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ABSTRACT

Positive definite and semidefinite matrices are characterized in
terms of positive definiteness and semidefiniteness on arbitrary closed
convex cones in R". These results are obtained by generalizing Moreau's
polar decomposition to a conjugate decomposition. Some typical results
are: The matrix A is positive definite if and only if for some closed
convex cone K, A is positive definite on K and (A+AT)'1 exists and is
semidefinite on the polar cone K°. The matrix A is positive semidefi-
nite if and only if for some convex polyhedral cone K or some general
closed convex cone satisfying a certain condition, A is positive semi-
definite on both K and the conjugate cone M = {sle(A+AT)s§p, ¥xeK},

and (A+AT)X =0 for all x in K such that xTAx = 0.
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CONJUGATE CONE CHARACTERIZATION OF POSITIVE
DEFINITE AND SEMIDEFINITE MATRICES

S.-P. Han & 0. L. Mangasarian

1. INTRODUCTION

In deriving local duality results for nonlinear programs in [5] the
following characterization of symmetric positive definite matrices was
established: An nxn vreal symmetric matrix A is positive definite if
and only if A is positive definite on some arbitrary subspace of the
n-dimensional Euclidean space R" and A'1 exists and is positive semi-
definite on the orthogonal complement of the subspace. It is the purpose
of this paper to generalize this result by replacing the subspace by a
closed convex cone and dropping the symmetry of A. In particular we will
show in Theorem 3.6 that A is positive definite if and only if A is pos-
itive definite on some arbitrary closed convex cone in R"  and (A+AT)-]
exists and is positive semidefinite on the polar cone. The algebraic proof
employed in [5] breaks down in attempting to replace the subspace by a

closed convex cone and a completely different proof is given here based on

the concept of a conjugate decomposition of a vector in Rn, which is an

extension of the polar decomposition of Moreau [9], and which we define now.

1.1 Definition (Conjugate decomposition) Let K be a closed convex cone

n

in R and lTet A be an nxn real matrix. A point a 1in R" s said to

have a conjugate decomposition with respect to K and A if there exists

x and y such that

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work supported by the National Science Foundation
under Grants ENG-7903881 and MCS-7901066.



(1.1) a=x+y, xekK, ye KA:= {s]xT(A+AT)S§p, ¥xeK}

xT(A+AT)y = 0.

The closed convex cone KA js called the conjugate cone to K with

respect to A.
Note that for an arbitrary A and K it is in no way assured that

n

a conjugate decomposition exists for each point a 1in R". If A is

taken to be the nxn identity matrix then KA degenerates to the polar

cone
o.. T
Ko:= {s|s x<0, ¥xeK}

and the polar decomposition of any vector a in R"  defined by

a=x+ty, with xeK, yeke, x'y = 0

is assured by Moreau's theorem [9]. One of the principal results of this
paper will be to establish in Theorem 2.3 the existence of a conjugate de-
composition for any a in R" when the matrix A is not necessarily posi-
tive definite nor even positive semidefinite. We shall do this by showing
that the existence of a conjugate decomposition is equivalent to finding a
stationary point of the following constrained optimization problem

(1.2) minimize f(z):= (z—a)TA(z~a) subject to z eK.
z

We define a stationary point x of (1.2) as any x satisfying the following

minimum principle necessary optimality condition [7, Theorem 9.3.3]

xeK, (Z-X)TVf(X) >0, ¥zekK

that is
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X eK, (z-x)T(A+AT)(x—a) >0, ¥zeK.

By taking z =0 and z = 2x, which are points in the cone K, these con-

ditions are equivalent to

T
(

xeK, x (AAT)(x-a) = 0, 2 (A+A')(x-a) > 0, ¥z < K

which in turn are equivalent to
(1.3) xeK, a - xe kP, xT(A+AT) (x-a) = 0.

Upon setting y:=a - x we get a = x+y and see that (1.3) is equiva-
Tent to the conjugate decomposition (1.1). Hence we have the following
preliminary result. A similar result for subspaces rather than cones is

contained in [1, Theorem 8.47.

