); =0,

so (Mz*+q);=0 for all k. Therefore for 1=1,...,m, either 27=0
or/and (Mz*+g);=0 for all k. So we have that z¥ is a vertex solu-

tion, which contradicts z*€U.
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Hence f (z)>0 for all zeconv(U). Therefore
§:=min{ f(z) | z€conv(U)} >0

since conv(U) is compact. Let {x* y*} be defined by Algorithm
(3.3.1). By Theorem (3.3.3), there exists N=0 such that f (zN)<s.
Excluding the trivial case that f (z°)=0, we can assume é<f (zN-1)
without loss of generality. Clearly from the Algorithm, if any of yk,
0<k <N, were a vertex solution, then z*¥+1 would be a solution. So

we have y*¥eU for 0<k<N.
Claim (2) : y¥~! is itself a solution of (M,q).

Otherwise y¥~1€U. It is easy to see, by induction, that z¥ is a
convex combination of vertices z° and y*, Ok <N, which are all in
U. So zNeconv(U) and therefore f (z¥)>5, which is a contradic-

tion.

Now that y¥~1is a solution, z¥ is a solution because by the line

search of Agorithm (3.3.1), f (z¥)=<f (y¥~1)=0.=

(3.3.5) Remarks

(i) The only assumption for Algorithm (3.3.1) to find a solution
in a finite number of iterations is that (II1.9) holds for one
solution Z, i.e. M be positive semi-definite on the tangent

cone of the feasible region at Z.
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(iii)
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Since
f Ay +(1-A)z)

= Af (@)+(1-NF (B)-N1-N(y—2)T H(y—=). (1I1.17)

(which is easily shown by considering both sides as quadratic
polynomials of ¥ and comparing their zero, first and second
order dirivatives at y=%,) (I.9) is equivalent to that f is
convex at a solution w.r.t. the feasible region.

It is clear from the proof that Theorem (3.3.4) can be gen-
eralized to prove finite termination of other algorithms. The
next theorem is oene of the generalizations which will be used

later.

(3.3.6) Finite Termination Theorem

Let (A) be any iterative method for solving (QP) that starts at a

feasible point, say 29, and at iteration k=1, it generates z¥* which

is a convex combination of z¥~! and some vertex y

k-1

If the algorithm converges, i.e. for all £>0 there exists N=0 such

that

o= f(zM)<e

then f (y*)=0 for some &=0.
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Proof. Similar to the proof of (3.3.4).®

3 4 THE SIMPLEX BASED ILP ALGORITHM—THE GENERAL CASE

Without the assumption (II1.9), i.e. f (z) is convex at some solu-
tion #, (II.3) may never be satisfied by any feasible point in step
(1) of Algorithm (3.3.1). In this case, if we still apply Algorithm
(3.3.1) and attempt to find a BFS satisfying (111.3), we will solve the
LP completely, get an optimal BFS and fail. However, if we let y*
be the optimal BFS we still have a descent direction pk:=yk—zF In
this section we show that with this modification the simplex based
ILP method will converges to a point, say Z, which together with
some % and 7 satisfies the Karush- Kuhn-Tucker necessary

optimality condition of (QP):

(ME+q+MTZ)-MTa—v =0 (111.18)
al(Mz+q) =772 =0 (T1.19)
i, v,ME+q, =0 (111.20)

We call £ a KKT point. Hence instead of finding a global minirmum
of (QP) we find a KKT point. When solving practical minimization
problems an algorithm which generates a KKT point is considered

acceptable because (1) no known method can find global minima in
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reasonable time for general non-convex problems, and () for con-
vex problems a KKT point is a global minimum. However, since our
original problem is (M,q), a KKT point or even a local minimum of
(QP) is useless unless it happens to be a global minimum. Hence
we try to find the class of matrices M for which a KKT point of (QP)
is a global minimum. It is known that when M is a P-matrix, i.e. all
its prineipal minors are positive, (QP) has a unique KKT point which
is the unique solution of (M,q) [Cheng]. In Chapter V we shall show
that when M is quasi-diagonally dominant, which is a P,-matrix (i.e.
all its principal minors are nonnegative), any KKT point of (QP)

solves (M,q).

(3.4.1) Generalized Simplex Based ILP Algorithm

(0) Find any BFS, say z° (e.g. by phase one of simplex method).
Repeat next two steps until z* is complementary or {x*] con-

verges.

(1) Given z*, use the primal simplex method to partially solve
min Vf (z*)Ty
s.t. My+q =0, y=0.

until either (i) current BFS y satisfies (111.8) or (ii) current

BFS y is optimal, whichever happens first, and let y* be the
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BFS.

(2) Seme as (2) of Algorithm (3.3.1).

For simplicity of reference we define zk:=zV for all k>N if the
algorithm finds a complementary solution z%¥. Hence we can talk
about the convergence of the sequence {z*¥} even when the algo-

rithm terminates in finite steps.

(3.4.2) Lemma Let Z be any vector, then Z is a KKT point of (QP) iff

Z is an optimal solution of the LP :

min Vf (Z)z s.t. Mxz+q=0, z=0

Proof. Z is an optimal of the LP iff it satisfies the KKT conditions of
the LP which is precisely (II.18-20), the conditions for  to be a

KKT point of (QP). ®

(3.4.3) Lemma At iteration k of Algorithm (3.4.1), if f (z*)>0, then
(i) Vf (z*)p* =0, and

(ii) equality holds in (i) iff z* is a KKT ponit of (QP).

Proof.

(i) Either y* satisfies (II.3) or y* is an optimal of the LP. It (111.3)

holds then Vf (z*)p* < 0, while if y* is an optimum then

Vf (z%)p* = Vf (z*)y*—Vf (z*)z* < 0 (111.21)
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where equality holds iff z* itself is also an optimum.
(ii) Since equality in (I1.21) holds iff both y* and z* are optima of

(LPk), the assertion follows by Lemma (3.4.2). =

(3.4.4) Convergence Theorem of The Generalized Algorithm
Let (M,q) be feasible. Let {z*} be defined by Algorithm (3.4.1), then

(i) f (z*) is nonincreasing, and

,161me (z¥)pk =0 (11.22)

(11) {xz*} is bounded, and any accumulation point ¥ of {z*} is a
KKT point of (QP) and f (Z)=a:=inf f (z*)=0.

(iii) If =0 then z¥ is complementary for some N, and the algo-
rithm terminates finitely.

(iv) If M is a P-matrix or a quasi-diagonally dominant then (iii) is
true.

(v)  If there is a solution Z satisfying (I11.9), in particular if M is
semi-definite, then (iii) is true.

Proof.

(i) If z* is not a KKT point of (QP) then f (z¥)>0 and (II.4) fol-
lows by Lemma (3.4.3). Therefore we can apply Lemma

(3.3.2). Hence by (111.6) and (1I1.5),

f(zF)=f (=F+)




(ii)

41

= Wb, VS (zF)p*
= min{ |¥Vf (zF)p* |, |(Vf (z*)p*)2/ 2p* Mp* |}
> min{ | ¥VS (z*)p® |, |(Vf (z%)p*)2/ 2V]]=:6; (1I1.23)

where VZ=SIélg |p7 Mp7 < for the same reason as in the proof
j

of Theorem (3.3.3).
(IIL.23) still holds when z* is a KKT point, since the right
hand side becomes 0 by Lemnma (3.4.3). Summing up (I11.23)

for k=0,...,N, we have

7 (@)1 @V = $ 6 (IIL.24)
k=0

The positive series ), d; converges since the left hand side
k=0

of (Ill.24) is bounded as N approaches infinity. Hence

’lcirndk'—“o. It follows, then, by the definition of & in (II1.23)
that
lim sup|Vf (z*)p*| =0
which implies (II1.22).
Since the feasible set of (M,q) has finite number of vertices,

the convex hull generated by the vertices is compact. Since

zk is a convex combination of the vertices, the sequence
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{z*} is bounded. Let Z be an accumulation point of the
sequence, then there exists a subsequence, say §z*], of {z*]
which converges to Z. By (I.22), let {v*] be the

corresponding subsequence {v*} of {y*}, we have

’ti_rgv,f (z8)(vE—2F) =0 (111.25)

Since there are only finitely many vertices, there is a vertex,
say y, such that y=v* for infinitely many k. By (111.25), it
follows that

Vi (Z)(y—Z) =0 (111.26)
On the other hand, by the definition of Algorithm (3.4.1),

y=v* only when y satisfies the cut
Vf (2% )y —2z*) = —f (z*) (1I1.27)

or y is optimal in the LP and hence
Vf (z%)(y—2*) < Vf (2B )(z—2*) for all feasible z (111.28)

Since y=v* infinitely often, either (IIl.27) holds infinitely
often or/and (II1.28) does. In either case, by taking the limit
of the appropriate subsequences, we have that at least one

of the following two inequalities holds:

Vf (ZWy-Z) = —f (%) (1I1.29)
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(iv)

(v)
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Vf (Z)(y—Z) < Vf (£)(z—Z) for all feasible z (11.30)

Together with (IT1.26), (II1.29) implies that f (£)<0 so T is a
global minimum of (QP) which is clearly a KKT point while

(II1.30) implies that Z is an optimal solution of the LP
min Vf (£)z s.t. Mzx+q=0, z=0

so Z is a KKT point of (QP) by Lemma (3.4.2).

Let a:=ill'cxff (z*). 1t is obvious that f (Z)=0=0.

