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Abstract

It has long been recognized that contexti-free grammars are inadequate
v represent the complete syntax of modern programming languages. A
way of extending the expressive power of context-free grammars is to add
predicates to productions. Production application (or recognition) is
blocked if a predicate evaluates to false. Predicates also can be used to
disarnbiguate parsing decisions, allowing broader classes of languages to
be parsed. Unfortunately, standard context-free parser generators Qo
not directly allow the use of predicates. Simple and efficient means of
utilizing predicates within the framework of existing parser generators
are considered. Experience using these techniques is discussed.
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Intreduction

Context-free grammars are alinost universaily used to represent the syn-
tax of modern programming languages. These grammars represent a
very simple and readable formalism that can be automatically processed
(by parser generctors [1], [2]) to produce tables for a parsing module.
This use renders the construction of the syntax analvsis component of a
compiler a routine, and indeed almost trivial, task. Context-iree parsing
techniques have been adapted to other aspects of compilation, most not-
ably automatic code synthesis [3], [4].
The use of context-free grammars is not without its drawbacks. Symntac-
tic representation is incomplete, and limited to confext-free syntaz.
Thus, it is possible to include in a context-free grammar for Pascal [5]
rules that prohibit, e.g.,

1:=x
but it is not possible to prohibit®

x = True -+ False;
Non-context-free aspects of program syntax are typically handled by
semantic roulines that are invoked by a parser as productions are recog-
nized. Semantic routines verify that scoping and type compatibility rules

(which can’t be represented by context-free grammars) are obeyed and

issue ''semantic errors' if they are violated.

5True and false are normally trealed as predefined, but not reserved, identifiers.
Hence they are indistinguishable from cther named constants.
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Another problem that arises in utilizing context-free grammars is that
not all grammar forms are easily parsable. In practice, therefore, only
certain classes of grammars (most commonly LL(1) ([6], sect. 5.5) and
LALR(1) ([6], sect. 6.5)) are used. Sometlimes, certain language con-
structs can’'t be represented by a given grammar class. (Pascal's "dan-
gling else” can’t be generated by an LL(1) grammar [7]). In other cases,
the size of the grammar needed to represent a construct is prohibitive.
Fer example, the size of a grammar that generates a list of N options, in
any order, with no option repeated, is exponential in N.

A vealuable adjunct to standard contexi-free gramrmars is the addition of
contestual predicates [8] to preductions. I a contextual predicate
appears in a right hand side, then the predicate must evaluate to true
before the production can be used in a derivation or recognized in a
parse. Contextual predicates allow productions to be blocked when
necessary, thus controlling when a production may be applied. For exam-

ple, expressions involving the '+ operator might be generated by

where Expr and Term are non-terminals generating various subexpres-
sions. Using contextual predicates® this production becomes

Expr -» Expr #TestArithmetic + Term #TestArithmetic
where #TestArithmetic represents a contextual predicate that tesis

whether the operand preceding il is arithmelic (integer or real). If it

8Throughout this paper, all predicate symbols will be prefixed by a "#".
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isn't, the production can’'t be applied (or recognized). Thus, expressions

such as "True + False" can be recognized as syntactically invalid.

Spmetimes predicates can be used to aid in making parsing decisions.
This aid allows us to use grammars that otherwise couldn't be parsed.
Such predicates are often termed disambiguaiing predicales [9] because

they resolve parsing decisions that otherwise would be ambiguous.

As an example, consider the following (ambiguous) grammar fragment

that generates Pascal’s “dangling else” construct.:

Stmt - IF Expr THEN Stmt FElsePart
FlsePart - ELSE Stmt
ElsePart - ¢

(¢ represents the null string). This fragment is ambiguous because if
more THENs than ELSEs are generated, a given FLSE may be paired with
more than one THEN. The “dangling else” rule in Pascal is that an ELSE is
always paired with the nearest unpaired THEN. This rule can be made

explicit using a disambiguating predicates as follows:

Stmt - IF Expr THEN Stmt ElsePart
FlsePart - ELSE Stmt
ElsePart - #TestNextSymbol

#TestNextSymbol tests the next input symbol (the lookahead). If it is
anything other than an FLSE, the predicate evaluates to true. 1 the look-
ahead is an ELSE, the predicate blocks application of the production,
ensuring that the ELSE is paired as soon as possible. This modified gram-
mar can be parsed by LL(1)-like techniques, and in fact similar ideas are
usually used tc allow an LL(1) parser to handle the "dangling else” con-

struct [7].