1.2 Theorem Let A be an nxn real matrix and let K be a closed

n . .
has a conjugate decomposition

convex cone in R". A point a 1in R
(1.1) a=x+y if and only if x 1is a stationary point of (1.2},
that is x satisfies (1.3), and in which case y = a - x,.

It is convenient to introduce now the following.

1.3 Definition Let K c R" and Tet A be an nxn vreal matrix. Then:
(i) A s positive semidefinite on K <> {X e k=X Ax >0

(ii) A is positive definite on K ={0 # XGI<=>XTAX >0

X e K=xAx > 0

(i11) A s positive semidefinite plus on K+ T

xTAX = 0, xeK=(A+AT)

x=0
Note that if K = R2:= {x|x>0, xeR™}, the above three classes of matrices
in Definition 1.3 become respectively the classes of copositive, strictly

copositive and copositive plus matrices [2,6]. Note that (ii) does not in

general imply the strict convexity of xTAx on K unless K 1is a subspace.



With the above preliminaries at hand we can outline the principal
thrust of the paper. 1In Section 2 we shall establish by means of the
equivalence between (1.1) and (1.3) the existence of a conjugate decom-
position of arbitrary points in R"  for special types of cones and
matrices in R". In Theorem 2.3 we show that if K is a convex
polyhedral cone, or K 1is a general closed convex cone satisfying a
certain condition, and A 1is positive semidefinite plus on K then
each point in R" has a conjugate decomposition with respect to K
and A. In Corollary 2.2 we show that if K ds any general closed
convex cone in Rn, and if A is positive definite on K then each
point in R" has a conjugate decomposition with respect to K and A.
Theorem 2.9 establishes the uniqueness of this conjugate decomposition
under the added assumption that A s positive definite on the affine
hull of K. 1In Section 3 we utilize the conjugate decomposition results
of Section 2 to characterize positive definite and semidefinite matrices.
In Theorem 3.1 we show that for any convex polyhedral cone or for a
special closed convex general cone, the matrix A 1is positive semi-
definite if and only if A is positive semidefinite plus on K and
positive semidefinite on KA. In Corollaries 3.3 and 3.4 we characterize
positive semidefinite matrices in terms of copositive and copositive plus
matrices. In Theorem 3.5 we characterize a positive definite matrix A
by being positive definite on K and KA, or by being positive definite
on K and (A+AT)'1 being positive semidefinite on K°. Finally
Corollary 3.9 characterizes positive definite matrices in terms of

copositive and strictly copositive matrices.



A brief word about notation. We shall denote the 2-norm and c«-norm

n

of a vector x in R by llx”z and |[x]|_ respectively. For an nxn

L

matrix A, ker A:= {x]Ax=O}. For a subspace S of Rn, ST will denote

the orthogonal complement {yley=0, ¥xeS}. For a set S in R", c1(S),

will denote the closure of S. For f: Rn -+ R, Vf will denote nx]

n

Y will denote {x|x>0, xeR"} while R" will denote

gradient vector. R
{x|x<0, xeR"}. For a point x in R"  the projection (or equivalently

n

the orthogonal projection) on a closed subset S of R is that unique

point P(x) in S which satisfies

I[x - P(x)]|, = min ||x-P]||,.
2 PeS 2



2. CONJUGATE DECOMPOSITION

We shall establish in this section a number of results which
guarantee the existence of a conjugate decomposition of any vector in

n

R". We begin with a simple existence result.

2.1 Lemma Let K be a general closed convex cone in R" and Tet A be
an nxn real matrix. If A is positive definite on K, then (1.2) has

a solution.

Proof By assumption, there exists vy > 0 such that

xTAx:i*Yuxllg ¥x e K

Define

| (A+aTa |

5:= (x| [|x]| , g 2

s X€K}

Then, for any x 1in K but not in S we have that

£(x) = (x-a) A(x-a) T

v

vlixll5 - x (a+aT)a + £(0)

Iv

T

I, (rllxll, - TCa+aTYall,) + £(0)
> f(0)

Since 0 is in S it follows that

inf f(x) = inf f(x)
xeK Xe$S

Therefore the existence of a solution to (1.2) follows from the

compactness of S. a



Combining Lemma 2.1 and Theorem 1.2 gives the following.

