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ABSTRACT

The term "generalized equation" has recently been used to describe
certain kinds of inclusions that involve multivalued functions, particularly
normal-cone operators. Such problems include static generalized equations,
which extend ordinary nonlinear equations, as well as generalized differen-
tial equations, which extend ordinary differential equations to the situa-
tion in which the defining relation contains multivalued functions (again,
particularly normal-cone operators).

This survey gives an overview of what is known about these problems as
of late 1982. Because of space limitations, it has not been practical to
present an encyclopedic description of all recent work. Rather, this paper
tries to exhibit samples of recent results in several different areas, and
to lead the reader to works in the literature that explain those results in
more detail and that contain references to other work not mentioned here.
The choice of samples to be presented was based on the author's particular

knowledge and interests.
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1. MWhat are generalized equations? The term "generalized equation" has

recently come to be used to describe certain types of relations that are
similar to equations except that one side of the relation is multivalued;
more specifically, the multivalued expression often involves a normal-cone
operator. In this section we will define the terms needed to describe
generalized equations and we will give some examples.

First, suppose that C 1is a closed convex set in R". The normal

cone to C at a point xeR" is defined to be:

¢3 if XéC
P~ (x):=
C
{y[{y,c-x)<0 for each ceC}, if xeC.

It is easy to see that awc(x) is a closed convex cone; geometrically it
is the cone of all outward normals to C at Xq
The type of generalized equation with which we shall deal in the

first part of this paper is of the form

Oe F(x) + awc(x), (1.1)

where F s a function from an open set CR" to R". In cases where
the generalized equation formalism seems particularly useful, F 1is often
a fairly smooth function, and the expression (1.1) is useful in separating
the "smooth" part of the probliem at hand from the part involving "corners".
We shall see some examples of this later on.

To see what (1.1) means in terms of the set C, note that if (1.1)

holds then the sum on the right is nonempty (it contains 0), so ch(x)
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is nonempty, and this means that x eC. Also, -F(x) must belong to
awc(x), so for each ceC,

(-F(x), c-x) < 0.

Thus we can see that (1.1) will hold if and only if x satisfies the

so-called variational inequality:

xeC, and for each ceC (F(x), c-x) > 0, (1.2)

and this means geometrically that F(x) is an inward normal to C at x.

One might then ask why we are interested in (1.1), since (1.2) is
equivalent to it. The answer is that the form of (1.1) acts as an aid to
analyzing problems. It recalls immediately the analogy with ordinary
equations (which can be regarded as the special cases of (1.1) in which
C =R", since then awc(x) = {0}, and (1.1) holds if and only if
F(x) = 0). This analogy turns out to be quite helpful in developing
results for generalized equations that are extensions of those already
known for ordinary equations, such as implicit-function theorems and
computational a]gorithms (e.g. Newton-type methods). We sha11¥see a
number of examples of this kind of extension later in the paper.

In the second part of the paper we extend our consideration from
static problems to dynamic ones, in which we have some kind of evolution
which, if the variable x{(t) were unrestricted, would be described by a

relation like

0 = x(t) + F[x(t)] (1.3)

(i.e., -x(t) = F[x(t)], where x(t) denotes g%x(t)). However, if we

suppose that x(t) 1is to be confined to some closed convex set C, then




(1.3) might not be appropriate, since if x(t) were on the boundary of
C it might be impossible to satisfy (1.3) while ensuring that x(t)
remained in C. In such a situation we can modify (1.3) by requiring
that x(t) be the projection of -F[x(t)] on the tangent cone to C
at x(t). Under appropriate conditions this can be stated equivalently
as the requirement that i(t) be the smallest element of

-FIx(t)] - ayc[x(t)]s that is,
-k(t) = {FIx(8)] + sy [x()1}", (1.4)

where At denotes the smallest element of the closed convex set A. In
fact, by making appropriate extensions of the ideas of tangent and normal
cones, we can extend this reasoning to sets C which may not be convex.
Note that if we ask for an "equilibrium" situation in 1.4 (i.e., one
in which x(t) = 0), then we are led to the problem of finding points x
which satisfy (1.1). Thus it is appropriate to regard (1.4) as the .
dynamic extension of (1.1).
We shall return to the dynamic case in Sections 6 of this paper.
In the meantime, we consider in more detail the static problem (1.1),
beginning in the next section with some examples of how (1.1) can be used
to express familiar problems in optimization and in mathematical

economics.



2. How are generalized equations useful? We will exhibit in this section

some ways in which the "static" generalized equation (1.1) can be used as
a unifying device to model relationships found in a number of applications
in the areas of optimization, complementarity, and mathematical economics.
In keeping with the interpretation of (1.1) as the equilibrium case of
(1.4), we shall see that these relationships are typically of the "static
equilibrium" type: they express the conditions for optimality in a mathe-
matical programming problem or for some type of equilibrium in a problem
from complementarity or from economics.

Let us first consider the mathematical programming problem

minimize f(y)

. (2.1)
subject to g(y)eK

y €L,

where f and g are functions from an open subset U of R to R and
R" respectively, L 1is a closed convex set in Rp, K is a closed

convex cone in Rm, and K° denotes the polar cone of K, defined by
K°:= {y eR"[{y,k>< 0 for each ke K},

The formulation in (2.1) is general enough to express a great many of the
specific optimization problems found in practice. For example, if the

constraints of the problem one is dealing with are of the form

9](.)’) éOsoeoagk(y) =<___0; gk+](.y) = 09.°.59k+£(.)’) = 09

k

then one has only to set K = R, %

xR” (so that K° = RE X {0}1)9 and

L = RP.




