PROCEDURES FOR PARALLEL ARRAY PROCESSING
ON A
PIPELINED DISPLAY TERMINAL

by

Pat Hanrahan

Computer Sciences Technical Report #490

December 1982

Procedures for Parallel Array Processing
on a
Pipelined Display Terminal.

Pat Honrahan

Image Processing Laboratory
Computer Sciences Department
University of Wisconsin
Madison, Wi.

Abstract

A variety of special purpose array processing architectures — pipelines,
two-dimensional arrays of processors and recently pyramiids — have been
developed for image processing applications. Although the variety often
sterns from economnic considerations, some rather subtle problems in
computational complexity depend on the ability to access information
stored in neighboring array locations. The original architectures often
have fixed, immediate neighbor addressing; more recent architectures
have more flexible, tree-like addressing.

This paper introduces a package of procedures written to emulate
different array architectures by taking advantage of the flexible address-
ing of a pipeline processor. The system processes square arrays of 512 by
512 1-bit elements, allows arbitrary relative spatial addressing, and the
ability to selectively freeze local processing. The design issues and im-
plementation is discussed and several examples are described. "

Keywords — Array Processing, Pyramids, Programming Systems
CR Cutegories— 1.4.10 [Image Processing]. General— image processing

software, 1.5.5 [Pattern Recognition]: Implementation— special architec-
tures.

Page 1

1. Introduction

Techniques of parallel processing hold great promise of increasing the
speed of common operations in image processing. Many calculations applied
to images are pixel intensive — they are applied to every location in the im-
age, and repetitive — that is, they are the same or similar at every pixel. Be-
cause typical images are very large, performing even the simplest operation
can require a large amount of computational resources and therefore time.
For this large class of operations the use of an array processor, a machine
that simultaneously computes a local function al every cell over the entire
image, can speed the application of the algorithm tremendously.

The University of Wisconsin Image Processing Laboratory (uwipl) has
been working to develop parallel algorithms and hardware for these tasks.
This work has revolved around a highly parallel computational model for
computer vision, the recognition cone, developed by Leonard Uhr[1972].
Several serial implementations of this paradigm have been programmed, the
latest and most robust is the system, JCON, developed by Larry
Schmitt[1981]. At a lower level the research has been at two fronts. At the
software level a new parallel language, PascalPl (Pascal Parallel Language),
was designed to aid in the writing of larger more complicated parallel pro-
grams [Uhr, 1981; Stansbury and Uhr, 1980]. At the hardware level several
simulations of existing array processors have also been developed. These in-
clude a Clip4 and Dap machine language interpreter [Stansbury, 1980].
Lastly, a new design for a 16x16 combination SIMD-MIMD array processor has
been developed [Uhr, Lackey and Thompson, 1982].

Unfortunately, all the above projects although emphasizing parallel
computation are still confined to a serial computer. For this reason the
development of an emulation of an array processor using the color display
terminal located in the University of Wisconsin Image Processing Laboratory
was undertaken. The emulator provides a set of procedures embedded in
Pascal (or C) that implement the instruction set of a true hardware binary
array pracessor. This image processor although not truly hardware parallel
contains a pipelined arithmetic logic unit which can apply standard arith-
metic and logic functions to two input data streams and store the output
into an image buffer. At the instruction or program level the machine func-
tionally resembles an array of processors, 512 pixels square, with an instruc-
tion cycle time of 30 msec. The best current array processors are much
smaller (the Mpp, for example is 128 square) but significantly faster (the
Mpp instruction cycle time is 100 nanoseconds). Despite this, for a large
class of algorithms the processor can execute an appropriate parallel pro-
gram at a much faster rate than a conventional serial computer {perhaps
40-100 times that of a Digital Equipment Corporation VAX 11/780). Much
more significantly because of the flexible addressing modes of a pipelined ar-
chitecture, interconnections between processors can be dynamically
reconfigured. This reconfigurability makes the pipeline a very desirable
machine for the development of a testbed for parallel algorithms for image
processing.