If a=0 then Finite Termination Theorem (3.3.8) applies.

Since, by (ii), {z*} is bounded there is an accumnulation
point, say Z, which is a KKT point of (QP). 1If M is a P-matrix

then (QP) has a unique KKT point which is also the unique

-solution of (M,q) [Cheng 81]. If # is quasy-diagonally dom-

inant then by Theorem (5.5.1), which will be proved indepen-
dently in Chapter V, every KKT point of (QP) is a solution of
(M,q). Hence a=f ()=0.

Since the cut (II1.3) is satisfied at every iteration, Algorithm
(3.4.1) generates exactly the same sequence as Algorithm

(3.3.1) does, provided that the same simplex code is used.

Hence a=0 by Theorem (3.3.3). ®



3.5 NUMERICAL RESULTS

In this section we present computational experience with Algo-
rithm (3.4.1) for randomly generated problems. For the purpose of
comparison we also test Lemke’s Algorithm for these problems.
Recall that Algorithm (3.4.1) may converge to a KKT point of (QP)
which is not a complementary solution, while the Lemke's Algo-
rithm may terminate at a ray and may fail to give a solution. In
fact, since the general LCP is NP-complete, there is no known algo-
rithm that is guaranteed to solve any LCP without essentially
enumerating an exponential number of possible cases which is
impossible to do even for moderate n. We wrote programs in C
[Kernighan and Ritchie 78] and tested them on a VAX-11/780 com-
puter under the virtual UNIX operating system. The reason for
using the programming language C instead of FORTRAN is a matter
of personal preference. All floating point computations are in dou-
ble precision which provide about 16 figure decimal accuracy. Six
problem sets were tested; each haé 20 individual problems. The
dimension n is fixed in each set and varies among sets. A random
number generator is provided by the system and the test problems

are generated as follows.

(3.5.1) Generation of Test Problems




45

(i) Generate the matrix M with each entry being a random

number uniformly distributed on interval [-1, 1].

(ii) For each index i, randomly choose one of z; and w; to be zero,

the other to be a random (floating) number in interval [0, 1000].

(iii) Let g:=w—Mz .=

(3.5.2) Outputs And Interpretations

For the simplex based ILP, the iteration number and the pivot
number are different. The former is the number of updatings of
the cost vector of the LP while the latter is the total number of
pivots of all iterations. Since updating the cost vector is easier
than one pivot operation, and the number of updatings is
signiﬁcaintly smaller than the number of pivots, we feel that the
latter is a good measure of computational time. For Lemke’s Algo-
rithm the two numbers are the same. The comparison between
pivot numbers of these two algorithms gives us a good estimate of
the relative speed since each pivot takes roughly the same time in
either algorithm. The results are shown in Table 3.1. The ILP
method starts at the origin and uses the phase one of the simplex
method to find the first BFS. The number of pivots given in Table

3.1 includes the pivot steps taken in phase one.
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Table 3.1 Computational Results of ILP Versus Lemke's Method

Dimension of Problem (=n.) 7 15 | 23 | 31 40 50
Average Number Of Iterations of ILP 1.0613.50|7.20|7.25| 10.50 | 12.15
(= Number of cost updatings)
Number of Problems Solved ILP 17 11 11 9 7 6
Out Of 20 Problems Lemke 13 7 P ] 1 0
Average Number of Pivots P 4 15 35 | 45 90 144
TFor Solved Problems Lemke 5 21] 40 | 231 205 -
Average Number of Pivots P 2| 16 | 44 55 98 136
For Unsolved Problems Lemke 7 14 39| 102 231 814
Maximum Number of Pivots P 8 29 75 | 101 129 R34
Over the 20 Problems Lemke 17 47| 91 | 493 | 1000* | 1000*
Minimum Number of Pivots ILP 1 0 16 29 73 85
Over the 20 Problems Lemke 2 0 8 1 2 11
Ratio Of Max/Min of Pivots ILP 8.0 -] 47| 35 1.8 2.8
Lemke 8.5 - 111.4| 493| 500*{ 90.9*

* (quit after 1000 iterations, so the true value should be bigger)
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We make the following observations regarding this table.

(i) Although Lemke's Algorithm is very eflicient for M being a
P-matrix or positive semi-definite, it rarely gives a solution
for a general M when n=30. Moreover, it becomes very slow
no matter whether it gives a solution or not. Hence the so
called almost complementary path has a very long average

length.

(ii) The number of problems solved in a set decreases rapidly as
n increases. This is not surprising since the problem is NP-

complete.

(iii) The ratio of the maximum number to the minimum number
of pivots of a set, given in the bottom row of each column,
remains small for ILP but varies considerably for Lemke's
method. Hence the almost complementary path can be
very short as well as very long. It also indicates that the ILP

is more robust.

There are some issues not covered in the experiment.
Since ILP can start at any BFS, it will be much faster if we have
a BFS to begin with or each probem set is a parametric LCP in
which case ILP can start at the solution basis of the previous

problem. It should be noted, however, that some generaliza-
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tions of Lemke's method can start at an arbitrary point under

certain assumptions [Faves 78, Talman and Van der Heyden 81].

3.6 EXTENSION TO MINIMIZATION PROBLEMS

In this section we generalize the simplex based ILP to solve
minimization problems with linear constraints and convex
objective function, i.e.

minimize f (z) st. Az=b,z=0 (MP)
where f is a convex differentiable function on K™ and A is an
mxn real matrix. Although (MP) and (QP) look the same, there

are some significant differences.

() The constraints of (MP) are arbitrary relative to the objec-
tive function. In (QP) the objective function is a quadratic
function constructed from the linear constraints. Hence
minimization stepsize is much more difficult for (MP).

(i) The minimum value of (QP) for a solvable LCP is zero but
that of the (MP) is unknown. Hence, for (MP), we do not
have a cut like (1II.1) that is guaranteed to separate solu-
tions from current point.

(iii) (MP) may have solutions but no vertex solution. Hence it is

more difficult to solve than (QP). Moreover, the Finite Ter-
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mination Theorem (3.3.4) cannot apply and the convergence

may be slower.

Although there is nothing we can do about the nonexistence
of a vertex solution, we can handle the difficulties in (i) and (ii).
For (ii) we can use a lower bound of the minimum value which
usually is easy to get, and in case the lower bound is not tight
enough and overcut may take place which can be handled as in
(3.4.1). Note that in (3.4.1) an overcut occurs for different rea-
son, that is, the nonconvexity of f. For difficulty (i), if f is not
quadratic we wuse another stepsize, the Armijo stepsize

described in the next section, which is not hard to compute.

(3.6.1) Armijo Stepsize [Armijo 86]. Let f(z), zeR™ be
differentiable. Let p be a descent direction at zk, ie.

Vf (z*)p <0. Given 6€(0,1), define the stepsize £, by

.= max 2% s.t f(zF+27p)—f (z*) < 276Vf (z*)p (11.31)

1=0,1,2,...

t, is called the Armijo stepsize (w.r.t. §). Maximization in (I11.31)
is well-defined since any sufficiently large % is feasible and we

want such an 1 which is minimum.

(3.6.2) ILP Minimization Algorithm
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(0) Let z° be any feasible point, a, be any lower bound to the

minimum value of (MP). Choose §€(0,1). Repeat the next

two steps until z* converges.

(1) Given z*, a;, use the primal simplex method partially solve

min Vf (z¥)Ty

s.t. Ay+q =0, y=0.

(2)

until any one of the following occurs: (i) Current BFS vy

satisfies the cut,
Vf (zF)(y—z*)+f (z*) = oy (111.32)

(ii) Current BFS y is optimal, (iii) Current BFS y is at the
end of a unbounded ray with direction d. Let y* be the BFS
in case of (i) or (ii), or let y*:=y +Ad where A is the smallest
positive number for which y* satisfies the cut (II1.32).

Let ogep=ag if (i) or (ili) holds, otherwise let
o+ 1: =V (2% )(y—z*)+f (=*).

Line-search along direction pF:=y*-z* using the Armijo
stepsize or the minimization stepsize if f is quadratic. That
is, let zF*+l:=z* +£, %, where t; is defined either by (II1.31)

or by (II1.5) if f (z):=xMz+qz is quadratic.
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(3.6.3) Theorem

Let f be a convex function with a locally Lipschitz continuous
gradient, i.e. for any compact set F in R™, there is a positive

number K such that

|Vf (2)-Vf (¥)| = K|z—y| forz, yeF (111.33)
Let z*, y*, p*, t, be defined as in Algorithm (3.6.2). Let Z be a
solution of (MP) then
(i)

QS """ S Sy S " < f (%)

f@= - sf@EFHY=sf@E@¥)=s - =f(=z°)
(ii) If {y*} is bounded then {z*} is bounded and
limay, = f (%) = limf (z¢)
hence {z*} has a accumulation point and any accumulation
point is a solution of (MP).

Proof.

