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Abstract

Iterative piecewise-Tinear approximation methods are considered for
separable, convex nonlinear network problems. A comparison is made
between "fixed grid" approximations of 2, 4, and 6 segments per variable
and "implicit grid" strategies that generate segments as needed, but
stofe at most a 2-segment approximation at any time. It is shown that
the implicit grid methods are linearly convergent, and this predicted
behavior is confirmed by highly accurate solutions within 7 iterations
of problems with up to 2238 variables. Since the computing time per
iteration is only slightly more for implicit grids than for fixed grids,
the numerical results presented show overall computing times are less
for implicit grids. A lower bounding technique based on the error of
approximation is also developed. This technique is highly useful if

Lagrangian relaxations are difficult to solve.

+This material is based upon work supported by the National Science
Foundation under Grant No. MCS-8200632



1. Introduction

Throughout this paper we are concerned with algorithms for the

following minimization problem:

n
minimize f(x) = ) f.(x,)
xeRN i=] T
s.t. Ax = b (1.1)

where 2eR", uer", x = (X1""’Xn)€ R" beR™, A s an mxn node-
arc incidence matrix for a directed network, and each f, is a continuous
convex function on [Ri’uij'

There are many optimization problems that may be represented in the
form (1.1). Examples are estimation of data elements in input-output
tables [Bachem and Korte 77], determination of steady-state flows in
electrical and water distribution networks [Collins, et al 78], and
reservoir control problems [Bertsekas 76]. Details of these problems
are given in Section 7.

Problem (1.1) has a simple structure and numerous nonlinear program-
ming algorithms can be readily used or specialized for (1.1). Because of
the network constraints, however, it is tempting to consider linearizing
the objective function, particularly since in applications problems of
type (1.1) tend to be fairly large and the speed of Tlinear network flow
codes can therefore be used to best advantage. The proposed algorithms

do so by constructing piecewise-linear approximations and then solving a

sequence of linear network subproblems.



2. Review of Previous Work

Several authors have proposed a variety of solution approaches.

[Collins, et al 78] discusses the Frank-Wolfe method and pjecewise linear-

83] specialize the reduced gradient method to solve (1.1) and show how

some second order information may be used to obtain an approximation to
Newton's method. [Bachem and Korte 77] and [Cottle and Duvall 82]
propose algorithms for a subclass wherein each fi is a quadratic
function and the constraints define a transportation polytope.

Non-iterative separable programming techniques can also be used.

These standard approaches, though readily applicable, have the disadvan-
tage that there is a trade-off between the accuracy of the solution and the
size of the linearized subproblems to be solved. [Thakur 78] gives error
bounds on the optimal objective value and the optimal solution. [Bazaraa
and Shetty 79] discusses an iterative separable programming procedure

based on generalized programming.

These separable programming methods use what amounts to a global
approximation of the objective function. [Meyer 80] and [Kao and Meyer 81],
on the other hand, develop local approximation methods and show these methods
to be computationally effective.

The primary advantages of the Tocal approximation methods are (1) the
size of the linearized subproblem is kept small, (2) they avoid unneces-
sary function evaluations which would be required for a global piecewise-
linear approximation of the objective function, and (3) in the small
neighborhood of the current iterate in which it is used, the approximation

is quite accurate.



3. Solution Methodology

In what follows, we discuss two algorithms for (1.1). The first of

these is an extension of the algorithms proposed by [Kao and Meyer 81] and

which in the computational experiments reported in Section 7 was 2, 4, or 6.

The second algorithm uses an implicit global approximation (to the
objective function) that is modified each iteration. The approximation
is implicitly global in the sense that we initially use only two segments,
and generate additional approximating segments only as needed. Computa-
tionally, the approximation utilizes at most two piecewise-linear segments
per variable at any time. In essence, we try to retain the computational
advantages of a local approximation method, while using (in theory) a
global approximation to the objective function. A similar implicit grid
approach is discussed in [Jensen and Barnes 19807, but there a uniform
grid size for all variables is considered and no results are given on lower

bounds or convergence.



4. Local Approximation Methods in Separable Programming

These Tocal approximation methods use piecewise-linear approxima-

tions over appropriately chosen neighborhoods. In order to describe

. . n
a local approximation around meR' .

