A PRIMER ON IMAGE MANIPULATION USING A HIGH
RESOLUTION COLOR DISPLAY TERMINAL

by

Pat Hanrahan
Randy Schulz
Leonard Uhr

Computer Sciences Technical Report #476

May 1982

A Primer on Image Manipulation Using a High
Resolution Color Display Terminal.
Pat Hanrahan
Randy Schulz
Leonard Uhr
Image Processing Laboratory

University of Wisconsin
Madison, Wi.

Introduction

This primer has been written to introduce new users to
the graphics and display capabilities at the University of
Wisconsin Image Processing Laboratory. The major hardware
components of this laboratory are a Stanford Technology Cor-
poration (STC) Color Display System, with a PDP 11/45 as
host, and a high-speed link to a VAX 11/780. The software
comprising the system has been closely integrated into the
UNIX* operating system. This combination of hardware and
software provides a powerful system supporting the basic
processes of image manipulation. These include:

(i) The digitization or synthesis, and subsequent
archival and/or display of high resolution color
imagery.

(ii) The application of a wide range of standard
pre-programmed operations to single images, or to
sequences of images.

This primer teaches use of the graphics and display capabil-
ities of the laboratory by actually running the major com-
mand line programs that control the display terminal. To get
started we will emphasize those operations common to a range
of applications, from image enhancement, image understanding
and pattern recognition to computer graphics and image

*UNLX is a Trademark of Bell Laboratories.

synthesis. The tools provided form a nucleus of techniques
which are used over and over in any application. But, this
core of techniques only touches on the capabilities of the
hardware and software. 1In particular, the image processor
has a pipelined arithmetic logic unit, which essentially
gives the user a general-purpose computer that can, in only
30 milliseconds, execute a single operation on every one of
the quarter million cells of a 512 by 512 image; this is not
described here.

But to begin, it is only necessary to read and exper i-
ment with the examples in the text. During this period you
will be using a large package of programs written in C and
many features of the UNIX operating system. However, to use
these programs it is not necessary to appreciate or under-
stand what an operating system does, or for that matter what
it is. It will not be necessary to be able to code your own
programs. The entire primer is meant to be self contained,
so no commands are needed except for those indicated in the
text. But be forewarned, to really appreciate the complex-
ity of image processing and computer graphics you will need
to study in more detail the operating system and programming
packages available. At the end of this primer are several
very good references to guide you to this information.

Logging on

First, you must make arrangements to use the computer.
Somebody must put the 1login name and password you choose
into the computer, tell you what terminals you can use, and
perhaps give vyou some special instructions about the pecu-
liarities of the system not mentioned in this introduction.
Also ask to have the images and other files referred to in
this primer put in your directory. Once this is done you are
ready to login.

Go to the laboratory and find a free terminal next to
the c¢olor monitor. If the terminal and monitor are off,
turn them on (the <power> switch for the monitor is in the
lower left hand corner; the terminal”s power switches are
located on the side or the back panels). Most systems will
then present vyou with the words (if not, push <carriage-
return> several times):

Login:
to which you should respond with your login name, e.g.:
Login: solaris<return>

That is, simply type in your login name, followed by a
carriage-return.

If the login name requires a password the system will
respond:

Password: lem

in which c¢ase vyou should type in your password and
carriage-return. (When typing the password you will not see
the characters that you type. This is to protect your pass-
word from discovery by others.) You should now be logged
into UNIX. After a short pause you will probably receive
some messages, e.d.,

you have mail
there are new messages

Information about the mail and message services of UNIX are
not discussed in this primer but can be found in the refer-
ences at the end.

Then after another short pause your terminal may print
several blank lines and respond:

Erase set to control-H

<Control-H> stands for a single character which is formed by
simultaneously holding the <control> and the <H> keys. This

April 20, 1982

can be done at any time to correct typing mistakes while
entering commands., Normally this will cause a backspace
over the previous character and when you retype the charac-
ter it will replace the mistake. On some terminals there is
another key labeled <backspace> which is equivalent to the
<control-H>. It is also possible to erase an entire line by
typing the character <@>.

The login sequence will end with the display of a stan-
dard "prompting" symbol, which indicates that UNIX is wait-
ing for your next command. The typical prompt is:

%

(There are two common prompts, which vary depending which
"shell"™ you are using. The standard UNIX shell, sh, uses
the prompt "$"; the Berkeley shell, csh or C shell, uses the
prompt "%".)

If you plan on working through this primer (which 1is
highly advised) you should now run the command:

% primer
which insures all the programs and files that are needed for
the demonstrations in this document are available and ready
to use. 1If this command cannot be found or returns with an
error it is best to immediately consult a local wizard.

A quick overview of the graphics terminal.

Let”s start with a brief overview of the Stanford Tech-
nology Corporation graphics terminal (we often abbreviate
this as STC, STC-70F, Model 70 or m70) shown schematically
in Figure 1. It has several major parts:

i) a set of three refresh memory channels which

contain the information which is to be displayed
or operated on.

ii) three pipelines which can be programmed to

transform the data in the memories before being
displayed.

iii) three digital-to-analog converters which
change the numbers from the pipelines into vol-
tages that are used to control the brightness osf
the red, green and blue phosphors on the color
monitor.

iv) a feedback arithmetic logic unit (ALU) that

April 20, 1982

executes logical and arithmetic operations on the
output from one of the pipelines and the accumula-
tor (the first two refresh memory channels) and
feeds back the results storing them in a memory
channel;

Figure 3., contained in Appendix A, shows a detailed diagram
of the current system. Also listed in that appendix are all
the subunits that are currently configured as part of the
STC at the U.W. Image Processing Laboratory. These figures
are very helpful, so remember to refer to them £frequently
while reading this primer.