(i) Since (3.6.2) is clearly a descent algorithm, {f (%)} is
decreasing.
By (3.6.2) step (1), ag4+1#0 only when an overcut occurs, in

which case y* violates the cut (I11.30) hence
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1 = VS (@%) (g% —2F)+f (2°) > o

and, by convexity of f and the fact that y* is optimal for
the LP,

7(2) = Vf (zk ) (E—z*)+f (z*) = VF (%) (g% -2%)+F (%) = oy

(ii) Assume {y*} is bounded. Since z* is a convex combination
of yJ, 0=j<k, the sequence {z¥] is also bounded. Hence

there exist L>0 s.t.
|z | < L, |y*| <L, |p*| < L, forallk (I11.34)

Let F be the closed ball at the origin with radius L, let K be
the Lipchitz constant s.t. (II1.33) holds. Then for O=A<1, we

have

I (zk+p®) = f(=F) =

of >
ng‘

tf(a:k+tp'°)dt
A

= [IVf (zk+tp*)p*—vf (z*)pkldt + AVf (z*)p*
0
A

< [|Vf (zk+tpk)—Vf (z*)|dt |p¥| + AVS (z*)p*
0

A
< [tK|p*|dt |p®| + AVS (zF)p® (by II1.33)
0

= ¥ARK | p* |2 + AV (z*)p*
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2 2
< L§L~+ VS (zF)p* (by III.34)

AKL?
2

=l + (1-8)Vf (z*)p*] + ASVS (z*)p*

< A\6f (z®)pk if (1-8)Vf (z*)p*+ A—KLé-—isO

ie, if A< g‘}-lél%él(~Vf(xk)pk =:A. So all i such that

2-i<), are feasible in the maximization of (II.31). Hence
the Armijo stepsize f; is either equal to 1 or greater than

¥Ai. Therefore,
t, = min{1,¥\e} = minil,-l—-—?—(—-v_f (z*)p*)  (UL35)

where V:=KIL? is a fixed positive number. It is easy to see

that when f is quadratic and minimization stepsize is used,
(II1.35) still holds with <5=-é- for some positive V which is

independent of k [see IIL.5]. By changing sign of (II1.31) [or

1.8 if f is quadratic], we have

1 (z*)=f (zF+1) = 4, 6VF (z*)p*

> —6Vf (xk)pkxnnnzl,l—'{,é-(—w (z*)p*)] (by III. 35)

= éxmin{~Vf (z*)p*, l—;7.@(\7f (x*)p*)R=:6, (111.36)
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Summing up (I1.36) for k=0,....N, we have precisely the
same inequality as (I11.24). Hence it follows by similar argu-

ment that

im(—V# (a*)p*) = 0 (1.37)

On the other hand, by the definition of a4 in (3.6.2) (1), we

have
—Vf (z*)pk = f(2*) -0+

So Ilcun f (z%¥)—0p41 = 0 by (II1.37) and therefore, by (i),
}cimf (%) = f(z) = llcimak

which completes the proof of (ii). =

(3.6.4) Remarks

®

(ii)

In (3.6.2)(1), y* is a vertex unless the LP is unbounded and
case (iii) occurs. So it is very likely that {y*} is bounded.
When the feasible region is bounded, e.g. when lsz=u is
part of the linear constraints of (MP), then {y*} is bounded
and the algorithm converges by part (ii) of Theorem (3.6.3).

The lower bound a, is not essential. We can pick up &, arbi-
trarily and in step (1) if (i) or (iii) occurs, i.e. the cut is not

too deep, then decrease a; by a positive constant. Since
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the (MP) is bounded, an overcut will occur after a finite
number of iterations. Then g is updated according to Step

(1) case (ii) and we get a lower bound 0.1

(iii) At each iteration, the constraints of LP is the same as that
of (MP). Hence the algorithm is very attractive for problems
having specially structured linear constraints, e.g. non-
linear network flow problems, for which very effective sim-
plex methods exist [e.g. see Griffith and Hsu 79]. It should
be noted that there are many other algorithms having this

property [see Kamesam 82 for a brief survey].

(iv) In the very extreme case that an overcut occurs at every
iteration, we solve every LP completely and the algorithm
"degenerates” to the Frank-Wolfe method. However, this
rarely occurred when the ILP method was used to solve the

LCP.

3.7 SUMMARY

In this Chapter we gave an iterative linear programming
method for solving linear complementarity problems. The algo-
rithm has most of the advantages of the single LP approach dis-

cussed in the previous chapter. The single LP approach tries to
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find a correct vector p in the sense that a single LP (M,q,p) will
solve the LCP (M,q). By the contrast the iterative programrning
method starts with a p which may not be correct. However,
after a number of primal simplex pivot steps for the LP (M,q,p)
which decreases the objective level below a certain precalcu-
lated value, called a cut, p is corrected. It was shown that after
a finite number of corrections of p, a vertex solution of (M,q)
can be obtained if certain convexity of zT Mz holds, e.g. M being
positive semi-definite. Without any convexity assumption, the
algorithm will either find a vertex solution in a finite number of
pivots or converge to a KKT point of (QP). Hence, in cases
where a KKT point of (QP) is always a global solution, e.g. M is
diagonally dominant or M is a P-matrix, a vertex solution can be
obtained in a finite number of pivots. Numerical results for ran-
domly generated problems were presented. Finally we
extended the method to solve linearly constrained convex pro-

gramming problems.
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CHAPTER IV

THE SOR-BASED ILP METHOD

The purpose of this chapter is to present an SOR-based method
which can solve very large systems of LCP's and can take full
advantage of any sparsity by preserving the original structure of

the problems.

4.1 INTRODUCTION

Although the simplex based ILP, or any other direct algorithm
using pivoting, gives a very accurate solution in a finite number of
iterations, it is not suitable when the problem size is very large.
The reason is at least twofold. First, as the dimension n of M

increases, the number of vertices increases exponentially. Hence
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it is very likely that the number of pivots will grow rapidly, which is
the case shown in Table 1 of Section (3.5). Second, the amount of
storage for the simplex tablau is of order n? Hence it is impossi-
ble to keep the whole tablau in the main memory of a computer as
n becomes large, say 1000. Hence some kind of swapping , either
through programmer’s effort or automatically by the system, must
take place between the secondary storage and main memory.
Since the speed of the secondary storage is much slower (e.g. 1000
times slower) than the main storage, swapping time will almost
surely dominate other computing time. Since swapping is needed
for each pivot, the computer will end up as doing nothing but swap-
ping and therefore can not find a solution in reasonable amount of

time [Mangasarian 83, Table 1].

In this chapter we present an SOR-based method which works
only on the original input data, and stores and processes only
nonzero entries. Hence it is suitable for very large scale problems
having a sparse matrix M. Previous SOR based algorithms were
developed primarily for symmetric matrix M with some kind of
strict positivity [Cryer 71, Mangasarian 77]. For example,
Mangasarian's algorithm converges when M is symmetric and
strictly copositive, or copositive-plus and there exists an z s.t.

Mx+g>0. We shall prove that our algorithm converges for M
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positive semi-definite, among others, no matter whether ¥ is sym-

metric or not.

The basic SOR iteration we use is different from the conven-
tional SOR. The latter moves the point along a direction parallel to
each coordinate axis to relax, i.e. to satisfy, each constraint in a
fixed order, while the former moves the point along the direction
orthogonal to each constraint hyperplane. We give more details in

the next section.

4.2 SOR METHODS FOR LINEAR SYSTEMS

(4.2.1) SOR Methods For Linear Equations

First, let us review the conventional SOR method for systems of

linear equations, e.g.
Mz+q =0 (Iv.1)

where M is again a n by n matrix. We assume all diagonal entries
of M are nonzero. The method for (IV.1) starts at an arbitrary

point z° and repeats the SOR iteration, where the SOR iteration is

defined by:
For i:=1 ton do zf*l:= zk+uAk

where u€(0,2) and AF is the correction that should be made for the
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i-th component of the point in order to satisfy the i-th equation of

(IV.1). Formally, A is defined by

-1 3
A,{c - ——-‘M i Mijxf*-l + i Mijﬂ?}c""qi) (N.Z)
M j=1 J=i+1

Note that when the i-th component is updated, the first 1—1 com-
ponents have been updated and the new values are used. If ©=1 the
method reduces to the Gauss-Seidel method, if 1<u<2 (0<u<1) the
iteration is an overrelaxation (underrelazation). The SOR itera-
tion can be rearranged into matrix form and after easy manipula-

tion it may be written as
2kl .= (D+ul) Y (1—p) D—pUlz* —u(D+ul) g =: Hz*+q, (IV.3)

where D, L and U are respectively the diagonal, strictly lower tri-
angular part, and strictly upper triangular part of #. Under cer-
tain conditions, e.g. M being symmetric positive definite, the
transformation definied in (IV.3) is a contraction mapping and
hence {z*] converges to the unique fixed point which is clearly a
solution of (IV.1) [see Varga 62 or Ortega 72 for more details]. By
projecting the transformation on the nonnegative orthant we get
the projected SOR method for the LCP (M,q) which converges if M is
symmetric positive definite [Cryer 71]. Mangasarian gave a very
generalized form of the projected SOR and its convergence

theorem [Mangasarian 77].
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Now let us review another SOR method which does not require
symmetry of . The method is a generalization of successive pro-
jection [Brégman 65]. Again we start at any z° and then systemati-
cally choose one equation from (IV.1), project the point on the
hyperplane defined by the equation, i.e. we move the point along
the direction orthogonal to the hyperplane until the equation is

satisfied. Let the displacement be Az. Then the SOR iteration is
zk+l .= zk+yAx, O<u<2

Again 1<u<2 (0<u<1) is overrelaxation (underrelaxation), while
u=1 is the successive projection. It is not difficult to show that the
method converges to a solution provided there is one [Herman,
Lent and Lutz 75]. Note that when the i-th equation of (IV.1) is
being relazed, then Az is a multiple of i-th row vector of M. Let
m; be the number of nonzero entries of the i-th row of M, then
only m; components of z* need be changed. But for the conven-
tional SOR iteration, all of the n components of z*¥ are updated.
When M is a large sparse matrix, m; is much much smaller thann.
On the other hand, it is easy to see that for conventional SOR, if it

is a contraction with fixed point Z, that
|zk*1-Z | < p(H,) |z*—% |

where p(H ,,,)<1 is the spectral radius of the matrix H, defined in
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(Iv.3). But for the orthogonal SOR, we only have
|zk+l-z| < |zk-Z|

for any solution Z. So we can conclude roughly that (1) The con-
ventional SOR takes more time in each iteration but need less
iterations to converge. (2) The orthogonal SOR converges for any
M provided the system is consistent while the conventional SOR

converges only for certain classes of matrices.