An ordered triple (%,m,u) is said to be admissible if it satisfies
the following conditions

p<l<m<ii<u, (4.1)
£:< nALi if 2, < nA11. , (4.2)
and m, < U if m, < us » i=1,2,..,N. (4.3)

~

An approximating problem P(%,m,u) 1is defined as

~>

min Z'?i(xi)
P(R,Mm,0): X

s.t. xe{x|Ax=b} n [,u]

where ?i(xi) is a piecewise-linear approximation (with 2s segments) of

N

fi(x;) over [@i’ai] that agrees with f. at fi. * k8, k=0,1,...s,
where ﬁi + g = Gi and ﬁi - sB = @i. (B >0 1is the length of the
subdivision interval except (perhaps) for the end segments and may depend
on i3 for simplicity of notation, however, we avoid reference to these
dependencies). It is well-known ([Kao and Meyer 81]) that the problem
P(2,m,u) may be converted into an equivalent linear network flow problem

under the convexity assumption on f.

Algebraically, we have



fom, + (k-1)8)+ ¢ {x - (M, + (k-1)8)} for (k-1)8 <x, - @, <kB

fimH—(kJ)m+ciW}i-(mi—( ))}'mr-«8<x -, < -(k-1)8

(k=1,2,...,s)

where
Ko fr (Rrk) - FL (Rt (ke1)8)1/8
i B T i\
x A ) (4.1.2)
"C_i = {f.i(m.i'kB) - f.i (mi'(k'])B)}/B

with the understanding that if ﬁi = @1 = %, then the approximation

is defined only on the interval [ﬁi,ﬁi]. Similar comments hold if

>

ﬁi S ﬁi = u;. Because of the convexity of f., we have fi(x1)?>f1(xi)
for x;e [@i,ﬁi]. Letting § be the feasible region of P(& ,m,0), this
implies that if XeS, and F(X) < F(M), then (X) < F(A). We thus
have strict monotonicity of the iterates, since in the algorithms pro-
posed, m is the most recently generated feasible solution and a new
iterate must yield an improved value of ¥. From this viewpoint, Fois
a local piecewise-linear approximation in the neighborhood [£,0] of

the most recent iterate and S s not empty, since it contains m.

4.2 Error Bounds and Optimality Conditions

let F. = max [%1(Xi)' fi(xi)]’ Then @i satisfies

nax . (x, min fo(x.) < max fo(x;) - min f_(x.). Thus,
[2..0.1" " 8,410 TRl et

as the length of the interval [@1, .] goes to zero, Ei must tend to

zero. Letting E(Z,m,G) = [Tafj[?( x)-f(x)] = Z Ei’ we have
2,u i=



4,2.1 Lemma: If (Qk,mk,uk) is a sequence of admissible triples such

that ok > m, ¥ ~m, W& > F then E(SLk mk,uk) - 0.

The following lemma relating the optimal values of P(%, m, u) and

(1.1) where x* is optimal for P(Z,fi,U) and x** is optimal for

(1.1), is taken from [Kao and Meyer 81].

4,2.2 Lemma: If x* s an optimal solution of an approximating problem

~ ~

P(R, M, 0), where (%,x*,0) 1s admissible, then the following Tower and

upper bounds hold for the optimal value z¥* of (1.1).
n
F(x*) - ) &, < z¥* < f(x¥)

where

8. > max  (F.(x)-F(x)). (4.2.1)

The following theorem from [Kao and Meyer 81] gives conditions under

which Xe S:= {x|Ax=b, 2<x<u} is an optimal solution of (1.1).

4.2.3 Theorem: Let {(@k,i,ﬁk)} be a sequence of admissible triples

such that @k > X, Uk > X, where XxeS. Then

is optimal for (1.1)

X
iff X is optimal for each of the problems P(ik,i,ﬁk), k=1,2,...

