ACCESS PATHS IN THE "ABE"
STATISTICAL QUERY FACILITY

by
Anthony Klug
Computer Sciences Technical Report #474

May 1982



Access Paths in the "Abe"

Statistical Query Facility

Anthony Klug
Computer Science Department

University of Wisconsin

Abstract

An increasingly important part of information pro-
cessing today involves the taking of counts, sums,
averages, and other statistical or aggregate quanti-
ties. The "Abe" query language is designed to make
formulation of complicated aggregations simple. Ac-
cess path selection in Abe finds efficient ways to
execute these complicated queries. Access paths for
Abe queries perform "aggregate joins", that is, they
compute aggregate guantities at the same time as
they Jjoin subqueries with parent queries. This can
be done using index scans or merging scans depending
on how many "partitions" need to be accessed.

This work was supported in part by NSF Grant MCS8102864






1. Introduction

An increasingly important part of information process-
ing today involves the taking of counts, sums, averages, and
other statistical or aggregate quantities. While we have
witnessed tremendous overall advances in relational database
technology in the last decade, the relational technology for

processing these statistical queries still requires more

work. The statistical facilities in many relational query
languages are difficult to use or do not provide as much
power as might be desired. 1In addition, the query process-
ing facilities in these systems have not incorporated enough
intelligence in access path selection for efficient process-

ing of statistical queries.

In this paper we present some elements of the "Abe"
statistical gquery facility being developed at the University
of Wisconsin. We concentrate on the access paths for effi-

ciently executing Abe queries.

In the next section we describe briefly the Abe
language. The Abe query language is powerful, yet simple.
It is a pure relational calculus language [Ullm] with a

friendly full-screen user interface.

In section 3 we describe the access paths in the Abe
system. We show that the access patterns in computing a
query having aggregates are virtually identical to those

encountered in computing a simple join. We then present



three scan procedures for computing aggregates: one is like
a file (or segment) scan; one is analogous to an index scan;
and one is similar to a merging scan. Cost formulas for
these access procedures are given, and some example access

paths are compared.

In section 4 we examine gquery language features and
access paths in System-R and Ingres. We will see that each
system essentially uses just one strategy in evaluating

aggregates.,

2. Abe Background

Space limitations do not permit us to give an extensive
description of the Abe query language. We will give a brief
introduction to the language and a few examples. More exam-

ples can be found in [Klug8l].

Aggregate Functions

The concept of an aggregate function is quite simple.
An aggregate function takes a set of tuples (a relation) as
an argument and produces a single simple wvalue (usually a
number) as a result. The aggregate functions we consider

are: ave, count, max, min, and sum. Ave, max, min, and sum

take an additional argument which identifies the attribute

over which to perform the specified operation. Count
requires no such parameter., For example,
"Sumsalary(employee)" returns the sum  of the salary



attribute of the employee relation. By explicitly specify-
ing the attribute over which to perform the aggregation, we
remove the need to introduce the concept of "duplicate

tuple”. This simplifies the set of concepts used.

Embedding Aggregate Functions

There are two basic ways to repeatedly evaluate an
aggregate function over similar sets of tuples within a
query language: One way is to use a partitioning operator
with the aggregate function applied to each partition; the
second way 1s to repeatedly call (at least in principle) a
subquery with the subquery”s free variables having different
values each time. Partitioning fits naturally into alge-
braic languages, and the concept of a subquery with free
variables fits naturally into calculus-like languages. See

[Rlug] for more details.

Relational Calculus

In relational calculus, a gquery is constructed by
specifying a source of output (the target list) and by giv-
ing a formula defining the properties desired of the output
(the qualification). Both tuple relational calculus and
domain relational calculus can be defined [Ullm]. In the
former, variables refer to entire tuples, while in the
latter variables refer to attributes of tuples. Domain
relational calculus (without aggregates) is defined as fol-

lows:



The set of constants and the set of wvariables form the

terms. The set of formulas is defined as follows: If R is
a relation of degree n, and tl"“”tn are terms, then
R(tl,...,tn) is a formula. If t; and t, are terms, and © is

- _» -

=", or "<”, then (tletz) is a formula. If ¥, w are formu-

las, then the negation ”W and the disjunction (m v W) are
formulas. 1If W is a formula, and x is a variable then the

quantification (3x)y is a formula. If tyr...,t, are terms
and if § is a formula, then {tl,,.,,tn : J} is an alpha

expression of degree n. A dquery is a safe alpha expression

having no free variables, that is, every variable is either
within the scope of a quantifier or appears in the target
list. ("Safe" means that all variables are constrained by
the qualification to have a finite range. See [Ullm] for a

formal definition.)