Loading images into refresh memory channels

Whenever you begin working with the terminal the safest
thing to do is to reinitialize the system. You should type:

Ginit initializes the graphics terminal to standard default
conditions. (E.g., the cursor is set to on, scroll regis-
ters are set to 0, zoom is set to power = 1, More on this
later.) Gclr clears the graphics memory channels, i.e simply
sets the contents of the memory equal to 0.

Next, we want to load an image into the terminal”s
memory: Try running the sequence:

% seeimg randall.b 1

This command copies the image array, named "randall.b",
into memory or channel number 1. The image should appear
blue (if it doesn”t try repeating the sequence from ginit
onwards) and hence the mnemonic ".b" at the end of its name.
An image is simply a large rectangular array of numbers
indicating the intensity of the light recorded (or possibly
computed) at each point. Images stored in files can have
almost any dimension, but an image being viewed on the
display cannot be larger than the contents of a memory chan-
nel, since each memory channel is a fixed size square matrix
of 512 by 512 8-bit values, The memory is sometimes
referred to as consisting of 8 512 by 512 bit planes,
emphasizing that the unit of image manipulation 1is two
dimensional. Each individual memory location is called a
picture element or pixel for short. With 8-bits per pixel
it 1s ©possible to encode 256 different intensity levels at
each and every location in the image.

Continue on with the following commands:

% seeimg randall.g 2

April 20, 1982

% seeimg randall.r 3

What we have now done is load three bands or color separa-
tions, one 1into each channel. The final full color image,
results from the mixture of the red, green and blue com-
ponents which are stored in the display memory of the termi-
nal. Channel 1 of the refresh memories is setting the blue
component on the television monitor, 2 the green and 3 the
red.

Monochrome or black and white images can also be viewed
by placing a single image in all three memory channels. This
can be easily done with.

% seeimg testpattern.bw all

Notice the naming conventions for channels. Each channel is
designated by a single number from 1 to 3, since there are
three memory channels”. 1In addition there are special key-
words; all for all three channels and none for no channels.

At this point the image should appear 1in shades of
grey. If we type

% gclr 1 2

We now see the same image displayed in shades of red. The
display changed from shades of grey to shades of red because
of the way the memory channels drive the color display.
Channel 1 is initially set to provide the blue component of
the screen image, 2 the green component and 3 the red com-
ponent. (At least, as we will see in the next section, this
is the default set by ginit.) Since the same picture was in
all three channels, the amounts of red, green, and blue
light at each location was equal -- so we saw a dgrey-level
picture. When we cleared channels 1 and 2 the blue and
green components were set to 0 and as a result we see only
shades of red.

Command usage and man pages

We will discuss only the most common uses of the com-
mands. But for convenience most of the commands contain
other options that are very useful at times. Usually, if a
command is typed with no parameters a single line reminder
will be printed showing how to use the command. (But be
wary, this is not always true!) E.g.

% seeimg

¥ It is possible for the terminal to contain up to 12
refresh memories. If the system were to contain more
channels they would simply be numbered sequentially.

April 20, 1982

Usage: seeimg <image> [-w <1> <r> <t>] [-S <1> <r> <t>
] [-s <xs> <ys>] [-c¢] <channels>

Square brackets, "[" and "]", indicate that the text within
them 1is entirely optional, the dash, "-", followed by a
letter pick a particular option. Following that is a 1list
of parameters relevant to that option. Options are normally
omitted because the command is designed to be executed
without them. Angle brackets, "<" and ">", mean that you
are to fill in that slot with the requested information. For
example, <channels> needs to be filled with a channel name
such as "1" or "all", and <image> requires the name of an
image file such as "testpattern.bw".

This one-liner is meant to be just a reminder of the
syntax of the command, not an explanation of all the options
and parameters. For more information consult the "man"ual-
page entry. These are up-to-date descriptions of the
details of the command -- its purpose, the meanings of the
options and their parameters, and even known problem areas
or "bugs" -- written by the person who wrote the original
version of the program. The manual entry is stored on the
computer at all times and can be accessed with the command
man followed by the name of the program of interest.

% man seeimg

will give several screenfulls of information describing this
command . (After each screen it may be necessary to type a
<space> to advance to the next screen of information.) As
you gain expierence you will want to study these pages in
depth. For now it 1is best to ignore them unless you
desperately need more information.

Sometimes a situation arises where you are not sure
what the name of a command is, or you want to know what pro-
grams are available to deal with a particular subject. In
these cases consult the permuted index of available graphics
programs. This contains all the manual entries indexed by
keywords contained in their descriptions. This index can
also be accessed online with the apropos command.

% apropos seeimg
seeimg (local) - load images

Displaying refresh memory channels

With the above aside, let”s return to the display.

As you may have noticed, the appearance of the image
depends on the colors in which it is displayed. The last
image that was loaded is now in channel 3; if the same image
were in <channel 1 then instead of appearing red it would
appear blue. One of the most powerful features of the

April 20, 1982

graphics terminal is its flexible display modes. It is pos-
sible to route the data from any channel to any color.
Displaying a single image on all three colors has the same
effect as making three copies of the 1image, one 1in each
channel and displaying each of these on a different color,
but without actually making two extra copies of the picture
in memory. Typing

% dsp 3 blue

switches channel 3 from being displayed in red to being
displayed in blue. Even more powerful is the capability to
display a channel simultaneously on several colors. This
simulates placing multiple copies of the same image in dif-
ferent channels.