-5~

As another example, consider the problem, noted earlier, of generating a
list of options, in any order, with no option repeated. Using disambiguat-
ing predicates, the following simple (and compact) grammar (G;) can be

used:

OptionList - OptionList , Option
OptionList - Option

Option - #ANotUsed A
Option —+ #BNotUsed B

The disambiguating predicates test whether or not a given option has

been used vet. Once an option is used, future uses are blocked.

Implementing Predicates

Obviously, predicates are most useful when they are fully integrated intc
a parser generator package. In fact, a few such generators exist [10],

usually including attribute evaluation with parsing.

Unfortunately such packages are not widely available, and ofien are a
good deal more complex than ordinary parser generators. We shall there-
fore investigate ways of obtaining the power of predicates using standard
parser generators. Any computations that are needed can either be for-
mulated in terms of standard parsing issues, or included as a post-
processor to the output of a parser generator. The concepts discussed
will also be of value in adding predicates to existing "standard" parser

generators.
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In many ways, a predicate symbol (i.e., a symbol that represents the invo-
cation of a contextual or disambiguating predicate), can be viewed as a

variety of terminal symbol. Thus, given
Variable - ID #lsArray [ Expression ]

the predicate symbcl #lsArray represents a "marker" verifying that ID is
declared as an array. If ID isn’t an array, the marker is absent, and the

production is blocked.

This approach is easily implemented. If a predicate symbol can be read
in a given parser configuration” then the corresponding predicate is

evaluated.® Arguments to a predicate are found in the semantic stack and

symbol table maintained by the cempiler.

If the predicate evaluates to true, a token corresponding to the predicate
symbol is inserted into the input.? This insertion allows the parser to con-
sume the expected symbol, and production recognition can proceed. If
the predicate evaluates to false, the predicate syrntol is not inserted, and
the production is blocked (possibly causing a syntax error to be recog-
nized). In effect, special markers are added to the user’s input (as a
side-effect of predicate evaluation), providing extra information to the

perser.

TThis condition is easily determined by examining the parse table entries
carresponding to a given configuration.

8A]] predicates are assumed to be side-effect iree.

®lockahead symbels must be saved prior te insertion cf the predicate symbol.



O

If the parser is blocked because a predicate symbol cannot be matched, a
semantic error has been detected. An error message, based on the
expected predicate symbol, can be issued. The arguments used by the
predicate symbol can be used to improve the readability of the diagnostic
(e.g., "TotalCost has not been declared').1® Semantic error recovery,
analogous to syntactic error recovery, can also be employed. That is,
after issuing the appropriate diagnostics, a recovery routine is invoked.
This routine does the necessary fixup (e.g., by flagging values the predi-
cate has found to be illegal), then it inserts the predicate symbol and res-

tarts parsing.

As might be expected, treating predicate symbols purely as terminal
symbols can raise difficulties. One problem is that in a given parser
configuration, more than one predicate may need to be evaluated. What's
worse, more than one predicate may evaluate to true. This case may
represent a parsing ambiguity, or (mnore benignly), a situation in which
later context will decide which production to choose. For example, in Gy
(used to generate option lists), predicates evaluate to true if an option
hasn't been used yet. An option production is recognized only if the

option hasn't previously been used and if the option is actually present.

Another issue is the use of predicate symbols as "lookaheads”. A looka-
head is a terminal symbocl that may not be part of the production being
matched, but rather part of the context just beyond it. Thus, given the

expression A + B * C, the "*" is used as a lookahead to decide whether or

10For uniformity, we can assume each predicate returns the text of a diagnostic mes-
sage if it evaluates to false.
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not A + B should be recognized as a subexpression. It is possible for a
predicate symbol (if it is treated as a terminal) to "shield” a real looka-

head symbol. In
Expr - Expr #TestArithmetic * Term #TestArithmetic

#TestArithmetic follows Expr and can appear as a lookahead for a produc-
tion derived from Expr. #TestArithmetic shields the '"*" that follows it,
thus requiring an additional lookahead to determine the proper subex-
pression to match. Furthermore, #TestArithmetic can't be properly
evaluated until the Expr to its immediate left is fully matched (and its

type is determined).