2. Design Considerations

Several key issues were addressed during the design of this system.
The general goal was to emulate a set of instructions common to existing ar-
ray processors, particular attention being paid to the Clip4 (designed by M.
Dufi|Duff, 1978]), the Dap (designed by S. Reddaway[Reddaway, 1978]), and
the Mpp (designed by K. Batcher[Batcher, 1980]). These are all examples of
binary array processors since most of their operations act on single bit

Page 2

planes (although they often contain special capabilities to expedite n-bit
operations). These architectures allow standard arithmetic and logic opera-
tions to execute in parallel over a two-dimensional array of data. In addition
they contain powerful neighborhood addressing to fetch and store data at
adjacent memory locations and the important computational ability to
freeze or conditionally execute instructions at different locations in the ar-
ray. Instead of modeling any single instruction set we choose to extract the
lowest common denominator based more on essential functional capabilities
rather than specific hardware details. This approach also emphasizes the
commonality of parallel array processing whether it be on true multiple pro-
cessor architecture or embodied in an efficient pipeline. v

The second major design goal was to investigate the variations on the
local-neighbor interconnections of the above array processors to include
power of ZKlette, 1981] and/or pyramid| Tanimoto, 1981; Dyer, 1982] topolo-
gies now being proposed. By augmenting the local interconnection topology
with these addition links the diameter of the network is reduced, reducing
the time complexity of several region-level image processing algorithms
from O(n) to O(log n)[Dyer, 1979)]. This is possible with a pipeline because
neighbor addressing is performed by scrolling the image plane relative to
the processor (since the relative scroll can easily be set dynamically to any
distance).

The implementation of the above ideas requires several fundamental
capabilities:

(1) Being able to apply the necessary arithmetic and logical operations to a
two-dimensional array of data.

(2) Being able to locally freeze, or inactivate, instruction execution.

(3) Being able to perform computations involving data at different relative
spatial locations.

Several commercially available pipelined image processors provide the capabili-
ties (although some difficulties are encountered, see the section on the imple-
mentation).

The next section describes the overall organization of the array processor
and its instruction set. Following this is a section containing several example
programs illustrating some common parallel image processing algorithms con-
cluding with an outline of a low-level two-dimensional pattern-matcher based on
probabilistic productions or transforms used in a recognition cone[Uhr, 1872,
Schmitt, 1981]. Lastly, a short description of the implementation is included for
the curious.

8. Overall Organization

The emulator provides the user with what is conceptually a large two dimen-
sional array, 512 by 512, of one bit processing elements all of which execute the
same instruction (the so-called single-instruction multiple-data stream or SIMD
architecture). At the global level we can think of the machine as a series of
planes; a plane of processors along with a set of memory planes. Instructions
operate simultaneously over an entire plane of data because each processor is
executing the same instruction. Normally, each processor receives data from
the location in the plane immediately under it, but optionally, by specifying a re-
lative x, y scroll an entire memory plane is shifted relative to the natural state
and therefore the processor receives data from a neighboring location.

Page 3

ACTIVE
STATUS

ACCUMULATOR

ALU

MAIN
MEMORY

Figure 1. — Local processing element.

At the cellular level each location has a 1-bit processing element and 24 1-
bit local memory cells (see Fig 1). The processing element is essentially an ar-
ithmetic logic unit or alu since the entire machine uses the same control unit
(in fact, for all intents and purposes the control unit is the host computer). The
memory locations are numbered from 0 to 23. Right of these location, numbers
16-23, by default belong to the accumulator. The number of bits in the accumu-

lator is greater than one to speed arithmetic calculations in the array.! All
unary operators operate on the accumulator and all binary operators derive one
of their inputs from the accumulator. The results of these operations are then
output back into the accumulator. Arithmetic operations involving the accumu-
lator treat them in n-bit 2's complement form. In addition to the 8 memory lo-
cations devoted to the accumulator location 0 is set aside as a temporary
scratchpad register. It is not wise to store any data in this cell since certain in-
structions will destroy its contents.

In addition to the local memory each processor contains three special re-
gisters, the status register, the active register and the display register. The con-
tents of the active register determines whether the processor at this location in
the array is "'on" and hence whether the next instruction will be executed at this
position in the array. If the value in this register is "true'' then the instruction
will be executed, if it is ‘false” than the instruction will not be executed.

The status register contains the results of comparison operations. More on
this later.

1In fact the number of bits in the accumulator is variable. Note the |[bits instruction.

Page 4

Finally, because the emulation is being performed on a display terminal it is
possible to see the contents of a memory plane. At any time three planes are
continuously being shown; these are coded in different colors. The contents of
the active register are shown in blue. The contents of the status register are
shown in green. The display register is set to a memory location whose contents
are then shown is red. Any of the 24 main memory locations can be stored in
this register.

4. Instruction Set

The basic instruction set is divided into several major classes. These in-
clude tramsfer instructions, binary operators, unary operators, comparison
operators and a set of miscellaneous instructions.

4, 1 Transfer instructions

The simplest operations are the group of transfer instructions. These in-
structions all operate independently of the contents of the active register. The
complete source plane is copied to the destination plane, as a result the con-
tents of the destination are completely overwritten, the contents of the source
remain unaffected.