We have noted that an aggregate function takes a set of
tuples as an argument and produces a single simple value as
a result. The calculus has a class of syntactic objects,
alpha expressions, corresponding to sets of tuples, and it
has a class of syntactic objects, terms, corresponding to
single simple values. Hence, to extend relational calculus
to have aggregate functions, we need only make the following

addition to the definitions:



If o is an alpha expression, and £f 1is an aggregate

function, then f(g) is a term.

Free variables within the alpha expression serve a function

analogous to the use of group-by clauses in other languages.

The Abe query language is the result of a restriction

and an enhancement of relational calculus:

(1)

(2)

Relational calculus is restricted to a manageable sub-

set, the conjunctive queries. A conjunctive query is

one in which all alpha expressions have the form:
{tlinuo,tn: Byl,oae,yk) (Cl EYJP ¥ Cm & C)}

where each c¢; (a conjunct) is an atomic formula

R(ul,,,.,u and C is a boolean combination of atomic

n)l

£ 1 f the form
ormulas o € uleu2 (ul,u2 terms) . (This is a

generalization of the conjunctive queries of [ChMe] and

the tableaux of [AhSu].)

The conjunctive query subset is enhanced with a user-
friendly interface without sacrificing the mathematical

precision of the underlying formalism.

Our philosophy, in contrast to the approaches taken

with OQBE [Zloo] and other "friendly" query languages, is to

leave nothing "implicit" and to accurately follow the rela-

tional model in every respect (i.e., no concept of dupli-



cates). The friendly interface is similar to the QBE inter-
face: At any time one conjunctive alpha expression is

displayed on the screen. (This is the current level.) Each

subquery has a name and can be made the current query by
"opening" it. Every relation appearing in a conjunct of the

current level is represented by a table on the screen. Each

conjunct R(uy,...,u,) is represented as a row in the table

for R. Bound wvariables, free variables, constants, and

subquery names are given mutually distinct display modes

using color, underlining, etc.

We give below two examples of Abe queries. These exam-
ples, and others in this paper, use the relational schema of
Figure 1. Since color is not available here, we use the
following typographic conventions for distinguishing bound

variables, free variables, constants, and subquery names:

object display type
bound variable ) underlined
free variable double underlined
constant no display enhancements
subquery upper case

Example 1. For each department in the marketing division,
list the department name and a count of its employees. The
calculus expression of this query (where the subquery is

placed on a separate line for readability) is:



division (dvname, manager, budget)
department (dname, division, manager, budget)
employee (ename, salary, dept, seniority, recruiter)

Figure 1. Schema for a Company Database.

{d,count (¢) : (Jm,b)
department(d,"marketing“,m,b)}

{e : (s,n,r) employee(e,s,d,n,r)}

The Abe version (where each box represents one query level)

is given in Figure 2.

Example 2. Sum employee salaries over departments, and then
average these sums over divisions. Print division names and
the averages.

The calculus expression is:
{v,ave2(I) : (dm,b) division(v,m,b)}
{d,sumz(T) : (3m”,b”) department(d,v,m”,b")}
le,s : (dn,r) employee(e,s,d,n,r)}

The Abe version is given in Figure 3.

3. Access Paths in Abe

One of the best features of the relational approach is
that users do not have to be concerned about physical struc-
tures when formulating a query. Instead, the query proces-

sor assumes the burden of finding the best access path from



TOP LEVEL output 1list
dep count (DEMPS)
|depar tment dname division manager
dep marketing
DEMPS output list
[ emp |
]employee ename salary dept seniority recrulter

emp

dep

Figure 2.




TOP LEVEL output list

div | ave, (DPSUMS)

{division dvname manager dvbudget

div

DPSUMS output list
dep | sum, (EMPSALS)

idepartment dname division manager dpbudget

dep div
EMPSALS output list
[emp | sal |

| employee ename salary dept seniority recruiter

emp sal dep

Figure 3.

among the many possible ways to implement a dquery. We
extend the approach to access path selection taken in

System~R [GACL]: Access paths are constructed from a basic

set of procedures and functions according to cost estimates

determined from database statistics kept in the schema con-

cerning numbers of tuples, numbers of pages, numbers of dis-
tinct values, etc. We assume that the file system supports
clustered files and indices. For ordinary joins, index
scans and merging scans are possible, just as in System-R

Our contribution is this: We introduce access paths which

compute an aggregate value at the same time as they join the




10

subgquery with the outer gquery. Consider the query in exam-
ple 1. 1If there are few departments in the marketing divi-
sion, and 1if there 1is an index on the dept attribute of
employee, then there is no need to compute counts over the
entire employee relation. An index scan can access just
those employees in the required partitions. If most depart-
ments are in the marketing division, most department parti-
tions of the employee relation will be used, and it will pay
to sort the employee relation by department and simultane-
ously scan both relations, computing the employee counts as

the scans proceed.

