A CONJUGATE DECOMPOSITION OF THE EUCLIDEAN SPACE

by

S.-P. Han & O. L. Mangasarian

Computer Sciences Technical Report #480

August 1982

A CONJUGATE DECOMPOSITION OF THE EUCLIDEAN SPACE

S.-P. Han & O. L. Mangasarian

University of Wisconsin-Madison

## **ABSTRACT**

Given a closed convex cone K in the n-dimensional real Euclidean space  $R^n$  and an  $n \times n$  real matrix A which is positive definite on K, we show that each vector in  $R^n$  can be decomposed into a component which lies in K and another which lies in the conjugate cone induced by A and such that the two vectors are conjugate to each other with respect to  $A + A^T$ . As a consequence of this decomposition we establish the following characterization of positive definite matrices: An  $n \times n$  real matrix A is positive definite if and only if it is positive definite on some closed convex cone K in  $R^n$  and  $(A+A^T)^{-1}$  exists and is positive semidefinte on the polar cone  $K^0$ . If K is a subspace of  $R^n$  then  $K^0$  is its orthogonal complement  $K^\perp$ . Other applications include local duality results for nonlinear programs and other characterizations of positive definite and semidefinite matrices.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based on work supported by the National Science Foundation under Grants ENG-7903881, MCS-7901066 and MCS-8200632.

Let A be an n×n real matrix and K be a closed convex cone in the n-dimensional real Euclidean space  $R^n$ . A vector a in  $R^n$  is said to have a conjugate decomposition with respect to A and K if there exists an x in K and a y in the conjugate cone  $K^A := \{y \mid y^T (A + A^T) x \leq 0, \ \forall x \in K\} \text{ such that } y \in A^n \text{$ 

$$a = x + y$$
 and  $x^{T}(A+A^{T})y = 0$ .

When K is a subspace and A is the identity matrix such a decomposition becomes the classical orthogonal decomposition of a vector into its projections onto the subspace K and its orthogonal complement  $K^{\perp}$ . It is well known that, in this case, such a decomposition exists and is unique for any given vector a. This result was generalized by Moreau [5] to the case where K is any closed cone in a Hilbert space with any Hilbertian norm. Thus, if A is positive definite on the entire space, it defines a norm  $\|x\|_A^2 := x^T A x$ , and our decomposition result, Theorem 1, follows directly from Moreau's theorem. The main point of this paper is to extend Moreau's result to the case where A is not positive definite on the entire space but merely on the closed convex cone K, that is  $x^T A x > 0$  whenever  $0 \neq x \in K$ . Although the results of this paper are extendable to a Hilbert space, they are presented here only for a real Euclidean space. We begin with our first principal result.

Theorem 1 Let A be an  $n \times n$  real matrix and K be any closed convex cone in  $\mathbb{R}^n$ . If A is positive definite on K then any vector in  $\mathbb{R}^n$  has a conjugate decomposition with respect to A and K. Moreover, if A is positive definite on the linear hull of K then the decomposition is unique.

 $\underline{Proof}$  (Existence) Let a be a given fixed vector in  $\mathbb{R}^n$ , and let

S:= 
$$\{x \mid x \in K \text{ and } ||x|| \leq \frac{\|a^{T}(A+A^{T})\|}{\alpha}\}$$

where | | • | denotes the Euclidean norm and

$$\alpha := \min \{x^{T} Ax | ||x|| = 1, x \in K\} > 0.$$

Let  $f(x):=(x-a)^TA(x-a)$  and consider the following problems

(Q) 
$$\min \{f(x) | x \in K\},\$$

(Q') 
$$\min \{f(x) | x \in S\}.$$

Any solution of (Q') also solves (Q) because for any  $x \in K \setminus S$ ,

$$f(x) = x^{T}Ax - a^{T}(A+A^{T})x + a^{T}Aa$$

$$\geq (\alpha ||x|| - ||a^{T}(A+A^{T})||) ||x|| + a^{T}Aa$$

$$> f(0).$$

It follows from the compactness of S that (Q) has a solution  $\bar{x}$ , say. Then by the minimum principle [4, Theorem 9.3.3], we have that

$$(x-\overline{x})^{\mathsf{T}}(A+A^{\mathsf{T}})(\overline{x}-a) \geq 0 \quad \forall x \in K.$$

By letting  $x=2\overline{x}$  and x=0 and letting  $\overline{y}=a-\overline{x}$ , we have that

$$a = \bar{x} + \bar{y}, \ \bar{x} \in K, \ \bar{y} \in K^A$$
 and  $\bar{x}^T (A+A^T)\bar{y} = 0$ ,

which is a conjugate decomposition of a with respect to A and K.

(Uniqueness) Let  $a=\hat{x}+\hat{y}=\bar{x}+\bar{y}$  be two conjugate decompositions of a. Then it follows from  $\bar{x}-\hat{x}=\hat{y}-\bar{y}$  that

$$(\bar{\mathbf{x}} - \hat{\mathbf{x}})^{\mathsf{T}} \mathbf{A} (\bar{\mathbf{x}} - \hat{\mathbf{x}}) = \frac{1}{2} (\bar{\mathbf{x}} - \hat{\mathbf{x}})^{\mathsf{T}} (\mathbf{A} + \mathbf{A}^{\mathsf{T}}) (\hat{\mathbf{y}} - \bar{\mathbf{y}})$$

$$= \frac{1}{2} \bar{\mathbf{x}}^{\mathsf{T}} (\mathbf{A} + \mathbf{A}^{\mathsf{T}}) \hat{\mathbf{y}} + \frac{1}{2} \hat{\mathbf{x}}^{\mathsf{T}} (\mathbf{A} + \mathbf{A}^{\mathsf{T}}) \bar{\mathbf{y}}$$

$$\leq 0$$

Since A is positive definite on the linear hull of K, the last inequality can hold only when  $\bar{x}=\hat{x}$ . Hence, the decomposition is unique.