The most general instruction is the Jltra® instruction which transfers a
source plane to a destination plane with a relative scroll. The most common is
the |jmov instruction which is the same as |jtra but without the scroll. Two spe-
cial instructions, ||ida and ||sta, load and store the lowest bit in the accurmnulator.
[frz transfers its source to the active plane, |[iff transfers the contents of the
status plane to the active plane and ||ffi transfers true to the active plane.

This group of instructions is unique in that they operate irregardless of
whether the processor is active or inactive.

4.2. Binary operators
These operators are all of the form:
accumulator <op>= <source> <dx> <dy>

The accurnulator is combined with the source plane scrolled by the amounts
"dx" and "'dy"’. The directions of the scrolls are in raster coordinates, with posi-
tive x moving rightward and positive y moving downward on the display.
'Source’ may be any memory location. These operators, unlike the transfer in-
structions, act in the areas of the image which have the corresponding active bit
set to 'true”. If this bit is "false’’, then the contents of the accumulator are
unaffected, or protected, by the operation. All operations use the current preci-
sion of the accumulator, by default B-bits. This, however, can be changed with
the llbits instruction. It takes as its argument the size of the accumulator, that
is number of bits which ranges from 1 to B. On the other hand the source is al-
ways only 1 bit. Thus before source can be combined with the accumulator it is
bit extended to match the precision of the accumulator. During this process all
the extended bits are set to 0. The exceptions to this rule are the immediate
mode operations. With these instructions the operand value is either a
prespecified constant or 0, depending on whether the source is true or false,
respectively.

One of the simplest operators is the assignment operator, [|lasg, which as-
signs the source to the accumulator. This is very similar to a Jlda instruction ex-

8 Double vertical bars are used to represent a parallel instruction. This nice mnemonic derived
from elementary geometry texts was originally suggested by Len Uhr in PascalPl

Page 5

cept that the assignment occurs only in the active regions. The logical opera-
tors are Jlor (logical or), |lorn (logical or with the negation of the source), |land
(logical and), |ladn (logical and with the negation of the source) and |jxor (ex-
clusive or).

The final two instructions are the arithmetic operators, |ladi and |lsbi. These
operators are the only two that use immediate mode addressing. They can be
used to add or subtract a constant depending on the contents of the source. One
unfortunate problem with the current implementation is that there is no way to
test for an overflow or underflow condition.

4.3. Unary operators

The unary operators affect only the accumulator. As with the binary in-
structions these instructions act only in the active regions.

Currently there are the following unary instructions. [lclr clears (sets to
zero) the accumulator; [jset sets (i.e. assigns one) to the accurnulator and [jcom
forms the one's complement of the accumulator. In addition the following
operators are being completed: llshl shifts the contents of the accumulator left
one bit, and |jshr shifts the accumulator right one bit.

4.4, Comparison operators

The comparison instructions compare the contents of the accumulator to a
given value using the named relational operator. As mentioned previously the
accumulator contains a n-bit (by default B) 2's complement signed number.
Comparisons can either be signed or unsigned. If the result of this comparison is
true then the bit in the status plane is set to 1, otherwise the status plane is set
to 0. The comparison takes place only at those positions that are active. The
status plane is set to false wherever the active plane is false.

The following comparisons are possible: |leq (equal), |lne (not equal), |lge
(greater than or equal), [lle (less than or equal), |lgt (greater than), [lit (less
than), Jlugt (unsigned greater than), |juge (unsigned greater than or equal), |jalt
(unsigned less than), and |jule (unsigned less than or equal).

4.5. Miscellaneous instructions

The last group of instructions perform a variety of functions. The most im-
portant is the boot instruction, which initializes the system. This instruction
must be executed before any other instruction

A very useful instruction is the Jltst instruction. This tests whether the en-
tire operand plane is 0. If there is a bit set al any location of the plane then the
result of this is false. This instruction is different than all the others in that it is
a function which returns a boolean value.

Another very useful instruction is the llshw (show or display) instruction.
This instruction sets the display register to indirectly point to an operand
memory plane. The contents of this plane are then visible in red on the display
monitor.

The entire instruction set is summarized in the table in Appendix A.

5. Example Programs

Perhaps the most common operation in low-level image processing is the
computation of a local function of pixels surrounding a center pixel {often the
neighborhood is restricted to immediate 4, 6 or 8 connected neighbors by the
actual physical links between processing elements, in this ernulation this res-
triction is not enforced). The power of these spatially dependent functions lies

Page 6

in their ability to filter images, or equivalently correlate or match features in an
image with features we wish to detect. Such an operation is mathematically
called shift-invariant, since the function computed does not depend on the loca-
tion in the array. The mathematical property of shift invariance means simply
that we need to search the entire image for the feature — notice that such an
operation is explicitly parallel.