If we define the standard Lagrangian associated with (2.1) to be

Liy,u):= f(y) + Cu,g(y)?> for yeU and LleRm, then if y 1is a local
optimizer of (2.1) at which an appropriate constraint qualification
holds, there will exist ueR™ which, with y, satisfies the necessary

optimality conditions:

0c 3 Lly.u) + 3y ()

(2.2)
Oe - g%-L(y,u) + BwK(u).

See Robinson (1976a) for details of the derivation and of the kinds of
constraint qualifications under which (2.2) can be expected to hold.
To express (2.2) as a generalized equation we need only set
x = (ysu)s F(x) = [ Lyau), = 2 Ly, and €= L x K. Noting

that Wy 4k = Y X Wy, we then see that (2.2) is equivalent to

0e F(x) + ch(x)° (2.3)

It may help in understanding the structure of (2.2) to see what the
generalized equation (2.3) Tooks 1ike in the particular case of
(generalized) quadratic programming, in which f and g 1in (2.1) have

the special form

-

—~

<

~—
i

= ;i(.Ysz> +(p9y)

Ay - a,

[f=]
—~
<
—
i

where Q and A are linear transformations from R to RP and R"
respectively, p‘st and ae<R". Note that here the variables y may

be subject to implicit constraints, such as upper and lower bounds, which
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are enforced through the set L. In this case (2.3) takes the special

form

Oe + Yy (2.4)

and except for the presence of the normal-cone operator, (2.4) looks like
a system of linear equations (to which, indeed, it would reduce if
L=RP and Kk =R": that is, if the variables y were unconstrained
and the explicit constraints were linear equations). To specialize (2.4)
to the case of linear programming, we just set Q = 0, and then the
matrix in (2.4) becomes a skew matrix.

Given a linear transformation M from R" to itself and a point

meR", if we set F(x) = Mx + m then (1.1) becomes
OeMx +m + awc(x), (2.5)

and we shall call this a linear generalized equation. As we have just

seen, linear generalized equations arise naturally from the optimality
conditions for quadratic programming. They also occur in a number of
other contexts; in fact, as we shall see in Section 4 below, linear
generalized equations play a r6le with respect to nonlinear generalized
equations that is analogous to the réle played by linear equations with
respect to nonlinear equations.

Another common problem that gives rise to generalized equations is

that of complementarity. Given a function F from an open subset of

R" to itself, and a closed convex cone K CZR", the generalized




complementarity problem for F and K is that of finding a point x

such that
xe K, F(x)eK*, {x,F(x)) =0, (2.6)

where K*:= -K° 1is the dual cone of K. However, if we recall that

because K 1is a cone,

¢ if x£K
3y, (x) =
{yek®[{y,x) = 0} if xeK,

then we can see at once that (2.6) is equivalent to
0 F(x) + 3y, (x). (2.7)

The usual nonlinear complementarity problem found in the literature is

the special case of (2.6) in which K = Rr"

+ and the linear complemen-

tarity problem is the special case of the nonlinear problem in which

F(x) = Mx + m. Thus, linear complementarity problems give rise to
linear generalized equations of a special type; namely, those in which
the set whose normal-cone operator appears in (2.5) is actually a cone.
For more information about linear and nonlinear complementarity problems,
see the pépers by Lemke (1970), Eaves (1971), Cottle (1976), Cottle and
Dantzig (1968), and Karamardian (1969a, 1969b, 1972), among many others.
A number of models from mathematical economics can be expressed as
generalized equations, and we shall examine two of these here. The first
is the model proposed by Hansen and Koopmans (1972) of a capital stock

invariant under optimization. In this model, Hansen and Koopman consider



an economic growth problem in which the technology is linear (i.e., has
constant returns to scale), involving goods of three types: capital
goods, resources, and consumption goods. The problem is to find a
(technologically) feasible operating path over time which maximizes a
sum of discounted utilities involving the consumption goods. More
particularly, the authors ask whether such a path can be found in which
the stock of capital goods is invariant over time, and they prove that
the problem of finding such an invariant capital stock is substantially
equivalent to a certain single-period problem. It is this single-period
problem with which we shall be concerned here. By incorporating the
consumption goods in the utility function, one can reduce the variables
of the problem to the following classes, denoted by the letters shown

opposite each class:

Capital goods: ZE]RL
Resources: W eIRM

Activity levels: Xeﬂil.

These goods are related by the following inequalities, in which A, B,

and C denote linear transformations on the appropriate spaces:

Ax

A

z < Bx
Cx < w (2.8)

X 0.

v

If one now poses the problem of maximizing, for a fixed z >0, a
concave differentiable function v(x) subject to (2.8), the necessary

optimality conditions will associate dual variables with the inequality




constraints and will prescribe relations that must be satisfied by these
dual variables. If Qe denote by dp the dual variable associated with

the inequality Ax <z, by g that associated with 2z < Bx, and by

r that associated with Cx < w, then the optimality conditions prescribe,

in addition to (2.8), the following relationships:

v'(x) -

fin
o

qAA + qBB - rC

(v'(x),x) - (qA,z) + (qB,z) - {r,w

]
o

(2.9)

v
[en)

Ap> 9> T 2

The problem considered by Hansen and Koopmans is, given w, to solve
(2.8) and (2.9) for x, z, dpe 9p and r in such a way that z >0
and 9g = adp> where o 1is a prescribed discount factor in the
interval (0,1). It is this particular requirement on the Lagrange
multipliers that forces the one-period optimization problem to yield an
invariant capital stock z.