% dsp 3 blue green red

places the pattern on all three colors. We designate which
colors we want an image displayed on by simple mnemonics.
The three primary colors are named "red" or "r", "green" or
"g", and "blue" or "b". Each of these as we will see later
corresponds to a single pipeline. For convenience, combina-
tions of the above are also given keywords: "magenta" or
"m" (for both the red and blue pipelines), "yellow" or "y"
(the red and green pipelines), "cyan" or "c" (the blue and
green pipelines), "white" or "w" or "colors" (for all three
pipelines), and "black" (for none of the pipelines). These
conventions allow the last command to be more compactly
expressed as:

% dsp 3 w
That is, just as before, take the contents of channel 3 and
display it in white, a combination of the blue, green and

red color pipelines.

Now lets look at what is in channel 2 and then load
another image.

dsp 2 w
seeimg cat.bw 2

a0 o®

The old image in channel 3 has not been destroyed; we can
view it again by simply changing the display mode.

% dsp 3 white

Such sequences of loading images and switching the display,
are often repeated many times while working with the termi-
nal. Different channels are used to store different images
or the results of processing those images. If there are
several people using the system it is even possible for each
to be using a refresh memory independently of the others

April 20, 1982

(although this takes a certain amount of cooperation).
Typing the command:
% dsp none colors
will display "no" channels on "all" the pipelines, therefore
in effect turning off the display. This can also be done
with the
% dsp all black

or

off

oe

Finally, if we only type dsp then the current state of the
display is printed. For example after a ginit:

% ginit

% dsp

blue: 1 in entire screen
green: 2 1in entire screen
red: 3 in entire screen

Tells us the defaults set by ginit.

The dsp program is the command most frequently used
with the terminal, so it is a command you may want to learn
more about. The first place to look are the manual pages
describing it.

These examples show some of the possibilities given the
capability of being able to reconfigure the display.
Besides switching from image to image these different
display modes serve three major functions.

i) Full color viewing This 1is the configuration
established by ginit, It 1is the most common
method of displaying multiband imagery. Each chan-
nel contains one band of the composite color

image.

ii) Black and white, also pseudocolor or false
color viewing (e.g. with dsp 1 white). This is
the most common viewing mode for monochrome
imagery. It 1is also used for image enhancement
and special graphical displays. See the section
on color-mapping.

April 20, 1982

- 10 -

iii) Combination viewing (e.g. with dsp 1 2 3 D).
This is useful for performing operations which are
a function of several images. Examples include
displaying the ratio of two images, or a dissolve,
that is, the weighted combination of two images.

Scroll and zoom

Let”s examine exactly what happens when an image is
displayed: The image is scanned, and fed into the monitor,
pixel by pixel, starting in the upper-left hand corner, and
moving left to right within a row, then to the left of the
next row, and continuing from the top to the bottom. This
process is called "raster scanning," and leads to the some-
what strange coordinate system typically used in image pro-
cessing - with 0,0 designating the upper-left corner, 511,0
the end of the first row, and 511,511 the last picture ele~-
ment, at the bottom-right.

This "raster scan" takes 30 milliseconds (the standard
television scan rate) for the entire 512 by 512 array. It
takes place continuously 30 times a second (hence the name
"refresh memory"). The host computer can execute several
thousand instructions in the 30 milliseconds of a single
scan; as a result the host can be working in parallel,
preparing the next instruction for the terminal.

This scanning operation is controlled by counters which
sequentially access the different elements in the raster.
It is possible by controlling the starting position and fre-
quency of these counters to selectively scroll and zoom
about the image memory. - T

ginit

seeimg randall.b 1
seeimg randall.g 2
seeimg randall.r 3
scroll 256 256 all

dl o0 o° o g°

This is the picture of the building we looked at before.
The command scroll translates the point, specified as a ras-
ter coordinate (x,y), so that it is displayed at the screen
origin, the upper left hand corner. In the process of
scrolling the picture wraps around, as 1if it was on a
sphere, so that it appears folded, with its original origin
at the center of the screen. Notice that the scroll command
accepts a channel argument. This is because each channel can
be scrolled independently of the others.

% scroll 0 0 1

will reset the blue band to its original location, causing
it to be "out-of-phase" with the other bands.

- 11 -

You may have noticed the trackball next to the monitor.
Try rotating it; as the ball is rotated the gimbals support-
ing it revolve to record its movement. Changes in the posi-
tion of the trackball are normally indicated by the screen
cursor; these may also be sent to the computer. A very use-
ful application of this is to register images that differ by
a translation in the x and y direction. This can be done by
" "linking" the trackball to the scroll coordinates of the
channel. The program link is designed for this purpose.
Link connects the channels specified to the trackball and
continues to scroll them until any button on the trackball
unit 1is pressed. Realign channel 1 relative to the other
channels after typing:

% link 1

In addition to the scrolling capability, it 1is also

possible to zoom in to magnify smaller regions of the pic-
ture,

This zoom command will magnify the upper left hand quadrant

of the image. The first two numbers are the center of the
zoom, the last number the power by which to zoom. So

% zoom 256 256 4

zooms about the center of screen by a factor of 4. Whenever
a zoom is performed the point picked is fixed at its current
position and the image is expanded about 1it. The hardware
only allows zoom powers of 1, 2, 4 and 8. Unlike the scroll
command it is not possible to zoom a single channel; all
channels are zoomed simultaneously.

. . * . .
The zoom can be combined with scroll by going into
interactive =zoom and scroll, sometimes referred to as roam
mode.

% roam
This command resets the zoom to 1 and the scroll to 0,0 and

then allows them to be changed by pushing various buttons on
the trackball unit.

"A" - Increases the zoom times 2.
"B" - Decreases the zoom times 2.
"C" - Toggles roam mode (scroll linked to trackball).

* The details of how a scroll and zoom interact to pro-
duce the display are rather complicated. For more de-
tailed information consult the references at the end.

April 20, 1982

- 12 -

"D" - Quits.

Once your are in roam mode then the zoom 1is applied about
the position of the cursor. Experiment with this command.