The first algorithm given below, starts with a XeS and conducts

a search procedure at X by considering a sequence of approximating



problems of the type described in Theorem 4.2.3. If X 1is optimal for
(1.1), then the search procedure establishes the optimality of X by

the above optimality conditions. Otherwise, the search procedure is

termimatedas—sovomas—an improvedfeasibltesotution s obtaimed—This
improved feasible solution is used in the next iteration, where again a
search procedure is carried out. This algorithm is very similar to
algorithm 2 of [Kao and Meyer 81] except that in their algorithm these
authors use an approximating function consisting of at most two
piecewise-Tinear segments. In algorithm (5.1) below, the approximating

function may have up to 2s piecewise-linear segments. Thus, algorithm

(5.1) is a straightforward extension of algorithm 2 of [Kao and Meyer 81].



5. Algorithm Based on Local Piecewise-Linear Approximation

5.1 Algorithm:

(a) Let a e (0,1), let x be a feasible solution available at the

start of the current iteration, and let X be a grid size vector

(determined by a procedure described below) for the current iteration.

(b) Denoting by X(8) an optimal solution of P(Z(8), X, u(8)),

1

where ii(é) max{zi, ii-saki} and Gi(é) = min{ui, ii+saki},
(with the understanding that Xx(8§) 1is taken to be X if X is
optimal for P(Z(8), X, u(s8))), then x s optimal for (1.1)
if x(8) = x for § = LS
(c) Otherwise, let & be the first power of o such that f(x(a)) < f(X)
and use x(G) as a starting feasible solution for the next iteration,
for which a new grid size vector is also generated.
In step (b) of the algorithm, we consider an infinite sequence of approx-
imating problems to test the optimality of x for (1.1). In practice, this
is avoided by computing a lower bound on the optimal value of (1.1) and ter-
minating the computation if the current solution agrees with the Tower bound
to a desired accuracy. Theoretically, in order to establish a convergence
theorem, step (c) of algorithm (5.1) must be modified and grid size vector
generation must obey certain rules (see [Kao and Meyer 81]. Computationally,
step (c) is quite adequate, and a good approach to the determination of A

is described in the next section.

5.2 Determination of the Bounds

From a theoretical point of view, it is necessary to ensure that the
search procedure in step (c) be started with bounds £ and U sufficiently
far away from Xx. On the other hand, if 2 and U are far from X, then
step (c) is time-consuming. The choices of ) and U thus have a significant

impact on the computational efficiency of the algorithm. We now describe
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a strategy for determining % and U which proved to be quite
satisfactory.

At the beginning of the jth iteration, we have available a feasible

X*J-]

solution , which is the optimal solution of the (j-1)st iteration

along with a set of optimal multipliers u* associated with the con-

min  {F(x)-u* " (Ax=b)} (5.2.1)
2<xX<U

Because f is separable, (5.2.1) reduces to

n T,i
¥ min  {f.(x.)-u*A X} +

. 1
i=1 2.<x.<u. !
[ By

Ty, (5.2.2)

where Ai is the ith column of A.

It is well known that the minimum value 2z of (5.2.1) gives us a
Tower bound on the optimal value of (1.1). Let X solve (5.2.1).
Unless X is optimal for (1.1), X 1is not feasible for (1.1). Never-
theless, X can be used to determine the initial bounds, %, 4 for
the jth iteration. We have used the following rule and found it to be
quite satisfactory:

Let A2'1 be the grid size for %i in the (j-1)st iteration.

~

Set x? = min [max{V%)g'1, |x?j'1—x1]}, (f(x*j-])-g)%]. (The motivation
for this rule is that we wish to combine the observations that the errors

in the values of the variables are bounded by a multiple of the square root
of the function value error (see Appendix for details) and that a Targe
change in the value of a variable in a particular iteration is often followed
by a relatively large change in the variable in the succeeding iteration.)

In Section 7, we present computational results with Algorithm 5.1 using this

heuristic rule.

In the next section, we describe a different algorithm based on

implicit global approximation.
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6. Implicit Global Approximations in Separable Programming

Separable programming traditionally consists of choosing a fixed

grid of points in an interval [Qi,ui] and then approximating the

function F1 on_[2 ,111_—] by the piecewise-=linear segments determined

3
by the function evaluations at the grid points. Unless a very fine

grid of points in [Qi,ui] is chosen, the resulting error of approxima-
tion is likely to be high. [Collins, et al 78] considers the following
problem: for a specified number of grid points, determine a grid so that
the error of approximation is minimized. After determining the grid, an

LP is solved to get an approximate solution to (1.1). They, however,
report that determining the grid took more computational effort, than solv-
ing the LP (with 8 segments per variable). Even with such strategies,

the error of approximation is still likely to be high, unless a very fine
grid is used.