In order to formulate this problem as a generalized equation, let
us first consider the problem of maximizing v(x) over all x and z
satisfying (2.8) and the additional requirement that z > 0. Keeping

the same notation for the Lagrange multipliers, we obtain the optimality

conditions
v (x) - qpA + qgB-rC < 0
9 - 9 <0
(v'(x)-qAA+qBB-rC, x> =10

(qA-an, z) =0
(qA, Ax-2z) =10

[i]
(]

(qB, z - Bx)
(r, Cx=-w)=20

I
=

QAS qB9 r
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together with (2.8) and the condition that z > 0. We can organize all
of this rather extensive set of conditions into a single generalized

equation by writing

— — _ - —
o o AT -7 ¢T| |« -v'(x) x-
0 0 -I I 0 z 0 z
Oei-A I 0 0 O | * 0 + o |y | s (2.11)
B -I 0 0 o0 dp 0 qg
-C 0 0 0 0 [r] oW | r ]
I L L

where C 1is the product IR+ XIR+ xR XZR& X RT. Note that the matrix

+
in (2.11) is skew; indeed, this skewness serves as a guide in translat-
ing (2.8) and (2.10) into (2.11).

However, (2.11) does not express exactly the conditions required

by Hansen and Koopmans, since (2.11) contains the complementary system
"QA + qB ; 09 z ; 03 <'qA+qu Z) = ( (2.12)

(i.e., Q¢ -qy + ag * 3wﬂﬂ—(z))’ instead of the relations

- agp + qg = 0,z2>0 demA;ded by Hansen and Koopmans. At this point, we
note that in the Hansen-Koopmans formulation the matrix A 1is required
to have non-negative elements, so that the inequality -Ax + z >0,
already present in the model, together with x > 0, will guarantee that
z >0 even if z 1is not explicitly constrained. Let us therefore
replace (2.12) by the complementary system ~aqy + qz = 0, z eRE. This

system is equivalent to

Oé-qu + qB + awIRL(Z)s
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and we can make this change in (2.11) simply by replacing -I in the

(2,3) position of the matrix by -ol and the first copy of IR& in C

by RL.  With these changes, and with C':= IRJIr « Rt ><]RI;_ XIRI; x IRT, the
new generalized equation is
o o AT -BT cT| |«x v (%)) X
0 0 - I O z 0 z
0¢|-A I 0 0 O ap + 0 + awC, Q- (2.13)
B -1 0 0 0| |qg 0 ag
-C 0 0 0 0] |r] L[ w _ | r

Although (2.13) now expresses precisely the conditions demanded by Hansen
and Koopmans, we note that its matrix is no longer skew, reflecting the
fact that it no longer corresponds exactly to the optimality conditions
for a linearly-constrained optimization problem; indeed, Hansen and
Koopmans had to use a fixed-point algorithm to solve their problem. This
illustrates the fact that generalized equations can be dsed effectively
to model equilibrium type relations even when these do not correspond

to optimization problems. Our next example is also of this type.

For the second example of modeling a problem from mathematical
economics, we shall examine the structure of a model of energy equilibrium.
This is a simplified model that retains the conceptual structure of the
Project Independence Evaluation System model discussed by Hogan (1975).
The model consists of two sectors; a production (and transportation)
sector using a linear technology to produce a prescribed (vector) quantity

q of different forms of energy at minimum cost, and a consumption sector
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which demands varying amounts of each energy form depending upon the
prices, p, of all available forms. The key requirement is to find a
pair (p,q) such that (i) q is the vector of energy forms demanded
by consumers when the (given) prices p are in effect, and (ii) p is
the dual (price) variable associated, in the suppliers' linear program-
ming problem, with the constraint that the (given) amounts q of energy
forms must be produced. Thus the pair (p,q) has to appear in both
sides of the production-consumption system, and this is what makes the
problem one of equilibrium rather than of optimization.

To formulate the problem in more precise terms, let us suppose that
the energy production system has been modeled as a linear programming

problem

minimize {c,x?

subject to Ax = g (2.14)
Bx = b
x>0,

where x 1is a vector of n non-negative activity levels, ¢ 1is a vector
of costs associated with the activities, and the & constraints Bx = b
represent material balance constraints, upper and lower bounds, and other
structural properties of the production system. Of course, these con-
straints may include inequalities as well as equations; but we assume
that the inequalities have already been transformed to equations by the
use of appropriate slack variables. The k constraints Ax = q in
(2.14) express the relation between the activity levels x and the final

output q of k different forms of energy.
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The consumption of energy, on the other hand, is assumed to be
modeled by a demand function qD(p) giving consumer demands for energy
as functions of the prices in effect. This function might, for example,
be estimated by econometric methods. We can now express in a different
way the requirements placed on the pair (p,q) by saying that we want
to find a solution of the linear programming problem (2.14) with the
element q of the right-hand side equal to qD(p), in which p is an
optimal dual variable corresponding to the first constraint. Note that
this is a similar situation to that developed earlier in the Hansen-
Koopmans model; we begin with an optimization model, then alter it by
placing an additional requirement on the Lagrange multipliers.

If we have an optimal solution x of (2.14) with the specified

right-hand side, then we must have

Ax = qD(p)
Bx = b (2.15)
x>0,

and the dual variables p and r corresponding to the two constraints

must satisfy

c+pA+rB2>20

(2.16)
(c+pA+rB, x) =0

We can model the relations (2.15) and (2.16) as a generalized equation

by writing
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o Al BT| |« c X
Oef-A 0 0| |p|+iay(p)| *+ 3pn gk gt | P |- (2.17)
+
-B 0 0 r b r

Note that this is almost like the linear generalized equation that would
result from writing the optimality conditions for the linear programming
problem (2.14); the difference is that the "constant term” is now no
Tonger constant since it contains the function qD(p).

More details about this way of formulating such equilibrium models
can be found in Josephy (1979c, 1979d). There the formulation is carried
out in terms of the inverse function, pD(q), corresponding to qD(p)°
However, for conceptual purposes these formulations are equivalent.