Image analysis

At this point we would like to explain some of the
basic 1image analysis programs. These are very useful tech-
niques, not necessarily profound, but upon which the more
advanced techniques are built.

One of the most useful commands is the sample program.
This returns the value stored in the image memory at the
point of the cursor. E.g.:

% sample
Channel 1, 2, 3 at x = 256, y = 256: 99, 70, 28

Image samples can also be extracted interactively with the
examine program. When running this program the buttons on
the trackball will perform the following functions.

"A" - Sample at the current cursor location
"B" - Cycle the zoom to the next power.

"C" - Toggle continuous sampling mode.

"D" - Quit.

Try it. Have numbers printed out where the picture is red
and compare them to the values in a green region.

% examine

Two other useful related programs are trace and cslice.
Trace interactively reads either a horizontal or vertical
strip of the image and plots the intensities. Cslice per-
forms a similar function by coloring all the pixels in a
certain intensity range. The bounds of this interval can be
controlled with the trackball.

Statistical programs provide information about all the

pixels 1in the image. For example, the program minmax prints
out the range of numbers contained in an image.

% minmax b
Blue: minimum 0; maximum 138

Still more information can be gotten from a histogram of the
entire image. The histogram can be calculated and displayed
with:

% histogram b
1525 pixels at 0, Vertical axis ticks every 573.75 pixels

April 20, 1982

- 13 -

which will draw the histogram in graphics memory (more on
the graphics memory later). The abscissa contains the inten-
sity values, ranging from the minimum, 0, to the maximum
255, The ordinate displays the number of pixels that have
that intensity value. The number of pixels with value 0 |is
normally suppressed to keep the graph scaled to the screen.

[One quirk about the last two commands is that their
arguments are color pipelines not an image channels. This is
because they derive their information from special hardware
in the pipeline (see the next section on pipeline process-
ing) as the data are routed to the monitor. As we will see
in the next section certain transformations can take place
in this pipeline and therefore these numbers may only
indirectly reflect the true statistics of the image. How-
ever, when preceded by a ginit these numbers will be
correct.] T

Pipeline processing

The terminal can be configured so that the data stored
in any channel can be displayed in any color or combination
of colors. Dsp can be thought of as a switch which controls
the routing of the data to the red, green and blue guns of
the monitor. But as was briefly mentioned, the route the
data takes to the monitor involves travelling through a
pipeline containing special purpose hardware to transform
these data before display. The major elements are a series
of look-up tables which replace the original pixel values by
new values obtained by indirectly referencing a table. This
basic idea is summarized in Figure 2. As each number in the
stream reaches the table its value is used to select a new
value contained in the value”th position of the table; this
new number replaces the original in the output stream. The
value 0 picks the 0°th entry in the table, the value 255
picks the 255°th entry, and so on.

To introduce these concepts try the following sequence.
ginit

gclr
squares

o9 ¢ o

The program squares loads a pattern of small squares into
channel 1. The value of the extreme upper left square is 0
and the value of the extreme lower right square is 255. (Try
testing this by placing the cursor over these small squares
and then using the program sample to read the value in
memory.) At this point the squares should be different
shades of blue. Switch the display so that channel 1 1is
displayed on the white pipeline combination.

% dsp 1 colors

April 20, 1982

- 14 -

At this point it is possible to change the pipeline”s tables
to form a photographic negative of the original picture.

% invert 1 colors

Notice that the squares that were previously bright are now
dark and vice-versa. This 1is done not by changing the
values in memory (convince yourself of this with the sample
command) but instead by using a table look-up to substitute
the value maxintensity - intensity for the value intensity.

The new value can be any function of the input value --
and therefore it is possible to apply any function of a sin-
gle pixel to the entire image with this table. The advan-
tage of a look-up table is that its function is applied to
the image in real-time, continuously. And even though the
hardware cannot compute arbitrarily complicated functions,
it is possible to precompute these in the host computer, and
then store them in the look-up tables of the graphics termi-
nal. This can be done very rapidly (usually during the
vertical retrace part of the raster scan) since the size of
a look-up table is only as large as the number of different
input values.

Some additional common functions applied by look-up
table are:

i) Stretch - performs a linear remapping from a
range, old minimum to old maximum, to the range,
new minimum to new maximum. Closely spaced inten-
sity values can be "stretched" so that they are
displayed over a larger intensity range, increas-
ing the contrast. This same function also allows
you to threshold a picture.

ii) Equalize - remaps the intensities so that the
histogram of the resulting pictures is flat and
all intensities have an equal ©probability of
occurring.

iii) Gamma - Perform gamma correction. The amount
of light emitted by most monitors is not a linear
function of the applied voltage. If the function
can be determined then it is possible to undo this
distortion by applying the inverse function with a
lookup table.

Let”s examine the terminal”’s pipeline in more detail
(you may want to refer to Figure 1. at this point). Actu-
ally, each pipeline contains two sets of look-up tables.
Each of the three pipelines has an 8-bit in 9-bit out (the

April 20, 1982

- 15 -

extra bit is a sign bit) lookup table (named the LUT) for
each of the memory channels,* That is, there is one lookup
table per channel per pipeline”. The outputs of the LUT"s
are then added together and sent through another table, the
output function memory (named the OFM). This table has 10-
bits in and 10-bits out. The input to the OFM may range
from 0 to 1023. [Precisely how this is done is quite compli-
cated 1if several images are being simultaneously displayed
on a pipe and/or the look-up tables perform a function
resulting in a negative number. Some of the technical
details about this process will be discussed in the section
on the range and constant registers; for more detail consult
the references at the end.] Finally the unsigned 10-bit OFM
output 1is converted to a voltage by the digital-to-analog
converter., (As we will see 1later, the output may be
redirected to the feedback arithmetic logic unit for further
processing and storage in a memory channel.)