From the above, we can conclude that predicates should only be "visible"
(and evaluated) when they are part of a production currently being
matched. Their use as lookaheads must (as detailed below) be severly

limited.

Adding Predicates to LL(1) Parsers

LL(1) parsing is the simplest automalic parsing technique that is powerful
enough to handle modern programming languages. The basic idea is
remarkably simple. A stack of grammar symbols that must be matched
is maintained. This stack is updated as symbols are matched. In particu-
lar, if the top unmatched symbol is a terminal, it is compared with the
next input symbol. if it matches, the input symbol is consumed, and the

stack is popped. If it doesn't match, a syntax error is detected.
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If the top unmatched symbol is a non-terminal, A, then a parse table, M,
is queried, using A and b, the next input symbol. M[Ab] contains either a
production A-X; - Xy or an error flag. If the error flag is present, a

syntax error is detected; otherwise, A is replaced with Xy - - - X

An especially useful aspect of LL(1) parsers is the inclusion of aclion sym-
bols!! ([11], sect. 7.3). Action symbols are distinct from the class of ter-
minals and non-terminals. In fact, they are ignored completely in deter-
mining parser actions. When an action symbol reaches the top of the
unmalched symbol stack, it is immediately popped, and a corresponding

semarntic routine is called. Thus, in

ExprTail + + Expr @Add ExprTail
the action symbol, @Add, would call a semantic routine after the right
operand of a plus operation is matched.
The similarity of predicates to action symbols is obvious, and in fact
action symbols are routinely used to check for semantic correctness (ie.,
they serve as ccntextual predicates). However, because action symbols
play no part in parsing decisions,'® they cannot be used as disambiguat-

ing predicates.

We will implement all contextual predicates as action symbols. In Lif1),
all parsing choices involving non-terminals are made before any symbols

of the right hand side are inatched {i.e., the parser is “predictive’). Thus

17]] action symbols will be prefixed with a "@".
tOther than blocking in the presence of semantic errors.
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all disambiguating predicates will appear as the leftmost symbol in a
right hand side. Disambiguating predicates will be implemented as ter-
minals. This choice will allow non-LL(1) grammars to be disambiguated.
We will assume each disambiguating predicate symbol is unique (although
different predicate symbols may represent the same predicate). This
assumption will guarantee that the inclusion of disambiguating predi-
cales can resolve all parsing conflicts. For example, consider the follow-
ing grammar fragment that generates various forms of expressions in

Pascal:

Expr » Variable
Expr » FunctionCali
Expr - Constant

This fragment is not LL(1) because Variable, FunctionCall and Constant
can all generate an identifier. The addition of predicates can disambigu-

ate this choice:

Expr - #TestVarlD Variable
Expr - #TestFunctionlD FunctionCall
Expr - #TestConstantD Constant

Each disambiguating predicate checks whether the next imput symbol is
an identifier of the expected class (variable, function or constant). Since
the predicate symbols are considered distinct terminals by the parser

generator, the productions are trivially LL({1).

For each non-terminal, A, we can build a table containing all the disambi-
guating predicates that appear in preductions that have A as the left
hand side. This table represents the set of predicates that need to be

evaluated when A is expanded (ie., when A reaches the top of the
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unexpanded symbols stack). Each disambiguating predicate associated
with A is evaluated in turn. 13 If more than one predicate is true, we have
an error (since LL(1) requires a unique prediction of what production to
apply). If exactly one predicate is true, we can insert the corresponding
predicate symbodl into the input, forcing the desired production to be
chosen. If no predicate evaluates to true, we simply continue with the
normal parsing cycle (and either select a production not involving a

predicate or recognize a syntax error).

Handling Predicate Lookakeads in LL(1) Parsers

It is possible that a disambiguating predicate can appear as lookahead for
a production other than the one that contains it. For example, we might

heve

A-BCD
A-=xyz
B-o>#lab
B-#2ac

Now #1 and #2 appear in A's lockahead set, although they are intended to
disambiguate B. As discussed earlier, we wish to delay evaluation of
predicates until we are ready to match the production in which they
occur. We therefore need a means of ignoring all predicate symbols other

than those related to the non-terminal being expanded.

13Since predicates are side-effect free, the order of evaluation is irrelevant.

14As an optimization, we can simply pop A, and replace it with the selected right hand
side less the predicate symbol.