We have shown in this section how generalized equations can be used
to formulate optimality conditions, complementarity problems, and economic
equilibrium problems in a conceptually simple, economical and unified way.
In the next two sections we turn from the question of formulation to
questions of analysis and numerical solution. We shall ask when solutions
of generalized equations exist, whether they are stable when they exist,
and how we can compute them. We begin in the next section with some

results that hold when monotonicity is present.
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3. Existence and Stability: The monotone case. This section treats some

results that are available to us when the expression F(x) + awc(x) in
(1.1) is a monotone operator in the variable x. We begin by reviewing the
definition, and some properties, of monotone operators, For a multifunction
(multivalued function) A we shall write (X,y) <A to mean y eA(x) (i.e.,

(x,y) belongs to the graph of A).

DEFINITION 3.1: A multifunction A: R" > R" is a monotone operator

if for each (x],y]) and (X2’y2) in A, <x1—x2, y]-yz) >0. Aisa

maximal monotone operator if its graph is not properly contained in that of

any other monotone operator.

Examples of maximal monotone operators that occur naturally in connec-
tion with generalized equations include:

a. The normal cone operator awc associated with a closed convex set
C. In fact, the subdifferential mapping associated with any closed proper
convex function is maximal monotone. For proofs and more details see Brezis
(1973).

b. The linear operator represented by

(cf. (2.4)), whenever Q 1is positive semidefinite. This will be the case
when Q is the Hessian of a convex function. More generally, any positive

semidefinite matrix represents a monotone operator, and in particular any

skew matrix does.



-16-

Since our earlier examples of generalized equations involved sums of
operators (e.g., a linear or nonlinear operator plus a normal-cone operator)
it is of interest to determine when such sums will be monotone if their com-
ponents are monotone. The following theorem gives a convenient criterion
for such monotonicity. It specializes to R" a result of Rockafellar
(1970). We write dom F for {x|F(x)#¢}, and ri for relative interior (interior

relative to the affine hull).

THEOREM 3.2: Let F and G be maximal monotone operators from R"

to R". If ridomFNridomG#e, then F+G is maximal monotone.

This result shows that under rather mild assumptions, if the function
F appearing in (1.1) is monotone then (1.1) itself will be a problem of
finding a zero of a monotone operator. Therefore, it will be of interest
to us to review some known facts about existence and stability of such zeros.
One of the simplest such facts applies in case the operator involved is
strongly monotone, and so we turn next to the definition of strong mono-

tonicity.

DEFINITION 3.3: A multifunction F from R" to itself is strongly
monotone if there exists a constant +y >0 such that for each (x],y]) and

(x5¥,) in F,
(Xy=X,s Y=Y 2 Y|[x7=x, || 2
17%2> Y9y 2 YIX=% 01

Now suppose F 1is a maximal monotone operator which is strongly mono-
tone with modulus y. A fundamental result about monotone operators says

that F is maximal monotone if and only if for any A >0, (I+AF)'] is a
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contraction that is nonempty on the entire space. That is, for any Z4 and
z, there exist (x],y]) and (X2’y2) in F with x; + Ay = 29,
X, + Ny = 2y, and [[x=x, || < ||z4-2,]|.  This result is discussed in

Brezis (1973). It is clear that (I+>\F)'1

is then single-valued (take
zy = 22). However, if F happens to be strongly monotone, we can deduce

even more; suppose we form inner products as follows:

<x]-x2, z]—zz> = <x]—x2, (x]+Ay1) -(x2+xy2)>

¢

2
= llx]—x2 + Mxy=Xos Y17Yo) 2 (]+Ay)[[x]—x2]| ,

where the inequality comes from strong monotonicity. Recalling that

(Xy=X5s 212, < |Ixy=x, || [|24-2, ||, we can rearrange (3.1) to yield
-1
;%5 11 < () ™ 242, 11

which shows that (I+AF)'] is actually a strong contraction since
(1+Ay)—] < 1. Such an operator has a unique fixed point by the contraction
mapping theorem, and it is easy to see that the fixed points of (I+AF)']
are exactly the zeros of F. Hence if we are dealing with a strongly mono-
tone operator we will have a unique zero.

However, it is very often the case that the operator with which we have
to deal is not strongly monotone. In such a case, another existence result
can often be helpful: this result is local, rather then global, in nature,

To state it we need another definition.
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DEFINITION 3.4: A multifunction A 1is said to be locally bounded

at a point Xq if there exists a neighborhood U of Xq such that
A(U)(={y|yeAx for some xeU}) s a bounded set.
The following theorem translates to R" a result of Rockafellar

(1969).

THEOREM 3.5: Let G be a maximal monotone operator from R" to

itself. Then G 1is locally bounded at Yo if and only if Yo is not

a boundary point of dom G.

Now consider a case in which the maximal monotone operator G is
known to be upper semicontinuous at Yo edom G. If G(yo) is bounded,
then so will be G(U) for some neighborhood U of Yo (by upper semi-
continuity). But then G 1is locally bounded at Yo and by the theorem
we conclude that A is not a boundary point of dom G. But as Yo e dom G
by assumption, we must have Yo eint dom G.

This reasoning can be particularly helpful if we take G to be the
inverse of a maximal monotone operator F (and hence itself maximal mono-
tone), with Y = 0. Then we conclude that if:

a. F1 s upper semicontinuous at 0,
and

b. F'](O) is bounded and nonempty
then the inclusion y eF(x) 1is solvable for all y 1in some neighborhood
of the origin; moreover, if Q 1is any open set containing F"](O), then

for some neighborhood V of 0 we have F_](V) Cc Q.
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This observation can be applied to yield, for example, a rather com-
plete stability theory for linear generalfzed equations involving positive
semidefinite matrices and polyhedral convex sets. These include problems
of Tinear programming and of convex quadratic programming (for which the
matrix has the special form shown in (2.4) above), as well as linear com-
plementarity problems whose matrices are positive semidefinite (though not
necessarily symmetric). This is discussed by Robinson (1979), where the
following theorem is proved, In the statement of the theorem, B denotes

the Euclidean unit ball.