The LUT"s can be saved and loaded with the following
commands:

rdlut <file> <channel> <pipeline>
wrlut [-f <file>] [-e <expression>] <channels> <pipelines>

Since there is a LUT for each channel in each pipeline both
a pipeline and channel name must be present. Notice that it
is possible to load several tables from a file with one com-
mand.

There are similar commands for the OFMs

rdofm <file> <pipeline>
wrofm [-f <file>] [-e <expression>] <pipelines>

In this case there is no channel specified since there is

only a single OFM per pipeline. Notice also that it is pos-
sible to load more then one OFM simultaneously.

Typing the following commands:

% wrlut
% wrofm

sets the tables to their defaults (as does ginit). The
default table for a LUT is the identity mapping. Thus the

* In the current configuration with three channels that
means that there are a total of 9 LUTs devoted to the
refresh memories. If more channels were to be added
there would be correspondingly more LUTs. But in addi-
tion to the channels there is also a set of LUTs for
the video digitizer and graphics memory, bringing the
total to 15.

April 20, 1982

- 16 -

same 8-bit number is simply copied from the input stream to
the output stream. The default OFM is slightly more compli-
cated. 1In the typical viewing configuration a single chan-
nel is displayed on each pipeline. If the OFM performed the
identity mapping then the maximum output value that would be
sent to the DACs would be 255. But as mentioned above the
maximum value possible is 1023. Therefore the screen would
be very dim, being at only one-quarter full intensity. To
remedy this the input values between 0 and 255 are multi-
plied by 4. Values above this are set to 1023. This may
lead to problems if several images are displayed on a single
pipeline since their combined value may be greater than 255
-- causing the output picture to saturate.

The wrlut ad wrofm commands are very powerful since
they allow very complicated functions to be calculated and
stored in the tables without the necessity of writing a spe-
cial purpose program. For example, the invert command can be
expressed as: h

- % wrlut -e "255 - input" 1 colors

We will have more occasion to use this command in the exam-
ples later on.

Color-mapping.

The image of squares should still be in memory and
being displayed in shades of grey. One of the most powerful
capabilities of a lookup table is the ability to do color-
mapping. Since there 1is a separate lookup table for each
channel in each color pipeline there exists the possibility
of independently setting the red, green and blue components
selected from a single value. Try:

% rgb O

Channel 1, value=l: Red 0, Green 0, Blue 0
Channel 2, value=l: Red 0, Green 0, Blue 0
Channel 3, wvalue=l: Red 0, Green 0, Blue 0

Rgb sets or tells the contents of the three color LUTs asso-
ciated with the channels depending on the number or argu-
ments. Executing:

$ rgb 0 255 0 0

sets the 0”th entry in the red table to its maximum value
while setting the green and the blue entries to 0. The
effect is to color all the pixels whose values are 0 to
bright red, in the case of the image being displayed the
single small square in the upper-left corner.

The command rgb also has access to a palette of color
names. So we could have abbreviated the above with

April 20, 1982

- 17 -

% rgh 0 red

This database of colors can be accessed with the palette
program. Typing

% palette red
red 255 0 0

prints out the red, green and blue values for that color.
Palette by itself prints all the colors in the database.

This method of making colors is 1limited by the fact
that only 256 different colors can be indexed by a single
memory channel. However, the range of colors is still just a
great as if the 1image was being displayed in full color.
The space of all possible colors that a monitor can display
is called its gamut. This 1is a three dimensional space
whose axes correspond to the primary colors, red, green and
blue. Picking a combination of primaries localizes a point
in this space; the locus of all possible points is a cube
which hag 6 sides of length 256, therefore the volume of the
cube is 24%, approximately 16 million. The program color-
cube shows the outer surfaces of this cube when viewed along
1ts white axis.

% ginit
% colorcube

Pseudocoloring, that is, any mapping from a single
number to three numbers, can be imagined to consist of a
curve in a three dimensional color space. There are many
possibilities for choosing such curves some of which are
demonstrated by the following script. These programs are
described 1in more detail under the man entries for "colors"
and "patterns". (The last command must be interrupted by
pressing the <break> or key.)

dsp 1 white
squares
ctablel
ctable2
vramp 1
swath
rainbow
animate 1

00 00 O° P of P AP o°

Transferring images using the feedback unit

Up to now we have been manipulating and changing the
image displayed on the monitor. But the image stored in the
STC memory has always remained the same. An enormous amount
of power is gained from the capability that allows one to
make changes to stored images and then perform another
operation on the resulting transformed 1images, and

April 20, 1982

- 18 -

continuing this in an arbitrarily long sequence of computa-
tions. To do this requires that we perform the transforma-
tion, then store the resulting transformed image. The power
of this operation 1lies in the speed with which it is per-
formed along with the computational capabilities of the
pipeline processors and the arithmetic logic unit. The
whole sequence is done in one scan over the channel (in
30msec.), involving 1/4 million picture elements, indepen-
dently of the much slower host computer!

The basic command is transfer, which copies an image
through a pipeline, optionally applying the transformations
contained within it, via the feedback unit back into a
refresh memory.

ginit; gclr
vramp 1
transfer 1 b 2

o0 do oo

We placed a ramp of intensities 1in channel 1, and then
transferred it to channel 2. This is not the same as just
displaying channel 1 on the blue and green pipelines
although the visual effect is the same. Notice how much fas-
ter this is than rerunning the program or reloading the
image. By using the options, "-1" (for 1lut), "-o" (for ofm)
or "-p" (for pipeline) we can apply the functional mappings
currently in the pipeline to the image before storing it

back into the refresh memory.

invert 1 b
transfer 1 b 1 -1lut
wrlut

o0 do oP

Will actually form an inverted version of the image and
store it in memory channel 1.