-12-

Let us define non-local predicates to be all predicate symbols thal appear
as lookaheads for some non-terminal A, but which don't begin any pro-
duction with A as the lefthand side. Analogously, local predicates are
those that begin productions belonging to the non-terminal under con-
sideration. Our goal is then to eliminate non-local predicates as looka-

heads when expanding a given non-terminal.

We first note that a given production canmnot contain both local and non-
local predicates as lookaheads (since a local predicate implies that the
production begins with a terminal — the predicate symbol). Thus, &ll the
productions associated with a given non-terminal can be partitioned into
those that employ a local predicate and those that don't. The latter class
can be distinguished on purely syntactic grounds (else disambiguating

predicates would have been added).

We limnit our consideration to those productions that don't employ a local
predicate (and thus may have non-local predicates in their lookahead
sets). Only one of these productions (at most) can derive & (otherwise
they couldn’t be distinguished on syntactic grounds). If the production
A-o can derive ¢ (ignoring predicate symbols) and has a non-local predi-
cate in its lookahead set, we will make it a "default production”. That is,
it will be predicted if a given lookahead predicts o other production.
This prediction is feasible because a lockahead that predicts no other
production must either be a correct lookahead for A-»«, or an error syin-
bol. In the latter case, a syntax error will be discovered later when the

lookahead symbol can't be matched against the stack of expected sym-



bols.

If a production A-f can't derive ¢, and has a non-local predicate in its
lookahead, we need only compute the set of terminals (ignoring predi-
cates) that can begin strings derived from f. That is, we compute

First(g) where
First(g) = {acV,|=>"a - - - }

To do this computation, we first read in the productions of the grammar
(this information is produced as output by LL(1) parser generators) and
eliminate all disambiguating predicates and action symbols. We then
compute the set of non-terminals that can derive & (either directly or
indirectly). This computation can be done iteratively: First mark non-
terminals that derive & directly, then mark nonterminals that directly
derive a sequence of marked non-terminals. This iteration is continued

until no more non-terminals can be marked.

To compute First sets, we can employ the following algorithm:'®

Algorithm 1 {Computation of First sets}

[1] Start with First(A) = {X|A=X - - - §.

[2] fA-Y; - YguZ - - and Y;: - Yy derive e
(i.e., are marked non-terminals)
Then add Z to First(A).

[3] Repeat until no more additions to First set can be made):
If some non-terminal B € First(A)
Then First(A) := First(A) y First(B)

18This computation is equivalent to taking the transitive closure of a binary relation.
See, e.g., [12].
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The above computations are easy to include in an LL(1) post-processor.
For example, the e-marking and First compulaticns were included in a
Pascal post-processor to the LL(1) generator described in [2]. This post-
processor reads the parse tables produced by the LL(1) generator and
removes from them all predicates that appear as non-local lookaheads.
Only 150 lines of code were needed for the post-processcr, and a full Pas-

cal grammar could be processed in 5 seconds on a Vax 11/780.

Preserving LL(1)-ness

One final point to be considered is whether the inclusion of disambiguat-
ing predicates in one production can cause prediction conflicts to appear

in other productions. This canin fact happen. Comsider, e.g.,

S+»-ABS
A->Bx
A-c¢
B¢

This grammar is LL(1). If we change the B producticn to B - #, then the
two A productions have a prediction conflict {on #). Fortunately, this
problem can arise only if we add a predicate symbol to a production of
the form C-a, where C derives only ¢ (if C derives any terminals symbols,
then these too would induce prediction conflicts). Since a non-terminal
that derives only & clearly never needs disambiguation, we will simply
require that contextual predicates (implemented as action symbols),

rather than disambiguating predicates, be used in such situations.
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11(1) Checklist

A convenient way to employ predicates in an LL(1) grammar is te first
add predicate symbols to a context-free grammar. Then the following
checklist can be used to determine how to implement the predicates

within the framework of an LL(1) parser generator.
(1) All contextual predicates can be implemented as action symbols.

(2) Disambiguating predicates that are local to a production are imple-
menied as terminals. When the corresponding left hand =ide is
expanded, local disambiguating predicates are evaluated. If any
evaluates to true, the corresponding predicate symbol is inserted

into the input.

(3) Nonlocal disambiguating predicates are removed by using Algo-
rithm 1 to compute the lookaheads that predict thé application of a

particular production.