THEOREM 3.6: Let A be a positive semidefinite n x n matrix, C

be a nonempty polyhedral convex set in H%n, and a be a point of Rr".

Then the following are equivalent:

a. The solution set of the linear generalized equation

Oehx + a + awc(x) (3.2)

is nonempty and bounded.

b. There exists e > 0 such that for each n xn matrix A’ and

each a'e R" with
e = max{||A'-A]], |la"-a ||} < e, (3.3)
the set
S(A',a"):= {x|OeAx+a+awC(x)}

is _nonempty.
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Further, if these conditions hold, then for each open bounded set

Q O S(A,a) there are positive numbers n and u such that for each

(A',a') with e’ (defined by (3.3)) <n, one has
¢ # S(A',a’") NQCS(A,a) + ue'B. (3.4)

Finally, if (A',a’) are restricted to values for which S(A',a’)

is known to be connected (for example, if A’ is restricted to be posi-

tive semidefinite), then Q can be replaced by RrR".

The inclusion (3.4) means that for each solution, say Xy of
0e Alx +a' + awc(x)

in Q, there is a solution of (3.2), say «x with

0°
|lx]—x0]|:; umax{||A"-A||, |[a"-a||}. Thus the solution sets obey a
set-valued analogue of Lipschitz continuity, called "upper Lipschitz con-
tinuity" [see Robinson (1979, 1981)].

We may remark that the condition that A’ be positive semidefinite
(under which the "isolating" set Q is not required in Theorem 3.6) will
hold automatically in a large class of practical applications of the
theorem. Of course this will be true if A 1is actually positive definite,

but it may well be true even if A 1is only semidefinite, because of the

structure of A. For example, consider the linear programming problem

minimize (C,yx?
subject to Dx = d (3.5)

X

v

0,
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where D: R" - Bﬁ“, d e:mm, and ¢ e« R". We can formulate this problem

as the generalized equation

0« + +
n m
D 0 u d Ry xR

u
and we now observe that if (D’,d’,c’) represent perturbed data close to

(D,d,c) then the perturbed generalized equation is

whose matrix is positive semidefinite regardless of what D' 1is. Thus,
in this problem we will always have a positive semidefinite matrix because
of the particular structure imposed on the generalized equation by the
optimality conditions of (3.5). Another such example, involving quadratic

programming, is given in Robinson (1979).
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4. Existence and Stability: the case of continuity or differentiability.

We now turn to the question of existence and stability of solutions for
generalized equations in which we do not have monotonicity. Here we shall
use a topological tool (the Brouwer fixed-point theorem) to establish some
general existence results; then we shall investigate stability questions
by employing local analytical methods analogous to the implicit-function
theorem. In fact, we shall establish an implicit-function theorem for gen-
eralized equations and derive several related results.

Our first existence theorem is a simple but useful fact that has been
noted by several authors [e.g., Hartman and Stampacchia (1966), Eaves

(1971), Karamardian (1972)].

THEOREM 4.1: Let C be a compact convex set in R" and let” F: C *-Rn

be a continuous function. Then the generalized equation

O0eF(x) + awc(x) (1.1)

has a solution (in C).

For a very easy proof of this theorem (Eaves (1971)), define a continuous
self-map & of C by letting &(c) be the projection of ¢ - F(c) on C,
As projections are nonexpansive, ® 1is continuous, so by the Brouwer theorem
it must have at least one fixed point. But its fixed points are precisely
the solutions of (1.1).

We can extend this result to one involving unbounded sets C in a number
of ways. Typically, one assumes some kind of condition on F at large ele-

ments of C, then uses Theorem 4.1. Several such results are discussed in
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More” (1974a, 1974b) and elsewhere; we exhibit one as a sample of the sorts

of conditions that may be imposed on F (see More” (1974a), Theorem 2.4):

THEOREM 4.2: Let F be a continuous function from the closed convex

set C cR" to R". Suppose that there is a positive number u such that

for each xeC with |[x|| = u, there is some ueC with |lu] <u and

(x-u, F(x)>> 0. Then (1.1) has a solution x with |{x| < u.

Of course, the hypothesis of Theorem 4.2 will be satisfied if one can

show that the inequality (x-xo, F(x)?> >0 holds for some x,eC and all

0
x with sufficiently large norm. As an illustration of how this may be

applied, consider a Tinear generalized equation
OeMx +m + awK(x) (4.1)

where K 1is a cone and the matrix M 1is strictly K-copositive: j.e., if
xe K\{0O} then {(x,Mx> > 0. Then for some o >0, and all x Kk,

(x,Mx > > ollx]lz. Given any meR", take u = 0']l|m|[; then if xeK

with ||x|| = u we have, with u =0,
(x=0, Mx+m> = (x,Mx?> + {(x,m?
2 =
2ol x|[" - {Ix|] [Im]] = 0.

Thus, by Theorem 4.2 there is a solution x of (4.1) with ||x]| < 0']I|m]{.

n

For example, if K = R+

and M is a non-negative matrix with positive
diagonal, we can take o to be the minimum diagonal element.
The above results are based on the Brouwer fixed-point theorem, but they

can also be established by degree arguments (since Brouwer's theorem can be
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proved by such methods). We remark that Reinoza (1979) has developed a def-
inition of degree for multivalued functions of the type appearing in (1.1),
and Kojima (1980) made extensive use of degree arguments in his study of
"strongly stable" solutions of nonlinear programming problems. These latter
results are closely related to a class of stability results for generalized
equations, which we shall discuss next.