Unfortunately, the transfer command has several
dangers., First it requires that the source channel be
displayed on the pipeline that the transfer proceeds
through. Second, when copying from the source to the desti-
nation the command tries to undo the function being applied
by the pipeline without actually changing the display. This
is possible because the output of the ALU can be optionally
routed through yet another lookup table, named the input
function memory (IFM). [See the commands wrifm and rdifm.]
When the transfer command is executed it uses the IFM to
undo the transformations applied in the pipeline by the LUT
and OFM. The options then act by preventing certain
transformations from being undone. But this approach will
not succeed if the pipeline functions are not invertable or
degenerate (that is, more than 1 wvalue in the refresh
memor ies is mapped to the same output value) and may lead to
unpredictable results.

April 20, 1982

- 19 -

Applications

To demonstrate the power of what you already have
learned we will show several more complicated examples.
These will require several commands, but 1illustrate how

rather powerful operations can be performed without the
necessity of writing any programs.

The first will be the use of the feedback unit to

create a copy of a zoomed image. This can be done with the
following script.

gclr; ginit

seeimg testpattern.bw 1
zoom 256 256 2

transfer 1 b 3

dsp 3 colors

zoom 0 0 1

dl dP o oP o o

The transfer sends the zoomed image to channel 3. (Normally

it 1is ©possible to transfer a source channel to the same
channel, but when the zoom is in effect this is not possi-
ble.)

The second example will be to form the first spatial
derivative 1in either the x or y direction of an image. This
can be approximated by subtracting an image from a copy of

itself displaced by 1 pixel in the appropriate direction.
Continuing with the picture above.

ginit; gclr 3

transfer 1 b 2

wrlut -e " 1.0 * input" 1 w

wrlut -e "-1.0 * input" 2 w

wrofm -e "™ 4.0 * (0.5 * twoslO (input) + 128)" w
dsp 1 2 b

d0 o0 o of o° o°

The above group of commands set up for the derivative calcu-
lation. We clone a copy of the picture with the transfer.
And then we use the capability to display two images on a
pipeline to perform the subtraction. One copy is made posi-
tive and the other negative with the appropriate wrlut. The
trickiest part involves the OFM. After the subtraction, the
result may lie in the range from -255 to 255. So we want to
rescale this to lie in the range 0 to 1023 the minimum and
maximum output values of the OFM. This is what the expres-
sion 1in quotes does with the following complication; the
input to the OFM ranges from 0 to 1023 but when computing
the expressions value we must treat the input as being a
negative number, in 10-bit twos complement form, this
conversion 1is done with the function twosl0. At this point
the display will be black since an image is being subtracted

April 20, 1982

- 20 -

from itself. To form the derivative we merely scroll one
copy 1 pixel relative to the other, and finally transfer it
into the last free channel.

% scroll 1 0 1
% transfer 1 b 3 -p

As a final example we will show how it is possible to
convert a color photograph into a black and white image. A
nice working color image is that of the building we have
been using. First we load each band into a separate channel,

% seeimg randall.b 1
% seeimg randall.g 2
% seeimg randall.r 3

To convert to a black and white image we must combine the
three separations weighted by the relative luminosities of
red vs. green vs. blue. A standard black and white televi-
sion set converts a color television signal to luminosity
according to the following equation:

BW = 0.30R + 0.59G + 0.11B

Where BW is the luminosity, and R, G and B are the intensi-
ties of three primaries. This function can be computed
within the pipeline and then applied to the picture to form
the black and white image.

wrlut —-e "0.11 * input”
wrlut -e "0.59 * input"
wrlut -e "0.30 * input”
dsp 1 2 3 white
transfer 1 b 1 -pipe
wrlut

dsp 1 w

WN
£ £ g

o° of g0 o of d@ oe

This same technique can be used to set the display color to
be any linear combination of the images stored in the
refresh memory channels, in effect performing a matrix mul-
tiplication of the image in real time.

Miscellaneous commands

If you feel comfortable with the last few examples you
have become quite proficient at controlling the image pro-
cessor. Just for completeness, we will briefly describe
several hardware capabilities of the display terminal not
previously covered. These commands are not used nearly as
often as those mentioned above.

April 20, 1982

Cursor

The cursor (typically a thin arrow pointing northwes-
terly) is normally linked to the trackball, so that by mov-
ing the trackball it is possible to position the cursor.
Moving past any edge of the screen will cause the cursor to
appear at the opposite edge. Normally the cursor is visible
and linked to the trackball, but if for some reason it is
not you can query its status with the cursor command:

% cursor
Cursor on, linked, no blink, beeper enabled

To turn the cursor off, then on, type:

% cursor off
% cursor on

The cursor is stored in a small square of size 64 by 64
of special memory in the terminal. The contents of this
area can be changed by loading a new pattern. E.g. another
common cursor shape is a "x" which can be set:

% cursor x

X is the name of a standard cursor file. (For information
about «creating your own cursor read about the program
mkcurs.) One problem with different cursor shapes is that
the center of the cursor area is not the same as the posi-
tion of the cursor. 1Instead the hardware records the posi-
tion of the <cursor as the position of its upper left hand
corner. Certain cursor shapes may suggest that the pointed-
to pixel 1is at the center and may cause errors. To be safe
lets reload the small arrow which points to the true c¢ursor
location,

% Cursor arrow
The present location of the cursor can be read withs

% cursloc
Cursor at x = 2921 (361); y = 2150 (102)

It turns out that the cursor can be positioned anywhere on a
grid of 4096 by 4096 points but its visible position is con-
fined to an area of the screen which is 512 square. For
this reason the position is reported modulo 512, correspond-
ing to the visible display area. Another annoying problem
with the cursor is that its position on the screen may not
be the same as the pixel which it points to. The cursor
does not wundergo the same zoom and scroll operations as do
the other channels, hence if the image is being zoomed or
scrolled then the position of the cursor might not be equal
to the coordinate of the pixel under it.

