174

Storage Structures for Versions and Alternatives

Randy H. Ratz and Tobin J. Lehman
Computer Sciences Department
University of Wisconsin-Madison
Madison, WI 53706

-

ABSTRACT: We identify the roles played by versions and design
alternatives in an engineering database. The obvious way to
implement versions is to maintain each in a separate collection
of files. Because several versions must be kept on-line in a
‘design’ environment, the approach leads to large disk require-
ments. We develop B-tree based storage structures to encode ver-
sions as "negative" differential files. Our objective is to keep
the disk requirements small. We discuss the effect of enormous
amounts of cheap archival storage (write-once optical digital
disks) on the proposed structures. We are implementing versions
in the Wisconsin Storage System (WiSS), an experimental database
component under development at the University Of Wisconsin-
Madison.

1. Introduction

Until recently, the database research community has been
concerned primarily with providing effective data management
‘facilities forwconventional data processing applications, viz.,
banking, accounting, and so forth. New directions include data-
base‘faciLitieé for non-traditional problem domains, such as
scientific data analysis [BORA82], the automated office [ELLIS8O],

and computer-aided design [HASKS82, KATZ82].

We are particularly interested in applying database methods

to support design activities. A design management system is an

extension of a database system for handling the information about
the design of complicated "engineered” artifacts, e.g., large
software systems, multi-author documents, and integrated cir-

cuits. Although the structures developed here are of use in any

of these domains, we will concentrate on integrated circuits.
Artifacts as complicated as these are created by teams of
designers simultaneously working on different pieces of a design.
In addition, a design may be specified in‘several different
design representations. For example, an integrated circuit design
is viewed simultaneously as a geometric layout, a transistor net-
work, or a logic circuit. Besides controlled sharing and multiple
design representations, the environment should also support
design versions and the exploration of tentative alternative
designs. In this paper, we are concerned with how a design data

management system implements versions and alternatives.

A design evolves over time. An in-progress version is a
design "under construction." Designers modify the in-progress
version until it is reédy for release. They can create alterna-
Eiggg; which are hypothetical variants of an in-progress version.
These pefmit designers to explore experimental design solutions
without making changes to the in-progress version. Several alter-
natives can be merged to create a néw in-progress version. When a
design is ready for release, it is first made effectivé’fdr test-
ing and internal distribution. Effective versions cannot be
updated without once again becoming in-progress. Effective ver-
sions become released when the designed object is sent into the
field. Released versions can be archived and later restored when

immediate access is necessary.

The question addressed here is how to use existing database

techniques and storage structures to support design versions and

-2~

alternatives. The remainder of this paper is organized as fol-
lows. 1In the next section, we present a model of how design ver-
sions and alternatives are used in the design process. In section
3, we describe the desirable features of a version mechanism, and
evaluate previously proposed techniques to support versions and
alternatives in section 4. We propose a new storage structure for
Qersions in section 5, where the goal is to support many on-line
versions while keeping disk requirements small. In section 6, we
describe how new technology, such as write-once optical digital
disks, affects version management. We give our conclusions and

implementation status in section 7.

2. Design Administration

The design life cycle and operations for manipulating ver-
sions and alternatives 1is shown in figure 2.1. A new "in-
progress®™ version is created from an initial version. Designers
simultaneously ﬁpdate in-progress data. Alternative design ver-

sions are created by issuing a create-alternative command.

Changes to alternative designs do not affect the in-progress ver-
sion. Mechanisms based on intention 1locking within a design
hierarchy are used to insure exclusive designer access to parts
of the design [HASK82, KATZ82]. Therefore, the part of the design
updated by a designer, whether the in-progress version or one of
its alternatives, will not change underneath him, although "sur-
rounding” design parts might be modified by concurrent activity.
Alternatives are created over disjoint sets of data (i.e., paral-

lel subtrees of a design hierarchy), and can be merged to form a

-3-

initial version

l’ CREATE

in-progress version (R/W)

CREATE-ALTERNATIVE

r

alternativel l . o e alternativen

MERGE-ALTERNATIVE CHOOSE-ALTERNATIVE

effective version (R/0)

AN

released version (R/O)

ARCHIVE l

l archived version (R/O).

FORGET ARCHIVE T RESTORE

deleted version restored version (R/O)

Figure 2.1 -- Design Life Cycle

new alternative with a merge-alternative command. An effective

version is formed by choosing an alternative (one of which is the

in-progress version). Effective versions are read-only and

-4

represent a pre-release version of a design, suitable for testing
before actual release. An effective version can be updated only
if it 1is first thawed back into an in-progress version. Other-
wise, it can be frozen into a released version. Releases can be
archived and 1later restored. Ancient versions are removed from
the archive by being forgotten. Once forgotten, a version can
never be reaccessed. Uspally, direct access is required for the
last reieased veréion, ail effective versions created since the

last release, and the current in-progress version.

Effective versions are design checkpoints. Since the

correction of some design errors can denerate many new ones
(i.e., the debugging process "diverges"), effective versions pro-
vide the capability of backing up a design to a consistent ver-

sion known to have passed a certain battery of tests.

Designers prefer to try several alternative approaches for
solving a design problem. For example, he may want to examine two
circuits that perform the same function, yet one consumes less
area (but more powerf thén the other. The design system should
make it possible for the designer to carry forward multiple
alternative designs in parallel. If several independent alterna-
tives appear promising, they can be merged into a single alterna-
tive. An alternative is chosen for combination with the current
in-progress version to form a new effective version. Because
alternative designs are tentative, changes to an alternative do
not affect the current working copy of a design until it is

chosen as an effective version.