Abe Access Paths

Access paths are constructed from a small set of styl-

ized access procedures and access functions. The first five

of these are similar to access paths provided by System—-R

[GACL] [LoNi].

procedure sort(oldfile, b, newfile, sortfields, output-
fields)
The "outputfields" of tuples in "oldfile" satisfying
the boolean "b" are placed in "newfile" and are sorted
according to "sortfields."

The given "file" is scanned sequentially. For every
tuple t satisfying the boolean "b", variable "var" is
bound to t and access path "ap" is called. (The vari-

able can be referenced in booleans of "ap".)

procedure iscan(index, index range, b, var, ap)
The given "index" (over attribute A of file ¥, say) 1is
used to access tuples in F whose A-values are within
"index range." For every one, say t, of these tuples
which also satisfies the boolean "b", variable "var" is
bound to t and access path "ap" is called.



11

procedure mscan(fl, bl, varl, £2, b2, var2, mergedoms, ap)

Files "f1" and "f2" are assumed to be sorted on "merge-
doms . " Both files are simultaneously scanned. One
pass 1is made through each file. For every pair tl1,t2
of tuples from "fl1" satisfying boolean "bl" and "f2"
satisfying boolean "b2", respectively, and having equal
"mergedoms" values, the access path "ap" is called with
variable "varl" bound to tl and variable "var2" Dbound
to t2.

procedure output(destination, value list, b)
If the boolean "b" is satisfied, the value list, made
up of attribute qualified variables and constants, is

output to "destination" as a tuple. The destination
may be a file or the user”s terminal, denoted "TERMI-
NAL,"

For each of the above three scans, there is a
corresponding scan which computes an aggregate. An addi-
tional procedure is used to accumulate partial aggregate

quantities.

function aggfscan(f, b, var, scan_id, agg fn, ap)

" An internal variable, say x, is initialized according
to the value of "agg fn" on the empty set. For every
tuple t in file "f" satisfying boolean "b", access path
"ap" 1is <called with wvariable "var" bound to t. The
called path is expected to increment x with the accumu-
late procedure (see below). The final value of x is
returned.

function aggiscan(index, 1index range, b, var, scan_id,
agg_fn, ap)
An internal variable, say %, is 1initialized according
to the value of "agg fn" on the empty set. The given
"index" (over attribute A of file F, say) 1is wused to
access tuples in F whose A-values are within
"index range." For every one, say t, of these tuples
which also satisfies boolean "b", variable "var" is
bound to t and access path "ap" is called. The access
path is expected to modify internal variable x by using
the accumulate procedure defined below. The final
value of % is returned.

function aggmscan(fl, bl, varl, f2, b2, var2, mergedoms,
agg fn, scan id,
- Tapl, ap2)
Files "f1" and "£2" are assumed to be sorted on "merge-
doms . " Both files are simultaneously scanned. For



12

every tuple tl from "fl1" satisfying "bl", an internal
variable x is initialized to the value of "agg fn" on
the empty set. Then for every tuple t2 from "f2"
satisfying "b2" and having "mergedoms" values equal to
those of tl, access path "apl" is called with "varl"”
bound to tl1 and "var2" bound to t2. It is expected
that x is modified during this call. Before advancing
the scan on "fl1" to the next qualifying tuple, access
path "ap2" is called. It can reference the final value
of x with the expression "scan id.VALUE".

procedure accumulate(scan_id, value)

The internal variable associated with "scan id" is
updated to reflect the addition of "value" to the input
set of the aggregate function associated with
"scan id." For example, if "agg fn" is "max", then this
procedure is equivalent to "x = max(x,value)". If
"agg fn" is "ave," then x is actually a structure hold-
ing both a sum and a count.

Two other constructs are added for a 1limited programming
capability:

begin . . . end
A sequence of access procedures can be executed by
enclosing them within a begin-end block.

variable = access function
A variable can be associated with the returned value of
a function. This could be used for naming the value
before testing it with a boolean expression. We will
use such equalities in the examples to improve clarity.

Each of the above functions and procedures has an asso-

ciated cost. We give their cost functions in Figure 4.