We now shift our attention from results promising existence of a solu-
tion to results describing the stability of an existing solution when the
problem is slightly perturbed. Here we will need to use differentiability
properties of F, whereas in the first two theorems of this section we
needed only continuity.

The generalized equation problem with which we shall deal is that of

finding x so that
0e F(pax) + dyg(x), (4.2)

which differs from (1.1) in that the parameter p has been added. Its
function is to introduce perturbations into F (but not C) so that we may
study the dependence of the solution(s) on such perturbations. We shall
ask whether, if Xq solves (4.2) for a given value p = Pys and if we
then allow p to vary near Pge there is some function x(p) yielding a
solution x of (4.2) for each p near Pg- If such a function exists, we
should 1ike to gain information about its behavior. In other words, we

are seeking the type of information about (4.2) that could be provided by

an implicit-function theorem.
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We shall now show that an implicit-function theorem can indeed be es-
tablished for (4.2). In order to do this, we have to introduce some def-
initions. The first idea is that of the linearization of (1.1): if we

suppose that © 1is an open subset of R" and that F: @ ~R" is Fréchet

differentiable at x,, then the linearization of F(x) + dy.(x) about x
is defined to be F(xo) + F' (xo)(x-xo) + ch(x): in other words, we just
linearize the function appearing in (1.1) but leave the normal-cone operator
alone,

At this point we might return briefly to the questions, considered
earlier in the paper, of why the generalized-equation formalism can be help-
ful in dealing with problems. We shall see that the linearization defined
here works, in the sense that good properties of this linearization guarantee
(locally) good properties of the original nonlinear genera1ized equation.
Thus, it seems to be an appropriate tool to use, and indeed it seems obvious
when we Took at (1.1) that this is the way in which we should linearize it,
However, if C 1is a cone and if we then write (1.1) in the equivalent form

of a complementary system
F(x)eC*, xeC, (x, F(x)?> =0, (4.3)

then in looking at (4.3) one might be tempted to linearize not only the
first inclusion, but also the complementarity equation on the right. In
fact, the linearization obtained in this way does not work well, and so at
Teast in this case the use of the generalized-equation symbolism (4.2) leads

one naturally to the correct method of analysis.
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Having introduced the idea of linearization, we next define a regular

solution of (1.1).

DEFINITION 4.3: Suppose xy is a point at which F is Fréchet
differentiable, and that Xg solves (1.1): i.e., O eF(xO) + awc(xo).
Define an operator T by T(x):= F(xo) + F' (xo)(x—xo) + awc(x). Then

Xg 1is a regular solution of (1.1) if there exist neighborhoods U of 0
1

and V of x, such that (T  'NV)|U is single-valued and Lipschitzian:

0
in other words, the function that associates to each ueU the set of
veV such that ueT(v) is Lipschitzian on U.

This property was originally called "strong regularity" in Robinson
(1980), because a weaker property had been analyzed in Robinson (1976b)
under the name of "regularity." However, the present property has proven
to be much more useful in a variety of situations, so we shall use the term
“regularity" to refer to it,

One of the consequences of regularity is the following implicit-function

thecrem for (4.2). It is taken from Robinson (1980).

THEOREM 4.4: Let P be an open subset of a normed linear space and

Q be an open subset of R", with F: P x 2 »R". Write Fx(p,x) for

5%-F(p,x), and suppose that:

a. F and FX are continuous on P x Q.

b. For each xeQ, F(e,x) is Lipschitzian on P with Lipschitz

modulus v (independent of x Q).

jo
.

Xg is a reqular solution of (4.2) (for p=p0) with associated

Lipschitz modulus X.
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Then for any € > 0 there exist neighborhoods NE of Po and WE

of Xg> and a single-valued function x: NE > wE with Lipschitz modulus

v(Ate), such that for any p eNE, x(p) 1is_the unique solution of (4.2)

in W.
- €

This theorem says in effect that if the linearization has, locally,
a Lipschitzian inverse then so does the original generalized equation.
Moreover, as we shall see in the next theorem, the linearization can be

used to approximate solutions of the nonlinear problem.

THEOREM 4.5: Assume the notation and hypotheses of Theorem 4.4,

For each ¢ > 0 and for each p eN_ let &(p) be the (unique) solution

in W of the linear generalized equation

0 eF(XO,P) + Fx(xoapo)(g‘xo) + 3%(5) .

Then there exists a function a : NE -+ R such that

Tim ue(p) =0
PPy

and for any p eNE,

Ix(p)-(p) | < o (P){lp-pyl .

As Theorem 4.4 shows that a generalized equation with a regular solu-
tion remains solvable if slightly perturbed, we might wonder whether the
reqularity property is preserved for these perturbed solutions. The next

theorem shows that the answer to this question is yes.
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THEOREM 4.6: Let A be a linear transformation from R" to itself,

let ae<R" and let C be a closed convex set in ‘Rn. Suppose that X0

is a regular solution of

OcAx + a + ch(x)

with associated neighborhoods U of 0 and V of Xg and Lipschitz

modulus A. Then there exist neighborhoods M of 0 and N of Xg»

and a positive number e, such that for any A’ and a’' with

max {[|A"-All, |la"-a||} < €,

if T (x):= A'x +a’+ 3¢C(x)9 then [(T')°] N N]|M is a single-valued
function with Lipschitz modulus A ' := A(]-XllA'—A!])—]-