While a conventional database has a database administrator
to control its definition and use, a design database must have a

design administrator. This person or group is the only user per-

mitted to issue create, choose-alternative, merge-alternative,
restore, and forget operations. Individual designers may only

create alternatives or update the in-progress version.

3. Design Goals for Structures to Support Versioned Files

A design version is a consistent representation of. a design

at a particular time from the viewpoint of the design process. A
design version is implemented by the collection of synchronized
versioned files that store data about the designed object. Ver-
sions are created explicitly by the design administrator, not by
individual update operations as in [REED79]. Existing database
systems provide no special mechanisms for creating and managing
versions of files. However, such support is critical for success-

ful design data management.

We evaluate storage structures for versions on the basis of

three criteria:

(1) Does the structure encode versions with a minimum amount of
(record) redundancy? This is achieved by only storing new
images of records when they change. A record is stored once
for each set of versions for which it has gone without

update.

(2) Can all versions of a logical record be obtained quickly

(record oriented access)? This can be achieved by cluster-

ing a current record together with its previous versions.
Alternatively, structures can be used to link together a
record”s current version and its old versions. An example of -
this type of access is an application that needs the history

of how a part of a circuit design has evolved over time.

(3) Can all records within a version be obtained quickly (ver-

sion oriented access)? All records within a particular ver-

sion can either be clustered or linked together to insure
fast access. For example, an application may need to access

the version of a design as it existed in May 1981.

These goals cannot be satisfied simultaneously. For example,
it is impossible to physically cluster a file both by version and
by logical record without introducing replicated data. For the
applications and design environment we have in mind, the overrid-
ing consideration is to encode versions with minimum redundancy.
This allows us to increase the number of versions kept on-line
for a given amount of available disk space. Further, most
accesses are directed to the current version, with significantly
less access to older versions. We want excellent support for ver-
sion oriented access, with record oriented access a secondary
consideration. Support for version oriented access via clustering
cannot be achieved without replication, because some records
remain unchanged across versions. Clustering by versions would

require that these unchanged records appear with every version

-7~

that contains them. Minimum encoding would be lost.

A version scheme must also support alternatives. Alterna-
tives differ from other kinds of versions in that (1) several
current alternative versions can exist simultaneously (there is
only one current in-progress, effective, or released version at a
time), and (2) updates to an alternative are not made to the in-
progress version until the two are explicitly combined (alterna-
tives are tentative). Designers working on an alternative do not
see the changes made by other designers working on parallel
alternatives. Once an alternative is chosen, the others are dis-

carded.

We will propose a method that encodes versions with a
minimum number of records. Current versions of all logical
records are clustered together for faster access to these fre-
quently accessed records. Older versions are collected together
without clustering. An auxiliary index structure supports both

record and version oriented access.

4. Previous Approaches for Version Management

Three approaches have been proposed to support some form of
versioning: "file level versions", shadow pages (page level ver-
sions), and differential files (a form of record level versions).
Database snapshots [ADIB80] are similar to versions, but not the
same. Snapshots are read-only windows on the database that are
refreshed periodically and automatically. Effective and released

versions are also read-only, but alternative and in-progress

-8

versions are not. Snapshots are created by time-triggered events,
while versions must be created explicitly by the design adminis-

trator.

The obvious approach to implement versioned data is based on
file level versions.* In this method, a version is represented by
a named collection of files, in which each file name is extended
with a unique version number. Thus, file DESIGN.1l contains the
origingl version, while files DESIGN.Z2, bESIGN.3, cee contain
subseqﬁent versions of the design. Alternative versions are
accommodated by extending the naming scheme. If there are two
alternatives for version 2, then the files are named DESIGN.2.1
and DESIGN.2.2. The approach does not use disk space effectively.
It is difficult to justify the allocation of precious disk space
to alternatives that are not selected to become an in-progress

version.

Although versions are not encoded minimally, fast access
within a version is supported by clustering each within its own
file. Additional structureé-aré“ néeded to interrelate records
across versions. We reject this approach because of its poor

storage utilization.

The second method is the shadow page mechanism of [LORI77].

It reduces the storage overhead of keeping multiple versions of

design data on—-line by only storing pages that change across

* 0S/360 supported the notion of generation data sets, which
is a similar concept.

versions. The first update to a record on a page creates a new
version of the page. The design database is a collection of page
maps over data pages. A new version is created from the current
version by first creating a copy of its page maps. Updates are
not performed in place. Instead, a new page slot is allocated,
the changed page (i.e., the "shadow") is written to this slot,
and the page map of the new version points to it. The storage
requirements to keep versions on-line is the sum of the sizes of
the old version, the pages that have been modified,iand the page

maps.

The shadow page method has been proposed as a recovery
mechanism, not as a technique for versions. Consequently, certain
features are lacking that are crucial for their support. Access-
ing a version of a record or all records within a version is
efficiently implemented by the page maps, but versions are not
clustered (except for the original). Since different versions of
the same record are assigned the same virtual address, it is not
obvious how to reuse virtual addresses once a logical record,
with old versions still on-line, has been deleted. Page versions
do not lead to a minimum encoding for record versions. Further,
for large databases, the page maps can grow large enough to

require their own mechanisms for paging and swapping.