An important consequence of Theorem 1 is the following characterization of positive definite matrices.

Theorem 2 Let A be an n×n real matrix and let K be a closed convex cone in  $\mathbb{R}^n$ . A is positive definite if and only if A is positive definite on K and  $(A+A^T)^{-1}$  exists and is positive semidefinite on the polar cone  $K^0 := \{y | y^T x \leq 0, \ \forall x \in K\}$ .

<u>Proof</u> The "only if" is trivially true. Let a be any given vector in  $R^n$ , then by Theorem 1, there exists a conjugate decomposition  $a = \bar{x} + \bar{y}$  with  $\bar{x} \in K$ ,  $\bar{y} \in K^A$  and  $\bar{x}^T(A+A^T)\bar{y} = 0$ . Let  $\bar{z} = (A+A^T)\bar{y}$  then  $\bar{z} \in K^0$ . Thus

$$a^{T}Aa = (\bar{x} + \bar{y})^{T}A(\bar{x} + \bar{y})$$

$$= \bar{x}^{T}A\bar{x} + \frac{1}{2}\bar{y}^{T}(A + A^{T})\bar{y}$$

$$= \bar{x}^{T}A\bar{x} + \frac{1}{2}\bar{z}^{T}(A + A^{T})^{-1}\bar{z} \ge 0.$$

Hence, A is positive semidefinite and so is  $A + A^T$ . Since  $A + A^T$  is nonsingular,  $A + A^T$  is in fact positive definite and so is A.  $\square$ 

A direct consequence of Theorem 2 is the following.

<u>Corollary 3</u> Let A be an  $n \times n$  real matrix and let K be a closed convex cone in  $R^n$  such that  $-K^0 \subset K$ . A is positive definite if and only if A is positive definite on K and  $(A+A^T)^{-1}$  exists and is positive semidefinite on K.

If we let  $K = \{x \mid Bx \leq 0\}$  in Corollary 3 where B is some  $m \times n$  real matrix, then  $-K^0 = \{y \mid x^T y \geq 0, \ \forall x \in K\} = \{y \mid y = -B^T u, \ u \geq 0\}$ . Hence  $-K^0 \subset K$  if and only if  $BB^T u \geq 0$  for all  $u \geq 0$  or equivalently if  $BB^T \geq 0$ . Consequently we have the following.

Corollary 4 Let A be n×n real matrix and let B be an m×n real matrix such that  $BB^T \ge 0$ . A is positive definite if and only if A is positive definite on  $K = \{x \mid Bx \le 0\}$  and  $(A+A^T)^{-1}$  exists and is positive semidefinite on K.

By letting B be the negative of the identity matrix in Corollary 4 we obtain the following interesting characterization of positive definite matrices in terms of strictly copositive and copositive matrices.

Corollary 5 A necessary and sufficient condition for an  $n \times n$  real matrix A to be positive definite is that A be strictly copositive (that is  $x^TAx > 0$  for  $0 \neq x \geq 0$ ) and  $A + A^T$  has a copositive inverse (that is  $x^T(A+A^T)^{-1}x \geq 0$  for all  $x \geq 0$ ).

By letting K in Theorem 2 be a subpace of  $R^n$ , we get the following result obtained in [1] by a different technique which does not extend to cones.

Corollary 6 Let A be an  $n \times n$  real symmetric matrix and K be a subspace of  $R^n$ . A is positive definite if and only if A is positive definite on K and  $A^{-1}$  exists and is positive semidefinite on the orthogonal complement  $K^L$  of K.

Applications of Corollary 6 and Theorem 2 to local duality results of nonlinear programming are given in [1,3]. Additional results pertaining to conjugate decomposition with respect to positive semidefinite matrices are given in [2]. Other possible applications are to the theory of penalty functions and augmented Lagrangians [6].

## References

- 1. O. Fujiwara, S.-P. Han and O. L. Mangasarian: "Local duality of nonlinear programs", Mathematics Research Center, University of Wisconsin, Madison, Technical Summary Report 2329, February 1982, to appear, SIAM Journal on Control and Optimization.
- 2. S.-P. Han and O. L. Mangasarian: "Conjugate cone characterization of positive definite and semidefinite matrices", Computer Sciences Department, University of Wisconsin, Madison, Technical Report #471, March 1982, to appear, Linear Algebra and Its Applications.
- 3. S.-P. Han and O. L. Mangasarian: "Characterization of positive definite and semidefinite matrices via quadratic programming duality", Computer Sciences Department, University of Wisconsin, Madison, Technical Report #473, June 1982, to appear, SIAM Journal on Algebraic and Discrete Methods.
- 4. O. L. Mangasarian: "Nonlinear programming", McGraw-Hill, New York, 1969.
- 5. J. J. Moreau: "Décomposition orthogonale d'un espace hilbertien selon deux cône mutuellement polaires", C. R. Acad. Sci. Paris 255, 1962, 238-240.
- 6. A. P. Wierzbicki and S. Kurcyusz: "Projection on a cone, penalty functionals and duality theory for problems with inequality constraints in Hilbert space", SIAM Journal on Control and Optimization 15, 1977, 25-56.