5.1. An Edge Detector

As an exarnple, consider the following non-linear function which returns the
result of looking for ‘'edges".

procedure edge(sre, dst : memory)
begin

clr;

orn(sre, 1, O%:

orn(src,-1, 0);

orn(sre, 0, 1);

orn(sre, 0,-1);

and(sre, 0, 0);

sta(dst);

end;

In all the examples in this paper we will show the array instructions embedded in
a high level pascal-like language. This reflects the fact the array processor is
controlled by a single serial control unit — this unit is in fact a general purpose
computer with a much more powerful set of instructions then the array proces-
sor. This interplay between serial and parallel code is very powerful, since it
permits the use of a high-level programming language to control the execution
of the parallel statements. Because there is only a single serial control unit it
can be much more powerful. This arrangement justifies in some sense the sim-
plicity of the individual array processing elements since they inherit cornplexity
from the host computer.

This is an example of a very simplistic edge detector. Edges are signalled
whenever there is a on-off transition along any of the four principal directions.
First notice that we start the system using the boot instruction and can see the
results by displaying the output of the procedure '‘edge'’ using |lshw. Memory
locations are simply referred to by their number, in the above example we as-
sume the image has already been input into location 1 (Procedures to input and
output memory planes are described in Appendix B). The edge function is com-
puted using a sequence of logical operators. The complemnent (negation) of the
four neighbors are "‘or''ed together by shifting each along the horizontal and
vertical directions. At this point the accumulator will be set if any of these
neighbors is 0. To complete the computation we ""and'’ the accumulator with the
center pixel.

Notice that the algorithm is executed in time proportional to the size of the
local neighborhood and is independent of the size of the array (providing the ar-

Page 7

ray to be processed fits within the limits of maqéhine). On a more traditional seri-
al computer this algorithm would require O(kn®) time, where = is the dimension
of the array and k is the size of the neighborhood.

5.2. A Binary Region Filling Procedure

Region filling or determination of connectivity is another common use of an
array processor. The goal of this procedure is to label all points that share a
certain property, which without loss of generality we can denote as having the
value 1, that are connected to a seed point. This algorithm is embodied in the
following procedure. '

procedure flood(input, label : memory);

begin
repeat
mov(label,old);
1da(label);
or (label,-1, 0);
or (label, 0, 1);
or (label, 0,-1);
or (label, 1, 0);
and(input, 0, 0);
sta(label);
xor(old, 0, 0);
until ||tst;
end;

The “input'’ plane contains 1's wherever the image has the desired property.
The “'label’” plane contains isolated ‘'seed” points. The algorithm above dilates
the *'label” plane by setting points that neighbor, that is, are connected to la-
belled points and are part of the input region. The procedure terminates when
no additional points can be added to the labelled region. This condition is tested
for by '‘exclusive-or'ing the label plane before and after a single iteration and
testing for the changes indicated by 1's in the result. As mentioned above this
can be done with the function |[tst since it will return false if a 1 exits anywhere
in the accumulator. This algorithm, unlgfe the last example, cannot be formulat-
ed to run on array processor with O(n*) speed improvements over the conven-
tional serial computer.

5.3. AParallel Program for the Game of Life

As mentioned in the introduction, the accumulator contains more than a
single bit to speed arithmetic operations. These arithmetic results can be furth-
er manipulated using the comparison operators. The use of these instructions is
shown in the following example, which implements John Conway's gamne of Life.

Page B

procedure Life;
const
world = 1; eq2 = 2; eq3 = 3;
function alive : boolean,
begin
alive := ||tst
end;

’

procedure generation;
procedure neighbors;
begin
clr;
adi(world,1,-1, 1);
adi(world,1, 0, 1)
adi{world,1, 1 1%,
adi(world,1,-1, 0);
adi{world,1, 1, 0);
adi(world,1,-1,-1);
adi(world,1, 0,-1);
adi(world,1, 1,-1);
end;
begm
neighbors;
eq (2); |lmov(status,eq®);
eq(3); |lmov{status,eq3);
lda(world);
and(eq?2,0,0);
or {eq3,0,0);
sta(world);
end;
begin
boot,;
[[shw(world);
while alive do generation;
end;

The rules of Life can be succinctly stated with the logical expression
w:= (w and (neighbors = 3)) or (neighbors = 2)

where 'w"’ is the world and ''neighbors” is a function which counts the B-
adjacent neighbors that are alive. The procedure ‘'neighbors' adds 1 to the ac-
cumulator when any of the surrounding neighbors is set, the maximum number
of nearest neighbors is B. The fate of the center cell depends on the actual

number of neighbors at each point in the plane “world"'. Individual cell neighbor
counts are determined by the |leq comparison operator. After each comparison
the status plane contains the result and can be used like any other plane of
memory to produce the new life forms in the next generation.

