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ABSTRACT

The solvability of a linear program 1is characterized in terms of the
existence of a fixed projection on the feasible region, of all sufficiently
large positive multiples of the gradient of the objective function. This
projection turns out to be the normal solution obtained by projecting the
origin on the optimal solution set. By seeking the solution with least
2-norm which minimizes the 1-norm infeasibility measure of a system of
linear inequalities or of the optimality conditions of a linear program, one
is led to a simple minimization problem of a convex quadratic function on
the nonnegative orthant which is guaranteed to be solvable by a successive
overrelaxation (SOR) method. This normal solution is an exact solution if
the original system is solvable, otherwise it is an error-minimizing solu-
tion. New computational results are given to indicate that SOR methods can
solve very large sparse linear programs that cannot be handled by an ordinary

linear programming package.
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NORMAL SOLUTIONS OF LINEAR PROGRAMS

0. L. Mangasarian

1. Introduction

A normal solution to a linear program is an exact solution with some
least norm property if the linear program is solvable, otherwise it is an
approximate solution with some Teast norm property also. By an approximate
solution we mean a point which minimizes a measure of satisfaction of the
optimality conditions of the linear program. By considering normal solu-
tions we are led to:

(i) Iterative successive overrelaxation (SOR) methods capable of

solving very large linear programs.

(ii) Approximate solutions to poorly posed or unsolvable Tinear

programs.
(ii1) A stable solution or approximate solution, to a linear program,
endowed with a least norm property.

For solvable linear programs our normal solution is essentially équiv—
alent to that of Tikhonov and Arsenin [16] which they obtain by solving an
asymptotic problem [16, Theorem 1, p. 226], whereas our solution is obtained by
solving a simpler exact problem, problem (2.2) for any ee(0,] for some €>0
(Theorem 2.1). Tikhonov and Arsenin's weaker asymptotic result comes about
because they square the objective function of the linear program in their
regularization problem [16, p. 226] and thereby lose an essential exact

feature of our problem (2.2). Tikhonov and Arsenin also do not consider the
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important case of possibly unsolvable linear programs (Section 4), nor
do they give explicit computational methods for solving their asymptotic
problem.

We outline now our principal results and their relation to other work.
In Section 2 we consider normal solutions of solvable linear programs. In
Theorem 2.1 we give a complete characterization of the solvability of a
linear program in terms of a 2-norm projection on the feasible region of a
sufficiently large but finite positive multiple of the gradient of the
objective function. This projection turns out to be fixed and equal to the

unique 2-norm projection of the origin on the optimal solution set. Part

of Theorem 2.1, a(i), follows readily from [13, Theorem 1], while its
converse, part a(ii), which is essential for a comprehensive justification
of the Tinear programming SOR Algorithm 2.3, has not been available before.
Theorem 2.2, which follows from Theorem 2.1 and quadratic programming
duality, characterizes the solvability of a linear program in terms of the
solvability of a convex quadratic function minimization on the nonnegative
orthant (2.7) without any a priori assumptions regarding the solvability
of the linear program (2.1) as was the case in [11,12]. In addition,
Theorem 2.2 gives the complete basis for the linear programming SOR
Algorithm 2.3 and its convergence (Theorem 2.4) thereby sharpening earlier
convergence results [11,12].

In Section 3 we turn our attention to a system of possibly inconsis-
tent linear inequalities (3.1) and reduce it to the problem of finding
the unique Teast 2-norm solution of the problem of minimizing the 1-norm
infeasibility measure of (3.1). The principal advantage of this approach

is that it leads to the SOR Algorithm 3.1 which, unlike most other



jterative procedures [1,15,3] which require an a priori consistency as-
sumption, will converge no matter whether the original system (3.1) is
consistent or not. In either case Algorithm 3.1 will give an exact or
approximate solution with least 2-norm (Theorem 3.2). Among the poten-
tial useful applications of this approach is in the image reconstruction
techniques of tomography [7,8] which require the solution of enormous
sparse systems of linear equations with nonnegative variables. Most
current iterative techniques for the tomography problem [7,8,2] need an
a priori assumption regarding the consistency of the original system.

In contrast our Algorithm 3.1 needs no such assumption.

In Section 4 we consider possibly unsolvable Tinear programs and
reduce their solution to finding the least 2-norm primal-dual solution
which minimizes the 1-norm of the optimality conditions of the given
lTinear program. This approach Teads to an SOR algorithm that is guaran-
teed to work whether the original linear program is solvable or not. In
either case it will give an exact or approximate solution with least
2-norm.