It is easy to extend the orthogonal SOR to general linear sys-
tems where the number of constraints may be different from that
of variables, and the system may contains inequality constraints as
well. Here we give a formal definition of the extension for solving
systems of linear inequalities, which will be used to define the SOR
based ILP method.

(4.2.2) Orthogonal SOR For Linear Inequalities [Agmon 54]

Problem: Find z€R™ s.t. Az=b, where A is an mXn matrix, b is an
m-vector. Hence the problem is the find a vector z satisfying m
linear inequalities 4;z=b; for 1<i=<m, where 4; is the i-th row vec-
tor of A. Without loss of generality we assume all 4; are nonzero

vectors.
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Method.

(0) Let z° be arbitrary and let i, := 1. Choose 1€(0,2). Repeat the

next step until {z*] converges.

(1) Given z*, ;. Define ig, by
".’k+1:= lf'L]c<m 'l:k‘l"l else 1

(2) If z* satisfies the 4, ;-th constraint then z*¥+! = z¥. Otherwise

define
b, —A, xFk
B:= %+1T Alvbu %0 (IV4)
: +1Aih+1
zk+l = zk + pga. (IV.5)

(4.2.3) Convergence Theorem For Orthogonal SOR [Agmon 54]

Let the problem in (4.2.2) be consistent. Let ¥ be any solution. Let
the sequence {z*] be defined as in (4.2.2). Then

() |zktl-z| < |zk-7| (Iv.6)
where equality holds only when z**!=zk.

(ii) {z*} converges to a solution.

Proof.

(i) Suppose z**lstzk. For simplicity of notation, let j:=%.;. Then

z*¥ must violate the j-th constraint. Hence,
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AizF—b; <0, >0 (1Iv.7)
where g is defined by (IV.4). Since Z is a solution, we also have

AZ=b; (1Iv.8)

Define the function ¢(A):=%|z*+A84;—Z|% The Taylor expan-
sion of ¢(\) at the origin up to second order terms has zero

residual because ¢(A) is quadratic. Hence

Blzk+i-z |2 - Y|z* -2 |? = p(u)—¢(0)

= up'(0) + 2142¢"(0)
= ufa;(zk—2) + SuPEPATL
< uf(4;0% ~bj) + 2176(b;~4;z*) (by IV.8,7and)

= pp(1—51)(4 7% ~b;) < 0 (by IV.7)
(ii) See references [Agmon 54, Motzkin and Schoenberg 54]. ®

In all the SOR methods we discussed so far, u is fixed. In fact,
in many cases we can use different u for each iteration as long as
the u's are bounded away from 0 and 2. That is, suppose i is used

in iteration k,

0< ilz?{f M. = SUD L <2 (IvV.9)
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In Algorithm (4.2.2) if we allow u to vary for each iteration, it can
be shown that Theorem (4.2.3) still holds provided that (IV.9) is
satisfied [Herman,Lent,Lutz 75]. The choice of u in each iteration
may considerably affect the speed of convergence. Usually u>1 is
prefered. If the solution set contains an interior point, i.e. Az>b
for some z, then by choosing u=2 the algorithm will find a solution

in a finite number of iterations [Motzkin and Schoenberg 54].

4.3 THE SOR BASED ILP METHOD FOR LCP

In Chapter III we proposed an algorithm for solving (M,q) by
iteratively finding a vertex satisfying a cut followed by a line-
search. In this section we show how the orthogonal SOR (4.2.2) can
be used in each iteration to find a point satisfying the cut. We will
also show that with the same line-search the method converges

under the same convexity assumption as in Section (3.3).

Fisrt let us rewrite Theorem (3.3.3) in a more general form.

(4.3.1) Theorem
Let {z*, y*] satisfy the following assumptions:

(o) z° isfeasible for (M,q).
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(i) For all k, y* satisfies the cut (IIL.1) defined by z¥, i.e.

My*+q =0, y* =0, f (z*)+Vf () (y*—2F) <0 (IV.10)
(ii) z**+l:=z*+t,p* where p*:=y*—z* and t is defined by (IIL.5).
(iii) y* is bounded.
Then ,lci_rgf (z*¥) = 0.

Proof. By (iii) there is a number «a such that |y* | <a for all k. By

choosing « sufficiently large, we can assume |z° | <a. Hence
|pEMp* | < (|z* | +|y* De(M)(|2* |+]y*|) = 40P0(M) =: V

where p(M) is the spectral radius of #. The rest of the proof is

exactly the same as that of Theorem (3.3.3). ®

(4.3.2) LCPSOR Algorithm For (M,q)

(0) Find any feasible point z° [e.g. by SOR (4.2.2) ]. Repeat the fol-

lowing two steps until {z*} converges.
(1) Given z¥, use SOR (4.2.2) starting at z* to solve
My+q =0,y =0, f(z*)+Vf (z*)(y—=z*) =<0, (IV.11)
Let the solution found be y*.

(2) Line-search along the direction p*:=y*—z* using the minimiza-

tion stepsize [see (3.3.1)(2)].
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(4.3.3) Theorem Assume that there exists a solution Z to the LCP

(M,q) such that
(y—%)TM(y—Z)=0 for all feasible y
Let {z*, y*] be defined by (4.3.2). Then

(i) {z*, y*} are well-defined and bounded. The sequence {|z*—z |}

is decreasing.
(ii) llcir'nf (z¥) =0
Hence any accumnulation point of {z*] is a solution of (M,q).

Proof.

(i) Given z* feasible, Z satisfies (IV.11) by Lemma (3.2.2). Hence
by Theorem (4.2.3), y* can be found successfully and
|y*—Z|<|z¥—Z| since z* is the starting point of the SOR.

Moreover, let i, be the minimum stepsize, we have
|zk*1-z | = |(1-t )2+t y* —F | < (1-) |z* —Z |+ |[y* - |
< (1—ty) |2k —F | +2, |zF -z | = |zF-Z |
Hence the proof is complete by simple induction on k.
(ii)

(4.3.4) Computational Details
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(1) When we solve (IV.11) using SOR, the n nonnegative constraints

(2)

(3)

>0 can be relaxed easily by replacing the negative com-
ponents by zero, or by small positive numbers if overrelaxation
is preferred. Hence they can bé relaxed as often as possible,
i.e. every time any component becomes negative while relaxing
one of the other n+1 constraints that component can be set to

zero or a sufficiently small positive number.

Since SOR is an infinite procedure, we may not solve y*
exactly. However we can get a point feasible to within a small
tolerance in a finite number of SOR iterations. Note that each
SOR iteration moves the point closer to Z by (4.2.3)(i). Also
note that the SOR starts at z* which already satisfies all the

constraints in (IV.11) except the cut.

In general we may not have finite termination. However, if
after f (z*) is sufficiently small, we search for a vertex satisfy-
ing (IV.11) at each iteration, then by the Finite Termination
Theorem (3.3.6) we will get a vertex solution in a finite number
of steps. That is, if the y* found by the SOR procedure is not a
vertex, then we move y* along a direction orthogonal to the
gradients of all active constraints until one more constraint is
active, and repeat the process until y* is a vertex of (IV.11). At

that point if the cut is not active then y* is a vertex of (M,q) as
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we want. Otherwise move y* along a direction orthogonal to
gradients of all active constraints except the cut until one
more constraint is active, then the point obtained is a vertex of
(M,q). Intuitively, it is better off to choose the projection of
yk+Vf (y*) on the intersection of all active constraints as the
direction along which y* is to be moved while searching for a

vertex. For we may very well decrease f (y¥*) in the process.