April 20, 1982

Graphics overlay memory

In addition to the three refresh memory channels there
is another block of memory containing only 4-bits of infor-
mation per pixel. This memory is named "graphics" and has
several uses. First, it is used for drawing graphs and maps
and to annotate the display. Second, a single bit plane can
be wused to drive another black and white monitor called the
status monitor. Finally, it can be used to create regions
of interest (ROI). The values of the bits in this plane are
used by the arithmetic logic unit and videometer to control
which areas in the memories are operated on.

All the commands that write into memory channels will
also write 1into the graphics memory by using the keyword
"graphics" (this includes the gclr command). Nominally the
graphics channel is displayed via a special graphics pipe-
line®™ which is independent of the three major color pipe-
lines. The graphics output normally replaces, or overlays,
the outputs of the standard color pipelines. To control the
graphics unit use the command graphics. With no arguments
it reports the status of the graphics unit.

% gclr; ginit
% graphics
ROI plane is 0, status video off (plane = 0)

A useful command to annotate graphics memory is aecho.

% aecho "Writing 1in graphics memory usually appears
green."

Causes the sentence following the aecho to be written in the
upper left hand corner. Text can be placed at any position
by using a positioning option:

% aecho -p 300 400 "uwipl 82"

Other options are possible, consult the aecho "man" entry
for a list of these.

The minimum - maximum, constant and range registers

There are several additional hardware functions per-
formed within the pipeline. These all exist between the
lookup tables and the output function memory.

* Actually in the current U.W. system there is a spe-
cial LUT for the graphics channel. The graphics channel
can be displayed on the pipeline by referring to it as
channel 6. This is not a standard option with the STC.

April 20, 1982

- 23 -

The first is the min-max register, which is what the
command minmax reads. It is located immediately before the
output function memory. The numbers is reads are treated as
signed 10-bit gquantities. Remember that these wvalues
reflect the transformations due to the LUTs and the adder.

It is also possible to add in a constant. There are
three constant register, one in each pipeline, whose con-
tents are added to the adder output. These are normally set

to 0. These registers can be set and inspected with the
const command.

Finally, it is sometimes possible for the adder to pro-
duce numbers greater than 10-bits (this usually occurs if
the terminal is expanded to include more than three memory

channels); the range shifter selects 10 contiguous bits from
the maximum 13 bit output of the adder. This operation is
controlled by the range command and is normally set so that
the least significant 10-bits are selected.

Arithmetic logic unit

Finally, we will mention a few things about the arith-
metic 1logic wunit, which when used in conjunction with the
feedback unit and pipeline processing allows the terminal to
perform even more complicated image processing tasks. These
capabilities come about by using the ALU to combine the
pipeline output with data already stored in a 16-bit accumu-
lator (memory channels 1 and 2). Most common arithmetic
(but not including multiplies and divides) and logical
operations are possible. It is also possible to apply two
functions, one in the "region of interest" (i.e. wherever
there is a bit set in the ROI), and another everywhere else.

Examples include programs that perform convolutions
over the original image by shifting, multiplying and accumu-
lating the results. This has been used to implement David
Marr”s edge detector. Another program allows one to emulate
a large "simd" array computer to code pattern matches and
other parallel algorithms, Unfortunately, the instruction
format required by this subunit is quite complicated and
therefore it difficult to control by typing simple commands.

Programming the STC

At this point you know most of the capabilities of the
STC for image manipulation and display. If you need more
information about the STC or intend to write programs there
are several other documents you should consult.

All the command line programs are described in section
I of the STC programmer”s manual. The lowest level STC
primitives are all C-callable procedures and are described
in section III of the same manual. Each subunit on the

April 20, 1982

- 24 -

device has a corresponding procedure {usually named the same
as the programs you have learned above) that controls it.
There are also a large number of utility procedures to per-
form useful operations for graphics and image processing.

For a general description of the STC terminal, see the
STC Manual, "Product Description Model 70/F: Image Computer
and Display Terminal." The most detailed reference on the
architecture 1is "I/O Specification: Model 70/F." Both of
these are provided by the manufacturer.

Along with the procedures to control the graphics ter-
minal it 1is also wusually necessary read and write image
files. These are stored in a standard format which includes
a header of important information about the image, e.g. its
size and resolution. There exists a package of procedures
to manipulate these image files; see the manual entry under
image.

Unix, C and Pascal

The Image Processing laboratory computers all wuse the
UNIX operating system. If you are new to UNIX you will want
to learn more about what tools are available, For a very
good introduction, read "UNIX for Beginners" by Brian Rer-
nighan. While you are logged on under UNIX you communicate
with the operating system through a "shell" which provides a
large number of useful features that c¢reate a friendlier,
personalized environment, At the Image Processing Labora-
tory people commonly use the Csh; this is described in "An
Introduction to the C shell" by William Joy. 1In the process
of program development it is essential to have a good edi-
tor. Most people prefer "vi", a screen oriented editor (see
"An Introduction to Display Editing with Vi" by William Joy)
although the older line oriented editor, ed, is still used
(see "An Tutorial Introduction to the ED Text Editor" by
Brian Rernighan).

Currently there are two programming languages that can
be used with the graphics terminal. The major one is C,.
All the programs described in the manual have been written
in C; if you want to learn C, read the book by its inven-
tors, "The C Programming Language" by Brian Kernighan and
Dennis Ritchie. We also have a Pascal compiler. The
appropriate manual is: the "Pascal Reference Manual" by
Whitesmith, Inc.