(4) Predicates can introduce parsing conflicts only if a disambignating
predicate (implemented as a terminal) is added to a production
whose left hand side derives only ¢. Since disambiguation is never
needed in such a situation, the disambiguating predicate can be
replaced by a contextual predicate (implemented as an action sym-

bol).
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Adding Predicates to LR-type Parsers

We now investigate how to add predicates to the LR family of parsers
(SLR(1), LALR(1), LR(1)).?® In LR-type parsers, action symbols are much
more restricted than in the LL(1) case. In particular, they may only
appear al the extreme right of a production, and are invoked upomn recog-
nition of a production.” Predicates that appear anywhere except at the
extreme right can be implemented as either terminal symbols, or as new

non-terminals that derive only €.

Implementation of predicates as non-terminals is attractive in that predi-
cate evaluation can be triggered by the usual production recognition
mechanismn. Further, these non-terminals cause no lookahead probiems

because they generate only .

Unfortunately, not all predicates can be implemented as non-terminals.
Parsing conflicts cau be introduced (e.g., if various predicates, in
different produclions, need to be evaluated at the same time). Further,
such nor-terminals are generally not useful as disambiguating predicates
(since they add, rather than remove, reduction actions in a state). We
therefore will concentrate on the implementation of predicates as termi-
nal svmbocis, always assuming that action symbols or non-terminals are

ased where feasible to implement contextual predicates.

8See {8] for a review of the fiundamental cencepts of LR parsing.

"This restriction on action symbgcls is necessitated by the fact that LR-type parsers
delav production recognition until the entire right hand side is examined.
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As in the LL(1) case, we will evaluate predicates when they can be read
(i.e., shifted) as part of a production currently being matched. LR-type

parsers allow more than one production to be under consideration at the

same time.!8 This possibility imnplies that more than one predicate might
evaluate to true, indicating that a set of productions are still valid candi-
dates for recognition. This possibility is exploited, e.g., in G, which uses

disambiguating predicates to monitor which options can still be matched.

After predicates are added to a grammar, we can analyze each parse
state to determine what predicate symbols can be shifted from that
state. This analysis represents the set of predicates that must be
evaluated whenever that state is at the top of the parse stack. Some-
times, the predicates are mutually exclusive. If they are not, we require
some means of indicating to the parser what set of predicates is true.
There are two ways to indicate this set. The firstis to create new symbols
that represent all the various predicate combinations that mmight be

evaluated, and found true, at the same time. For example, we night have

S—»Aax

S»Bay

A->#1Db

B-+#2b
If the predicates represented by #1 and #2 could both evaluate to irue,
we would introduce a new symbol, #{1,2], which represents the case in

which both predicates are true. Wherever #1 occurs, a new production,

with #{1,2} replacing it, is created, and a similar process is performed for

18This is the reason why LR-type parsers can handle a broader class of grammars
than LL-type parsers.
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#2. Thus, the above grammar would become

S~»Aax
S»Bay
A-#1Db
A- #1,21b
B-»#2Db
B~ #{1,2} b

Now depending on predicate evaluation, #1, #2, #{1,2} or no predicate

symbol at all is inserted.

Naturally, depending on how many predicates can be simultaneously
true, the size of a grammar can grow exponentially. In fact, we do not
recommend that this approach be used in practice. It is valuable, how-
ever, in detecting problems induced by predicates that aren’t mutualiy
exclusive. Thus in the above example, we would have a parsing ambiguity
(a reduce-reduce conflict) if both predicates were true. This difficulty
could be detected by attempting to create a parser for the expanded

gramimar.

If we know that no parsing conflicts can arise if multiple predicates evalu-
ate to true, we can utilize the original grammar and parse tables. The
trick is to maintain the parse stack not as a stack of states, but rather as
a stack of sets of states. If more than one predicate evaluates to true, we
push successors under each of the appropriate predicate symbols. All
states at the top of the stack must agree to shift or do the same reduc-
tion (else the extended grammar would have contained parsing conflicts).
While parsing G;, for example, we might have a number of states at the

top of the stack, each waiting to shift a particular option.
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Sometimes rewriting a grammar a bit allows us to eliminate the possibil-
ity of multiple predicates evaluating to true. For example grammar Gy,

could be rewritten into

OptionList -» OptionList , Opticn
OptionList » Option

Option - A #ANotUsed
Option - B #BNotUsed

Here we test whether an option has previously been used affer it is
matched. Clearly this form of G, is equivalent to the original, and only

one predicate is evaluated at any time.

