EXPERIENCES IN PORTING AND EXTENDING CAD SOFTWARE

R. H. Katz
J. Moran

U. Ramschandran
D. Schuh

Computer Sciences Technical Report #484

September 1982

Experiences in Porting and Extending CAD Software

R. H. Katz, J. Moran, U. Ramachandran, D. Schuh
Computer Sciences Department
University of Wisconsin-Madison
Madison, WI 53706

Abstract: We describe our experiences in transporting CAD
software developed at other universities to our own somewhat dif-
ferent computing environment. The tools were the CAESAR Graphics
editor developed at Berkeley [0OUST81] and the MIT raster scan
design rule checker [BARE80]. We have combined these two packages
into a single system, and have experimented with implementing the
DRC inside an intelligent graphics terminal (the Chromatics
7900). Our observations are that an ideal design environment
should exhibit a high degree of terminal independence, integra-
tion of independent design tools subsystems, and migration of
design tool functions from mainframe processors to intelligent
workstations.

1. Introduction

The university research community has responded to the com-
plexity of the task of VLSI design by developing powerful tools
to aid in the layout and verification of integrated «circuits
[CONW80]. These tools, developed by various groups at different
universities, have been readily distributed to other institu-
tions. Two of the most widely used tools, in part because they
have been written for the popular UNIX operating system and
undoubtedly because of their high utility, are Berkeley”s CAESAR
system for integrated circuit layout [0UST81] and MIT"s design

rule/electrical rule checker and switch simulator [BAKES80].

However, once the tools were acquired, we encountered
immediate problems. CAESAR is designed for an AED 512 Color
Graphics terminal with eight bit planes. We had an AED 512 with

six planes available to wus, but it is owned by the Computer

Center, and not our department. Thus it was not feasible to
upgrade it with more memory planes. The terminal was located in
another end of the building, with no provision for the video ter-
minal needed by CAESAR for textual input/output (it was never
clear to us why a separate terminal for text interaction was
needed in the first place). Further, we felt that we could obtain
a better color graphics terminal for roughly the same price as
the AED. Instead of acquiring our own AED 512 to maintain compa-
tibility with CAESAR, we opted for a Chromatics 7900 with a user
programmable 68000 in the terminal and a higher resolution screen
(768 x 1024 pixels instead of 512 x 512). Of course, we were

forced to transport CAESAR to this new hardware.

The MIT tools were not trouble free either. A design speci-
fied in the Caltech Intermediate Form (CIF) first has to be con-
verted to a form that is acceptable to these programs. Although
CIF is meant to be a standard language, in fact different tool
sets use different escapes in CIF to communicate important infor-
mation. For example, CAESAR specifies the location of a label via
a 94 escape, while the MIT tools expect a 0 escape. Integrating
tool sets is remarkably difficult. Further, even though the MIT
DRC reported violations in terms of lambda coordinates, it was
difficult to <correlate these error reports with features within
the circuit. A designer was forced to quit the editor and convert
the design into the internal form accepted by the DRC, before the
errors could be found. This broke the interactive design cycle.

There was a compelling need to combine the DRC function with the

circuit editor. (Note: the DRC has subsequently been integrated

with the Berkeley version of CAESAR [0UST82]).

In a graduate seminar led by Randy Katz, two (competing)
groups of students (Joe Moran and Kishore Ramachandran; Dan
Schuh) undertook to make the tools work in our computing environ-
ment, and to integrate layout and design rule checking. Dan Schuh
took the project one step further by implementing the design rule
check within the terminal itself. These two efforts resulted in
two systems: Caesar ("Big Caesar"), which implements a terminal
independent version of CAESAR, and caesar ("Little Caesar") which
is a version of CAESAR that takes advantage of the capabilities

of an intelligent workstation.

The remainder of the paper is organized as follows. In sec-
tion 2, we briefly describe CAESAR and the MIT DRC programs. Sec-
tion 3 details our experience with making a terminal independent
CAESAR, and section 4 describes our experiments with migrating

functions into a workstation. Section 5 contains our conclusions.

2. CAESAR and DRC

In this section we briefly review the capabilities of these
two systems. Our purpose 1is to set the context for our work.,
More detailed descriptions of these systems are found in [0OUSTS81]

and [BARESO].