Finally in Section 5 we give some numerical comparisons for one
version of our linear programming SOR algorithm with the XMP version [14]
of the revised simplex method for medium and large size sparse linear
programs. These comparisons indicate that SOR methods can solve very

large sparse linear programs that cannot be solved by an ordinary linear

programming package.
We briefly describe the notation used. A1l matrices and vectors are
real. For the mxn matrix A we denote row i by Ai’ column J by A.j

and the element in row 1 and column J by Aij‘ For x 1in the real



. . . n . .
n-dimensional Euclidean space R, X; denotes element i for i=1,....,n,

and x, denotes the vector with components (X+)i = !nax{xi,O}, i=1,00u. N,

-+

Vectors are either row or column vectors depending on the context. For x

n

n
and y in R", xy denotes the scalar product .Z X3¥5s while ]let

i=]

—_—

n
for 1<t < denotes the t-norm () [x.]
=1

Ht, ||x]] denotes an arbi-

trary but fixed norm on R" and ||A|| denotes the subordinate matrix norm

!lmﬁx I|Ax]]  for an mxn matrix. The vector e will denote a vector of
x]|=1
ones in any real Euclidean space. RQ will denote the nonnegative orthant

{x|xeR", x>0}. For a point c¢ in R", a closed set X in R" and a
number te [1,] the t-norm projection pt(c,X) of the point ¢ on X

is defined by

]|c-pt(c,X)l]t = min llc—xllt

Xe

For a function f: R" =R which is twice differentiable on R™, vF(x)

denotes the n-dimensional gradient vector at x with components

vy f(x), i=1,....,n, and sz(x) denotes the nxn Hessian matrix at
i
2

X with elements (V f(x))ij’ i, j=1,....,n.



2. Normal solutions of solvable linear programs

We consider here the linear program
(2.1) maximize cx subject to xe X:= {xleRn, Ax<b, x>0}

where b and c¢ are given vectors in R™ and R" respectively and A
is a given mxn real matrix. Let X denote the (possibly empty) optimal
solution set of (2.1). We shall assume throughout this section that this
linear program is feasible, that is X 1is nonempty. We begin with the

following fundamental and geometrically plausible result.
2.1 Theorem Let the linear program (2.1) be feasible. Then

a. (i) max cx has a solution = de > 0: pz(%,x)==p2(0,i) for all ee (0,€]
xeX

(ii) max cx has a solution)y< 4& > 0, Xx: p2(53 X) = x for all ec (0,€]
xeX _ =
and X = pz(oax)
where pz(x,X) denotes the 2-norm projection of x on X.

b. SUp CX = o < HpZ(%,X)H ~ e as g > O+
XeX

a{i): By noting that pz(%,X) is a solution of either of the equivalent problems
. c? . £ 2
(2.2) min HX-EWI = min -cx + 5| x|
XeX 2 XeX 2

the implication of a(i) follows from Theorem 1 of [13].

a(ii): Since X = p2(§~,X) for all ee(0,e], then there exists
(u(e), vie))e RPN such that (X, u(e), v(e)) satisfies the Karush-Kuhn-

Tucker conditions [9] for (2.2), that is



(2.3)  ex - c + Alule) - v(e) = 0, v(e)% = 0, A% < b, u(e)(AR-b) = 0,

(x, u(e), v(e)) > 0, ¥e €(0,€]

By the fundamental theorem for the existence of basic feasible solutions
for linear equations with nonnegative variables [6, Theorem 2.11], and the
complementarity conditions u(e)(AX-b) = 0, v(e)X = 0, it follows that
there exist (u(e), v(e)) satisfying (2.3) such that all elements of
(u(e), v(e)) not corresponding to some subset of k Tinearly independent
columns of [AT -1] are zero. Since the rank of [AT -11 is n, it
follows that we can take k = n and denote by B(e) this "basis"

matrix of n Tinearly independent columns of [AT -1]. Hence it follows

for such a "basic" solution (u(e), v(e)) satisfying (2.3) that
lu(e) v(e)]] < (lell +EIXINNBE)T vee (0,E]

Since [AT -I] contains a finite number of basis matrices it follows that
for some basis matrix B, l|B(e)']|| §:t18'1[| for all ee (0,e] and

consequently
(2.4) lute) v < Ulell +ENXINDIET  Yee (0,E]

Now let {ei} be a sequence of positive numbers in (0,£] converging to
0. Then there exists a sequence {(u(si), v(si))} satisfying (2.3) and
(2.4) and hence it is bounded and has an accumulation point (u,v)
satisfying

T

(2.5) -c+AG-79=0,7=0,AX<b, G(AR-b) = 0, (%,i,v) > 0

These are the Karush-Kuhn-Tucker conditions for the linear program (2.1)

and hence X solves (2.1). Since (X, u(e), v(e)) also satisfies (2.3)



which are also the Karush-Kuhn-Tucker conditions for

min %ﬁ[xﬂg subject to Ax < b, x >0, c

X > cX
with optimal x = X and optimal multiplier vector of (uif), !%?l,-%), it

follows that X = pZ(O,X).