Handling Predicate Lookaheads in LR parsers

As in the LL case, we will remove from the parse table predicate symbols
that appear as lookaheads for reduction actions. Only predicates that
indicate shift actions will be retained, and these actions will cue predi-

cate evaluation.

Lookahead calculation can be quite involved in LE-iype parsers, particu-
larly in the LALR(1) and LR(1) cases. We won't attemnpt to duplicate these
calculations. Rather, the tables produced by an LR-type parser generator
(particularly the action and gofo tables) will be analyzed to infer the
lookahead symbols (excluding predicates) that indicate a reduction in a
given state. This kind of calculation can be conveniently incorporated in
a post-processor to a LR-type parser generator, allowing the use of predi-

cates without altering existing software.
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LR-type parsers assume a finite number of parse stales, denoted
$p, - *,Sm, and a vocabulary V consisting of terminal symbols (V;) and
non-terminal symbols (V,). The parser action table maps a state s and a
terminal symbol a (denoted Action[s,a]) into one of four classes of

actions: Shift, Reduce A-»«, Accept, Error.

The Goto table maps a state s and a symbol X (denoted Goto[s,X]) into a
new state t, the successor of s under X. The Goto table represents a par-

tial function, as a state need not have successors under all symbols.
From the Goto table, we can create an ancestor function, A, that maps
states to the set of states that are their immediate predecessors. That
is,

A(s) = {t|Goto(t,X) = s for XeV}

This definition can be generalized to a set of states, S:

A(S) = UA(s)

s€S

Goto is extended to a set of states in an analogous manner. The set of n-

th ancestors of a set of states, A(S,n), is defined as:

A(S,0) S
A(S,1) = A(S)
A(S,n+1) = A(A(S),n)

Finally, let R(s) be the set of all productions that might (for some looka-
head) be recognized in state s. This information is readily extracted from

the Action table.

Assume now that for some state s and some predicate #p we have

Action[s,#p] = Reduce B~»B. Some states have the property that the only
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nom-error action associated with them is the reduction of a particular
production. In such states lookahead need not even be exarnined,'® so
the presence of a predicate in the lookahead can be ignored. If there is
choice of actions however, we must determine what "real” (i.e., non-
predicate) lookaheads are appropriate for a given reduction (say B-g in
state s). To make this determination, we first decide what states we

might reach after the production is recognized. This set is defined as
Reduce(s,B-g) = Goto(A(s, |B8]).B)

where |8| represents the size (or length) of the string B.20 That is, we first
determine the set of states possible after 8 is reduced (A(s,|§])), then we

obtain the set of states possible after the left-hand side, B, is read.
Given this set of states, three situations may arise:
(1) A terminal may be read (any such terminal is a valid lookahead).

(2) A predicate symbol may be read (with valid lookaheads following this

predicate symbol).

(3) Another reduction may be applied (with valid lookaheads read after
this reduction).

To model these possibilities, we define a closure function, Close(S). It
takes a set of states and defines the set of states that are reachable from
that set. Any terminal that can be read from Close(S) is a legal looka-

head (since it could be accepted as the next input symbol). Define

19g,ch states are often eliminated as a space optimization.

BIReduce is extended to sets of states in the obvious manner.
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Goto#(S) = {siteS and s = Goto(t,#p) for some predicate #p}

Goto#(S) is the set of states that can be reached from states in S after

reading a predicate symbol. Now

Close(S) = U Close(Reduce(S,B-8)) U Close(Goto#(S)) U S
B-geR(S)

The states reachable after reducing A-»a in state s are
Close(Reduce(s,A=a )

Define
Read(S) = {acV,|Action[s,a] = Shift for seS!?

Read(S) represents all the terminal symbols that can be read from states
in S. Then the "real” lookaheads (excluding all predicate symbols) that

indicate Reduce A~»o in state s are
Read{Close(Reduce(s,A»a)))

The above lookahead calculations are fairly easy to implement, especially
in languages such as Pascal that allow set manipulation. A postprocessor
for the LALR(1) parser generator described in [1] required 330 lines (in
Pascal). It was tested on a Pascal grammar containing 191 productions.
The grammar was augmented with contextual predicates to enforce
semantics and a few disambiguating predicetes to resolve parsing
conflicts. Where possible, contextual predicates were implemented as
action symbols (i.e., those that appeared at the extreme right end of pro-
ductions). For testing purposes, all other predicates were implemented
as terminals (although some conlextual predicates could have been

impiemented as pon-terminals). A total of 41 precicate symbols were
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added, representing 17 distinct predicates. The postprocessor ran in 66

seconds on a Vax 11/780.