The third method for representing design versions is by dif-
ferential files [SEVE76]. A new version is represented by a base
file (0ld version) and a change file (the differential file).

Fast version access to the base file/old version is supported by

-10-

clustering, but the new version remains unclustered. Without aux-
iliary structures, access to record versions is slow. To find a
record, we must first check if it is in the differential file. If
it i;n't, we must search the base file. In the worse case, twice
as many reads are needed to find the records in the new version
that have not changed (mechanisms, such as the Bloom filter, have
been proposed to reduce the probability of encountering the worst

case). An advantage is that the differential file mechanism

‘achieves minimum record encoding of versions.

Differential files provide a natural implementation of
alternatives [STON80, STON81]. For example, an alternative A is
represented by the view A = (B U I) - D, where B is the in-
progress version, I is an insertion differential file, and D is a
deletion differential file. Since changes to A are placed in I or
D, B is never modified by an update to A. The scheme cannot sup-
port inserted records that are identical to a previously deleted
record. This is only circumvented by introducing a unique iden-

tifier for each logical record.

A major deficiency of differential files is that the old
version is clustered, while the new vefsion is not. We propose a
"negative" differential file to provide better support for ver-
sions. I and D differential files are created when a new in-
progress version is created from a released or initial version.
Changes are made to the base file in-place and recorded in the
appropriate differential files (note the resemblance to an undo

recovery log). The old version is defined by the new version and

-11-

the differential files as OLD = (NEW U D) - I. The advantage of
this representation is that the new version is clustered, while
0ld versions can be accessed (slowly) without the need for exces-
sive disk space. This is particularly effective when (1) versions
do not vary much, and (2) the old version is referenced infre-
quently (but not so infrequently that it might as well be

archived and restored as needed).

The Source Code Control System (SCCS) of UNIX* uses a dif-
ferential file approach for versions of text files [ROCH75]. Each
version or alternative is represented as a difference ("delta")
file over the previous version. Versions are encoded minimally.
Before a version is read or updated, it is first extracted into a
work file, thus clustering the desired version. The extraction
process is time consuming, since the complete chain of delta
files from the initial version to the extracted version must be
accessed. Since SCCS is concerned with text files and not data-
bases, there is no support for record oriented access. No special
capabilities are provided for version archive or restore. Alter-

natives are supported by parallel delta files.

5. A New Storage Structure for Version Management

5.1. Requirements for Version Management

We review the desirable properties of a version support

mechanism, and indicate how the structures of this section

* Trademark of Western Electric Corporation.

-12-

provide them:

(1) Minimum redundancy: only changed records are stored for each
new version. Versioned files are arranged as negative dif-

ferential files.

(2) Record oriented access: all versions of a logical record can
be accessed. Each logical record is uniquely identified. An
auxiliary index structure supports access to all on-line

records with the same logical record id.

(3) Version oriented access: all records within a version can be
accessed. The structure used in (2) is also used here. The
index indicates which of each logical record”s several ver-
sions was the one existing when each file version was
created. The records are extracted into a working file to

obtain clustering.

5.2. Version Storage Structure

A logical reéérd is associated with a collection of physical
records that represent it at different times in the life of a
design file. The relationship between a record and its versions
should be independent of physical addresses, since we would like
to ieuse the physical address space after a logical record has
been deleted. We associate a system generated surrogate with a
logical record, and embed it in each of its record versions. Once
a surrogate has been assigned to a logical record, it may never

be reassigned. Record oriented access is supported by a surro-

-13-

gate index over the record versions. The index is implemented
with a B+-tree structure [COME79], commonly supported by database

system access methods.

The size of the surrogate is application dependent. A four
byte surrogate is sufficient to identify approximately 4.3 bil-
lion different logical records per file. For a one million record
file, this permits over four thousand completely rewritten ver-
sions of the file! Longer surrogaﬁes are needéd if: (1) a design
file contains a large number of records, (2) veréions‘ére created
frequently, or (3) a large percentage of the file changes from
version to version. For the types of databases under investiga-

tion, these are rare situations.

Our storage sFructure for version support 1is organized as
follows. Each physical record is identified by a unique record ID
(RID), which serves as its physical address within the database.
The B+-tree index is keyed on logical record surrogates. The leaf
pages contain entries that associate a surrogate with the RIDs of
the 1logical record”s versioné: Since a RID is uniqﬁe across the
collection of files which make up'the database, the index can

span several files.

A versioned file is supported by three internal files: the

history index as described above, the current version file (hen-

ceforth called the current file), and the old version file (hen-

ceforth called the history file). The entry associated with a

key within leaf pages of the history index is called a version

-14-

history. A version history contains a RID for its logical
record”s version in each version of the file. We will describe
some techniques for compressing the version history in the next
section. The current versions of ali records are clustered
together in the current file, while o0l1d on-line versions of
records are contained in the history file. Although the current
and history files could be combined, we obtain better performance

by keeping the current version clustered in its own file (see

figure 5.1).

When a versioned file is first created, the history index,
current file, and history file are empty. As new records are
added to a file, their surrogates are entered into the history
index and the record itself is inserted in the current file. The
first update to a record after a new version is created is not
performed in place. The o0ld record is first copied from the
current file to the history file, then the new. record oﬁerwiites
it in the current file. The version history is updated to point
to the new current record and the newly moved previous record.
Subsequent updates occur in the current file. Note the similarity
to the shadow page method. However we use index structures that
have been designed for very large files and residence on secon-

dary storage. This is not the case for page maps.