2,2 Corollary Let K be a general closed convex cone in R" and let A
be an nxn real matrix which is positive definite on K. Then each vector
in R" has a conjugate decomposition with respect to K and A.

We next give a useful sufficient condition for conjugate decomposition

in terms of positive semidefinite plus matrices.

2.3 Theorem Let A be an nxn real matrix and Tet K be a general closed

convex cone in R satisfying one of the three equivalent conditions

(2.1a) (A+AT)(K) s closed
(2.1b) K + ker(A+AT) is closed
(2.1¢) P(K), the projection of K on (ker(A+AT))l, is closed

or Tet K be a convex polyhedral cone in R". If A s positive semi-
definite plus on K then each vector in R" has a conjugate decomposition

with respect to K and A.

Proof That conditions (2.1a), (2.1b) and (2.1¢c) are equivalent follows from

Lemma A.1 of the Appendix. By Theorem 1.2 it is sufficient to show that

(1.2) has a solution and hence a stationary point. Let L:= ker(A+AT) and

let P(x) denote the projection on the subspace Lt using the 2-norm. For

n

any X in R TJet x=y + 2z with ye LY and zel. Then

f(x) T

i

(x-a) A(x-a)

T(A+AT)(y+z) + aTAa

A+AT)Z + zTAz - aT(

(y+Z)TA(y+Z) - a

yTAy + yT(

yTAy - aT(

fly).

A+AT)(y+z) + aTAa

1]

A+AT)y + aTAa (Since zel)



Therefore
inf {f(x)|xeK} = inf {f(y)|yeP(K)}

If y solves the problem

(2.2) minimize (y-a)TA(y-a) subject to ye P(K)
N

then any X in K with P(x) =y ds a solution of (1.2), Hence we
need only show that (2.2) is solvable for any a.

Clearly since K 1is a convex cone and P(+) is a linear operator,
then P(K) 1is also a convex cone. We want to show that P(K) is also
closed. When K 1is polyhedral, P(K) 1s closed because for any point of
closure ¢ of P(K) the Tinear program inf {||x-c||_|xeP(K)} = 0 has
a solution [3,8] x 1in P(K) and hence c = xeP(K). When K is a
general closed convex cone then P(K) is closed by assumption (2.1c).

Let 0 # yeP(K) and Tet x by any point in K such that P(x) = y.
It follows from y # 0 that x ¢ker(A+AT). Consequently since A s posi-
tive semidefinite plus on K, yTAy = xTAx > 0. By Lemma 2.1, (2.2) has a

solution, which in turn implies that (1.2) has a solution. 0

Note that a sufficient condition for (2.1c) is that

K n ker(A+A1) < -K.

To see this note that this condition and the fact that ker(P) = ker(A+AT

)
imply that K n ker P «¢ (~-K) n K and hence by Theorem 9.1 of Rockafellar
[10] P(K) s closed.

We note here that in the polyhedral case, Theorem 2.3 can also be

established by using Eaves' existence results for quadratic programming

[4, Corollary 4].



It is important to note that condition (2.1) is essential when K

is not polyhedral as shown by the following example.

0}

v

2
2.4 Example Let K= {(x],xz,x3)12x1x3§;x2, x1;;0, X2
T 0 0
A=10 1 0, a-=
0 0 0

Note first that (A+AT)(K) is not closed because (0,1,0) is not in

T

(A+A")(K) but (e,1+€,0) is for any e > 0. Now since a is not in

K, and since for any € > 0 the point z = (e,l+¢, il%%lé) is in K

and (z-a)A(z-a) = 262, it follows that problem (1.2) has no solution,

If a=x+y 1is a conjugate decomposition of a with respect to K

and A, then it follows from the semidefiniteness of A and Theorem 1.2
that x s a minimum solution of (1.2), which is a contradiction. Hence
such a decomposition cannot exist even though A is positive semidefinite
plus on K.