2.1l. CAESAR: An Interactive Editor for VLSI Layouts

CAESAR allows a designer to interactively edit layout
geometries. It provides a two dimensional cursor, with the abil-
ity to "paint" under the cursor. CAESAR does not support such CIF
primitives as polygons and wires. A flexible set of commands make
it possible to select an area of a layout under the cursor, and
to move it, delete it, or replicate it any number of times. Only
Manhattan features are supported. CAESAR supports the notion of a
cell and allows the user to build a design hierarchy. It is pos-
sible to obtain a CIF representation of a design for input to

other tools.

The system, as it is distributed from Berkeley, is config-
ured for a video terminal at which commands are typed, and an AED

512 Graphics Terminal for graphical interaction.

2.2. Tools for Verifying Integrated Circuit Designs

The MIT verification tools include a design rule checker
(DRC), electrical rule checker (ERC), and several switch level
simulators. We were primarily concerned with the DRC. The checker
works by converting a CIF description of a design into a raster-
ized image, based on a lambda grid. Templates are passed over the
rasterization to check for violations, the position is advanced
by one lambda position, and the process is repeated. The checker

reports the coordinates of the error.

The major difficulty in using the DRC is that the CIF
representation has to be converted into a different internal form
understood by these tools, called CED. This involves invoking
several mapping programs to put the design into the required for-
mat. In addition, it is difficult to correlate the error report
of the DRC with circuit features displayed on the graphics termi-

nal.

One of us (Dan Schuh) observed that the representation of a
design in a terminal”s frame buffer was essentially the same as
that used by the MIT DRC, assuming that one 1lambda square was
mapped to one pixel. This was the basis of his implementation of

the DRC within the terminal.

3. Big Caesar: A Terminal Independent Caesar (Moran, Ramachan-

dran)

We started with the graphics editor CAESAR and introduced

the following changes, modifications, and improvements:

terminal independence

. improved efficiency

correction of bugs

added graphics commands like wire layout and joystick control
integration of design rule checker into graphics editor

°

U N
o

®

Building terminal independence into graphics tools is impor-
tant, since it makes it possible to use the existing software
with new graphics devices as they become available. We were
‘unwilling to 1lock ourselves into AED terminals. Integration of

the design rule checker and the editor makes it possible for the

-5

user to invoke the check from within the editor and see the out-
put graphically displayed on the terminal, thus avoiding a break

in the interactive design cycle.

3.1. Terminal Independence

Big Caesar currently supports two graphics terminals, the
AED 512 and the CHROMATICS 7900, and has the ability to work in
either two terminal or single terminal mode of operation. The
terminal handling software has been modularized to allow for easy

adaptation to new terminal types.

The original CAESAR was designed for an AED terminal with
eight bit planes. The mapping of layers to bit planes is shown in
figure 1. One of our goals was to make CAESAR independent of the
number of planes in the terminal. A first step in making CAESAR

work for terminals with fewer bit planes was to move the

s R e e Eaiel ST IS S
lpla|lm|[i]c]o]aG]|c|
il T e et ST S

- polysilicon

- diffusion

- metal

- implant

contact cut

- overglass

- Grid, Bounding Box, and Labels
- Cursor

QOO Q38 g
I

Figure 1 - Original Bit Plane Mapping

important layers, such as the cursor, to the lower numbered
planes. Big Caesar automatically maps a normally solid box of a
non-existent higher bit plane into a hollow box on a lower plane.
The remapping of planes is shown in figure 2. Note that the less
interesting layers, namely implant and overglass, are assigned to
the higher planes (which may not be present). For a terminal with
fewer than eight planes, boxes on bit plane seven are mapped to
hollow boxes in bit plane n-1, boxes on bit plane six are mapped
to hollow boxes in bit plane n-2, etc., where n is the number of
planes available. CAESAR in single terminal mode maps the text to
the (C)ursor layer, or can have text directed to a special layer
supported by the terminal (the CHROMATICS has a separate "over-

lay" layer for text).

All bit plane dependencies were removed from the original
CAESAR, although CIF output 1is still produced in the original
order. The code was also modified to make it possible to write
text to the graphics device. The graphics package within CAESAR
was extensively restructured to enhance terminal independence. An

internal table describes the capabilities of each terminal type

e et St S e e
lclelplalm]c]|il]ol
it T s ettt STl S

Figure 2 - New Bit Plane Mapping

supported by Big Caesar. Information included in this table 1is
the terminal”s name, color map, and device specific graphics rou-
tines. Also stored is information about the screen resolution and
number of bit planes. Adding a new terminal type is a matter of
making the appropriate entries in the terminal table, and provid-

ing the routines for the graphics primitives.

