FURTHER OPTIMISM IN OPTIMISTIC METHODS
OF
CONCURRENCY CONTROL

by

Rakesh Agrawal
David J. DeWitt

Computer Sciences Technical Report #470
March 1982



Further Optimism in Optimistic Methods
of
Concurrency Control

Rakesh Agrawal
David J. DeWitt

Computer Sciences Department
University of Wisconsin

This research was partially supported by the National Science
Foundation wunder grant MCS78-01721 and the Department of Energy
under contract #DE-AC02-81ER10920.






ABSTRACT

A family of concurrency control mechanisms is presented that
has the potential of permitting additional concurrency in the
optimistic methods of concurrency control proposed by Kung and
Robinson.






1. Introduction

Mechanisms to control concurrent access to a shared database
by multiple transactions have recently received a great deal of
attention. Most of the proposed mechanisms are based on some
explicit or implicit locking scheme [Eswa76,Gray78]. These

methods can be termed pessimistic as they assume that conflicts

will occur frequently between transactions. These mechanisms
attempt to prevent conflicts from occurring by providing a facil-
ity whereby a transaction can deny access to certain portion of
the database to potentially conflicting transactions.

Recently, Kung and Robinson [Kung8l] have proposed two fami-
lies of non-locking concurrency control mechanisms. These tech-

niques can be termed optimistic since they assume that conflicts

between transactions are infrequent. When conflicts do occur
between two transactions, transaction backup is used to resolve
the conflict (ie. one of the transactions is aborted).

In this paper, we propose another family of non-locking con-
currency control mechanisms that extends those proposed by Kung
and Robinson and that has the potential of permitting additional
concurrency. The organization of rest of the paper is as fol-
lows. 1In Section 2, we briefly review the Kung-Robinson propo-
sal, particularly the three validation conditions that give rise
to the two families of concurrency control mechanisms. In Sec-
tion 3, we ©propose a new validation condition that will allow
greater concurrency. Section 4 describes the concurrency control
mechanism that uses the proposed validation condition. 1In Sec-

tion 5, we present our conclusions and suggestions for future



research.

2. Kung-Robinson Proposal

In optimistic methods of concurrency control, reads are com-
pletely unrestricted as reading can never result in a loss of
data integrity. Writes are however severely restricted. As pro-
posed in [Kung8l], each transaction consists of two or three
phases: a read phase followed by a validation phase and, possi-
bly, a write phase. During the read phase, all writes are per-
formed on local copies. Then, if the transaction c¢an be vali-
dated during the validation phase, the local copies are made glo-
bal during write phase.

Kung and Robinson have proposed the following validation
conditions based on the notion of serial equivalence
[Eswa76 ,Papa79,5tea76]. Assume each transaction Ti is assigned
an unique integer transaction number ti during its execution. To
insure that an equivalent serial schedule exists in which Ti pre-
cedes Tj whenever ti < tj’ the following criterion is used to

validate a transaction 'I'_j with transaction number tj: For all Ti

with t; < tj’ one of the following conditions must hold:

(1) T, completes its write phase Dbefore Tj begins its read
phase.

(2) T, completes its write phase before T. starts its write
phase and the write set of T, does not intersect the read
set of Tj°

(3) T, completes its read phase before T. completes its read

phase and the write set of Ti does " not intersect the read
set or the write set of Tj'



3. A New Validation Condition

To enhance performance of the Kung-Robinson algorithm, we
propose the addition of the following validation condition: If
for each transaction Tj with transaction number tj and for all Ti
with ti < tj’

(4) T, completes its read phase before T. begins its write phase
and the write set of Ti does not intersect the read set or
the write set of Tj

then there exists a serially equivalent schedule in which T,

comes before Tj‘

The fact that this validation condition permits more con-

currency than condition (3) is illustrated by Example 1 below.

Example 1

Assume that Ti begins before Tj’ that ti < tj’ and that the write
set of T, does not intersect the read set or write set of Tj' If
validation condition (3) is used, then since Ti completes its
read phase after Tj completes its read phase, Tj cannot be vali-
dated and must be aborted. Validation condition (4), however,
permits Tj to be validated since since T, completes its read
phase before Tj begins its write phase. It is important to note
that condition (4) still ensures a serially equivalent schedule
as T, does not affect read or write phase of T. by the second

J
part of the condition and Tj does not affect the read phase of T,

by the first part of the condition.



4. Proposed Optimistic Concurrency Control Mechanism

4.1. Read and Write Phases

In this section we describe a concurrency control mechanism
that wuses wvalidation conditions (1), (2), and (4). As in
[Kung81], we assume, for the sake of simplicity, that all objects
are of same type. Objects are manipulated by the following func-
tions:

(1) Create - creates an object and return its name

(2) Delete(n) - deletes object n

(3) Read(n,i) - reads item i from object n

(4) write(n,i,v) - writes v as item i of n

All transactions are bracketed with a tbegin and a tend call, and
all use syntactically identical procedures tcreate, tdelete,
tread, and twrite. The body of a transaction constitutes the
read phase and tend signals the beginning of the validation
phase. The concurrency control maintains various sets of object
names accessed by each transaction.