A predicate symbol cannot appear as a lookahead for a reduction action if
it immediately follows a terminal. Further, if a (non-predicate) terminal
symbol, t, immediately follows a predicate symbol, then the closure algo-
rithm described above isn’t really needed. Rather, if the predicate sym-

bol appears as a lookahead for a reduction action, it can be irnmediately

replaced by t.2! Therefore the only situations in which the closure algo-
rithm is needed are those in which a predicate symbol is bracketed
between two non-terminals, or between a non-terminal and an end of the
right hand side, or in which the predicate symbol is the entire right hand

side (and thus is bracketed by both ends of the production).

"Bracketed" predicate symbols appear to be comparatively rare (they
only occurred 5 times in the Pascal gramnmar described above). If a
grammar can be rewritten to remove bracketed predicate symbols, then
the closure algorithm need not be used. In the Pascal grammar
described above, all § occurrences of bracketed non-terminals were
easily removed. For example, the following production was used to gen-

erate infix expressions involving '+’ and '-".
<SIMPLE EXPR> - <SIMPLE EXPR> <SIGN> #check arith or_set <TERM>
Substituting for <SIGN>, we created the following equivalent productions.

<SIMPLE EXPR> - <SIMPLE EXPR> + #check_arith or_set <TERM>
<SIMPLE EXPR> - <SIMPLE EXPR> - #check arith or_set <TERM>

BlRecall that all predicate symbols are essumed to be unique.
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The closure algorithm should be viewed as a means of accommodating the
widest class of predicated LR grammars. Our experience, including the
work described in [13], indicates that bracketed predicate symbols can
easily be avoided. This allows simpler (indeed, essentially trivial) post-

processors can be employed.

In the lookahead calculations described above, the closure function may
include states that aren’t actually reachable. For example, given an é&-
production, B-¢, Reduce(s,B-e) = Goto(A(s,|e]), B) = Goto(A(s,0),B) =
Goto(s,B) = §'.

Now when s' is closed, if Reduce(s’,D-0) is computed for d#¢, then all
ancestors of s (rather than just s) are included. This addition can cause

unreachable states to be included.

In practice these unreachable states do not appear to cause any prob-
lems (i.e., no parse conflicts seem to be introduced by including looka-
heads from the extra states). It is possible to extend the above algo-
rithms to exclude the unreachable states. The idea is to compute
sequences of states representing possible uppermost stack sequences.
Goto extends the sequence by appending a state, and the ancestor func-
tion removes states from the sequence. In the Close function we exploit
the fact that no state need ever be repeated in a sequence.?? Further,
closure of a set of sequences of the form {sjt,sgt, - - 5t where
Sq,Sp, * * * Sk represent all ancestors of t can be replaced by closure of {tj.

(If all ancestors of t are to be incIuded, individual sequences involving

2] o , only cycle-free paths through the underlying CFSM need be considered.



each ancestor of t are not needed).

Using these observations, an extended postprocessor can be imple-
mented. Ours required 520 lines in Pascal (vs 330 lines) and required 200
seconds (vs 66 seconds) to remove predicate symbols from lookaheads
for our extended Pascal grammar. In all tests both algorithms computed
exactly the same lookaheads, and we conjecture that the extended algo-

rithm will rarely, if ever, be needed in practice.

Avoiding New Parse Conflicts

As in the LL(1) case, it is possible that the inclusion of a predicate symbol
in an e-production can introduce a parsing conflict. For example, con-

sider

(svli =R OHRI RIS
A IR
m o o>
e A A
ogmao

Q-e¢
R-¢

This grammar has a parsing conflict involving A-¢ and B-e (both have a
lookahead of d). This conflict could be resolved by intreducing a disambi-
guating predicate in the A production, obtaining A-#p. Now, hcwever, we
have a new conflict involving Q@& and R-¢ (both now see #p as a looka-
head). This isn't a "real” conflict and correct lookaheads will be seen
after predicate symbols are purged as lookaheads for Reduce actions (by

the post-processor). The problem is that the parser generator will see an
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apparent conflict and may not even generate tables (because of apparent
errors)! We may need someway to "trick” the generator into seeing an
acceptable grammar. A way to implement this trick is to add new
"dummy" disambiguating predicates that will disambiguate the apparent
lookahead conflicts. Thus, in the above example, two predicates, #pl and