(b) («): If not then the Tinear program (2.1) has a solution and by part
a(i) of this theorem 3& > 0: pz(-f:—,x) = p,(0,X) for all ee(0,E]. This

however contradicts the hypothesis that Ilpzbg,X)li > o as e > 0+,

(=): If not then, for a sequence of positive numbers {e'} converging to

zero, the sequence {sz(l%,X)H} is bounded. By defining x(e'):= p2(£§,x)
. £ . . £
we get that x(e') and some (ule"), vie')) e g0 satisfy the Karush-
2
Kuhn-Tucker conditions for min ||x- =]~ for i=1,2,..... , that is
XeX el 72

(2.6) eix(el)- craTulel) = vieh) =0, vieh) x(e') = 0, Ax(e) <b, u(el ) (Ax(eh)-b) = 0,

(x(e1), ule™), vie')) > 0

By the same argument as in the proof of part a(ii) of this theorem we can show
that the sequence {(u(e"), v(e"))} satisfying (2.6) can be taken as bounded
since {x(e')} s also bounded. Thus the sequence (x(e?), ule"), vie))}

is bounded and has an accumulation point (X,u,v) satisfying (2.5). Hence x

solves (2.1) which contradicts the hypothesis that sup cx = . 0
XxeX

By noting that the quadratic programming dual [9] to (2.2) is

2
(2.7) minimize %WIATu- V- cH2 + gbu
(U,V)ERT+H



where the primal and dual variables x and (u,v) are related by

(2.8) X = (-ATu-Fv-+c),

M [—

the following theorem is a direct consequence of Theorem 2.1.

2.2 Theorem The linear program (2.1) is solvable if and only if there
exists an € > 0 such that for each ee (0,e] the quadratic program

(2.7) has a solution (u(e), v(e)) and such that the vector X defined by

(2.9) %:= -]E—(—ATu(e)+v(e)+ ¢)  ee(0,E]

is independent of €, 1in which case X = pZ(O’X)‘

If we define the objective function of (2.7) by
1 T 2 iU
(2.70) f(z):= z|[Au-v-cll, + ebu, z:= QJ

then we can prescribe an SOR procedure for solving (2.7) which in view of
Theorem 2.2 solves the linear program (2.1). The SOR procedure is essen-

tially a gradient projection algorithm of the following type

: i+l _ i 2 Tyy=1 i+] i+ i i
(2.11) Zj = (zj-4u(v f(z ))jjvzjf(z1 se e ’Zj-]’zj’ ..... ’zm+n))+’
0 <w< 2, j=1,..... ,m+n.

More specifically [12] the following SOR algorithm for solving the linear

program (2.1) follows directly from (2.11) and (2.10).

2.3 LPSOR(A, b, c) Algorithm Choose (u®, v¥) e R"™", we (0,2) and

e > 0. Having (u', v') determine (u1+1, v1+]) as follows:



i+]

i+]
u.

i+]
v

TowWs

. -1 . m . .
- T w T i+ T i i .
wj HAJF(Aﬂ Q& (A)_Ku2 +Q£jm Lzuﬁ-v -c)+s§ﬁ)+1f Aj#O
Jr2 for j>1
=0 if Aj = 0 J=1,.....

(v1-w(-ATu1+]-+v1-+c))+

(]

Note that Algorithm 2.3 is sparsity-preserving for it works with the

of A only and the product AAT need not be computed.

The following convergence theorem which follows from Theorem 2.2 above

and [12, Theorem 2] sharpens previous LPSOR convergence theorems

[11,

Theorem 3.2] and [12, Theorem 4].

2.4 LPSOR(A, b, c) Convergence Theorem

(a)

The linear program (2.1) has a solution if and only if there exists a
real positive number & such that for each ee (0,€], each accumula-
tion point (u(e), v(e)) of the sequence {(ui,vi)} generated by the
ILPSOR(A, b, ¢) Algorithm 2.3 solves (2.7) and the corresponding X
determined by (2.9) is independent of €, in which case X = pZ(O,i).
If the linear program (2.1) has a solution and its constraints satisfy
the Slater constraint qualification, that is Ax < b for some x > O,
then the sequence {(ui,vi)} of the LPSOR(A, b, ¢) Algorithm 2.3 is

bounded and has an accumulation for each ee (0,e] for some € > 0.