We remark that, by Theorem 4.4, for each pair (A',a') near (A,a),

the generalized equation
0OcA'x +a' + awc(x) (4.4)

has a unique solution near x' . What Theorem 4.6 says is that this solu-
tion is in fact a regular solution of (4.4), and that its associated Lipschitz
modulus is not much greater than A. Moreover, the neighborhoods involved in
the definition of regularity can be taken to be the same for all nearby ver-
sions of (4.4). It therefore shows that regularity is an "open" property,

and it provides an analogue for generalized equations of the Banach lemma

for linear operators (see, e.g., Kantorovich and Akilov (1964), Theorem

3(2.v)).
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For the particular case in which C = R" x R®

4 which is very fre-

quently seen in applications, a characterization of regularity for a

linear generalized equation is given by Robinson (1980) (see Theorem 3.1

of that paper). Given a solution Xg> One removes the "inactive" variables
(i.e., elements of Xg that are non-negatively constrained but are in fact
strictly positive), as well as those non-negatively constrained variables
that must remain equal to zero because the corresponding function values
are strictly positive. Regularity then holds if and only if the square
matrix corresponding to the remaining “reduced" problem satisfies the
property that its principal submatrix corresponding to the unconstrained
variables is nonsingular and the Schur complement of that submatrix has
positive principal minors. Here the Schur complement of the nonsingular

principal submatrix A1] in the square matrix

is defined to be

o _ -1
(A/A11):= Ryp = AyrhyiAg,:
See Cottle (1974) for further information on Schur complements.
Among other results dealing with local existence and stability of
solutions to generalized equations, we mention the "strong positivity

conditions" of Reinoza (1981) and the work of Kummer (1982) on solvability
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of very general multivalued inclusions, as well as work of Spingarn
(1977) on "cyrtohedra" and on perturbed optimization problems. In the
next section, we shall see how the idea of linearization and some of the
above stability results may be applied to develop efficient computational

methods.
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5. Computing solutions: The Newton method and some variants. Given a

generalized equation such as (1.1), we often want to compute a solution
to it in order to solve some practical problem. In this section we
describe methods of Newton type for computing such solutions. Although
Newton methods were proposed by Robinson (1976b) and by Eaves (1978), the
results that we give here were obtained by Josephy (1979a, 1979b, 1979c,
1979d). They extend to generalized equations the well known theorem of
Kantorovich (see Kantorovich and Akilov (1964), Theorem 6 (1.XVIII)) for
conventional equations.

Let us consider solving the generalized equation
0eF(x) + awc(x) (1.1)

by repeéted linearization. That is, starting at some given point Xo»
for each k > 0 we construct x, ., from x, by solving the linear

generalized equation

Oe F(xk) + F'(xk) (x-xk) + awc(x). (5.1)k

Obvious questions arise: can we be sure that the problems (5.1)k will
be solvable? If they are solvable, will they have (at least locally)
unique solutions? If so, will the sequence {xk} converge to a solution
of (1.1)2

In general, one clearly could not expect positive answers to such
questions. However, what Josephy showed was that if the first linearized
probiem (5.1)0 had a regular solution X1 and if certain inequalities

held, then all of the problems (5.1)k would have (regular) solutions, and
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the sequence of solutions would converge R-quadratically to a solution
of (1.1). The main result along these lines is Theorem 2 of Josephy
(1979a), which we restate here as Theorem 5.1. In that theorem, we

denote by B(x,p) the closed ball of radius p about x.

THEOREM 5.1 [Josephy (1979a]: Let F, C and © be as previously

defined, and suppose further that Q 1is convex and that F has a

Fréchet derivative that is Lipschitz continuous on £ with Lipschitz

modulus L. Let Xoezﬂ, and suppose that the generalized equation

Oe F(xo) + F'(xo) (x-x4) + 3yp(x) (5.1)

has a reqular solution X with associated Lipschitz modulus A. Choose

r>0,R>0 and p->0 so that [Theorem 4.6] for any xeB(xy,0) the

operator [F(x)+F'(x)[(+)- x]4—3¢c(-)]‘1 N B(x1,r), restricted to

B(O,R), 1is single valued and Lipschitzian, with the Lipschitz modulus

ALT-AIF Y (0)-F (x) 1177

Define mn:= “X1“X0“s and let h:= ALn. Assume that
a. 0<h;;§:
and

2

b. Ln~ < 2R.

5

and assume that

Define-

*
c. B(xo,t ycan B(xo,p).
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Then the sequence {xk} defined by letting X+ be the solution

gf_(S.])k in B(x1,r) is well defined and converges to x*e B(xo,t*)

with 0e F(x*) + awc(x*). Further, for each k > 1 one has

Ix*=x, | < 2"y (2n) 29,

Thus, Josephy's result infers the existence of a solution from the
regularity condition and from the bounds expressed by assumptions (a),
(b), and (c) of Theorem 5.1; it also establishes R-quadratic convergence
in the sense of Ortega and Rheinboldt (1970) provided that h < %. Of
course, if we are willing to assume the existence of a regular solution x* of
(1.1), we can obtain from Theorem 5.1 a "point of attraction” result to
the effect that for any starting point Xq close enough to x*, the
sequence {xk} defined by (5.1)k will be well defined and will converge
quadratically to x*. Theorem 1 of Josephy (1979a) establishes this
result with the additional conclusion that {xk} converges Q-quadratically,
as well as R-quadratically, to x*.

Josephy tested his Newton method on a number of problems, among them
a version of the Hansen-Koopmans capital stock model; the results are
reported in Josephy (1979a). In all cases Lemke's method (see Cottle and
Dantzig (1968)) was used to solve the subproblems, which in these cases
were linear complementarity problems. He also tested the Newton algorithm
on an example of an energy-equilibrium problem of PIES type, given by
Hogan (1975). The tests are reported, and some properties of the model
are analyzed in Josephy (1979c, 1979d).