When computing functions which fetch from neighboring locations there ex-
ists an ambiguity at the border cells along the edges of the array. One possibili-
ty is to treat the two-dimensional array as an isolated square and when a
memory reference extends past the edge either fetch a constant value or the
value of the closest border cell. Another possibility, and what is done in this
emulation, is to simply scroll or wrap around to the other side of the array. In

Page 9

this way the square is joined, left edge to right edge and top edge to bottom
edge. Topologically, this makes the plane equivalent to a torus; so the creatures
in the world of Life exist on a doughnut!

The above examples use the parallel array processor to compute nearest-
neighbor, either 4- or B-connected, functions over large data arrays. On most
binary array processors the local neighborhood is "hard-wired", and in fact the
Qlip4 allows these neighbors to all be fetched with a single instruction. Enhanc-
ing the neighborhood of a pixel by allowing fetches of data a different distances
can be viewed in two ways. One interpretation of these additional structured
fetches is that we are embedding a two-dimensional data structure into the ar-
ray. Alternatively, we can view the process as adding interconnecting links
between the individual processing elements. These additional links decrease the
length of the best paths between pairs of processors improving the running time
of several interesting algorithms. In the next two examples we take advantage
of the abilities (i) to fetch data at varying distances and (ii) to locally freeze a
processor to simulate two different enhanced array architectures; the first a
two-dimensional shuffle network, the second a pyramid machine.

5.4. A Two-Dimensional Shuffle

Consider the following shuffle procedure whereby a recursive data rear-
rangement is done by selectively transferring data between distant processors
by using a combination of the active register and power-of-2 shifts.

Page 10

procedure mask(level : integer),
const scratch = 15;
{ set a single position in a 2d array }
procedure seed(x, y : integer; location : memory);
external;
{ expand a pattern by doubling it }
procedure double(delta : integer);
begin
lda(scratch);
or (scratch, delta, 0);
sta(scratch);
lor (scratch, 0, delta);
sta(scratch);
end;
begin
{ set the bit in the upper right hand corner }
seed(0, 0, scratch);
fori:=1to7do
ifi <level
then {form block] double{pow?2(i))
else {fill array] double(pow2(i+1));
end;

{copy from(sx,sy) to(dx,dy)3
procedure copy{ sx, sy, dx, dy : integer);
begin
lItra(scratch, active, -dx, -dy);
llasg(source, sx-dx, sy-dy);
end;

procedure rotate-cew{ source : mermory);
var step, level : integer;
begin
for level := 1 to 9 do
begin
mask(level);
step := pow(level-1);
llelr;
copy(step, 0, 0, 0);
copy{ step, step, step, O g;
copy(O, step, step, step
copy(0, 0, 0, step);
llsta(source);
end;
end;

’

At each level we apply the same 2x2 permutation. To rotate a 2x2 square each
element is moved clockwise one position. (This same scheme works irregardless
of the 2x2 permutation. Other examples are transpositions and reflections.) One
pass of the permutation is done by sequentially mapping each subsquare from
its original position to its destination position. The entire process is repeated
logn times. At each pass the size of the subsquares increase by a power-of-2 so

Page 11

successively more global transfers are occurring. Different block patterns are
created by the procedure '"'mask'’ and loaded into the active register to control
the pattern of transfers.

5.5. Parallel Pattern Matching

To conclude we will show a fragment of an interpreter for a pattern match-
ing language used to implement the transforms used in a recognition cone. This
interpreter combines many of the architectural features discussed above. The
motivation and overall structure for this approach is outlined in Uhr{1972].
Briefly the recognition cone consists of a series of converging layers; associated
with each is a set of transforms. An image enters the cone at the lowest and the
largest level. Subsequent layers contain the results of applying pattern matches
to the previous layer to yield a converged symbolic description of the image.
The transforms themselves consist of two major parts, the first the if or rela-
tional part contains a series of lookfors which comprise the pattern. These are
each tested for and if found, a weight is added, increasing the probability that
this transform will succeed. Success is signalled if after all features are tested
the accumulated probability exceeds a threshold. And finally when a transform
succeeds features are output into the next layer.