The semantics of tcreate, tdelete, tread, and twrite is same

as in [KUNG8l] and are presented below for the sake of complete-

ness.
tcreate = (
n := create;

create-set := create-set U {n};
return(n))



twrite(n,i,v) = {
if n € create-set then write(n,i,v)
else if n € write-set then write(local-copies([n],i,v)
else (
local-copies([n] := copy(n):
write-set := write-set U {n};
write (local-copies[n],i,v)))
tread(n,i) = (
read-set := read-set U {n};
if n € write-set then return(read(local-copies[n],i))
else return(read(n,i)))

tdelete(n) = (
delete-set := delete-set U {n} )

During the write phase, all local copies become global, all
created objects become accessible, and all deleted objects become
inaccessible. The cleanup procedure deletes all inaccessible

objects and the local copies.

4.2, vValidation

To implement validation condition (4), the concurrency con-
trol mechanism must maintain two global sets that are initialized
to be empty:

Global-W-active: transaction ids of transactions that have com-
pleted their validation phase and are in the write phase.

Global-V-active: transaction ids of transactions that have com-
pleted their read phase and are in the validation phase.

As we will be shown below, during the validation of a transac-
tion, the transaction makes a local copy of both of these sets.
Next we describe the semantics of tbegin and tend. Assume
that Tj is the transaction to be validated and that IDj is the
identifier of the transaction. The variable tnc 1is a global

integer that is wused to assign transaction numbers. At any

instant in time tnc reflects the number of the last transaction



to have committed (ie. £finished both its validation and write
phases). The symbols < > are used to bracket those sections of

the algorithm that must be contained in a critical section.

tbegin = (
create-set := @;
read-set := @;
write-set := @;
delete-set := @;
start-tn := tnc)

tend = (

< finish-tn := tnc;

local-W—-active := Global-W-active;

local-V-active := Global-V-active:

Global-V-active := Global-V-active U {IDj};
>
valid := true; /* Assume that the transaction will be validated */
for t := start-tn + 1 to finish-tn do

if (write-set of T, [\ read-set of ID # @) then
valid := false-

for 1 € local-W-active do

if (write-—-set of Tl!ﬁ read-set or write-set of ID # @) then
valid := false;

if valid then
(< local-W-active := local-W-active [} global-W-active;
global-W-active := global-W-active U {ID.}; >
for i € local-W-active do J
if (write-set of T. ) read-set or write-set of ID # @)
then valid := %alse )

if valid then

((write phase);

< tnc := tnc + 1:
tn := tnc;
global-W-active := global-W-active - {ID-{
global~V-active := global-V-active - ID%

>

(cleanup))

QQ

~o w3

else
(< global-W-active := global-W-active - 1ID.};
=g H

global-V-active lobal-V-active - ID%
>

(backup) ) )



Multi-stage validation for optimization as proposed in
[KUNG81] 1is also possible in our scheme. This gives rise to a
family of concurrency control mechanisms depending on the number

of stages.

5. Conclusions

In this paper, we have proposed a new validation condition
for the Kung-Robinson [KUNG81l] optimistic concurrency control
mechanism that permits additional concurrency among concurrent
transactions. We have also presented the concurrency control
mechanism that uses the proposed validation condition. More
research, however, is required to determine those situations in
which the different mechanisms would be useful. An interesting
extension would be to design a transaction manager that could

dynamically choose the optimum control mechanism.

References

[ESWA76] Eswaran,K.P., Gray,J.NM., Lorie,R.A. and Traiger,I.L.,
"The notions of consistency and predicate locks in a database

system," Communications of ACM, Vol. 19, 11 (Nov 1976), 624~

633.
[GRAY78] Gray,J., "Notes on database operating systems," In Lec-

ture Notes in Computer Science 60: Operating Systems, R.

Bayer, R.M. Graham and G. Seegmuller, Eds, Springer-Verlag,
Berlin, 1978, pp. 393-481.
[KUNG81} Kung,H.T. and Robinson,J.T., "Optimistic methods for

concurrency control," ACM Transactions on Database Systems




vol. 6, 2(June 1981), 213-226.
[PAPA79] Papadimitriou,C.H., "Serializability of concurrent

updates,” Journal of ACM Vol. 26, 4(Oct 1979), 631-653.

[STEA76] Stearns,R.E., Lewis,P.M. II and Rosenkratz,D.J., "Con-

currency control for database systems," In Proc. 7th Symp.

Foundations of Computer Science, 1976, pp. 19-32