Discussion gg Costs

We have assumed that the dominate costs are for I/0 and
not for CPU wutilization. (Weights for CPU can easily be
added.) In the formulas, NP() denotes the number of pages
in a file; SEL{() (a number between 0 and 1) denotes the
selectivity of a boolean expression (determined by consult-

ing information in the schema); and NT () denotes the number



13

procedure or cost
function formula
sort NP (oldfile) + NP(newfile) +

2*NP(newfile)*1099(Np(newfile))

(assuming 10 buffers available and > 10
pages to sort)
OR

2*NP(Oldfile)*1099(NP(oldfile)) if oldfile=newfile

fscan NP (file) + SEL(boolean)*NT (file)*cost (acc proc)

iscan SEL (index range) *NP(FILE (index)) +

SEL (index range & boolean)*
NT (FILE (index) ) *cost (acc proc)

(if FILE (index) is clustered on the indexed attr.)
OR

SEL (index range) *NT (FILE (index)) +

SEL (index range & boolean)*
NT (FILE (index) ) *cost (acc_proc)

(if not clustered)

mscan NP (fl) + NP(f2) +
NMATCHES (£f1,bl,£2,b2,mergedoms) *cost (acc_proc)
output cost (value list) + size(value list)/page size
cost(valgg_list) if destination=TERMINAL
aggfscan NP (file) + SEL(boolean)*NT(file)*cost(acc _proc)
aggiscan SEL (index range) *NP (FILE (index)) +

SEL (index range & boolean)*
NT (FILE (index) ) *cost (acc proc)

(if FILE (index) is clustered on the indexed attr.)
OR

SEL (index range) *NT (FILE (index)) +

SEL (index range & boolean)*
NT (FILE (index) ) *cost (acc proc)

(if not clustered) -

aggmscan NP(fl) + NP(f2) +
NMATCHES (f1,bl,£2,b2,mergedoms) *cost (apl) +
SEL (booleanl) *NT (£1) *cost (ap2)

accumulate cost (value)
begin-end sum of costs of procedures within begin-end.
assignment cost of right-hand side

Figure 4.

Cost Formulas for Basic Procedures and Functions



14

of tuples in a file. FILE() denotes the file of records
indexed by the given index. NMATCHES denotes the expected

number of tuples in the join of fl and £2.

sort: If we are sorting a permanent relation into a tem-
porary file, we must read NP(oldfile) pages. The number of

pages in newfile is determined by the formula:

NP(newfile) = NP(oldfile)*SEL (b)*
(#output fields)/(#oldlfile fields)

For simplicity, we assume all fields are the same length.
We also assume that sorts use 10 buffers, giving a cost of

Z*NP(nveile)*1099(NP(newfile)) when an in-core sort is not

possible.

fscan, aggfscan: Scanning the file costs NP(file), and for

each of the SEL(b)*NT(file) qualifying tuples, we execute

LU apll .

iscan, aggiscan: 1I/0 for traversing the index tree is not

considered. If the file is clustered on the indexed attri-
bute, then the number of file pages touched is
SEL (b) *NP (file). Otherwise, the number of pages touched is
SEL (b) *NT (file) (one I/O to get each tuple). For each of

the SEL(b)*NT (file) qualifying tuples, "ap" is executed.

mscan, aggmscan: One scan is made through each file for a




15

cost of NP(fl) + NP(f2). The number of matches, NMATCHES,
is calculated from NT(f1), NT(f£2), SEL(bl), SEL(b2), and
other schema information such as key and foreign key con-

straints.

output: If the destination is a temporary file, the cost is
the fraction of a page that one record occupies. If the
destination is TERMINAL, we can assign a cost of zero since

all access paths must output exactly the same set of tuples.

Selecting Access Paths

In access path selection, two things must be done:
Access paths that implement the query must be generated, and
the costs of these access paths must be determined. Here,
we only illustrate how different paths may be best according

to the query and the available file structures. Exactly how

access paths are generated and how the search space is lim-

ited is beyond the scope of this paper.
Examples

The database statistics we use to evaluate the example

access paths are given in Figure 5.

Example 3. Consider the query:

{d,avez( ) : (dv,m,b) department(d,v,m

b)
& 50R<b<200K |

{e,s : (3n,r) employee(e,s,d,n,r)



16

number number clustering
relation of pages of tuples attribute
division 5 50 dvname
department 50 250 dpname
employee 250 2500 ename
attribute range
dvbudget [500K, 2500K]
dpbudget [50K, 250K]
index attribute relation
dpbudg dpbudget department
dpdiv division department
empdep employee
Figure 5. Example Database Statistics

This query computes the average employee salary by depart-

ment for

departments with a budget between $50K and $200K.

In this query the index on dpbudget is of no use since most

pages of

accessed.

department which calls an aggiscan on employee

department

relation are

expected to Dbe
A nested loops access path could use an fscan on

(Figure 6).