We propose an alternative to these traditional approaches. Initially
start with a crude approximation defined by a coarse grid. After solving
the resulting approximation, set up another approximating problem around
the current iterate, this time with a finer grid. Proceeding iteratively,
we stop when a solution to a desired accuracy is obtained.

The approximating function used is similar to (4.1.1) except that
the approximation is (in theory) not restricted to a neighborhood of the
current iterate. Thus %i below is a piecewise-linear approximation of

f. over the interval [zi,ui].
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o
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Fig. 6.1: A global piecewise linear approximation ?1 of f..

The approximating function ?i agrees with fi at m. £ kxi, k=0,1,2,...
and also at the end points L and u (see Figure 6.1). Ay s

the length of the subdivision interval except (perhaps) the end segments.
For simplicity of notation, however, we assume that the length of each
segment is equal to Ai. The difference between this approximating
function and (4.1.1) is that the latter is a local approximation restricted
to the chosen neighborhood.

Let AV be the vector of subdivision interval lengths in the jth

Tteration. The corresponding approximating problem is

min ?j(x) = g

APY (md,09):
s.t. Ax =b, 2 <x<u

6.2 Proposition: Let ?g be an approximation of fi over [Qi,ui].

Let
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Then

Further, if

then
el >0 as A 0.

Proof: Follows from the continuity of fi'

6.3 Proposition: Let x* be an optimal solution of APj(mJ,AJ) and
x** an optimal solution of (1.1). Then the following lower and upper

bounds hold on the optimal value of (1.1).

Proof: fj(x*)

Ia
—-h
()
o
<
*
)(.
o

FOx*) + [F 00 (x4+)]

i f(x**) + Ej

Since x* is feasible for (1.1), the upper bound holds.

6.4 Lemma: Let {A7} be such that AJ >0, j=1,2,... and {M} - 0.
Then a point x* is an optimal solution of (1.1) iff x* dis an optimal

solution of each of the approximating problems APY (x*,09), §=1.2,...



-13-

Proof:

(<) By proposition (6.3),

F(x*) - &) < F(x*¥) < F(x¥), ¥i=1,2,...

But by proposition (6.2), ej -~ (0 as Xj +~ 0, and therefore,
F(x*) = F(X*).

(=) Since the objective function ?j of APj(x*,xj) satisfies
%j(x) > f(x), ¥xe [e,u] and agrees with f at x*, x* dis an

optimal solution of each of the problems APj(x*,Aj), j=1,2,...

We are now ready to state our second algorithm to solve (1.1). At
*j-] )\j)

]

the jth iteration, we solve the approximating problem APJ(X

where x”"j'1 is the optimal solution of the previous iteration. (Both

our algorithms (5.1) and (6.5) assume that a starting feasible solution
is available. Various methods can be used to find an xeS. Inall our
experiments, however, we solved an approximating problem of type (AP),
(with a small number of segments per function) to obtain the initial

feasible solution. If the original problem is infeasible, this is detected

at the initial state.)

6.5 Algorithm:

Step 0: Let ae(0,1) and let «*0 be a starting feasible solution.

et 0 <20 <ug - 2y, ¥i=1,2,..n. Set § 1.

Step 1: Let xg = uxg'1(i=1,2,...,n).
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Step 2: Determine x*3(AJ), an optimal solution of APj(x*j"1, Aj).

Set j<« j+ 1 and go to Step 1.

6.6 Theorem: Let Algorithm (6.5) generate a sequence of points {x*j}

and let the corresponding sequence of dual multipliers associated with
the constraints Ax = b be {u*j}. Then f(x*j) ~ z**,  the optimal
objective value of (1.1). Each accumulation point of {x*j} is an
optimal solution of (1.1). If, in addition, the right and left deriva-
tives f{+(ﬁi) and f{_(ui) i=1,2,...,n are finite, then the sequence
{u*j} is bounded and each accumulation point of {u*j} is an optimal

set of dual multipliers for (1.1).