The ideal architecture for such a system is a true hardware pyramid
machine since the organization of the processors (and their memory) and the
interconnections between neighboring processors mirror the above organiza-
tion. Instead, the present implementation views the recognition cone as a spe-
cial data structure embedded into the array processor. Each layer is stored in a
single plane of memory. As the layer number increases we decrease the effective
spatial resolution of the layer and increase the number of features in that layer.
The first layer then consists of a 512 by 512 array of a single feature. The second
layer is converged by 2 to a 256 by 256 array, but now to fill in the entire 512 by
512 plane we add 4 features to each cell (a cell corresponds to an active proces-
sor at that layer). This continues at each level, decreasing the resolution and
active processors by 4 while increasing the number of features by a correspond-
ing factor of 4.

To impose this pyramidal data structure on a simple array processor we use
a set of variable resolution masks similar to that used in the above shufile pro-
cedure. The masks are generated by the following procedure:

procedure masks;
begin
§ The array mask points to a memory location }
seed(0, 0, mask[B]);
for level := 8 downto 0 do
double(mask[level], pow2(level) };
end,

The procedure ''double’ is the same as that given above modified to take an
source and a destination channel. The masks are what create a particular net-
work topology. Notice the differences between these masks and the previous
masks.

The key "'match’ procedure applies a transform at the present level in the
recognition cone and outputs the results to the next highest level.

Page 12

procedure match(template : transform);
begin
lower ;= template.level;
upper := lower + 1;
llfrz(mask{lower]);
|lelr;
for i:= 1 to template maxlookfor do
with template.lookfor[i] do
{feature and weight are fields in lookfor]}
begin
{features are implicitly stored at (x,y)}
X:= édx * pow2§lower))+§feature mod pow2(lower));
y := (dy * pow2{lower))+(feature div pow(lower));
farray layer points plane location}
|ladi(layer[lower], weight, x, y);
end
with template.implied do
ffeature and threshold are fields in implied}
begin
{ check against threshold }
lge(threshold);
Imov(status, operand);
convergence function, others are possible}
frz(mask[upper]);
clr;
or{ operand, 0, 0);
or(operand, powz(lowerg, 0);
or{ operand, pow2(lower), pow2(lower));
or{ operand, 0, pow2(1ower§)i
sta{ operand);
{features are implicitly stored}
x := feature mod pow2(upper);
y := feature div pow2(upper);
§ assign the result of the transform !
tra(layer[upper], accurnulator, X, y):
asg(operand, 0, 0);
|tra(accumnulator, layer[upper], -x, -y);
end
end;

At each level in the pyramid there are a maximum of zlevel by zlevel different
features. These are stored as a contiguous square. The various features are num-
bered up to the maximum; from their number they are implicitly assigned a-
particular (x,y) location. When testing for "lookfors™ it is possible to test for a
feature in a neighboring cell which requires that we shift in units of 2'V€ Once
all the *lookfors'' have been tested, the accurmulated result is thresholded and
converged into the "'implied’” feature cell in the next higher level. This layer will
be a factor of 4 smaller then the previous layer so the implied feature is in fact
some function of potentially 4 different applications of the transform to the pre-
vious layer. For simplicity we "or” the four results together but more generally
could be achieved by providing different convergence functions.

Page 13

The hardware has limited somewhat the generality of the patterns that can
be tested for. Ideally the output of a transform should contain rmultiple ‘im-
plieds'” each with different certainties. Although compact, this procedure illus-
trates many subtle aspects of this emulation and array processing in general.
Despite this and other limjtations this compact procedure illustrates most of the
design features of the emulator. It require the ability to perform single bit logi-
cal as well as multiple bit arithmetic operations. It also requires the ability to lo-
cally inactivate processor execution and fetch and store data at varying dis-
tances.

6. Micro-instruction format

This section describes the implementation of the instruction interpreter on
a Stanford Technology Corporation (STC) color display terminal. The
configuration in the Image Processing laboratory has 3 refresh channels
(512x512 by B-bits) and a graphics overlay (512x512 by 4-bits). In addition to
the display hardware this terminal also has a pipelined arithmetic logic unit that
operates at video rates. The system is programmed by sending commands to
specific subunits using a dma transfer. Procedures exist to format subunit com-
mands and execute them on the terminal. The instructions described above re-
quire setting most of the different subunits in the display terminal, analogous to
microprogramming a computer. The following microinstruc tion record contains
fields for all the necessary sub-operations required for a single instruction (afew
miscellaneous instructions do not follow this format):

microinstruction =

record
pathenable : lutmap;
pathfunction : lut;
relativeoffset : scroll;
operations : aly;
go : feedback;

end; .