The fscan retrieves department tuples with a budget between

50K and 200K.

is bound

executed.

say x, 1is

When such a department is found, variable VI

it and the aggiscan and output statments are

initialized to (0,0)

To execute the aggiscan, an internal

variable,

(zero sum and zero count),

and the identifier “S1” is associated with this scan. Then

the empdep index is used to find employee tuples whose dept

attribute values match Vl.dname. For every

of these,



17

fscan (department, 50K<dpbudget<200K, V1, (1)
begin (2)
X = aggiscan (empdep, dept=Vl.dname, - , (3)

v2, S1, ave,
accumulate (81, V2.salary) (4)

)
output (TERMINAL, Vl.dname, X) (5)
end

)

Figure 6. Access Path for Example 3 (Nested Loops)

the variable V2 is bound to the tuple, and the accumulate
statement is executed, the effect of which is to add one to
x.count and V2.salary to x.sum.

The cost of this access path is given by the formulas

in Figure 7.

A merging scan access path would sort the employee file
on dept into a temporary file, and then merge the two files
(Figure 8). 1In this path, the sort creates a temporary file
with employee tuples sorted on the dept attribute. The
aggmscan then scans the department and templ files. When a
new department tuple is bound to variable V1, an internal
variable, say x, is initialized to (0,0). Then all associ-
ated employees are scanned. Each employee tuple is bound to
variable V2 and the accumulate is executed. When the entire
group of employees has been scanned for a given department,

the output statment is executed.

The cost formulas for this path are given in Figure 9.



18

cost = cost (#1) = 1925
cost(#l) = NP(department) + SEL(50K<dpbudget<200K)* = 50 + 0.75%
NT (department) *cost (#2) 250*%10
cost (#2) = cost(#3) + cost (#5) = 10
cost (#3) = SEL (dept=Vl.dname) *NT (employee) + = 0,004*%2500
SEL (dept=Vl.dname) *NT (employee) *cost (#4)
cost(#4) =0
cost (#5) = 0
Figure 7. Cost Formulas for Example 3 (Nested Loops)
begin (6)
sort (employee, - , templ, dept, (dept,ename,salary)) (7)
aggmscan (department, 50KR<dpbudget<200K, V1, (8)
templ, - , V2, dname=dept, ave, S1,
accumulate (S1, V2.sal), (9)
output (TERMINAL, Vl.dname, S1.VALUE) (10)
)
end
Figure 8. Access Path for Example 3 (Sort/Merge)
cost = cost (#6) = 1284
cost (#6) = cost(#7) + cost (#8) = 1084 + 200
cost (#7) = (1 + 1)*NP(employee) + = 250 + 150 +
2*NP (employee) *10gy (NP (employee) 2%150%10ggq (150)
cost (#8) = NP (department) + NP{(templ) + = 50 4+ 150 + O
NMATCHES (department, 50R<dbbudget<200K,
templ, - ,dname=dept)* cost ($#9)
cost(#9) = 0
cost (#10) = 0
NP (templ) = 250*1*(3/5) = 150

Figure 9. Cost Formulas for Example 3 (Sort/Merge)



19

In this example, we see that the merging scan is
cheaper. This 1is because almost all "dept" partitions of
the employee relation are accessed. After sorting templ,
the pages are access only once, while in the index scan,

employee pages may be accessed many times.

Example 4. We modify the last example query so that the
restriction is more selective:

{d,avez( ) : (dv,m,b) department(d,v,m,b)
& 50K<b<60K }

{e,s : (3n,r) employee(e,s,d,n,r)

The fscan/aggiscan and the sort/aggmscan paths for this
query are analogous to the ones above and will not be repro-
duced here. The cost formulas for the fscan/aggiscan are

given in Figure 10.

The cost for the sort/aggmscan path does not change since
the selectivity term for dpbudget is multiplied by a zero
factor. Thus in this case the fscan/aggiscan is much less
expensive than the sort/aggmscan path. The reason is that
only 1/20-th of the "dept" partitions of the employee file
are accessed, so that the high cost of sorting the entire
employee file 1is mostly wasted. Also note that an
iscan/aggiscan path would be worthwhile here, and its cost

would be only 0.05*250 + 0.05*250*10 = 138.



20

cost = cost (#1) = 175
cost (#1) = NP(department) + SEL (50K<dpbudget<60K)* = 50 + 0.05%
NT (department) *cost (#2) 250*%10

cost (#2) = cost(#3) + cost (#5) = 10

cost (#3) = SEL (dept=Vl.dname)*NT (employee) + = 0.004%2500
SEL (dept=V1.dname) *NT (employee) *cost (#4)

cost(#4) =0

cost (#5) = 0

Figure 10. Cost Formulas for Example 4 (Nested Loops)

Now we consider a more complicated set of queries in

which there is a nesting of aggregates.