Proof: See Appendix.
6.7 Theorem: Let Algorithm (6.5) generate a sequence of points {x*33
and Tet x** be an optimal solution of (1.1). If

i) f(x) 1is strongly convex on [&,u]

and ii) f(x) 1is boundedly convex on [&,u] or vf(x) is
Lipschitz continuous on [%,u],

then {x*j} converges to x**  Tinearly.
Proof: See Appendix.

6.8 Computational Aspects

While stating Algorithm 6.5, we have not mentioned how the subprob-
Tems (AP)j are to be solved. It is well-known that (AP)J can be
converted to an equivalent linear program. Specifically, APJ(X*J'1, AJ)

is equivalent to the following problem.
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n n
. +k +k -2 -2
min [ oTegagt - Lo Lo
+k X—Q i=1 k i=1 &
3 i 27
(LPAP)
ko -
5.t YAX T = A= 0
L g
O_ix+k <
0<x'5L<>\J

where c:k and C;Q are as defined in (4.1.2).

The variables x:k and x;z are the deviations of Xs from x?3'1

in incremental steps of Ag, where it is understood that if x?j‘1 is at

its lower bound, then the variables X;g (corresponding to decrements

from x?j'1) would not be present in (LPAP)J. Similar comments hold for

x:k if x?j"] is at its upper bound. The number of variables x?k, X;%
vary depending on xg and also the value of X:J—] in the interval [zi,ui].

(see Figure 6.2.)

In (1.1), the variable X, corresponds to flow on an arc in the

network, while in (LPAP)J the variables x:k, x;l correspond to flows

on parallel arcs between the same pair of nodes. Clearly, the computa-
tional efficiency of (6.5) depends on how efficiently the subproblems
(LPAP)j are solved. As j (iteration number) increases, Xj gets
smaller and smaller and the number of variables x:k and x;% increases.
It would seem that an enormous number of function evaluations would be
required to set up the approximation and because of their size, the sub-

problems (LPAP)J would be unmanageable. It is, however, not necessary

to generate a global approximation of fi' It suffices to work locally

around x:3'1 and generate additional arcs only as needed, while simul-

taneously discarding arcs. It is therefore sufficient to work, at any-

time, with at most two arcs x; and x; for each of the variables X; .
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Fig. 6.2: Correspondence between segments and variables

Strateqgy for modifying the current approximation

Because of the convexity of fi’ we have

;oL <c gy (6.8.1)
(Note, however, that in LPAPj, the cost coefficient of x;z is -cgz
and not c}l.) It is clear from (6.8.1) that if x:1 prices out
unfavorably, then so do all x:k. Similar comments hold for x;] and
X;l_ We can, therefore, initially start with two variables x: and
x; with cost coefficients c:] and -C;W. It is again easy to see

that if x: prices out favorably, then x; cannot and vice versa. In
the process of solving LPAPY, suppose variable x:(x;) reaches its
temporary bound Ag and becomes nonbasic. We can then modify the current

Fooan cp i .
value of X and then use Xi(xi) jtself, as if it were a new variable
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corresponding to the immediately succeeding (preceding) segment in the
approximation of %i' An additional functional evaluation of fi is thus

made at this stage and the cost coefficients are modified. If, however,

-~——-———-————eéLEé;%—4%ﬁH%HH}4#E}#QHMWaﬂany—baund__kiT__buL_temaius_basicﬁ_JimuLijL;uu;;___________
it ; i
ceeding and preceding arcs do not price favorably and nothing need be done.
Pivoting in this fashion, we would either reach a stage where x;(x;)
no longer reaches its temporary bound Ag, or the current value of X;
reaches its original upper bound ui(zi). We can declare the current
value as an optimal solution of LPAPY if none of the variables x? and

x;(1=1,2,...n) price out favorably. The strategy thus is column generation

combined with column dropping. Since the column generated is the same as

the column dropped, from a computational viewpoint columns are neither

added nor dropped.