Computational results for the Algorithm 2.3 are given in Section 5.
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3. Normal solutions of possibly inconsistent linear inequalities

We consider in this section the possibly inconsistent system of

linear inequalities

(3.1) AXx < b, x>0

where A s a given mxn matrix and b 1is a given vector in R™,

If
we try to "solve" the above system by an SOR [10] procedure applied to the
obvious 2-norm minimization problem

2
(3.2) min [[(Ax-b) ||, = min ||Ax+y-—b}]2 =: min  8(x,y)
x>0 2 (%,y)20 2 (x,y)20

one needs the condition

AT(Ax +y - b)
(3.3) ve(x,y) = > 0, for some (x,y)eR

Ax +y -b

n+m

to guarantee boundedness of the SOR iterates [10, Theorem 2.2], which by

the Gordan Theorem [9, Theorem 2.4.5] is equivalent to the condition that
(3.4) Ax < 0, 0 # x >0, has no solution

Unfortunately this condition is not satisfied in general, as is the case
when the feasible region is nonempty and unbounded. To avoid this
difficulty we use the SOR procedure of Section 2 to find the Z-norm
projection of the origin in Rn+m on the nonempty solution set of the
linear program

(3.5) min {ey|Ax - y<b}
(x,y)eR] ™
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which is the equivalent of the problem of minimizing the 1-norm feasibility
of (3.1)

(3.6) min || (Ax - b)

I
+
XeRQ 1

The key feature of this approach is that the SOR procedure will work no

matter whether the system (3.1) is consistent or not. In either case the

SOR procedure will obtain the unique solution (X,y) of (3.5) with least
2-norm. In terms of the original inequalities (3.1), Xx 1is the unique
solution of (3.6) which minimizes [|x, (Ax-b)+][2. Needless to say, if
(3.1) is consistent then X 1is the unique 2-norm projection of the origin
in R"™ on the nonempty feasible region determined by (3.1). To obtain an
SOR procedure for solving (3.5) we take the dual of the quadratic

perturbation of (3.5)

2
(3.7) min {ey +&||x, y||.|Ax-y<b}
(x,y)eRIM 2 2

which turns out to be [9]

. TyaT 2.1 INTL: =. : U,V ,W
(3.8) ( n;r;m+n+m > |[A u vl|24-2||u+w e|12+‘ebu : min Pu,v,w)

U,V ,W)eR, (u,v,w)eR,

with (x,y) related to (u,v,w) by

(3.9) x = L(aTusv), y=t(u+tw-e)
€ €
Since
(3.10) Vo(usvou) = |A(ATU-v) +u+w-e+eb|, Voulu,v,w) = [AAT+I -A I
~(ATu-v) iy I 0

ut+w-e I 0 1



-12-

it follows that Vy(0,e,re) > 0 for sufficiently large X and consequently
the iterates of the SOR algorithm of [10, Algorithm 3.2, Remark 3.2] applied
to 3.8 will have an accumulation for all positive values of e. In particular

we have the following algorithm and convergence theorem.

3.1 LISOR(A, b) Algorithm Choose (u®,v%,u0) cRT™M e (0,2) and e > 0.
Having (ui,vi,wi) determine (ui+],vi+q, w1+1) as follows:

. . j~1 . m . . . .

i+1 i W J T it] T i i,
us = (u, - ——(A. ¥ AYY, u, "+ ) (A, ug-v )tu.tw,-1+eb.))

Jre for j>1
j=l,..... ,m

vi+] = (vi +(U(ATU1+4 - vi))+
W1+] - (wT-w(u1+1-+w1-e))+

3.2 LISOR(A, b) Convergence Theorem For each e > 0 the iterates (ui,vi,wi)

of the LISOR(A, b) algorithm are bounded and have an accumulation point

(u(e), v(e), w(e)). For all ee (0,€] for some & > 0, the point (Xx,y)

T

(3.11) §<:=1E(—Au(e)+v(e)), Fi= L(ule) +ule) - e)

mj—

is independent of ¢ and is the unique solution of (3.5) with least 2-norm,

and X s the unique solution (3.6) with Tleast [[x, (Ax-b) |, .