0ld versions can be accessed directly within the history
file, but better performance is obtained by first extracting the
desired version from the current and history files into a working

file. The current version is always kept in the current file.

-15-

History Index

Node Pages

\

e\ g e
N \\ // \/

Surrogate Cnt V2 V1 Leaf Pages

xyzzy| 2 r .

Version Higkory

Surrogate Name Sal Year ‘ Surrogate Name Sal Year
Xyz2zy Ratz 10K 1982 a— — S— —
— - — — Xyz2zy Ratz 9K 1981
Current File History File

Figure 5.1 - Version Control Storage Structure

However, to reduce the overhead of updating the current file and
history index, the current version is also copied into the work-
ing file before an editing session. Updates are batched and
merged into the current file when the session is over. This is
the approach taken by SCCS, except that here the «current rather
than the original version is directly accessible. To extract an

old version, the version histories are scanned to obtain the RIDs

-16-

of the appropriate record versions. The records are accessed and
copied into the working file. Indices over the working file can

be constructed during this copy operation.

A performance problem arises because records are accessed in
surrogate order rather than in physical address (RID) order,
since we scan the leaves of the history index to do the extrac-
tion, A solution is to first copy the RIDs into a temporary file,
sort them, and then access the records of the current and history
files for copying. Since RIDs are small (typically 8 bytes), even
for a large database the RID 1list need not be prohibitively
large. 1Ideally, surrogates should be allocated in RID order, but
even if this were possible, the ordering relationship between
surrogate and RID would be lost once a record moves from the

current file to the history file.

The purpose of the working file is to batch updates to the
current version, and to cluster the records of a particular old
on-line version for better access. A surrogate is allocated for a
record when it is first inserted into the working file. Whenever
it is modified, inserted, or deleted, an entry is simultaneously

placed in an associated change file (redo log). This is a combi-

nation insertion/deletion differential file indexed by surrogate.
Only the most recent update for each record is kept in the change

file.

When update activity has ceased, the current file is updated

by merging the change file into the history index. If a new ver-

-17—

sion is being created by the merge, then each version history is
expanded by an entry for a new current record version, and the
old current becomes the new previous version. The previous ver-
sion consists of the records in the current file at the point at
which the file was extracted into the working file. The details
are given iﬂ figure 5.2, CurrentVersion(Surrogate),
PreviousVersion(Surrogate), and CurrentFile(Surrogate) refer to
the curfent version entry and previous version entry in the ver-
sion file, and the record within the current ffile respectively.
Otherwise the entries in the change file are used to update the
records in the current file directly. The algorithms for archive

and restore of old versions are given in figure 5.3. If several

—— - v 7 r—e—

Algorithm MergeChangeFile

FOR EACH Surrogate S in ChangeFile DO
IF ChangeFile entry is new THEN
Insert change file record into CurrentFile
Insert S into HistoryIndex
CurrentVersion(S) <- record inserted in CurrentFile
(all)PreviousVersion(S) <- NULL
ELSE IF ChangeFile entry is delete THEN
Copy CurrentFile(S) to HistoryFile
Delete CurrentFile(S)
CurrentVersion(S) <- NULL
PreviousVersion(S) <- record moved to HistoryFile
ELSE
Copy CurrentFile(S) to HistoryFile
CurrentFile(S) <~ ChangeFile(S)
CurrentVersion(S) <- new CurrentFile record
PreviousVersion(S) <- record moved to HistoryFile

Figure 5.2 -- Merge Change File into Versioned File

-18-—

Algorithm ArchiveVersion

FOR EACH Surrogate S IN HistoryIndex DO
Extract RID of desired version from version history
IF not NULL THEN
Copy record into archive
Remove entry from version history
IF no other entry contains RID THEN
Remove from current/history file

Algorithm RestoreVersion

FOR EACH record IN archived version DO
Insert archived record into history file
IF surrogate is not in HistoryIndex THEN
insert surrogate into index
Entry for restored version within HistoryIndex
points to inserted record

Figure 5.3 -- Version Archive/Restore Algorithms

versions are archived and then restored, the total on-line
storage requirements may increase, since records that span ver-

sions are not identified and combined during restore.

Several types of read access to versioned data are suppor ted
by the above structures. The version histories provide the capa-
bility to find any on-line version of a record given its surro-
gate. The cost is only that to traverse the index, plus an extra
access to the current or history file to get the desired record.
Since the surrogate is embedded in every record version, we can
access other versions of the same record starting with the surro-
gate within a particular version. Index structures can be built

over specific versions (including the current version) or across

-19-

a subrange of versions (including all on-line versions). Queries
can be expressed over the current version (the default), a
specific on-line version, a subset of on-line versions, or all
on-line versions. Placing the current versions in the same file
allows the records of the current version to be clustered for
good sequential acéess. The current“file can be structured in any
way desired for fast access to the current version. The working

file can be structured similarly for extracted versions.

The working file and change file structures also support
design alternatives. An in-progress version is extracted into
the working file, all updates are performed there in-place and
posted to the change file. Since an in-progress version is
updated independently of the alternatives defined over it, a
designer working with an alternative periodically refreshs his
copy of the in-progress version in the working file. His change
file must be merged back into the working file to recreate the
changes made in the alternative. This is expedited if an index on
surrogate is built over the working file. An alternative is
incorporated into the in-progress version by merging the
alternative”s change file into the current file as described

above.