4.4 SUMMARY

We reviewed SOR methods for systems of linear equations and
linear inequailities, then gave an algorithm LCPSOR which used an
SOR method instead of the simplex method to find a peint satisfy-
ing the cut described in Chapter III. Hence it is suitable for very.
large scale problems having sparse input data. LCPSOR converges
to a solution of the linear complementarity problem (M,q) when M

is positive semi-definite but not necessarily symmetric.
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CHAPTER V

COMPLEMENTARITY THEORY FOR QUASI-
DIAGONALLY DOMINANT MATRICES

5.1 INTRODUCTION

A square matrix is (strictly) diagonally row dominant if every
diagonal entry is no less than (greater than) the sum of absolute
values of all other entries in the same row. Diagonal column domi-
nance is similarly defined. We study the existence and uniqueness
of solutions to (M,q) for M being a quasi-diagonally row (column)
dominant matrix, i.e. a matrix that can be made diagonally row
(column) dominant by multiplying each column (row) by a positive
,, number (see definition below). Diagonal row dominance and

column dominance are so different that they are sometimes
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considered two independent properties. By the generalization to
the quasi-diagonally dominance, we find they are closely related,
e.g. a strictly quasi-diagonally row dominant matrix is strictly
quasi-diagonally column dominant, and vice versa. We also find,
because of the generalization to quasi-dominance, a comprehensive
uniqueness and existence theory for solving (M,q) for # in those
classes can be given. Thus, for example, if M is quasi-diagonally
row dominant (not necessarily strictly dominant) then any KKT
point of (QP) is a solution of (M,q), and therefore M€Q,, i.e. (M,q)
has a solution for all ¢ for which (M,q) is feasible. The latter result
was also proved by Moré and Aganagic utilizing Lemke's method
[Moré 74, Aganagic 81]. In addition, a characterization is given for
the condition M€Q, i.e. (M,q) is solvable for all g, for a quasi-
diagonally dominant matrix #. Unlike Aganagic's characterization
[Aganagic 81], our characterization is very easy to check. When #
is quasi-diagonally column dominant, we give a sufficient and
necessary condition for the uniqueness of solution to (M,q) which is
very easy to verify. Moreover we also give a characterization of the

solution set and a computational method to find the set.
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5.2 UNIQUENESS FOR DIAGONALLY DOMINANT—IRREDUCIBLE

MATRICES

(5.2.1) Definitions

@

M is quasi-diagonally row dominant, denoted M €QD,, iff for

some n-vector d >0,

Myd; = E lMtjld» 1=1,...,N. (Vl)
i#t
(ii) MeQD,, iff in addition to (i), the strict inequality holds for
at least one i in (V.1).
(iii) M is strictly quasi-diagonally row dominant, denoted M€QD,,
iff in addition to (i), the strict inequality holds for all 4.
(5.2.2) Propositions

(1)

MeQD,, QD,4, or QD, iff C(M)€QD,, QD, 4, or QD, respec-
tively, where C(M), called the comparison matrix of M, is
defined by
~| My | Hi#)
My iti=j
(For convenience, this is a slight variance of the definition

that is given in the literature in which M of (V.2) is replaced

| My |.)
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(i) QD,cP, QD,CP, where P (P,) is the class of matrices having
- positive (nonnegative) principal minors.

(iii) QD, := {M|C(M)~! exists and C(M)~1=0.

Proof.

(i) Trivial.

(ii) Let MeQD, (M<QD,), then every principal submatrices of ¥
is in QD, (QD,). Hence it suffices to show that for any
A€QD, (4€QD,) the determinant of 4, denoted by det(4), is
positive (nonnegative). Since det(4) equals the product of
the eigenvalues of A and since the complex eigenvalues
appear in conjugate pairs and the product of each pair is
positive, it suffices to show that every real eigenvalue of A is
positive (nonnegative). Let A be any real eigenvalue of A with

eigenvector v, so
(A=A)v =0, v#0. (V.3)

By Definition (5.2.1) there exists d>0 such that (V.1) holds,
in which the strict inequality holds for i=1,...,n if M€QD,.

Let 2 be the index that

o wl . | v |
0 ;= ——:= maximum ——
d-,; 1sk=sn d’c

where 6>0 since v#0. By negating v if necessary we can



74

assume v;>0. Expanding the i—th component of (V.3), we

have

0= zAw L+ (4g-Ndy o ah

d:

= ¥~ |4y 1d;6 + (4z—N\)d;6

j#i

J

Hence A=0. If A€QD,, then the last inequality in (V.4) is
strict and we have A>0.

(iii) Since C(M) is a Z-matrix, C(#) has a nonnegative inverse iff
C(M)eQD, [Berman and Plemmons 79, Chap. 6, Thm. (2.3)]

and this is true iff M€QD,. by (i). =

By (ii), if M€QD,, then M is a P-matrix, so (M,q) has a unique
solution for every ¢ [Samelson, Thrall and Wesler 58]. However, if
MeQD,, although we know M is a P,-matrix, neither existence nor
uniqueness of solutions to (M,q) exists for a general P, -matrix M as
can be shown by simple examples [see (5.2.9)]. By (iii), #€QD, iff

M is an H-matrix with positive diagonals [Pang 79].

(5.2.3) Lemma
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(i) MeQD, iff MTeQD,.
(i) MeQD, and #7€QD, do not imply each other.
Proof.

(i) By (5.2.2) (i), MeQD, iffi C(M)™'=20 iff c(MT)-1=0 iff

MTeQD,.
(ii) Let
[2 -2 0
M:=]-2 2 0
-1 1 38

then M€QD,, but MTZQD,. By setting the above matrix

equal to M7, it follows that M TeQD,, but ¥£QD,. =

So we see that the property M €QD, is preserved under matrix
transposition while #€QD, is not. Note that the example in (ii) is a
reducible matrix. We will see that for irreducible matrices, the

asymmetry disappears.

(5.2.4) Definition

M is reducible iff there is a proper subset K of {1,2,...,n] such that
M;; = 0, for all i€K, jEK

In other words, after reordering of the rows and columns
correspondingly (so that the indices in K follow the indices of the

complement of K) M becomes
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prue <[4 2

where A and C are square matrices and P is the permutation

matrix corresponding to the reordering. M is irreducible if it is not

reducible.

(5.2.5) Remarks

(i)

(ii)
(iii)

(iv)

If we reorder the matrix M so that K precedes its comple-
ment, we will have the zero submatrix in the upper right
corner instead of the lower left.

It is clear by the definition that M is irreducible iff M7 is.
Since z is a solution of (PTMP, PTq) iff z:=Pz is a solution
of (M,q), reordering of the indices does not affect the
geometric and algebraic properties of the solution set of
(M,q) if we permute the components of g accordingly.

Given any M, if it is reducible we can reorder the indices as
in Definition (5.2.4) and get the square matrices 4 and C. If
A or C or both are reducible we can repeat the process on 4

or C or both. So at last, after some reordering, ¥ becomes

[Nl hd $
prap=|0 %2’ * (V.5)
0 0 . Ny

i.e., a block upper triangular matrix with diagonal blocks Ny,




(v)

7

Na,...,N; all irreducible. If ¥ itself is irreducible then k=1,
otherwise k=2. In fact, if we defined a directed graph G(M)
with n nodes numbered from 1 to n such that G(M) contains
an’edge from node i to node j iff M;;#0, then irreducibility
of M is equivalent to strongly connectedness of G(M) [see
Varga 62, 16-19]. A directed graph is strongly connected if
for any two nodes, there is a path that goes from one node to
another following the (directed) edges. Hence the irreduci-
ble components N; correspond to the strongly connected
components of G(M) which can be found in time proportional
to the number of nonzero entries of M [Tarjan 72]. For more
details see [Aho, Hoperoft and Ullman 74, Ch. 5], in which
there is a linear-time algorithm (Algorithm 5.4) that can be

used to find N; i=1,....k, in reverse order.

If z is a solution of (M,q), then z is a solution of (N, qk)
where z;, and g, are the appropriate sub—vector of z and q
respectively. Hence we may want to solve (Ng, gx) first. If
the solution is unique we can proceed to solve z;_; by solv-
ing (Ng—1, 9x—1—Bz) where B is the block to the right of
Ni—y in (V.5). The process can be kept going as long as
uniqueness is guaranteed for each block. At last, we either

reduce the size of the problem or solve it completely. Note
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that at each step the LCP has an irreducible matrix.

So let us start with irreducibe quasi-diagonally dominant #.

(5.2.8) Theorem Let M be irreducible and M €QD,. Then (i) and (ii)

defined below are equivalent,

(i)
(ii)

(M,q) has more than one solution

() M2QD, ., i.e. for any d>0 satisfying (V.1), equality holds
in (V.1) for all %, and

(b) for some permutation matrix P,

[Z1 Pg
PTHP = (V.6)
Py Zj

where Z, and Z; are Z-matrices, P;=0 and P20, Z; may be
vacuous (so M is a Z-matrix), and

(¢) Mz +q =0 for some z>0.

Moreover, either (i) or (ii) implies that

(¢') Mz +q =0 for any solution z.

In particular, if #€QD,, then (M,q) has at most one solution for

any q.

Proof.

(i) => (ii) Assume (M,q) has more than one solution.
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Let z, ¥y be two distinct solutions, let
v = Mz+q, w = My+q, sov—w=M(z~y), zv=yw=0. (V.7)
Let d >0 satisfying (V.1). Define

| 2 Y | _ |xj—yj|

= = =: 0§, .
K := {k|1sk=n, a4, o 64 (v.8)
then 6>0 and K#¢ since z#y. Define
Kt := (k€K |z, —y >0}, K~ := tk €K |z, —y; <0}. (V.9)
For k€K™, x>y =0, so by complementarity,
v, =0, and (V.10)
OZ“"U)}c = VUp~—W, = (M(.’B""y))k (V].l)
T Yk i —Yj
k jek 7
i®k

Hence equalities hold in (V.11) and (V.13). Together with (V.10) the
first (implied) equality in (V.11) implies that
(1) v =w,=0.