Under certain circumstances the roles of K and KA may be inter-

changed. This is a consequence of the following.

2.5 Lemma Let A be an nxn real matrix and Tet K be a general closed
convex cone in R" satisfying (2.1) or let K be a convex polyhedral

. n
cone in R'. Then

KAA = K + ker(A+AT)

Proof Let A:= A + AT and for any set S in R"  define

K-](S):= {x]AxeS}

Note that A'1(s) is well defined even if A 1is not invertible. Since
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KA = {y|yAx<0, ¥xeK} = {y|AyeK°®} = A'1(K°)

it follows that
(Khye = (A1 (ke))° = cT(A(Ke®))

where the last equality follows from Rockafellar's Corollary 16.3.2 [10].

Hence

where the last equality obtains from either the polyhedral assumption

on K or from assumption (2.1a). We now have

PR BT hye) = ATTARK)) =ty |RAyeR(K))
Consequently

AA

ye kK" e Ry = Ax for some xeK

< y - xe ker(A) for some xeK
= yek + ker(A). 0

A

Lemma 2.5 can now be used to replace K by K° in Theorem 2.3.

2.6 Theorem Let A be an nxn real matrix and Tet K be a general
closed convex cone in R" satisfying (2.1) or let K be a convex
polyhedral cone in R". If A is positive semidefinite plus on KA
then each vector in R" has a conjugate decomposition with respect to

K and A.
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Proof It is evident that KA is a closed convex cone. Furthermore,

ker(A+AT) c ~KA n KA. Hence KA n ker(A+AT) c -KA. By applying Theorem 2.3
to the cone KA instead of K we have that for any vector a in Rn,
there exist Je kP and Re kPR such that a = R + ¥ and 9T(A+AT)2==O.

By Lemma 2.5 there exist x in K and z in ker(A+AT) such that
X=x+2z., let y=9§+2z, then a=x+y, xek, ye KA and
TaeaT) (542) = &7 (A+AT)

T (AAD)y = (%-2) G = o0. 0

2.7 Corollary Let K be any closed convex cone in R".

If A s
positive definite on K then (A+AT)"1 exists and each vector in R"

has a conjugate decomposition with respect to K and A.

Proof Note that ker(A+AT) c KA and for any y in ker(A+AT), yTAy =0.

Since A 1is positive definite on K* it follows that ker(A+AT) = {0} and con-
sequently (A+AT)'1 exists. Clearly then all the assumptions of Theorem 2.6
hold and any vector in R" has a conjugate decomposition with respect

to K and A. 0

The following example shows that the conjugate decomposition of a

vector need not be unique.

,
2.8 Example Let A = [} '1], K = Ri. Clearly A s positive definite

on K. Because the problem (1.2) with a = {';} is here equivalent to

minimize (x1+x2-1)2 subject to x; >0, x, > 0

it follows that the point x = [1§A] with Ae[0,1] 1is a solution of (1.2).
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Hence for any Xe [0,1], x:= A eK, y:= -1-A € KA, xT(A+AT)y = 0,
1-2 T+
and a = X + y.
A sufficient condition for the uniqueness of a conjugate decomposi-

tion is given by the following.

2.9 Theorem Let K be a general closed convex cone in R" and Tet
the nxn vreal matrix A be positive definite on the affine hull aff(K)
Ay of P,

of K or the affine hull aff(K Then each vector in R" has

a unique conjugate decomposition with respect to K and A.

Proof The existence of a conjugate decomposition follows immediately

from Corollary 2.2 or Corollary 2.7. Suppose now that

are conjugate decompositions of a point a in R". Then x - X = y -y

and

T
(

TaeaT) (3-y)

T

A+AT) (x-X)

(x-X) (x-x)

xT(aaT)y + % (a+AT)y

it

A
o

This can hold only if x = X since A is positive definite on aff(K). The

Ay.

proof is similar for the case when A is positive definite on aff(K 0
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3. CHARACTERIZATION OF POSITIVE DEFINITE AND SEMIDEFINITE MATRICES

In this section we utilize the conjugate decomposition results
established in Section 2 to characterize positive definite and semi-

definite matrices and we begin with the Tatter.