In the next subsection, we present the operations for mani-
pulating the structures in more detail, suggesting some optimiza-
tions that make the approach more suitable for actual implementa-

tion.

-20-

5.3. Implementation Details for Version Manipulation

There are a few problems with the storage structure
described above. First, if version histories are not removed from
the history index after all versions of the logical record have
been archived or deleted, then the structure can grow intolerably
large. Some mechanism is needed to reclaim space within the
index. Second, the creation of a new version as described above
causes every version history to be accessed and expanded by a new
entry, which is a large overhead. Version histories should be
expanded only when they are needed. Finally, we need compression

techniques to keep the version histories as compact as possible.

These problems are solved by associating additional informa-
tion with the versioned file, and by being more clever in how we
encode version histories within the history index. Associated

with each file is a surrogate count (SCnt), which is the largest

surrogate allocated so far, a version number (V#), which is the

number- of the largest version created to date, a version count

(VCnt), which is the number of versions currently on-line, and a

version map (VMap), which is a bit map with a "1" for those ver-

sions still on-line, and a "0" for archived versions (this is an
implementation detail -- a table could be used for the version

map, but would take up more space).

Version histories are compressed in two ways: (1) only on-
line versions are recorded in the history -- there is no need to

maintain the RIDs of records that have been archived, and (2) 1if

-21-

a record has not changed across several recent versions, then the
history will contain the same RID within the current file for
each of these -- store this RID once and make each version his-
tory variable length, with the understanding that the most recent
version in a record”’s history is also the same as its most recent
version in the file’s current version (and all versions between).

The details follow.

The version history is organized as in figure 5.4. The Cnt
is the number of record versions indicated by a particular ver-
sion history (Cnt < VCnt < V4). V., ..., V; are RIDs of records
that represent the versions of the record identified by the Sur-
rogate. A RID of NULL indicates that the logical record has no

image for that version.

A version history can be deleted from the history index
whenever all its on-line versions are NULL. The on-line versions
are those versions i such that VMap[i] = "1". The condition Iis
checked whenever a record is deleted or a version is archived.

Even though the history is dropped from the index, the surrogate

i i-1 i-2 2 1

Surrogate | Cnt } V. } V. ;1 Vi, oo Vo I Vb
V4 = vCnt = Cnt = i; vMap([il,...,VMap[l] = "1"
Figure 5.4 -- Version History Format

-

cannot be reallocated, since a version of the record may be

restored later.

Cnt is the count of entries in the version history for a
Particular record, while VCnt 1is the total number of versions
currently on-line. Logically, every history should have VCnt
entries, but if a record has not been updated for several ver-
sions, Cnt will be less than VCnt. The last VCnt ~ Cnt versions
of this record are identical to the most recent version stored in
the history, since the record has not changed in the meantime.
The version history is expanded whenever the record it describes

is updated.

We use VMap to eliminate holes in version histories that
occur when versions are archived. At any point in time, VMap is
V# bits long and Vi exceeds VCnt. VCnt bits within VMap are "1"
to indicate which are the on-line versions. In the naive imple-
mentation of version histories, the RID of version k is found in
the kth_entry. Suppose that some versions older than k have been
archived, and that their entries have been removed from the his-
tory. If there are j on-line versions preceeding k, the RID of
version k is found in the j+1th entry (k > j+l). For example,
consider the version history of figure 5.5, with four versions,
of which three are on-line. The RID for version V4 is found as

follows. The sum of VMap[1l] through VMap[3] is 2. Therefore, RID

of V4 = (2+l)th entry in the version history. In general,

-23~

3 2 1

Surrogate Cnt V4 V2
Vé = 4; VCnt = Cnt = 3;
VMap [4],VMap[2],VMap[1l] = "1"
VMap[3] = "0O"

Figure 5.5 —— Version History with V3 Archived

k-1

RID of Vk <= (:E:VMap[j])+1th entry of the version history
3=1 :

This version encoding keeps version histories small since
only on-line versions are recorded. 'An additional method to
reduce the size of histories is to compress the entries in indi-
vidual histories. The technique is effective since records are
typicaliy left unchanged across versions. Rather than dedicate an
entrf ‘for each version, the history can be encoded as a RID fol-
lowéd by a repetition factor. The decoding of the compressed data

is straightforward.

5.4. Evaluation

We call our version method record level versions, to distin-

guish it from the other approachs of section 3. First we compare
record level versions and file level versions on the basis of
on-line storage costs. We develop a simple cost model to deter-

mine when our approach uses less storage than file versions.

-24-

Since file 1level versions are unlikely to conserve on storage
costs, it comes as no surprise that for a large number of situa-
tions, our approach is superior. A similar analysis is performed
for record level versions and page versions. For all but a few

extreme cases, record versions is still superior.

5.4.1. Record Level Versions and File Level Versions

Record level versions keep to a minimum the on-line disk
space for a version”’s data, at the cost of some associated over-
head for the history index. Fortunately, the size of the index
grows very slowly in comparison to the number of records. We
develop a simple model of the on-line storage requirements of a
versioned file to compare file level versions and our method.
Let r be the number of records in the file, s be the size of each
record, d be the fraction of changed records from one version to
the next, and n be the number of non-current versions on-line
(e.g., a file with only the current version on-line has n = 0).
We assume that the size of the file is stable and does not grdw,

i.e., that{records are modified but not inserted or deleted.