The last (implied) equality in (V.13) implies that
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(2) equality in (V.1) holds for i=k,

while the first equality implies that

Myydy L= | My |6 for all j#k (V.14)

which in turn implies that

x. .
(3) If M;#0 then —I—-"-—-—yl—l—= 8. So z;#y;.

d
(4) I jeK*, j#k, then My;=—| H; |<0,
(5) If jeK™, then My;=| My; |=0, or
(6) 1f j2k, then Hy;=0.
In summary, we have proved (1-6) if k€K™*. Similarly for k€K,
1, >0 and therefore w;=0, the same argument follows by inter-
changing v and w, and x and y in (V.10-14), and we have, under the
assumption that k€K™, that (1-3) hold and
(4)If jeK™, j #k, then My;=—|M; | =0,
(5') If jeK™, then My;=|Mg; |=0, or
(6")If j&k, then M;=0.
If k€K, j# K then either (6) or (6') applies and we have M;=0,
hence K={1,2,...n} since M is irreducible. Therefore (a) (V.1)
holds for all i by (2), (¢') v=w=0 by (1), and (b) by reordering the

indices so that K+ procedes K~, M becomes the form in (V.6) by
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(4,5,4',5"). When either K* or K~ is empty, M is a Z-matrix. More-
over, for any j z;+y;>0. Otherwise, z;=y; =0, therefore M;=0 for
all k#j by (3) which contradicts the irreducibility of #. Hence
z:=z +y >0 satisfies (c).

(ii) => (i) Assume (ii).

By (b) we can assumne, without loss of generality, that

H=|p, Zg] (V.14)

where Z, may be vacuous. Let k,, k; be the dimensions of Z;, 23
respectively. Let d>0 satisfy (V.1). Define the vector d by

d, := if k<k, di else —d,, (V.15)

Then Md=0 by (a) and (V.14). By (c) there is a vector £>0 such

that MZ+q=0. Define
A := {AeR |Z+Ad=0} (V.16)
For A€A, Z+Ad is a solution of (M,q) since, by the definition of d,
M(Z+ad)+q = MTZ+q+AMd =0+0 =0 (V.17)

Since £>0, A contains an open neighborhood of the origin. In par-
ticular, A contains a nonzero element, say A, so that Z and Z+Ad

are two distinct solutions of (M,q). ®

The following corollary characterizes the solution set when it is
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not unique.
(5.2.7) Corollary

Let M be irreducible and #€QD, . If (M,q) has more than one solu-

tion, then the solution set of (M,q) is
S := {z |2=0, Mz+q =0}
Let
Z := arg min z, s.t. Mx+q=0, z=0 (V.18)

then S is the intersection of the feasible region of (M,q) and a half-

line starting at Z with some direction d satisfying
Md =0,d,>0, |d;|>0 for all 4. (V.19)

ie. S = {£+A\d |A=0, Z+Ad=0}. Moreover, S is unbounded (iff d>0)

iff M is a Z-matrix.

Proof. Clearly every vector in S is a solution of (M,q). On the other
hand, all solutions are in S by Theorem (5.2.6) (ii) (¢’). So S is the
solution set of (M,q). Z is well-defined by (V.18) since it is a solu-
tion of an LP which is feasible and bounded below. Let d>0 satisfy
(V.1). By (ii) (b) of Theorem (5.2.6) there is a partition {L*, L™} of

the indices such that 1€L* and

M;=0 for (i,7) € (LYXL™)U(L™%L™) (V.20)
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My<0 for i#j, (i.j) € (L*xL*)U(L™L") (v.21)

Note that L~ is empty iff Z5 in (5.2.6) (ii) (b) is vacuous. Let z be
any solution other than Z, then M (x—%)=0 since z€.S. By the same

argument as in the proof of (5.2.6), defining

z;—%,; .z
=g}, K= 4| = -0,

K*r:=1{j
Jl » %

. —Z,
where § := max Lf———-£-‘——>0, we have that K*\ K~ is the whole
isk=n dk

index set, and

e PRt . s
Mkjdj—%j—’—-‘- ~|Hy;1d;6 for j#keK* (V.14')
T:—x; . )
My _l__l_dj = —|M;|d;6 for j#keK™ (V.14"")

Claim: K*=L*, K~=L".

Indeed, let J:=(K+*—L*) (K~ —L"), then M;=0 for all keJ, j£J.

For

(1) Case k€K* (so kg L* since keJ), jEK™ (so jeL* since j£J).
Then by (V.14') My;=—|M;|<0. On the other hand Mp;=0 by
(V.20) and (k,j)eL™XL™* [see previous two parentheses].

(2) Case k€K™* (so kg L* since k€J), jeK™ (so j€L™ since JEJ).
Then by (V.14') My;=|M;|=0. On the other hand My;<0 by
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(V.21) and (k,j)€L™XL~ [see previous two parentheses].

(3) CasekeK™ (sokgL™ since keJ), jEK* (sojeL* since j€J).
Then by (V.14"") My;=|Mg;|=0. On the other hand M;<0 by
(V.21) and (k,j)eL*xL* [see previous two parentheses].

(4) CasekeK  (sokgL™sincekeJ), jeK~ (so jEL™ since jgJ).
Then by (V.14"") My;=—|M;|<0. On the other hand M;;=0 by
(V.20) and (k,j)eL*xL™ [see previous two parentheses].

Hence J is either the whole index set or empty by irreducibility of
M. Since 12J, J is empty. So K*CL* and K~CL™, which proves the

claim since both {K*, K~} and {L*, L™} are partitions of the indices.

Therefore,

5% =5 forall jeL*

d

%&= —5 forall jeL-

Hence z=Z+4d where
&j =if jeL* d; else —d; (V.22)
We have proven that for any solution z, z€S5 where

S = {F+Ad | A=0, Z+Ad=0].
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So S=5 since obviously 5 CS. Moreover, by (V.22), d>0 iff L~ is

empty iff M is a Z-matrix (the last "if" part follows in part by the

irreducibility of M). It is obvious that S’ is unbounded iff d=0 iff

d>0 since |d; | >0 for all i. So the proof is complete. ®

(5.2.8) Remarks

(i)

(ii)

(iif)

Under the assumption of (5.2.7), the vector d satisfying (V.1)
is unique up to a positive scaling since every d uniquely
defines a direction d by (V.22) and by Corollary the direction
should be unique.

(V.19) uniquely determines d (up to positive scaling), i.e.
instead of finding d>0 satisfying (V.1) and computing d by
(V.22) we can simply solve (V.19) for a (unique) d which will
give the direction of the solution set. For if d’ is another
direction satisfying (V.19), then since there exists an >0,
Mz +q =0 by Theorem (5.2.6)(ii)(c), at = the solution set has
two directions, i.e. both z+Ad and z+Ad' are solutions for all
lambda sufficiently small, contradicting the fact that S is

one dimensional.

Hence for M irreducible, ¥ €QD,, we have the following com-

putational procedure:

Step (1). Solve £ by (V.18), exit if the LP is infeasible, in
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which case (M,q) has at most one solution which can be
solved by some other algorithm, e.g. (3.4.1) [Example (5.2.9)
1,2]. |

Step (2). Solve d by (V.19), exit if no solution found, in which
case (M,q) has the unique solution Z [(5.2.9) 3,4].

Step (3). S « {Z+Ad|Z+Ad=0}, stop. In this case S may still
be a singleton if the only feasible A is zero [see Example

(5.2.9) 5,6,7].

(5.2.9) Examples

(1) Exit at Step (1) of (5.2.8) (iii), (M,q) has a unique solution z=0.

el ool

Note that (ii)(a) and (b) of Theorem (5.2.6) hold, but not (ii)(c).

(2) Exit at Step (1), (M,q) has no solution.

1 -1 ] [—2
. g = I
-11 1
Note that (M,q) is infeasible. Again only (c) is violated in (5.2.6)
(ii).

(3) Exit at Step (2), (M,q) has the unique solution z=[11]7.

)

M=
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Note that (ii) (a) (c) hold in (5.2.6), but not (ii) (b).

(4) Exit at Step (), (M,q) has the unique solution z=[11]7.

2 -1 [-1
M= . g = l
-1 1 0

Note that (ii) (b) (c) hold in (5.2.6), but not (ii) (a).

(5) Exit at Step (3), (M,q) has a unique solution z=[1 0 0]7.

2 -11 [-2
M=|-121} q:=|1
1 12 -1

Note that d=[11 —1]7, and that only (ii)(c) does not hold in
(5.2.6)(ii).

(6) Exit at Step (3), the solutions set is a line segment.

[2 —-11 -3
M:=|-121| g:=|0
1 12 -3

Then z=[101]7, d=[11-1]7, K*={1,2}, and
S ={Z+Nd|0= A= 1]}

(7) Exit at Step (3), the solutions set is a half line.

_I1—-1 [—1

SINEEN

Then z=[10]7, d=[11]7, K*={1,2}, and
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S = {T+Ad |0 = A < +o]

Note that M is a Z-matrix, which is the only case S is

unbounded.

5.3 EXISTENCE FOR DIAGONALLY DOMINANT—IRREDUCIBLE
MATRICES

We assumed M €QD, in the previous section, and we got a com-
plete characterization of the unigqueness of the solution set of
(M,q) when M is irreducible. In this section we shall assume that
MTeQD,, i.e. M is quasi-diagonally column dominant. It is interest-
ing to note that what we are going to get are characterizations of
eristence instead of uniqueness.

(5.3.1) Theorem
Let M be irreducible and MT€QD,.
(i) Then every KKT point of (QP) is a solution of (M,q) and hence

MeqQ,, i.e. (M,q) has a solution for all g for which (M,q) is feasi-

ble.

(i) In fact, if (z,y,v) satisfies the KKT conditions of (M,q), i.e.

(Mx+q+MTz)-MTy—v =0 (V.23)

y; (Mx+q); =v;z; = 0, foralli (V.24)
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v, v, Mz+q, 220 (V.25)

then (1) M7 (z—y)=0, (2) v=Mz+q, (3) zT(Mx+q)=0 so z is a
solution of (M,q).