In Algorithm (6.5), the grid size is reduced from iteration to itera-
tion by a factor of a. It has been our experience that if « is set to
0.25, we need not move more than two or three segments from the current
jterate. (Experimentation with o = 0.5 has shown that the overall
computing time does not change significantly, though the number of
iterations to e-optimality increases.) Thus, though the problems
(LPAP)j look formidable, they can be solved efficiently by the above
computational strategy.

In (LPAP)j for Algorithm 6.5, there are parallel arcs between
every pair of nodes. We have experimented with pricing on multiple arcs
successively. To be specific, suppose arc x; reaches its lower bound,
thus increasing the current value of X Then, we can price out x5

j
and select it as the entering variable if it prices favorably. Similarly,
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when an additional arc is added, it is possible to select this arc as the
entering variable if it prices favorably. It has been our experience that

such strategies do not help. In fact, experimentation has shown that such

(LPAP)J, we use a very simple unsophisticated pricing strategy as used in

the primal network code RNET. It is possible that a suitable pricing

strategy would improve the computational efficiency significantly.

6.9 Computing Lower Bounds on the Optimal Value

If the Lagrangian relaxation (5.2.1) can be solved in closed form,
then it gives us an easy means for computing a Tower bound on the optimal
value. This, however, may not be possible in some problems.

Lemma (4.2.2) gives lower and upper bounds on the optimal value when
a locally approximating problem P(Z,m,u) 1is solved. In the implicit
grid method, after solving LPAPj, we have available a local 2-segment

approximation for which also X3 (the optimal solution of LPAPY) s

optimal., Lemma (4.2.2) requires that x*J be not artificially bounded.

Note that in the implicit grid method nonbasic variables are never arti-
fically bounded. If 1in x*j, a basic variable Xs is at its temporary
bound Ag, then adding an additional (succeeding or preceding) segment
does not affect the optimality of x*J. Thus, a 2-segment approximation
is on hand, such that x*j is optimal for this approximation and further
X3 is not artifically bounded.
In order to compute the lower bound, we need to estimate 81, as

given by (4.2.1). If the functions fi are differentiable, then we can
compute the linear support to fi at x*j and estimate éi as the maxi-

mum deviation between this linear support and the 2-segment approximation.
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Computationally, this requires only Vf(x*j) and no further function

evaluations are needed.

For all the test problems given in Section 7, we have computed the

optimal solution, the two lower bounds agreed up to 6 or 7 figures. We

thus have a Tower bounding technique which would be highly useful in sit-
uations where Lagrangian relaxations are difficult to solve. [Meyer 80]
describes yet another approach that uses only function values, but is

less accurate than the methods used here.
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7. Computational Results

This section describes the test problems solved in this study, and

presents—computational-experience—with-both—the-Algorithms—(5-1)-and{(6-5)— — ——

Algorithm (6.5) was implemented as per the strategies described in Section
(6.8). Algorithm (5.1) was tested with the local approximations consisting
of 2, 4 and 6 segments. The slopes of all the segments were computed and
stored explicitly. It is, however, possible to implement Algorithm (5.1)
also by generating additional segments only as needed. In all cases, the
starting feasible solution was obtained in the first iteration, wherein a
lTinearized subproblem (LPAP1) was solved with a full artificial basis.

The linearized subproblems were solved by a suitably modified version
of RNET [Grigoriadis and Hsu 79]. RNET was modified so as to maintain the
cost coefficients and dual variables in double precision. A1l the test prob-
Tems were run with the same partial pricing frequency. (The RNET pricing
frequency was set to 4.0.) The test problems were run using the FORTRAN 77
compiler (with optimization) on the VAX 11/780 running under the UNIX operating
system. The execution times reported are in CPU seconds exclusive of input and

and include output time. (The output was only two lines per iteration).

7.1 Quadratic Data Fitting Problems

Except for the first problem (with 100 arcs), these problems were generated
from actual data on input-output tables of the West German economy. The data
was obtained from [Bachem and Korte 77]. The problem is to adjust the input-
output coefficients of the previous year given the row and column sums for the
current year, with an additional constraint that if an input-output coefficient
in the previous year is zero, it must be zero for the current year as well.