Example 5. In this example, we consider the following gen-

eric query:
{v, aveZ(l) : (dm,b) (division(v,m,b) & C)}

{a, sum, () : (Im”,b”) (department(d,v,
&

{e,s : @n,r) employee(e,s,d,n,r)}

This query sums employee salaries over departments and then
averages these sums over divisions. The terms "C" and "C”"
denote possibly empty restrictions on division and depart-
ment budgets, respectively. We will consider three cases:
(1) both C and C” empty; (2) C having a 0.25 selectivity
and C° empty; and (3) C empty and C” having a 0.25 selec-

tivity.

We consider three access paths for evaluating this

query. The first using two nested loops is given in Figure



21

11. The second path using two merging scans is given in
Figure 12, and the third path, given in Figure 13, uses a
merging scan for the outer aggregate and a nested loops for

the inner aggregate.

Next, we construct formulas for the costs of the three
paths. These are given in Figures 14 through 16. They are
derived by a direct application of the basic cost formulas.
The actual costs for the three versions of the query are
given in Fiqure 17, where the underlined costs are the
cheapest among the three paths. For each of the three ver-
sions of the query, a different access path is best. Two
aggmscans are best when there is no selectivity and all par-
titions are accessed. Two aggiscans are best when there is
selectivity at the top level. 1In that case, only a few par-
titions of the department relation are needed, and, conse-
quently, only a few employee partitions are needed. When
there is selectivity only on the department relation, it is
best to wuse an index scan to get the employee partitions.
Since all divisions are needed, it is best to use a merging

scan at the outer level.

4. Comparisons with Other Systems

In this sections we examine the statistical query



fscan(division, C, V1,
begin
Y = aggiscan(dpdiv, division=Vl1l.dvname,
c’, v2, sl, ave,
begin

Z = aggiscan(empdep, dept=V2.dname, - ,

v3, 82, sum,
accumulate (S2,
)
accumulate (81, 2)
end
)
output (TERMINAL, <Vl1i.dvname, ¥Y>, - )
end

)

V3.salary)

Figure 11. Example 5, Path 1 -- Two Nested Loops

begin

sort (employee, - , templ, dept, (dept,ename,

salary))

22

(11)
(12)
(13)

(14)
(15)

(16)

(17)

(18)

aggmscan (department, C° , V1, templ, - , V2, <dname,dept>,

sum, S1,
accumulate (S1, V2.salary),
output (temp2, <V1l.division, Sl.
)
gsort (temp2, - , temp2, division)
aggmscan (division, C, V1, temp2, - , V2,

<dvname,division>, ave, S1,

accumulate (81, V2.sum),

output (TERMINAL, <Vl.division,
)

end

VALUE>, -

S1.VALUE>,

Figure 12. Example 5, Path 2 -- Two Merge Scans

)

=)



begin

23

sort (department, C° , templ, division, (division,dname)) (29)
aggmscan(division, C, V1, templ, V2, <dvname,division>, (30)

)

end

Figure 13.

cost (Path 1)

cost (#11)
cost (#12)
cost (#13)
cost ($14)
cost (#15)
cost (#16)
cost (#17)
cost (#18)

Figure 14.

ave, 81,
begin (31)
Y = aggiscan(empdep, V2.dname, - , (32)
v3, 82, sum,
accumulate (S2, V3.salary) (33)
)
accumulate (S1, Y) (34)
end,

output (TERMINAL, <Vl.dvname,S1.VALUE>, - ) (35)

Example 5, Path 3 -- Nested Loops within Merge Scan

cost (#11)

5 + SEL(C)*50*cost (#12)

cost (#13) + cost (#18)

0.02*%250 + 0.02*SEL(C”)*250*cost (#14)
cost (#15) + cost($#17)

0.004%2500 + 0.004*2500*cost (#16)

0

0

0

LI L | N | SO O | N { B

Cost formulas for Path 1.



cost {(Path
cost (#19)
cost (#20)

cost (#21)

cost (#22)
cost (#23)
cost (#24)

cost (#25)

cost (#26)
cost (#27)
NP (templ)
NP (temp?2)
NMATCHES 1
NMATCHES 2

Figure 15.

cost (Path
cost (#28)
cost (#29)

cost (#30)

cost (#31

)
cost (#32)
cost (#33)
cost (#34)
cost (#35)
NP (templ)
NT (templ)

Figure 16.

2)

3)

Woonuni

o

1 T I | R 1}

24

cost (#19)
cost (#20) + cost (#21) + cost(#24) + cost (#25)
250 + 150 + 2*150+logg(150)

50 + 150 + NMATCHESl*cost (#22) +
SEL (C”) *250*cost (#23)

0

0.1

2*NP(temp2)*1099(Np(tempz))

5 + NP (temp2) + NMATCHES2*cost (#26) +
SEL (C) *50*cost (#27)
0
0
250*1*(3/5) = 150
50*SEL(C”)*(2/4)
2500 (every employee has a unique department)
250*SEL(C”) (every qualifying dept. has
a unique div.)