Proof That the iterates (ui,vi,wi) have an accumulation point which solves
(3.8) for all e > 0 follows from Theorem 2.2 of [10]. That for ee (0,e]
for some & > 0, (X,y) defined by (3.11) is the unique solution of (3.5)
with least 2-norm follows from the duality equivalence of (3.7) and (3.8)

and from Theorem 2.1. Since problems (3.5) and (3.6) are equivalent and
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y = (Ax-b), for a solution of (3.5), it follows that X 1is the unique

solution of (3.6) with least value of |[[x, (Ax-b),J|,. 0

We note here Eremin's algorithm [5] which is one of the few iterative
algorithms capable of handling inconsistent inequalities. Eremin gives no

computational experience and the presence in his algorithm of a positive
stepsize Aﬁ satisfying Ai + 0 and Z Aﬁ = o may cause slow convergence.
i=1

An interesting application of the above method is to the problem of
image reconstruction techniques [7,8] where the fundamental problem is to

solve the system

(3.12) Bx

1

d x>0

where typically the mxn matrix B may be of order 28000 x 6000 with Tess
than 1% of nonzero elements [8]. Iterative methods are well suited for such
large sparse problems. Unfortunately such methods often require assumptions
that are rarely verifiable. Typically such methods assume a priori that

the system (3.12) has a solution [7,8]. In contrast our proposed LISOR
method requires no assumptions whatsoever when applied to the equivalent

problem

(3.13) Bx < d, -Bx < -d, x >0
In particular LISOR g

BY [ d\} _
s | will Tead to the unique solution X
-B// —d/]}

of min [|Bx-d|l; with Teast ||x, Bx-dlf,.
n

XeR+
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4. Normal solutions of possibly unsolvable linear programs

We consider here again the linear program (2.1) but make no assump-
tions whatsoever regarding its feasibility or solvability. The idea here
is to apply the LISOR Algorithm 3.1 to the equivalent linear complemen-
tarity problem for (2.1) [4]

(4.1) Mz +q>0,qz<0,2z2>0

where

— 0o A
(4.2) z = (x) R M = ( ) q = (C)
u \-A 0 b.

and u is the dual variable. Direct application of the convergence

AY

Theorem 3.2 to the LISOR{{’Q} s (g)) algorithm gives that the iterates
of LISOR((‘Z’}, (g)) are bounded for all ¢ > 0 and that for all

ee (0,e] for some € > 0 they lead to a z which is independent of ¢
and such that 2z s the unique solution of

(4.3) min || (-Mz-q, az) ||

n+m 1
zeR+

2
of the primal-dual pair with least 2-norm if the linear program (2.1) is

~

with least ||z, (-Mz-q, qz),|| . Hence Z = (3), is an exact solution

solvable. Else, it is the unique solution of (4.3) with least 2-norm for

the vector in RZ(n+m)+1

composed of the primal-dual variable 2z, the
primal-dual infeasibility (-Mz- q)+, and the primal-dual objective

function inequality (qz),.
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5. Computational results

Computational experiments have been carried so far on the LPSOR
Algorithm 2.3 only. Results on medium-sized problems were given in [11].
We give below new computational results for randomly generated large sparse
problems carried on the VAX 11/780 with double accuracy floating point addi-
tion time of 4.6 us and multiplication time of 6.0 us. Comparisons were made
with Marston's XMP revised simplex linear programing code [14]. The results
shown in Table 1 are all for a matrix A with essentially a "tridiagonal"
structure and fully dense last column and row. The XMP accuracy was to
within 12-figure accuracy of the current objective function when it managed
to obtain a solution. The accuracy of the LPSOR was measured by the o-norm
of the primal infeasibility of the numerical solution and the relative
deviation of the computed maximum value from the true maximum. The table
indicates that for the accuracy obtained, the LPSOR method becomes competi-
tive with the simplex method as the problem size gets larger and that for
very large problems, SOR methods may be the only viable methods of solution.

Table 1

Comparison of the Revised Simplex Code XMP and LPSOR for Solving 2.1

m = no. of inequality constraints, n = no. of nonnegative variables

XMP LPSOR
m n Iteration No. Hr:Min:Sec Iteration No. Hr:Min:Sec Relative Accur.
100 200 123 0:00:11 180 0:00:17 1070
500 1,000 746 0:03:12 520 0:05:11 10_9
1,000 1,000 2,309 0:42:02 1,640 0:26:12 107
2,500 10,000 Could not so1vea) 480 0:37:25 10"4
5,000 20,000 Could not solve P) 660 1:17:53 1074

a)Program was killed after more than 3 hours of CPU time.

b)Program used virtual memory space much larger than physical memory, so it ran

inefficiently and had to be killed within 10 minutes of CPU time which
corresponded to over 8 hours of real elapsed time.
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