(iii) There exists (z,y.v), £#y, satisfies (V.23-25) iff
(a) MT#QD,,, (b) the statement (ii)(b) of (5.2.6) hold, and (c)
there exists 7>0 such that (z,7,v) satisfies (V.23-25), hence
(c') Mz +q =0 by complementarity.

In particular, if #7€QD, , then z=y

Proof.

(i) If (M,q) is feasible, then (QP) is bounded below by zero and
hence has a global minimum [Frank and Wolfe] which is a KKT
point. Hence it suffices to prove (ii) for (ii) implies that every
KKT point is a solution of (M,q).

(ii) Assume (z,y,v) satisfies (V.23-25). If z=y then (1)-(3) follow
immediately by (V.23-25).

Assume z#y, we will show (ii) and the "only if" part of (iii)

together. Let d>0 be as in Definition (5.2.1), i.e.

j#t

Similar to (5.2.6), define

2. R
6:= max—-———-——l J-yjl

>0,
1=jsn  d;
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Ty ~Yx

K o= gk | 2% = 46, K= (k| 5

Ay

= -—5;

Then for k €K*, 2, >y 20. So v, =0 by (V.24). Hence, by the k-th

component of (V.23), we have

0 = (Mz+q),+(MT(z—y))k

>(MT(z—y)), (Mz+g=0bdy V.25) (V.27)
T —Yk 5 Y4

= My g5t 3 My, __Ld,
J#k

Hence equalities hold in (V.27) and (V.28). Hence we have, by

the (implied) equality of (V.27) and the one preceding it,
(Mx+q), =0, (MT(z—y))x =0, for keK* (V.29)
and, by the last (implied) equality of (V.28),

Mlckdk = Z IMjkId, for keK* (VSO)
j=k
and, by the first equality of (V.28)

My d; = —|My |d;6 forall j#keK* (V.31)

d;

Similarly for k €K™, ¥, >0 and therefore by (V.24),
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(Mx+q); = 0, (for k€K™) (V.32)

Hence, by changing sign of the k-th component of (V.23), we

have
0=—(MT(z—y))k+v

> (MT(y-z)), (*v=0bz V.25 *) (V.27)

_ Y — T YTz
= My d; a; + Jngjkd’ dj

j#k

Hence equalities hold in (V.27') and (V.28'), and by similar argu-

ment we have

v =0, (MT(y—2)), =0, forkek™ (V.29)

Mkkdlc = 2 I-Mjkld: for keK™ (VSO’)
j#k

Mpd; o2 = — |, |d;6 for all j#k k- V.31

gk g d] —-"l ]kl il orall g#k € ( 31)

By similar argument as in (5.2.6), (V.30-31,30'-31’) implies that
K* UK~ is the whole index set and (iii)(a) and (iii)(b) hold.
Therefore it follows that (1) M7(z—y)=0 by (V.29,29'). (2) and
(3) follow immediately by (1) and (V.23-25). Also (iii)(c’)
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Mz +g=0 by (V.29,32), and 7:=}(z+y)>0 by the definitions of
K* and K-. Finally, (iii)(c) follows since (z,7,v) is a KKT
point by (V.23-25), (1) and (iii)(c’).

(iii) "only if" part has been proven in (ii). To show "if" part.
Assume (a)(b)(c).
By the same arguments as in (5.2.7) [with ¥ replaced by

HMT], (2) (b) implies the existence of a d satifying
MTd =0,d,>0, |&| > O0foralli. (V.33)

By (c), there exists (z,7,v), >0, satisfying (v.23-25). It fol-
lows that F+Ad>0 for all sufficiently small A. Besides, (1)-(3)
hold by (ii). It is easy to see that (z,¥ +Ad,v) is a KKT point
for all sufficiently small A by (V.23-25) and (1)-(3). The proof

is complete since z#Y +Ad for all but at most one A. =

We have proven that (M,q) is solvable iff it is feasible. In the

next theorern, we characterize the feasibility of (M,q).

(5.3.2) Theorem

Let M be irreducible and #7€QD, . Then

(M,q) is infeasible iff (a) MT2QD,,, (b) M is a Z-matrix, and (c)
qd <0 for some d>0 satisfying (V.26) [d is unique up to a positive
scaling by (5.2.8)(i)].




93

In particular, if #7€QD, .. then (M,q) is feasible [hence solvable by
(5.3.1)] for any q.

Proof. By a theorem of alternative [Mangasarian 79, 2.4.12 or Gale

60],
MTy=<0

Il has a solution
y=0, qy <0

Mz +q=0
I has no solution| iff
=0

So it suffices to show that II has a soluion iff (a), (b), (c) hold.

(i) Assume y is a solution of I, then ¥ #0 since gy <0. So

= Yi_ Ye_
5.—11515;%(1 >0, Kt := {k|1<ks=n, 2 Sl#¢ (V.34

where d>0 be any positive vector satisfying (V.26). For k€K™,

Y

Yy
0= (MTy), = Mgt 57— a

+ ZMgk '&J—

j#k

Again, by similar arguments as before [note that K~ is empty],

we have K*={1,2,...mn}, (a) and (b) hold, #Ty=0, and y=46d by
(V.34). Hence qd=—;:\—qy <0 proving (c).
(ii) Assume (a), (b), (c) hold. By (c) there exists d>0, gd<0 satisfy-

ing (V.26). By (a), equality holds in (V.26) for all i. By (b), (V.26)

[with equality] is equivalent to M Td =0. Hence d is a solution of
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II. =

5.4 EQUIVALENCE OF DIAGONAL ROW/COLUMN DOMINANCE FOR
IRREDUCIBLE MATRICES

In this section, we shall prove that quasi-diagonally row domi-
nance is equivalent to quasi-diagonally column dominance for
irreducible matrices. Hence we can combine the results of previ-
ous two sections. Note that in (5.2.3) we have shown that without
the irreducibility assumption, row dominance and column domi-

nance are different unless the dominance is strict.

(5.4.1) Theorem
Let M be irreducible. Then
(i) MeQD, iff MT€QD,.
(i) M€QD,, iff MT€QD,,.
Proof.
(i) "only if" part. Let M€QD,.
Since (V.26) is equivalent to C(#)7d=0, where C(¥) is the

comparison matrix of # defined by (V.2), it follows that

#MTeqD,
iff
C(#M)Td=0, d>0 has a solution




(i)

(ii)
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iff
C(M)zx+2=0, z,z=0, 2+#0 has no solution (V.35)

where the last equivalence comes from a theorem of alterna-
tive [Mangasarian 79, Ch. 2]. So it suffices to show that (V.35)

holds, which is equivalent to:
=0, C(M)z=—2z=<0 implies 2=0. (V.35
Let =0, C(M)z=—2=0. Define

6 e )

T
=tk | 1<k=sn, — :
K te |1 n dy lsjs'ndj

where d>0 satisfies (V.1). Then for k€K™,

Zy ZT;
0= —2Z =Mkkdk‘a—+ ZlejldJ'&L
k j#k J

ik

Hence 2, =0 for all k€K™*. But, as before, K* is the whole index
set, so 2=0 proving (V.35'). Hence # TeQD, 4.

"if" part. Let MTe€QD,.

Then by the "only if" part (M7)7€QD,, i.e. M€QD,.

"only if'' part. Let M€QD, .

Then for some d>0, (V.1) holds and for some index, say k, the

strict inequality holds. Then by decreasing the M a little,
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(V.1) still holds, i.e. for some small positive number a,
M—aF, €QD, where Ey is the matrix with all entries equal to

zero except the kk-th entry which is 1. Hence by (i),

.MT_(XEkk = (M-aEkk)T €QD,
Hence MT€QD,, since any d>0 satisfying (V.1) for the matrix
MT—aEy, will satisfies (V.1) for M7 with strict inequality hold
for index k.

(ii) "if" part follows by "only if" part as in (i). ®

Hence the results of the previous two sections hold under a sin-
gle assumption #€QD, (or equivalently M TeQD,). Here we sum-

marize some of them.

(5.4.2) Corollary [Aganagic 81, Thm 2.2]

Let M be irreducible, and #€QD, or equivalently under the irredu-

cibility assumption M7€QD,. Then

(i) 1f MeQD,, or equivalently MT€QD,, then (M,q) has a unique
solution for any q, i.e. M is a P-matrix.

(ii) Suppose M#QD,,. Then (M,q) has a soution for any ¢, i.e.
Meq. iff M is not a Z-matrix. Moreover, if M is a Z-matrix then
(M,q) has a solution iff ¢ Td=0 where d is the unique (up to a

positive scaling) positive vector satisfying M Td=0.
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Proof. Uniqueness follows by (5.2.6) while the existence follows by
(5.3.2).=

5.5 DIAGONAL ROW/COLUMN DOMINANCE WITHOUT IRREDUCIBILITY

Now we are ready to give characterizations for general QD,-
matrix without the irreducibility assumption. Recall that row domi-

nance and column dominance are different for reducible matrices.

(5.5.1) Existence Theorem For QD ,-matrix

Let #€QD, . Then any KKT point of (QP) is a solution of (M,q). Hence

(M,q) has a solution for all g for which (M,q) is feasible, i.e. ¥€Q,.