Cost formulas for Path 2.

wounn

]

| | I

cost (#28)
cost (#29) + cost ($#30)
50 + NP (templ) + 2*NP(templ)*1099(Np(templ))

5 4+ NP(templ) + NT(templ)*cost (#31) +
50*SEL (C) *cost (#35)
cost (#32) + cost (#34)

0.004*2500 + 0.004*2500*%cost (#33)
0

0

0

50*SEL (C7)* (2/4)

250*SEL (C”)

Cost formulas for Path 3.



25

Costs
Case
Path 1 Path 2 Path 3

C = empty 2755 1412 2678
C” = empty

C = (500KR<dvbudget<1000K) 693 1412 2678
C” = empty

C = empty 880 1333 93
C” = (50KR<dpbudget<100K)

Figure 17. Cost Table

facilities of two relational systems: System-R and Ingres.

System-R: Query Language

The general form of an SQL query block [ABCE] [CAEG]

is:

SELECT <target list>

FROM <relation list>

[WHERE <boolean>]

[GROUP BY <field list>]

[HAVING <boolean>]
In the target list there may be aggregate expressions of the
form "agg fn(attribute)". (Arithmetic expressions are also

allowed.) The GROUP-BY clause indicates that the qualifying

tuples are to be partitioned by the given fields and the



26

aggregate is to be applied to each partition.

Example 6. Find the average salary for employees by depart-
ment.

SELECT dept, AVG(salary)

FROM employee

GROUP BY dept
From the syntax we can see that nested aggregation, that is,
the output of one aggregate being the input of another, is
impossible in SQL without building temporary relations in
the course of several separate queries. Since access path
selection cannot cut across queries, some access paths, pos-

sibly the least costly ones, will not be available.

When an aggregate is needed only in the WHERE-clause, a

subquery may be used:

Example 7. Find departments which have more than 10 employ-

ees.

SELECT dname
FROM department D
WHERE 10 < SELECT count (*)
FROM employee
WHERE dept = D.dname

System-R Access Paths

Access path selection in System-R is done on a query
block basis [GACL]. That is, the optimizer determines an

order in which to evaluate the query blocks, and then access



27

paths for individual query blocks are chosen separately.
System—-R access paths for query blocks are constructed from

index scans, merging scans, and sorts.

Queries with GROUP-BY clauses are always evaluated by
using a sort (if needed) and a sequential scan [LoNi].
Since only one relation is generally involved, other access
paths are irrelevant. Correlated subqueries are always
evaluated by a "tuple substitution" [WoYo] procedure. In
fact, even 1if the nested query is eqguivalent to a simple
join, System-R still uses tuple substitution. For example,

assuming the employee has a manager attribute, the following

query:

SELECT ename
FROM employee X
WHERE salary >
(SELECT salary
FROM employee
WHERE ename =
(SELECT manager
FROM employee
WHERE ename = X.managder))

is evaluated by tuple substitution even though is equivalent

to a simple join [GACL].

Ingres: Query Language

QUEL, the query language of Ingres, is a tuple calculus
language [HeSW] [SWKH] . QUEL uses the concepts of "simple
aggregate" and "aggregate function". A simple aggregate

corresponds to an aggregate term in the calculus whose



28

subgquery has no free variables. An aggregate function
corresponds to an aggregate term in the calculus whose
subquery has one or more free variables. Aggregate func-
tions also include an explicit group by clause, called the
"by-list".
Example 8. The QUEL version of example 1 is:

range of d is dept

range of e is employee

retrieve (d.dname,

cnt=count (e.ename by d.dname

where e.dept=d.dname))
where d.division = "marketing"

Ingres Access Paths

Aggregate function processing in Ingres proceeds
according to the following five main steps [Epst]:

Given an aggregate function "agg fn(a _expr BY by-list [WHERE
qual])",

(1) Create a temporary relation "templ” to hold the aggre-
gate results.

(2) If the aggregate function has a qualification, project
the BY-list into "templ".

(3) If the aggregate is multivariable, join and project the
qualifying tuples into a relation "temp2".

(4) Perform the aggregation on "temp2", storing the values
in "templ" by sorting or hashing.

(5) Link "templ" to the outer query on the BY-list attri-
butes.

Consider these steps applied to the QUEL version of

example 4:



29

range of d is dept
rande of e is employee

retrieve (d.dname,
ave=avg (e.salary by d.dname
where e.dept=d.dname))
where 50K < dpbudget and d.dpbudget < 60K

To process this query, the Ingres query processor will: (1)
create a temporary relation "templ"; (2) project
department (dname) into templ; (3) join department to
employee and store the result in temp2; (4) hash or use

sorting to get average salaries from temp2 into templ; and
(5) Jjoin templ to departments having budgets between $50K
and $60K.