Acknowledgements

The Image Processing Laboratory is jointly run by the
Computer Sciences Department and the Institute of Environ-
mental Studies. We would like to thank the original direc-
tors of the laboratory Frank Scarpace and William Havens for

contributing many of the ideas and methods described in this
primer.

Aoril 20, 1982

- 25 -

Appendix A - The complete Stanford Technology Corporation
terminal

The University of Wisconsin Image Processing Laboratory
has (as of April 1982) an STC-70F display terminal with 3
512 by 512 by 8-bit memories, 1 512 by 512 by 4-bit graphic
overlay memory, a video digitizer, 3 pipeline processors
(each containing a lookup table per channel, and also
including the video digitizer and graphics memory, for a
total of 15, and an output function memory), split screen,
hardware zoom and scroll, histogram generator (videometer),
sum processor (records the minimum and maximum), a feedback
Arithmetic-Logic Unit, an input function memory, programm-
able cursor, tablet trackball, and a 19in. Conrac RGB color
monitor, model 5411.

This terminal is connected to the Unibus of a PDP-11/45
via a DMA interface. The PDP-11/45 has approximately 240
MegaBytes of disk storage and 9-track tape drive. A high-
speed, 1 MegaByte/sec, link connects to a VAX11/780 with 2.5
MBytes of high speed memory and four disks totaling about
400 MBytes (hardware is in place; software is being com-
pleted).

Figure 3 shows the schematic of the image processing
terminal provided by the manufacturer.

May 12, 1982

Appendix B - Index of major graphics commands

aecho - print arguments in refresh memory
class - display classifications

coloram - manipulate graphics ram

colors - color table maps

const - manipulate constant registers
cslice ~ color level slice

cursloc - cursor location control

cursor - cursor subunit control

dsp - display enable control

dissolve - change display gradually

examine - interactively print channel contents
fadein - change display gradually

fadeout - change display gradually

flash - view multiple channels

full - full color display

gamma - gamma correction

gclr - clear refresh memory

ginit - initialize image processor
graphics - graphics subunit control

gscale - draw grey scale

histogram - compute and display histograms
istat - image header information

link - scroll channels, split screen
luts - color lookup table routines
minmax - examine limit registers

off - display enable control

on - display enable control

palette - search color data base

patterns - draw shapes in refresh memory
range - control range register

rdifm - read input function memory (IFM)
rdlut - read lookup table (LUT)

rdofm - read output function memory (OFM)
reflect - reverse a refresh memory

rgb - set/tell lookup table entries
rle - run length encoding

roam - interactive zoom and scroll
sample - read pixel values

scroll - set scroll coordinates

seeimg - load images

splitc - split screen coordintates

store ~ store pipeline output in refresh memory (RFM)
stretch - rescale images

take - store images

tpict - read tape images

trace - plot image intensities

transpose - transpose a refresh memory
transfer - perform feedback operation

wrifm - write input function memory (IFM)
wrlut - write lookup table (LUT)

wrofm - write output function memory (OFM)
ZOOMm - magnify images

May 12, 1982

s [euTwisl bulsssooig dbeuwl

uorjeirodio)d AboTouyodosl piojuels SUL

°T 2inbr1g

€ TANNYHO

LJ-——1

Z THNNYHO

suttedid onTd

T TJENNVHO

LINA
2ID0T
OLLANHLIYY

STY3 3e pPaI0o3s aniea aygL

*wes13s 3Indino syl ur pooeTd USY3} ST UOTIROOT STIYU} 3

*9Tge3 dn-yoo0T 8yl uTl AIjus ue 3091oS
wesi13s eijep 3ndul Syl UT SaNTRA 9YJ
Se UMOUS 91k SaTqeuxm

*SOUTIT OTbutrs

*sieq SpIM se umoys syzed eied

°Z 2iInbrg

i

WVYHYLS LN4LAO

i

NOILOHTHS
AGLNH
HATIYL

WYHYLS LAdNI

T

CRRSAVA
dN-3001

2518 vintg

»O3¥
Lowntes

(2]
g

e
couauTes
i fasack

AOPLAY CORTEOLLEN

Py
ruscrign

PANLAANMARLE
#ROCEISOR

ARTTANAY

Ni3TICRAM
CEngaATaR
IVIJEQUETER

"\ ; e ugay
c'{ [g s
B g
Lerss y ﬁ ? \fnw‘l> wiolg
CHam |
saer
W |, e " I > .,%4.0:; 1ot
(78 . ;“"“ wani{on
. nut
. :l::fk.l| © " TS o AL r
r""‘ THARNEL g V 1
T Wi Ol -~
ot . gt= nanaEL txcooch
e)
]’ mc:.J I
H Iy a152 wote
" wa e TARLE
no1S . 2 . conson [F..._
nrou "
H In:7 i
! [XY]
Shamacy ' ' \ coLow Ll
tEsnisa ATA s
wiuoRyY wr FURCTICN MEMQAY 4
I 1 grang
3 MEGIGN OF (NTORESY
S nddbaibiudinthin LY
I L LS L3
REFRESH MEMORY| ' Looxur |
CHANNEL 71 £ — Tag
™ scrow P .
REFRESHMEMORY | s | tooxur § g N
CHANNEL ity X5V » et Lingml TABLE VAX
n
) . .
AEFRESH MEMORY Pur s | woxur g l ,
CHANNEL flmip{ X8V » 2004 SCREEN = Tass NV
' 10 louteur| g
ADgER \ 3 %~ 3', RANGE F8miFUNLTHOM i
° ® ARRAY { WEMOAY
3
[]
L [}
REFRESH MEMQRY &Y 8 LOoOX ur]
CHANNEL #1200 SCROLL L L TABLE CONSTAN!
”ne
VIDED ¢ | wookup | !
CIGITIZER o “‘-I:;L
‘

Figure 3.

Complete Functional Block Diagram of the STC.