Proof. Let (M,q) be feasible and (z,y,v) be a KKT point of (QP). To
show X is a solution of (M,q) we use induction onn. If # is irredu-
cible we are done by (5.4.1) and (5.3.1). If M is reducible, then by

reordering the indices we can assume that

[Ml C

0 My

where M, M5 are nonvacuous sqare matrices and M, is irreducible
, i.e. M, is the matrix N, defined in (V.5) [#M is reducible unless it

happens to equal to Ny defined in (V.5)].



(i)

(ii)
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Case C=0.

Then (M,q) can be decomposed to (#,,q;) and (Mz,q5) where
[¢,.92]=¢. Since (M,q) is feasible, so are the two sub-problems.
Therefore by the induction hypothesis, any KKT point of (QF;)
is a solution of (#;,q;) for i=1,2 where (QP;) is defined by

minimize z.,-,(M.,;z,L+q,,;) s.t. Ziao, M.,;z,;+q.,;20

On the other hand, it is straightforward to check that
z=[2,,2;] is a KKT point of (QP) iff z; is a KKT point of (QP;) for
1=1,2. So we are done.

Case C#0.

Then M,€QD, . [strict inequality holds in (V.1) for some indices
after deleting from the right hand side some terms
corresponding to the nonzero terms of C]. So M TeQD,+ by
(5.4.1).

Let z;,%;.v; i=1,2 be the appropriate components of the KKT

point (z,y,v). By (V.23)

vy = Mz +Cegtq+ M (z1—y) (v.36)

vy = Maxatqat CT(z1—y ) ME (z2—y2) (v.37)

It follows by (V.24-25) and (V.36) that (z,%,,v,) satisfies the

KKT conditions of the QP corresponding to (#,,Czz+q,). So




29

z,=y; by (5.3.1) (iii), and therefore the term CT(z;~y,) in
(V.37) can be dropped. Hence (x2,y2,v3) is a KKT point of the
QP corresponding to (Mz,gg). Let wj,,w; be the appropriate
components of w:=Mzr+q, then z,w,=0 by the induction
hypothesis while z,w ;=0 by (5.3.1) since M, is irreducible. So z

is a solution of (M,q), and the induction is complete.

Now for the same reason as in (5.3.1) (QP) has a KKT point provided
that (M,q) is feasible, hence M€Q,.®

The result M€Q, in Theorem (5.5.1) has also been obtained by
Moré [Moré 74] and Aganagic [Agnagic 81] by utilizing Lemke's

method instead of the KKT conditions of (QP).

(5.5.2) Characterization of QD ,NnQ

Let M€QD,. Let N;, i=1,....k be defined as in (V.5), i.e. after reord-
ering the indices so that M becomes upper block triangular with
irreducible diagonal blocks, N;,i=1,....,k are the diagonal blocks.
Then

MeQiff fori=1,....k, either N;€QD, ., or N;€Z.

Proof. Induction on k. If k=1, i.e. M is irreducible, we are done by
(5.4.1) and (5.3.2). Assume k=2, then by reordering the indices we

can assume
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[u, ¢
M= - M, M3 be nonvacuous sqare matrices,
2

and M, is irreducible , i.e. M;:=N [ M3 is reducible unless k=2].

(@

(ii)

"if"" part, assume for i=1,...k, N;€QD, ., or N;€Z.

Given any vector ¢ =[q, qz], (M5,92) has a solution by induction
hypothesis. So it has a feasible point, say zz. Since M;=N, is
irreducible, (M,,Cro+q,) is feasible by (5.4.1) and (5.3.2). Let
z, be any feasible point, then z:=[z; z;] is a feasible point of
(M,q). So (M,q) has a solution by (5.5.1).

"only if'' part, assume M€Q.

Given any vector g and any g, let ¢:=[g g2]. Since H€Q (M,q)
has a solution [z, z5]. It follows easily that z3 is a solution of
(M2,q5). Hence M;€Q. Hence by induction hypothesis, for
i=2,...k N; satisfies the asserted property. For N,, assume it is
not in QD, ., hence C=0 and z, is a solution of (M4,q,), we only
need to show that it is not a Z-matrix. Since g, was arbitrary,
M,€Q, hence by the induction hypothesis on M, which is N, Ny

is not a Z-matrix. ®

A weaker result than Theorem (5.5.2) has also been obtained

[Aganagic 81] which needs to check all of the 2*—1 pricipal subma-

trices of M to determine whether M€Q. By Theorem (5.5.2) only k
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of them needs be checked and these k submatrices can easily be

found by a linear-time graph algorithm [see Remarks (5.2.5) (iv)].

(5.5.3) Theorem

Let MTeQD,. By reordering the indices we can assume M equals
the right hand side of (V.5). Let n; be the dimension of the irredu-
cible diagonal block N; for i=1,....,k. Let S be the solution set of

(M,q). Then
S = 8xSgX -+ XS (v.38)

where S; is the solution set of (N;,p;) for some vector p;ER™.So S
is a singleton iff every S; is a singleton.

Moreover if S; contains more than one point, then (5.2.6) and
. (5.2.7) apply to (N;,p;), e.g. S; is a half line [if N; is a Z-matrix] or a
line segment.

Proof. Induction on k. If k=1 then M is irreducible and we are

done by (5.4.1) and (5.2.6-7). For k=2, i.e. M is reducible, then

(i, ¢
M = 0 i M4, M3 be nonvacuous sqare matrices,
2

where M,:=Nj, is irreducible , [#, is reducible unless k =2]
(i) Case C=0.

Then (M,q) can be decomposed to (#;,q;) and (M3,gg) where



(i)
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[91.92]=9 such that S is the product of the soution sets of the
two sub-problems. So we are done by applying induction

hypothesis on those two sub-problems.

Case C#0.

Then M3eQD,, [see (5.5.1)] So M2€QD,, by (5.4.1). Hence
(M2,q92) has a unique solution, say z; (5.2.6). Let Si:={z}, then
it is straightforward to check that S=TxS, where T is the
solution set of (M,Cra+q;). The induction is complete by

applying the induction hypothesisto 7. ®

(5.5.4) Remarks

(i)

(ii)

Let us go back to the procedure defined in (5.2.8) (iii) for solv-
ing the set of all solutions when M is irreducible. In (5.2.8) (iii)
step 1, we did not specify what to do if the LP is infeasible.
Thanks to (5.8.2) [and (5.4.1), of course, which enables us to
apply (5.3.2)] we can tell whether the LCP is feasible without
solving another LP. And if it is feasible, then Algorithm (3.4.1)
will find the unique solution. Hence we have a complete algo-
rithm.

Recall the reduction procedure defined in (5.2.5) (iv) where we
solve S; for i from k down to 1, and we claimed it worked when

each S; is a singleton. For M7€QD,, as we see in the previous
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lemma the reduction procedure still works even when some S5;
contains more than one point, since the problem is then com-
pletely decoupled [see case C=0]. In fact, we can solve for the

whole set S by applying (5.2.8) (iii) for each S;. ®

In Theorem (5.5.2) we characterize the class of M€QD, for
which (M,q) has at least one solution for all ¢. In the next theorem
we characterize MT€QD, for which (M,q) has at most one solution

for all q.

(5.5.5) Theorem

Let MTeQD,. By reordering the indices we can assume M equals
the right hand side of (V.5). Let n; be the dimension of the irredu-
cible diagonal block N; for i=1,..k. Then the following are
equivalent,

(i) (M,q) has more than one solution for some ¢

(ii) for some l=i<k, N;# QD,, and PTN;P equals the right hand
side of (V.8) for some permutation matrix P.

Proof.

Suppose (i), let S be the solution set of (M,q) for some g for which
(M,q) has more than one solution. Then by (5.5.3), for some 1, S5;,

defined in (5.5.3), contains more than one point. By (5.5.3) and
(5.2.8) S; satisfies (ii).
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Suppose (ii), let N; have the properties in (ii). Pick any z;>0 and
z;=0 for j#i and let z=[z,Z5 - %] Let g:=—Mz then z is a solu-
tion of (M,q). Define S, S; as in (5.5.3), then z;€S5;. By (5.5.3) and
(5.2.6), S; contains more than one point. It follows immediately

that S contains more than one point, proving (i). =

(5.5.6) Corollary Let #T€QD,, z=[z, 2, - - - %] be a solution of
(M,q). Let w:=Mz+q. If for all i having property in (5.5.5)(ii),

w; #0 then the solution is unique.

Proof. We use the same notation as in (5.5.5). Since z€S, then
z,€S; by (5.5.3). If the solution is not unique then S; is not a sin-
gletonl for some i. By (5.5.3) and (5.2.6), N; has the property in

(5.5.5)(ii) and w;=0. =

5.6 SUMMARY

We considered the thoretic and computational aspects of the
linear complementarity problem (M,q) when M is quasi-diagonally
row, or column, dominant. Row dominance and column dominance
do not imply each other in general. They are equivalent if the dom-

inance is strict or the matrix is irreducible.

For quasi-diagonally row dominant matrix ¥, {M,q) is solvable

for q for which (M,q) is feasible, and in which case Algorithm (3.4.1)
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will find a vertex solution. Moreover, a characterization is given for

M for which (M,q) is feasible [hence solvable] for all g, i.e. for M €Q.

For quasi-diagonally column dominant matrix M, the solution
set of (M,q) is a product of k sets where k is the number of irredu-
cible components of M and each set is either a closed half line, a
closed line segment, a single point, or is empty, and all the k sets
can easily be computed in certain order by a reduction procedure.
Given a solution we can easily check whether it is unique. Finally,
we give a characterization for M for which (M,q) has at most one

solution for every q.
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