Under no circumstances would this access path be cheaper

than an index scan or even a merging scan.

We verified by experiment that Ingres does not consider
selectivities in outer queries. On the standard Ingres demo
database, we ran the following two queries:

range of d is dept
range of e is employee
retrieve (d.name, d.manager,
cnt=count (e.name by d.manager
where d.manager=e.manager))
retrieve (d.name, d.manager,
cnt=count (e.name by d.manager
where d.manager=e.manager))
where d.floor = 0
There is only one department where floor = 0, but the second

guery actually had higher CPU and I/O costs than the first

query.



30

5. Summary and Conclusions

The Abe statistical query facility includes a simple
but powerful language and access procedures for efficient
execution of aggregation queries. The Abe query language
consists of a friendly interface to conjunctive relational

calculus. An Abe query looks like a tree of QBE tables.

Grouping operators are not used in Abe. Instead, free
variable subqueries are the sole means for expressing com-
plicated aggregations. Although the use of free variables
in a query language has been criticized [ChBo], we believe
that with Abe”s simple structure, free variables will be

easy for users to understand.

Access paths in Abe compute aggregates while simultane-
ously Jjoining the subquery with the outer query. This
"aggregate join" can be evaluated by using either an index
scan or a merging scan. Which kind of scan is best depends
on what fraction of the subguery partitions will be needed

in computing the query.

We believe the features of Abe described in this paper
indicate a promising approach to processing statistical
queries. The Abe interface has been implemented, and the
implementation of the access paths described in this paper

is underway.

References




31

[ABCE] Astrahan M.M., Blasgen M.W., Chamberlin D.D.,
Eswaran K.P., Gray J.N., Griffiths P.P., King W.F., Lorie
R.A., McJones P.R., Mehl J.W., Putzolu G.R., Traiger
I.L., Wade B.W. and Watson V. "System R: Relational
Approach to Database Management" ACM-TODS 1, 2, pp.97-137
(1976)

{AhSu] Aho A.V. Sagiv Y. and Ullman J.D. "Equivalences
among Relational Expressions" SIAM J. Comptng. 8, 2,
218-246 (May 1979)

[CAEG] Chamberlin D.D., Astrahan M.M., Eswaran K.P., Grif-
fiths P.P., Lorie R.A., Mehl J.W., Reisner P., and Wade
B.W. "SEQUEL 2: A Unified Approach to Data Definition,
Manipulation, and Control" 1IBM Journal of Research and
Development, 1, pp.560-575, and in IBM Research Report RJ
1798

[ChBo] Chamberlin D.D., Boyce R.F. "SEQUEL: A Structured
English Query Language" ACM SIGMOD Workshop on Data
Description, Access and Control, 1974

[ChMe] Chandra A.KR. and Merlin P.M. "Optimal Implementa-
tion of Conjunctive Queries 1in Relational Databases",
Proc. 9-th Annual Symp. on Theory of Computing, May,
1976, 77-90

[Epst] Epstein R. "Techniques for Processing of Aggregates
in Relational Database Systems" Electronics Research
Laboratory UCB/ERL M79/8, University of Calif. Berkeley

[GACL] Griffiths P., Astrahan M.M., Chamberlin D.D., Lorie
R.A. and Price T.G. "Access Path Selection in a Rela-
tional Database Mangement System", ACM-SIGMOD 1979 Inter-
national Conference on Management of Data

[HeSW] Held G.D., Stonebraker M.R. and Wong E. "INGRES -~
A Relational Data Base System", NCC 1975

[Rlug]l KRlug A. "BEquivalence of relational algebra and
relational calculus query languages having aggregate
functions", to appear, JACM; also Univ. of Wisc. Tech.
Rep. #386

[Rlug8l] Klug A. "Abe —-- A Query Language for Constructing
Aggregates—~by-~Example" Workshop on Statistical Database
Management, Menlo Park, Calif., December 1981

[LoNi] Lorie R.A. and Nilsson J.F. "An Access 8Specifica-
tion Language for a Relational Data Base System" IBM J.
Res. Develop., 3, pp.286-298 (1979)

[SWRH] Stonebraker M., Wong E., Kreps P. and Held G. "The



32

Design and Implementation of INGRES", ACM-TODS 1,
PpP.189-222 (1976)

[Ullm] Ullman J.D. "Principles of Database Systems", Com-
puter Science Press 1980

[WoYo] Wong E. and Youssefi K. "Decomposition -- A Stra-
tegy for Query Processing" ACM Trans. Database Sys., 1,
pPp.223-241 (1976)

[Z1loo] zloof M.M. "Query-by-Example; a data base language™
IBM Sys. J. No. 4, 1977, pp.324-343