It should be pointed out that if one applied Josephy's method to the

nonlinear generalized equation resulting from the optimality conditions
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for a nonlinear programming problem (see Section 2), then the linearized
problems will be the linear generalized equations arising from certain
quadratic programming problems. These quadratic programming problems are
precisely the approximating problems proposed by Wilson (1963) in his
algorithm for solving nonlinear programming problems. Thus, in the case
of nonlinear programming Josephy's work provides a proof of the implemen-
tability and convergence of Wilson's method under less stringent hypotheses
than those previously known. In particular, it was previously shown by
Robinson (1974) that Wilson's method would converge locally to a solution
of a nonlinear programming problem satisfying the second-order sufficient
condition, linear independence of the gradients of the binding constraints,
and strict complementary slackness. However, in Robinson (1980) it is
shown that the generalized equation associated with the optimality
conditions of a nonlinear programming problem will have a regular solution
if the corresponding solution of the nonlinear programming problem
satisfies a strengthened second-order sufficient condition and linear
independence of the gradients of the binding constraints (without strict
complementary slackness). Therefore, Josephy's result shows that Wilson's
method will converge quadratically to such solutions too.

In addition to his work on Newton's method, Josephy considered

quasi-Newton methods in which (5.1)k is replaced by
Oe F(xk) + Ak(x-xk) + awc(x), (5°2)k

in which Ak is an approximation of some kind to F'(xk), chosen to
reduce the computational labor of setting up (5.1)k. He showed in

Josephy (1979b) that two standard convergence theorems for quasi-Newton
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methods could be extended to generalized equations, again using the
machinery of regularity. These theorems assert (1) local linear conver-
gence to a regular solution, and (2) Q-superiinear convergence when the
updates satisfy an appropriate limit condtion. The results for ordinary
equations are given by Dennis and Moré (1977), Theorems 3.1 and 5.1.
Thus, Josephy's work makes available for the solution of generalized
equations the use of approximations to F'(xk) via updates, such as are
commonly used for ordinary equations. Again, Josephy tested some of
these methods; some results are reported in Josephy (1979b).

In this section we have dealt with the properties of local, Newton-
1ike, methods for solving generalized equations. We have not treated the
global methods which go by the names of "simplicial,” or "path-following,"
a]gorithms,vsimp1y because there is already an enormous literature on
these methods. Although algorithms of this type can be, and have been,
used to solve complementarity problems and related multivalued problems,
there is no point in our duplicating here the excellent descriptions that
have appeared elsewhere. In particular, for a very complete survey of
this field the reader may consult the paper of Allgower and Georg (1980)

and the more than 200 references contained therein.
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6. A brief look at generalized differential equations. In this concluding

section we will survey very briefly some new results in the theory of
generalized differential equations. Recall that in Section 1 we discussed

problems such as

- X(t) = (FIx(t)] + oy Lx ()1}, (1.4)

where AJr denotes the smallest element of A. The results we discuss
here apply to problems even more general than (1.4). They appear in
papers of Cornet (1981a, 1981b), which contain many references to previous
work in this area. Because of space limitations, we shall confine our-
selves here to describing the main existence result of Cornet (1981b).

We note, however, that particular cases of generalized differential
equations, such as that in which the operators involved are monotone,

have been studied for some time; see the references in Brézis (1973), for
example.

Cornet's theorem deals with sets and generalized equations somewhat

more general than those encountered earlier in this paper. For example,
the sets involved need not be convex, and the functions involved may be
multivalued. We therefore first quote a theorem of Cornet that charac-
terizes the sets to which the existence theorem applies. We shall denote

by TX(xo) the Bouligand tangent cone to a subset X of R" at a point

xoe'c1 X, defined by

TX(XO):= {ye]Rn!there exist {xn}CX, {An}C(O,+°°),

with x = x, and An(xn-xo)'+y}.

Having TX(XO) we define the normal cone by



If X happens to be convex then NX(XO) = awx(xo) as defined earlier.
Finally, we need the Clarke tangent cone, defined by

TC,(xg):= {y «R"| Tim 6™ 'd[w+ay, X]=03,
WX 0

weX

o+0"

where d[+, X] denotes the distance to X. Cornet first proves the

following.

THEOREM 6.1 [Cornet (1981a), Th. I.3.1]: Let Xg € x cRr"; suppose

for some o > 0, XFWB(xO, a) is compact.

a. The following are equivalent:

i) NX(‘) is closed at xg.

ii) TX(-) is Tower semicontinuous at Xg-

iii) TX(XO) = TCX(XO).

b. If the equivalent properties in (a) hold, then TX(XO) is convex.

Having this characterization, Cornet next defines a set X CR" to be

tangentially regular if X is locally compact and the equivalent conditions

in (a) of Theorem 6.1 hold at each Xq € X. This definition establishes a
wide class of "nice" sets in R", including in particular all Tocally
compact convex sets. Cornet then extends to tangentially regular sets an
existence theorem of Henry (1973) for generalized differential equations

over convex sets [see Cornet (1981a), Th. I1.4.1], and he proves the

following key theorem:
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THEOREM 6.2 [Cornet (1981b), Th. 3.1]: Let X be a nonempty,

tangentia]]y reguiar subset of Rn, and let & be a continuous multi-

function from X to R" with nonempty compact convex values.

Then for each X € X there exist T >0 and a Lipschitzian

function x: [0,T] - X such that x(0) = Xg and, for almost every

te [0,T],
-X(t) = {o[x(£)]+ Ny [x(£) ]}

Theorem 6.2 thus establishes an existence result for a class of

generalized differential equations even broader than that represented by

(1.4). The application of these generalized differential equations to

the modeling of dynamic systems, for example in economics, is the subject

of current research efforts.
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