The storage cost to keep n versions on-line using file level

versions is:
n*r * g,
while the cost for record level versions is:

k * (12 *r + 8*d* r *n + d*r * s * n,

-25-

The latter is derived 5y assuming that the index entry for each
record 1is 12 bytes long (4 byte surrogate + 8 byte RID), except
for those records that have been modified. Their entries are an
additional 8 bytes 1long, i.e., they contain the RID of the
record”s previous version. There are d*r such records. We assume
that because of the techniques of section 5.3, only the modified
records have a completely expanded entry in the history index.
The term d*r*s is the marginal increase per version in the size
of the history file. The cost of the internal nodes of the B-tree
is captured by the factor k. Assuming 400 <key, pointer> pairs

per internal B-tree node,

00

Kk = z 1/(4001) &2 1.00251
i=0

Thus the storage for internal nodes is approximately .251% of the

storage for the history index leaf pages.

The values for which both approaches yield the same cost is
determined by setting the two formulae equal and solving for s,

the breakeven record size:

n*r *§

]

k * (12*r + 8*d*r *n + d4d*r*T*n

(5.1) g

k * (12 + 8*d *n) / (n* (1 - 4d))

S values computed for selected values of n and d are shown in
figure 5.6. These are plotted in figure 5.7. Equation (5.1)

reveals that the breakeven record size is independent of the

-26—

ol

HFOOODOOODODOOO
Vv~ WNDHO

¢ & o 8 S 5 & & & o @

ot
io
il
[
lny
)
i
I
)
£
1

12 6 4
15 8 5
17 10 7
21 12 9
25 15 12
32 20 16
42 27 22
59 39 32
92 62 52
192 132 112
00 00 00
Figure 5.6 -- Breakeven Record Sizes

-2~

200
m=i
180
160
140
120
T 100 »=3

80

60

N r///"////
20 . N

AJ—-——""/

! l
{ 1

0 .1 .2 .3 .4 .5 .
D

N4
L]
N
.

00—

.

O g
)

Figure 5.7 -- Breakeven Record Size Curves

number of records in the file. This is because the formulation is

based on marginal increases in space requirements.

The graphs of figure 5.7 are explained as follows. Above
each curve is the region in which record level versions yield a
lower on-line storage requirement than file level versions. Thus,
for the case where n=1 and d=0, record level versions require

less space when the record size is greater than 12 bytes. As n

increases, the breakeven sizes decrease, and as d increases, the

breakeven sizes increase.

-28-

The use of the history file saves on-line space, but the
space savings is not always enough to recoup the overhead of the
history index. The storage cost of the history index is indepen-
dent of the record size. The longer the individual records, the
more space is saved by not replicating the unchanged records, and
the easier it 1is to amortize the cost of the index. Thus, our
approach is not weli—suited for small records. As n increases,
the history file saves even more épace, atAa small incremental
increase in index size. Thus, the breakeven size decreasés. Simi-
larly, as d increases, the améunt 6f space saved by the history
file decreases. It becomes more difficult to amortize the cost of
the index. For example, the whole file has changed when d = 1.
Hence, the history file is as large as a complete file level ver-
sion, with the extra space overhead of the history index. The
result is that no record size, no matter how large, will make
record versions attractive. Note that file level versions will
need some indexing mechanism to access versions of the same
record across version files. Since we have not included this in
our analysis, record level versions may be even better than as

indicated above.

To summarize the trends, record level versions 1is advanta-

geous when (1) records are not small, (2) the amount of change

that a file undergoes between versions is relatively small (10-

30%), and (3) several versions are typically kept on-line. We

believe that these conditions exist in the design environment.

-29-

5.4.2. Record Level Versions and Shadow Pages

There is a resemblance between record versions and shadow
pages as described by Lorie [LORI77]. Shadows support two ver-
sions of data, i.e., previous and current pages. Our technique
supports arbitrarily many versions at the record level. The sha-
dow page scheme maps an address into the appropriate physical
page by page maps,:while we map surrogates (essentially logical
addresses) into thé appropriate record via the history index (see
figure 5.8). Shadows could be extended to maintain a page map per
version to support more than two on-line versions. However, since
versions of the same record have the same virtual memory address,
we still need a mechanism to manage version histories of deleted
records, so we can reuse the freed address space. In the follow-
ing analysis, we only examine the case where two versions

(current and previous) are kept on-line.

Record versions have more control overhead, because of the
history index and associated version histories. However, the com~
plete size of the data portion of a versioned file will be
smaller because of the smaller version granularity. With page
versions, records that have not been updated are stored redun-
dantly across versions. Access costs are higher in ours because
of the index traversal, while the cost for shadows 1is only the
single level of indirection through the page maps. Further,
because the allocation of surrogates is not clustered, frequent
faults among index pages may arise. However, page versions also

forfeit the clustering among shadow and original pages. The

-30-

- ——— - ———

Shadow Versions (Pages)

PREV Pages CURRENT
T —
Page -)(—] Page
Map Map

Record Versions

Surrogate Vi cee Vn-1 vn

_ﬁ x{ZZY [?
L >
istory Curr Hist
Index
—>
Y222
Leaf Pages
Figure 5.8 -- Comparison of Shadow Versions

and Record Versions

working and change files are proposed, in part, to relieve the
per formance overhead of accessing versioned data through the his-

tory index.