#pR, are added to productions 3 and 4 to obtain:

S+Ade
S-»>Bdf
S->Q#plAb
S->R#pRAc

A-#p
B¢

Qe
R—+e¢

These two predicates will always evaluate to true, since lookahead (once
predicate symbols are removed) suffices to make the necessary parsing
decisions. In fact, since these dummy predicates were added solely to
"rick” the parser generator into generating tables, we can even elim-
inate them completely. This elimination is done by merging the states
(and parsing actions) that were split by the inclusion of the dummy
predicates. That is, if we have states s and s’ where Goto(s,#pl) = &', we
can merge s and s' into one state, by merging Goto and Action table
entries. This merge is safe since we know that all parsing decisions can

be made without the evaluation of these dummy predicates.



IR Checklist

A convenient way to employ predicates in an LR-type grammar (i.e.,
LR(1), LALR(1), SLR(1)) is to first add predicate symbols to a context-free
grammar. Then the following checklist can be used to determine how to
implement the predicates within the framework of an LR-type parser gen-
erator. The simplest alternatives are listed first, and these will suffice in

the vast preponderance of cases.

(1) Contextual predicates that appear at the extreme right end of a pro-

duction can be implemented as action symbols.

(2) Contextual predicates that appear elsewhere in a right hand side can
be implemented as non-terminals that derive only ¢ or as terminals.
Non-terminals can be used if no parsing conflicts are introduced; oth-

erwise terminals should be used.

(3) Disambiguating predicates shc_)uld be immplemented as terminal sym-

bols.

(4) Terminais that implement predicates can be removed as lookaheads

for reduce actions as follows:

(a) If a predicate symbol follows a (non-predicate) terminal, then
the predicate symbol can't appear in the lookahead of a reduce

action.

(b) If a (non-predicate) terminal follows a predicate symbol, then all
occurrences of the predicate symbol as a lookahead for a reduce
action can be replaced by the terminal that follows the predi-

cate symbol.




(c)
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In all other cases, the predicate symbol must be bracketed by
non-terminals and/or the ends of the right hand side. In these
cases, the grammar can either be rewritten to remove brack-
eted predicates or the closure algorithm can be used to elim-

inate predicates as lookaheads for reduce actions.

(5) If more than one predicate can evaluate to true at the same time:

(a)

(b)

(c)

New, composite predicate symbols that represent possible com-
binations of true predicates can be added. This construction
can greatly expand the size of a grammar, but is useful for
locating parsing conflicts not resolved by disambiguating predi-

cates.

The LR parser driver can be modified to maintain a stack of sets
of parse states. If the predicated grammar contains no
unresolved parsing conflicts, then lookaheads and/or additional
predicates will guarantee that all states in a set will agree on the

same action (shift or reduce a particular production).

The grammar can be rewritten to guarantee that only one predi-
cate can evaluate to true at any point. (From our experience

this is usually easy to do).

(6) If the addition of predicate symbols (implemented as terminals)

introduces new parse conflicts, then “dumimy predicates” (which

always evaluate to true) can be added. As an optimization, after

parse tables are generated, states that were split by the dummy

predicates can be merged (along with their corresponding action



table entries).

Conclusion

Context-free grammars and parsers have proved to be remarkably useful
tools in the construction of compilers and language processors. Predi-
cates represent a simple way to extend the range and sccpe of these
tools. The techniques we have presented allow the use of predicates with
existing bottom-up and top-down context-free parser generators. We
believe these techniques are simple, efficient and quite general. They
also may be used within a parser generator to extend the class of gram-

mars that can be accommodated.

As a final point, the addition of predicates to context-iree grammars can
open entirely new application areas. For example, most of the results
presented in this paper are the result of work in automatic code genera-
tion [13], [14], [4]. Here context-free productions represent "templates”
that describe various target machine instructions. Since real computers
often have numerous instructions that can be used to effect the same
result (e.g., add, add immediate, increment by one, ete), predicates are
extremely useful in defining how and when a given instruction will be
chosen. It is this ability to "wire in" extra information in a production
that makes the application feasible. We believe that any application area
that utilizes context-free parsing techniques may benefit from the

enhanced capabilities that predicates provide.
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