3.2. DRC Integration

The long command ":CHeck" invokes the design rule checker.
The section of the design visible under the CAESAR cursor is
passed to the design rule checker. The resulting error codes are
displayed on the screen where they occur within the design. The
long command ":ERRor err num" prints out a textual explanation of

the error on the screen.

When the DRC is invoked, the rectangles under the cursor are
written to a file scaled up to quarter lambda coordinates (this
corrects certain roundoff errors in our original version CAESAR).
The file is sorted by maximum y coordinate and converted to the
CED format expected by the DRC program. The file of sorted CED
rectangles are read in and checked by the DRC. It announces an
error by calling a routine to display an error code at the x and

y coordinates where the error was detected.

3.3. Additional Enhancements

For the AED and CHROMATICS, the joystick may be used to move

the CAESAR cursor with the additional short commands "x" (for

lower left) and "r" (for upper right). Necessity is the mother of
invention, and these commands were added because we do not have a

graphics tablet available to us.

New wire commands have also been added to aid in routing
wires, a feature strongly suggested by users of our Caesar. The
long command ":Wire layer width" is used to set the wire layer
and width. The short command "b" is used to (b)egin a wire at the
current joystick position. After moving the joystick, the short
command "h" draws a (h)orizontal wire from the last point to the
current joystick position. If "H" is used, then the wire is drawn
in two segments if necessary to join the two points, drawing the
(H)orizontal wire first. The short command "u" draws an (u)p-down
wire, while "U" draws a two segment wire, with the (U)p-down seg-
ment being drawn first. After an "h", "H", "u", or "U" command,
the joystick position becomes the new starting point for the next
wire, thus making it easy to continue laying out the same wire

over a longer path (see figure 3).

Additional changes were made to enhance the efficiency of
CAESAR. Storage is allocated in large chunks, and managed inter-
nally, rather than calling the operating system to allocate
storage for each new rectangle created by CAESAR. Further, the
graphics primitives were structured in such a way that the state
of the terminal is remembered between operations, reducing the

amount of information that has be communicated to the terminal.

llllll K e e e e it e ot .______X IIUII "Hll X

B * B Fe e e * wpn
Figure 3 —-- Wire Routing Commands
(B = Begin point; X = Current Cursor Position)

| >

Little Caesar: An Intelligent Workstation Caesar (Schuh)

Many of the enhancements to CAESAR described above were also
included in Little Caesar. The major difference was that this
Caesar achieved terminal independence by making extensive use of
an existing terminal independent graphics package called Spider-
Graphics [HANR82]. The advantage is that it is possible to bring
the editor up on new terminals very rapidly, as long as the prim-
itives have already been implemented for the desired device. For
example, CAESAR was modified to drive a pen plotter by recompil-
ing the system with the graphics package for the plotter. The
disadvantage is that there is one executable copy of the editor

for each terminal type.

Our experiments with CAESAR indicate that a major bottleneck
is the flow of characters to the graphics terminal. The size of
this stream can be greatly reduced if the program keeps track of

the state of the terminal between interactions.

~10-

The CHROMATICS 7900 terminal has a resident 68000 micropro-
cessor that is user programmable. While it is not easy to down-
load programs into the terminal (because of incomplete documenta-
tion and bugs in our version of the terminal), we have been able
to surmount the problems. For example, we were able to write a
new routine for drawing filled rectangles that outperformed the
version supplied with the terminal. Migrating other graphics
functions into the terminal also reduces the amount of informa-
tion that has to be communicated to the device, thus improving

the terminal”s ability to change the image on its screen.

A major effort was dedicated to making the MIT DRC program
run in the terminal. DRC is well-suited for local execution
because its input is similar to the format of graphics display
data in the terminal”s frame buffer. By properly scaling the
graphics display, it is possible to make pixels in the frame
buffer have a 1-to-1 correspondence with a one lambda grid. The
DRC program can obtain its data directly from the frame buffer,

without requiring any interaction with the mainframe.