3.1 Theorem Let A be an nxn real matrix and let K be a general
closed convex cone in R" satisfying (2.1) or let K be a convex

polyhedral cone in R". A s positive semidefinite if and only if A

is positive semidefinite plus on K and positive semidefinite on KA.

Proof (Necessity) If A is positive semidefinite then it is obviously

positive semidefinite on both K and KA. Since xTAx = 0 1is a global

T T T)

minimum of x Ax it follows that V{x Ax) = (A+A

Xx = 0, and hence A is
positive semidefinite plus on K.

(Sufficiency) If A 1is positive semidefinite on K and positive
semidefinite plus on KA then it follows from Theorem 2.3 that for each

a in R" we have the conjugate decomposition

A

X +y with xeK, yeK", xT(A+AT)

3]
1]

y=20
Hence

aTha = x"ax + x(A+AT)y + yTay = x"Ax + yTAy > 0 0

1]

The following example shows that A merely being positive semi-
definite on K and KA, without being semidefinite plus on KA, is

not enough to ensure that A s positive semidefinite.

_ 101 52 A_L,2 . -
3.2 Example Let A = [E é], K= Ry. Then K'=R”. Clearly A is positive

semidefinite on both K and KA, but A s not positive semidefinite.
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A useful characterization of positive semidefinite matrices obtains

if we set K = RQ in Theorem 3.1.

3.3 Corollary Let A be an nxn vreal matrix. Then

(a) x;O»xTAx;O,
A is positive semidefinite ©{ (b) x Ax =0, x > 0= (A+AT)x = 0, and
(c) (MAT)x>0=x"Ax >0

n

Proof Set K = R+

in Theorem 3.1 and note that

A= ylyT(a+aT)x < 0, ¥x20) = {y|(A+AT)y < 0

A

Hence yTAy = (—yT)A(-y) >0 for ye KA is equivalent to condition (c)

above. The Corollary then follows from Theorem 3.1, O

Note that since condition (a) in Corollary 3.3 characterizes
copositive matrices, while conditions (a) and (b) characterize copositive

plus matrices we have the following consequence to Corollary 3.3.

3.4 Corollary Let A be an nxn real matrix. A is positive semi-
definite if and only if:
(a) A is copositive and satisfies conditions (b) and (c) of

Corollary 3.3,
or

(b) A is copositive plus and satisfies condition (c) of
Corollary 3.3.
Just as we established Theorem 3.1 from Theorem 2.3, we can simi-
larly use Theorem 2.6 to obtain the following result where the roles of

K and KA have been interchanged.
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3.5 Theorem Let A be an nxn real matrix and Tet K be a general
closed convex cone in R" satisfying (2.1) or let K be a convex
polyhedral cone in R". A s positive semidefinite if and only if A
is positive semidefinite on K and positive semidefinite plus on KA.

We observe that if A is positive definite on K then condition
(2.1) is automatically satisfied because Krwker(A+AT) = {0}. Hence we
have the following important characterization of positive definite

matrices.

3.6 Theorem Let A be an nxn real matrix and let K be any general

n

closed convex cone in R'. The following statements are equivalent:

(a) A 1is positive definite

(b) A s positive definite on both K and K"

(c) A fis positive definite on K, (A+AT)'1 exists and is positive

semidefinite on K° = {ylxry;;o, ¥xeKk}.

Proof (a) = (b) and (a) = (c): Trivial.