(Each type controls a specific subunit command. For the purposes of this discus-
sion the details of these records are not important but can be found in the pro-
grammers’ manual [Hanrahan and Schulz, 1981].) The fields perform the follow-
ing functions: ‘‘Pathenable’ sets the internal data bus to route data from the
relevant refresh memory to the appropriate pipeline. There are three different
pipelines which serve different functions in the emulation. The most important
is the transfer pipe which routes data for binary operations; another is the ar-
ithmetic pipe which performs immediate mode substitution and the last is the
display pipe which is used by the show register. Pipeline functions are deter-
mined by programming their lookup fables under control of the *'pathfunction’’
field in the microinstruction. The alignment of bits stored in different positions
in the B-bit refresh buffers with the accurnulator is performed with a lookup
table. The *‘relativeofiset” cormmand implements shifting of a memory plane re-
lative to the processing element. This involves simply setting the scroll regis-
ters to the specified values. The "‘operation” field selects the opcode for the ar-
ithmetic logic unit. The different binary and unary instructions differ only in this
field. Actually two opcodes are passed to the alu, one opcode for the active pro-
cessors and another for the inactive processors. Generally the inactive proces-
sors are set to copy data from source to destination. The “'go’’ routes data from
the output of the alu back into the accumulator and begins the execution of
each instruction. Exccution is triggered when the wertical retrace signal starts
the next scan (every 30 milleseconds). At this point the device performs Lhe in-
struction, but at the same time, in parallel the host cpu is freed to perform oth-

Page 14

er computations. Usually this time is spent formatting the next micro-coded in-
struction. This can be done within the allotted time so no refresh cycles are
missed and the computation proceeds at the maximum rate.

During this implementation several problems were encountered that are
particular to the STC. As much as possible these have been hidden from the user
but at the expense of making certain operations comparatively more expensive
than otherwise necessary. Most problems revolve around the fact that the re-
fresh memory is organized to handle B-bit data. Thus, different sequence of
operations may be required depending on whether two memory location are con-
tained in the same or different channels. For example, it is not possible to per-
form feedback operations with the same channel as input and output, if it is also
being scrolled! [The solution was to create a temporary scratchpad register in
one channel and perform single- channel transfers by first loading the
scratchpad register.i]) Originally we had also hoped to be able to reconfigure the
memory to various widths, that is, instead of 24 1-bit locations we could have 8
 4-bit locations, or B 3-bit locations. The major difficulty with this scheme is that
logical memory locations will in general fall across physical memory boundaries
necessitating many awkward and time consuming shuffles when transferring
data.

7. Summary and Conclusions

We have embedded an emulation of a binary array processor onto a pipe-
lined display terminal. This allows us to code programs using powerful instruc-
tions which operate on a 1/4 million byte data stream. As a result for many sim-
ple image processing tasks a rather large speed up is achieved over traditional
serial computer architectures. We have also begun to form a testbed for the
development of parallel algorithms for the much more complicated tasks of im-
age understanding and visual pattern recognition. Eventually, as more powerful
arrays are designed and built it may be possible to achieve a "real” time imple-
mentation of these algorithms/processes.

8. Acknowledgements

1 would like to thank Randy Schulz for programming the interface to the
Stanford Technology Terminal. In particular, if he had not done a complete
rewrite to include a structured command format this emulation could not have
been written. 1 would also like to thank Len Uhr for numerous discussions about
array processing and its potential in artificial intelligence.

This work was undertaken while the author had a University of Wisconsin
Graduate Fellowship.

9. References

Batcher, K.E., Design of a massively parallel processor. IEEE Transaclions on
Computers 29:836-840, 1980,

Duff, M.J.B., Review of the CLIP image processing system., Proc. AFIP5 NCC, pp
1055-1060, 1978.

Dyer, C.R., Augmented Cellular Automata for Image Analysis., Ph.D. Thesis,
University of Maryland, 1979.

Dyer, C.R., Pyramid algorithms and machines., In: K. Preston and L. Uhr, Eds.,
Multi-Computers and Jmage Processing pp 409-420, 1982,

Hanrahan, P. and Schulz, R, STC programmers manual, (unpublished report),
1981.

Page 15

Klette, R., Parallel operations on binary images., Comp. Graphics and Image Pro-
cessing 14:281-292, 1980.

Reddaway, S.F., DAP - a flexible number cruncher., Proc. 1978 L.A.S.L. Workshop
on Vector and Parallel Processors, pp 233-234, 1978.