The original program obtains a line by line bitmap rasteri-
zation of the 1layout by examining layout rectangles sorted in
raster order. We can obtain the data by simply looking at the
corresponding pixels in the frame buffer. Design rule checks are
done on a window by window basis, as before. Errors are flagged
by highlighting the grid and cursor layers in windows where they
are found. To make the error visible, we have prepared a special

color map in which the grid and cursor layout appear

-11-

"translucent". This is implemented by converting the color map of
the first six layers to a <hue, value, saturation> representa-
tion. Pixels under the highlighted grid and cursor 1layers have
their wvalue and saturation lowered, but the hue is maintained.
This allows the paint to be seen through the solid rectangles of

the cursor and grid layers.

Unfortunately, all errors are highlighted in the same way,
making it difficult to detect which error occurred. It is imprac-
tical to type a message because of the small number of pixels
associated with the error (i.e., a 4 pixel by 4 pixel window). We
rewrote the DRC to do one check over the whole design at a time,
rather than all checks within a window at a time. A different
method of extracting the rasterization was employed to reduce the
performance penalty. Instead of constructing 4 x 4 and 3 x 3
windows for all layers bit by bit, 4 x 32 bit windows for the
critical layers 1in a given check were extracted into register
variables. The frame buffer memory is structured so this can be
done efficiently. This allows a rapid scan through most windows,
since the next window can usually be obtained by shifting a few
registers. Since some checks require looking at as many as 4
layers, not all of the rasterization fits in registers. However,
an initial screening c¢an be done on the basis of one or two

layers.

The user interface has two parts. Caesar can execute the drc
by sending a sequence of characters to the terminal to invoke the

program, and describing the area of the frame buffer and the

-12-

kinds of rules to <check. The drc 1is invoked by the command
":drc", and the area checked is approximately the area under the
cursor. Currently, all checks are made, but it would be simple to

restrict the checks to a requested subset.

The second part of the interface is the display of error
messages. If a wviolation is found while checking a particular
error type, the program waits for a character from the keyboard.
Four actions are possible, depending on the character: the
sequence of checks is continued, either with the (1) cursor
layer, (2) grid and cursor layer, or (3) no layers erased, or (4)

the drc is aborted.

We have found that on our heavily loaded mainframe, the drc
can run many times faster when performed in the terminal. How-
ever, we have not conducted extensive performance tests at this

time.

5. Conclusions

The ability to obtain university software from other insti-
tutions is a mixed blessing. While it does not cost much (if any-
thing), it may not be suited to a user”s environment. Further,
the original authors are not interested in supporting a user com-
munity. To take maximum advantage of the opportunity, the reci-
pient should be prepared to modify the code to make it work
effectively in his environment. Often this can have a synergistic
effect. Since the "not invented here" syndrome does not apply in

this situation, tools from different places can be combined

-13-

within an integrated system. Very often the system is more power-
ful than its individual parts. By taking advantage of new
hardware, such as a more powerful terminal, an existing tool can
be made even more effective. Users should not be afraid to modify

the tools they receive.

Our experience with migrating the design rule check into the
terminal is a prototype for the design environment of the future.
Many design tasks will be offloaded into the terminal. The result
will be a shorter modify-test cycle, with the ultimate result

being lowered costs for circuit design.

6. Acknowledgements

First and foremost, we wish to thank the authors of these
programs, John Ousterhout and Clark Baker, for making the source
code available to us. Our colleague, Don Neuhengen, helped in
getting the MIT software running, and also discovered the prob-
lems in making CAESAR run on "our" AED terminal. The chip
designers in our seminar course were responsible for "shaking out
the bugs" and for suggesting several features, such as the wire

commands, which were incorporated into our CAESARs.

7. References

[BAKE80] Baker, C. M., C. Terman, "Tools for Verifying Integrated
Circuit Designs," Lambda, Fourth Quarter 1980.

[CONW8B0] Conway, L., "VLSI Design in the Universities," in
University Scene, Lambda, Fourth Quarter 1980.

[HANR82] Hanrahan, P., "SpiderGraphics User Manual," Internal
Memo, Computer Sciences Department, University of

-14-

Wisconsin-Madison, 1982.

[ousT81] Ousterhout, J. K., "Caesar: An Interactive Editor for
VLSI Layout," VLSI Design, 4th Quarter 1981.

[ousT82] Ousterhout, J. K., personal communication, 1982.

~15-