The total storage cost for the shadow page method 1is the

cost of the page map plus the cost of the new pages added to the

-31-

file. The storage cost, as a function of the number of records

updated, is:
(5.2) 8*r *s /p + p* F(X)

where r and s are as above, p is the page size, x (x < r) is the
number of records updated, and F(x) is the number of pages con-
taining the x updated records. We use Bernstein®s approximation

of the Yao function [BERN81] to compute F:

P * x, X < r*s/2p

p * F(x)

1/3 * (p*x + r * s), r*s/2p < x < 2r*s/p

r * s, 2r*s/p X

S

When the number of records updated is less than half the number
of pages, each record access results in another page fault. In
the range between half and twice the number of pages, 1less than
one page 1is accessed for each record as we begin to hit previ-
ously accessed pages. When more records than twice the number of

pages are updated, then every page will have been accessed.

We can reexpress the storage cost for record versions as a

function of the number of updated records as well:
(5.3) storage cost = 12 * k * r + (8 * k + s8) * x

Superimposing the two curves results in a graph of the form of

figure 5.9.

-32—~

COosT

>

RELIDS - -

PAGES ——
FIL& essno

S

Vd
BELDRDS
Figure 5.9 -- Superimposed Cost Functions UPDATED

Observe that the cost functions intersect at two points.
Initially the shadow page method has a much smaller overhead,
since the space for the page maps is small compared with the his-
tory index. As records are updated, the cost of shadow pages
grows more rapidly as whole pages are added to the file instead
of individual records. Our experiments indicate that the first

intersection point (low point) occurs very close to the origin.

Eventually every page of the file has a new version, and
subsequent updates incur no additional storage cost. However,
these updates continue to add to the cost of record versions.
Eventually the curves cross again (high point) as the initial

overhead of the history index once again comes into play.

-33-

For a fixed size database (4 MBytes) and page size (4000
Bytes), we have computed the following points of intersection for
different choices of r and s in figure 5.10. As the number of
records increase, the low point increases. When expressed as a
fraction of the total number of records (d), the 1low point is

very small, i.e., much less than .01.

To summarize, the record version approach is superior to
- shadow pages in terms of storage utilization unless either very
few records are updated (less than 1%) or very many records are
updated. Although we believe that few records are updated between
versions, we believe that enough are to justify the choice of

record level versions.

6. Effects of New Technology on Version Management

Optical digital disks are a new technology that promise to
dramatically increase the amount of on-line storage available to

a computer system. The write-once nature of the medium makes it

r s low point (d) high point
2000 2000 5 (.0025) 1959
4000 1000 11 (.0028) 3937
6000 500 23 (.0038) 5716
10000 400 30 (.0030) 9548
12000 333 36 (.0030) 11354
14000 285 42 (.0030) 13131
Figure 5.10 -- Sample Intersection Values

-34~

0 8 R TN 5 et

ideal for archival purposes. Current optical disk densities are -
about 2400 million bytes per disk surface (40,000 tracks by
486,000 bits per track) [MAIE82]. An optical disk pack of ten
surfaces has the same capacity as eighty conventional 300MByte

disks.

We envision optical disk technology as a way of providing an
on-line window into an archive. Versions in the on-line vindow
can be restored quickly, whereas access to versiong in the off-
line portion of the archive is ﬁuch slower; We describe the
implementation of the on-line window when we have three optical
disk drives. Drives A and B hold the on-line archive, while C is
a free drive used to load off-line disks whenever an off-line
version is to be restored. Drive A is the "top" of the on-line
archive, and B is the "bottom". When A becomes full, further
writes are written to B. When it becomes full, a fresh disk is
loaded on C, the disk on A is moved off-line, and B and C become
the top and bottom of the archive respectively. A is available as

the free drive. The scheme is described in [SVOBS81].

Whenever a new version is éreated, the previous current ver-
sion is written into the archive, whether it is to be archived or
kept on-line. Only the current version is kept on conventional
disk. Eventually the on-line window will become full, and a full
disk”s worth of data will be moved off-line. The portion of the
disk that was meant to be archived will then join the archive.
However, something must be done to keep the rest of the data on-

line.

-35-

Associated with the optical disk archive is a directory, on
conventional disk, that identifies file versions with their

archive addresses (the Restore Directory). The information is

needed to find a version within the archive while processing a

request to restore it. Addresses are of the form <optical disk

volume 1ID, offset>. Another on-line directory (the Window Direc-
tory) identifies which versions are in the on-line window, and
ﬁhefher éhey are "archived" or meant to stay on-line. This direc-
tory is updéted whenever: (1) a version is written to optical
disk (add the version to the directory), (2) a version in the
on-line window changes from "on-line" to "archive", and (3) the
on-line window becomes full, forcing an optical disk to be moved
off-line. In the latter case, archived versions are dropped from
the on-line window”s directory, and all other versions are copied

to the top of the archive before the disk is taken off-line.