(b) = (a): By Corollary 2.2, any nonzero vector a in R" has a
conjugate decomposition a = x +y with respect to K and A, with

both x and y not being zero simultaneously. Hence

aTAa = (x+y)TA(X+y) = xTAx + yTAy > 0

T)'] that ye KA if

T)—1

(¢) = (a): It follows from the existence of (A+A

and only if y= (MA) 'z and zeK°. Hence if (A+A

semidefinite on K° and ye KN then yTAy = %ZT( T)']

is positive
A+A z > 0. Since
A is positive definite on the general closed cone K, then

K n ker(A+AT) c -K. Hence it follows from Theorem 3.1 that A is
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positive semidefinite and so is A + AT. Since A + AT is nonsingular,

it must be positive definite and so is A. 0

By taking K = RQ in the Tast theorem we obtain the following
interesting characterizations of positive definite matrices in terms of

copositive, copositive plus and strictly copositive matrices.
3.7 Corollary Let A be an nxn vreal matrix. Then

O#XERYJ::'XTAX>O
A is positive definite <
T(A+AT)']

n
X eR+ = X X ;:O

Interchanging the roles of A and (A+AT)'] in Corollary 3.7 gives the

following.

3.8 Corollary Let A be an nxn real matrix. Then
XER:‘_@XTAX;O

A is positive definite &
0# xeRM = x(aral)”!

A+A x>0

3.9 Corollary A necessary and sufficient condition that a copositive
(strictly copositive) matrix A be positive definite is that (A+AT)'1
exists and is strictly copositive (copositive).

The following characterization of positive definite matrices which

was obtained by entirely different arguments in [5] is a simple conse-

quence of Theorem 3.6 where K is taken to be a subspace of R",

3.10 Corollary [5] Let S be any subspace in Rn, let S* be its
orthogonal complement and let A be an nxn symmetric matrix. A s
positive definite if and only if A is positive definite on S and

A1 exists and is positive semidefinite on S .
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Appendix

A.1 Lemma Let M be an mxn real matrix and let K be any set in R",
The following are equivalent

(a) M(K) 1ds closed

(b) K + ker(M) is closed

(c) P(K), the projection of K on (ker(M))*, is closed.

Proof (b) = (c): Since P(x)e (ker(M))™ and P(x) - xcker(M), it
follows that P(x)e (ker(M))" n (x+ker(M)) and consequently
P(K) = (ker(M))" n (K+ker(M)). Since the subspace (ker(M))l
is closed, it follows that P(K) 1is closed if K + ker(M)
is closed.
(a) = (b): Let {yk+wk}<:K + ker(M) and let yk + wk > X. We
want to show that XxeK + ker(M) when M(K) 1is closed. Let
X M(yk+wk) = Myk eM(K). It follows from [lzk]} §:|[M||11yk+wk|
and the closedness of M(K) that there exists a subsequence {zki}
such that zki +z and zeM(K). Let z =My, yeK. Then

k. k. k.
Mx = TimM(y '+w ') = Timz ' = z = My

let W=2x-Yy, then Mdi =0 and weker(M). Hence
X =y +wek+ ker(M).
(a) = (c): Since P(x) - xeker(M) for xeK it follows that
M(P(K)-K) = 0 or that M(P(K)) = M(K). Hence we need to show
that M(P(K)) 1is closed when P(K) is closed. When M 1is a

matrix of zeros this is trivial. So suppose M is not a matrix

of zeros. Define
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o:=min {|[Mu]|{]Ju]] = 1, ue (ker(M))*} > 0.

Let {zk} c M(P(K)) and PR Z. We want to show that

ZeMP(K)). Let z¥% = MP(xX) with xKeK. Hence

125 = IMP (XY ] > P () |

where the last inequality follows from the definition of p and

P(xk) e (ker(M))™. Consequently, the sequence {P(xk)} is bounded

(since {zk} is bounded), and since it is contained in the closed

set P(K), it must have a subsequence {P(x ) converging to a

_ _ . . Ky S S
ue P(K). Let u = P(x) with xeK. Since z ' =MP(x '), z ' =~z

k.
and P(x ')+ = P(X), it follows that Z = M

MP(Xx), X e K.

Hence z e M(P(K)). 0
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