Schmitt, L., The ICON perception laboratory user manual and reference guide.,
University of Wisconsin Computer Sciences Technical Report #421, 1981.

Stansbury, J., Clip4 and Dap simulators., (personal communication), 1980.

Stansbury, J. and Uhr, L., Extensions to parallel pascal., (personal communica;
tion), 1980.

Tanimoto, S.L., Programming techniques for hierarchial parallel image proces-
sors., In: K Preston and L. Uhr, Eds., Multi-Computers and Image Processing, pp
412-429, 1982,

Uhr, L. Layered '"recognition cone" networks that preprocess, classify and
describe., JFEF Trans. Computers 21:75B-768, 1972.

Uhr, L., A language for parallel processing of arrays, embedded in Pascal. In:
M.J.B. Duff and S. Levialdi, Eds., Languages and Architectures for Image Process~
ing., London: Academic Press, pp 53-87, 1981,

Uhr, L., Thompson, M., and Lackey, J., A R2-layered SIMD/MIMD parallel
"array/net"., Proc. on Compuler Architecture for Pattern Recognition and Im-
age Data Base Management,, IEEE Press, pp 209-216, 1981.

Appendix A — Table of Instructions
Transfer Operations

lda
sta
frz
iff
i
tra

Imov

- transfer

- load the accumulator

- store the accumulator

- load the active register
- transfer status to active
- transfer true to active

- transfer

Unary Operations

clr
set

shr
shl

asg
adi
sbi
and
adn
or
orn
Xor

coImn

- clear accumulator

- set accumulator

- complement accurmnulator
- shift accumulator right

- shift accumulator left

Binary Operations

- assign

- add value if true

- subtract value if true

- logical and

- logically and the negation
- logical or

- logically or the negation

- logical exclusive or

Comparison Operations

Signed Comparisons

- true if equal

- true if not equal

-true if greater or equal
- true if greater

- true if less or equal

- true if less

Unsigned Comparisons

lult
ule
e
luge

- true if less

- true if less or equal

- true if greater

- true if greater or equal

Miscellaneous Operations

boot
||bits
Htst

shw

- initialize the emulator

- number of accumulator bits
- true if all bits are zero

- show the operand

Page 16

<sre> <dst>
<sre>
<dst>
<sre>

<sre> <dst> <dx> <dy>

<sre> <dx> <dy>
<src> <value> <dx> <dy>
<sre> <value> <dx> <dy>
<sre> <dx> <dy>
<sre> <dx> <dy>
<sre> <dx> <dy>
<sre> <dx> <dy>
<sre> <dx> <dy>

<value>
<value>
<value>
<value>
<value>
<value>

<value>
<value>
<value>
<value>

<value>

<src>

Page 17

Appendix B — Usage

Currently, the above package of procedures can be executed from either a
C or Pascal language program. All that is necessary is to include the appropriate
type definitions and constants and then to link the appropriate libraries when
loading.

When using C include the file "llc.h" somewhere near the head of your file.
Because vertical bars cannot begin a legal identifier (and are already tokens in C
(or metacharacter in the shell (and basically because fixing all these problems is
too much work))) they are replaced by two “I'"s, that is the letter el. Observing
this rule load the program with:

% llec test.c

Similarly, when using Pascal include the file "lip.h" in the procedure section
of the programs declarations. And then compile the program with:

% llp test.p

The biggest practical problem encountered is storing, retrieving and viewing
image data. Data can be viewed with the program:

% llshw <memory>

which displays the appropriate bit plane just like the inline instruction.

Reading and writing data to the processor is not guite as easy. At this
point the only way to do this is to dump an image into the processor memory
and vice versa. (Note that the emulator does not change the contents of the
refresh memories when starting or exiting. This approach is not as awkward
as it might seemn because the refresh memory is part of a display terminal
and there are many programs which have been written to view, inspect and
extract statistical information from images stored in the terminal. To do
this however requires a memory map showing the correspondences between
the array processor memory locations and the physical memory layout in
the terminal.

Page 1B

Memory Map
location channel | bit-plane
0

D) 1IN I - e i e e e B s s Bes
N D olmlNm s ol oo @R O -

= e e e e B e 00 100 (00 00 (00 00 100 00 j00 (o0 feo oo oo oo oo foo

23
active(-1) | graphics
status(-2) | graphics

= IO O [0 [OHIO RO = [0 [LD > [IO 12 |O = [0 3 > [O1 iy 2

Notice that memory locations are numbered from 0 through 23 and that the ac-
tive and status locations are referred to as -1 and -2, respectively.