Leaving copies of a version sprinkled around the archive is
not as bad an idea as it may seem. The density of optical disk
storage is so immense that the percentage of useful bits (non-
redundant data) per area of media remains high. While the copy
operation is time consuming, it occurs only when a disk Dbecomes
full. We believe this to be an infrequent event: the time
between subsequent versions in the design environment is measured
in days or weeks rather than seconds. A version can stay in the
on-line window for a long time before it must be copied. During

that time, designers may lose interest in a version, changing its

state from on-line to archive. When the window fills up, then the

~36-

disk must be moved to archive. Many of the originally "on-line"

versions will now be "archived", and will not need to be copied.

Because of the relatively long seek time of optical disks,
it is unreasonable to expect to use them for random access. It is
not advisable to intermix many random reads with bulk writes to
the end of the archive on optical disks. However the technique of
extracting a version into a working file is well-suited for opti-
cal " disks. An on-line version is bulk copied into a working file
on conventional disk before it can be accessed (note: optical
disks provide a high data transfer rate that is suited for large
volume copying). Random access on a conventional disk does not

-suffer from the long seek time penalties of optical disks.

To summarize, optical disk technology allows ua to dispense
with our requirement of minimal version encoding. With large
amounts of storage available, we choose file 1level varsions
instead. The in-progress version remains on conventional disk.
O;d versionsrare extracted into a working file on conventioﬁal

disk as befo:e.

7. Conclusions and Status

We have described a storage structure for version management
that combines aspects of differential files and shadows. Versions
are encoded differentially while keeping the access overhead rea-
sonable. A versioned file is represented by a current file, hold-
ing current record images, a history file, holding their old sha-

dows, and an index, relating the records within the current and

-37-

history files. A version 1is extracted from this structure,
updates are posted in a change file, and the changes are merged
with the original file when the version is replaced. The scheme

provides natural support for design alternatives.

We are in the process of implementing a storage system
called WiSS (Wisconsin Storage System), with Professor David
DeWitt and a group of students (Nina Anania, Jim Bowan, Heng-Tai
Chou, Wei-Laung Hu, Rick Simkin, Ann Varda, Dave Ward, Ed Wim-
mers). WiSS will support versioned files, as well as more conven-
tional files and access structures. The version support struc-
tures described here are constructed from B-tree indices and
sequential files implemented by WiSS. We plan to build a design
data management system on top of WiSS, to provide a variety of
database services tailored for the engineering design environment

[KATZ82].

8. Acknowledgements

'Randy Ratz was supported by the Wisconsin Alumni Research
Fund. Tobin Lehman was partially supported by a grant from the
IBM Corporation. We acknowledge the help of our colleagues, Haran
Boral and David DeWitt, who willingly read earlier drafts of this
paper and offered many constructive comments.

9. References
[ADIB80] Adiba, M. E., B. G. Lindsay, "Database Snapshots," Proc.
6th Intl. Conference on Very Large Databases, Montreal,

Canada, (Oct. 1980).

[BERN81] Bernstein, P. A., et. al., "Query Processing in a System

for Distributed Databases," ACM Trans. on Database Sys., V 6

-38-

N 4, (Dec. 1981).

[BORA82] Boral, H., D. DeWitt, D. Bates, "A Framework for
Research 1in Database Management for Statistical Analysis,"
ACM SIGMOD Conference, Orlando, FL, (June 1982).

[COME79] Comer, D., "The Ubiquitous B-Tree," ACM Computing Sur-
veys, V 11, N 2, (June 1979).

[ELLI80] Ellis, C. A., G. Nutt, "Office Information Systems and
Computer Science,"” ACM Computing Surveys, V 12, N 1, (Mar.
1980).

[HASK82] Haskin, R. L., R. A. Lorie, "On Extending the Functions
of a Relational Database System," ACM SIGMOD Conference,
Orlando, FL, (June 1982).

[RATZ82] Ratz, R. H., "A Database Approach for Managing VLSI
Design Data," 19th ACM/IEEE Design Automation Conference,
Las Vegas, NV, (June 1982).

[LORI77] Lorie, R. A., "Physical Integrity in a Large Segmented
Database," ACM Trans. on Database Systems, V 2, N 1, (Mar.
1977) .

[MAIE82] Maier, D., "Using Write-Once Memory for Database
Storage,"” ACM Symp. on Princ. of Database Systems, Los
Angeles, CA, (Mar. 1982).

[REED79] Reed, D., "Implementing Atomic Actions on Decentralized
Data,” Proc. 7th ACM SIGOPS Symp. on Operating Systems Prin-
ciples, 1979.

[ROCH75] Rochkind, M. J., "The Source Code Control System," IEEE
Trans. on Software Engineering, V SE-1, N 4, (Dec. 1975).

[SEVE76] Severence, D. G., G. M. Lohman, "Differential Files:
Their Application to the Maintenance of Large Databases,"
ACM Trans. on Database Systems, V 1, N 3, (Sep. 1976).

[STON80] Stonebraker, M. R., K. Keller, "Embedding Expert
Knowledge and Hypothetical Data Bases into a Data Base Sys-
tem," Proc. ACM SIGMOD Conference, Santa Monica, California,
(May 1980). ‘

[STON81] Stonebraker, M. R., "Hypothetical Databases as Views,"
Proc. ACM SIGMOD Conference, Ann Arbor, Michigan, (May
1981).

[SVOB81] Svobodova, L., "A Reliable Object-Oriented Data Reposi-

tory for a Distributed Computer System," Proc. 8th Symp. on
Op. Sys. Principles, Pacific Grove, CA, (Dec. 1981).

-39~