The probiem can be formulated as
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0 < Xeo Uy d,3=1,...,K

with the understanding that some arcs in this transportation problem may
not be present. The upper bound uij for the ijth arc is determined
as u1.j = min {tij-+1000, ]00>(tij}’ where tij is the target flow on
the ijth arc. The numerical values of tij range from 1 to 6500. For

these problems, computation was terminated if the Tower and upper bounds

on the optimal value agree up to 7 figures. (See Table 7.1.)

7.2 Reservoir Control Problems

These are the problems described in [Bertsekas 76]. The problem is
to schedule water release from a reservoir subject to upper and Tower
bounds on the total volume of water in the reservoir. These problems can
be formulated as separable nonlinear network flow problems. We have
tested two sets (four problems in each set) of these problems; the first
with quadratic objective function terms and the second with exponential
objective function terms. 1In all cases, computation was terminated if
the Tower and upper bounds on the optimal value agree up to 6 figures.
Computational results with quadratic objectives are presented in Table 7.2
and the computational results with exponential objective functions are

presented in Table 7.3.
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7.3 Water Distribution Problems

The third class of problems are pipe flow problems as described by

[Collins, et al 78]. The objective function consists of a few linear

terms _and many nonlinear terms (a few integrals and the rest of the form

2'85). We have tested three problems of this type. These problems

¢ilx1
were obtained from [Dembo and Klincewicz 78]. For all the 3 problems,
computation was terminated if the lower and upper bounds agree up to 7

figures and the computational results are as shown in Table 7.4.
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8. Conclusions
The numerical results of the preceding section indicate that the

implicit grid strategy produces in 6-8 iterations highly accurate solu-

tions for the broad set of test problems ranging from 23 to more than

2000 variables. With a fixed grid strategy, 7-23 iterations are

required to achieve comparable accuracy. Since the time per iteration
for the implicit grid method is generally comparable to or only slightly
higher than the simplest of the fixed grid approaches (which is generally
the best of the fixed grid methods), overall computing times are con-
sistently better for the implicit grid approach. Further significant
improvements in computing times appear attainable through the reduction
of the time spent in pivoting by exploitation of pricing and basis

preservation strategies.
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Appendi x

In this appendix, we present the proofs of Theorems 6.6 and 6.7.

First, we give the definitions of strongly convex and boundedly convex

functions, which were introducted by [Wolfe 70].

Def: Let f(x) be a twice differentiable function from R" +vR]. f(x)

is strongly convex on [#,u] with constant q > 0, iff q is a uniform

2
Tower bound on all the eigen values of the Hessian matrix H(x) ={§Xfé§€}
i

for xel[?%,u]. f(x) is boundedly convex on [%,u] with constant Q,

if it is convex on [Z,u] and Q s a uniform upper bound on all the

eigen values of the Hessian matrix for Xxe [2,ul.

Before proving Theorem 6.6, we would Tike to establish the following

Temma.

Lemma: Let Algorithm 6.5 generate a sequence of points {x*31 and Tet
{u*J} be the corresponding sequence of dual multipliers associated with

the constraints Ax = b. If the right and left derivatives f;+(2i) and

_FI

1._(u1.) are finite for all 1i=1,2,...n, then the sequence {u*j} is

bounded.

Proof: As shown in Section 6.8, each of the problems APJ(X*J'], )
can be converted to an LP(LPAPJ). Given an optimal basis matrix of

(LPAP)j, we define a basis matrix of (1.1) as follows.

If any of the variables x:k or X;R is basic in LPAPY, then

define X; to be basic for (1.1). Let BJ be the corresponding basis

submatrix of A. Then, the optimal multipliers can be expressed as
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J)T and each of cg is the slope

. T a1 . -
*j _ JLd N
u cy BY , where cj (c1,c2, C
of a segment of %g.
For ﬁi <Y TS U by the;eanexity*ofgngjggwefhaVP
f.(z)-f.(y) f.(y)-f,(2)
[ ' 1 1 _ 1 1 ' '
fi+( 1) — fi+(y) z-y B y-Z hi fi—(z) h fi-(u)
Thus c% remains bounded for all j as J =+ <.
Since

W3 < el et

and there are only finitely many basis submatrices of A, the sequence

"
{9} remains bounded. A
For convenience of notation, we rewrite the

Proof of Theorem 6.6:
$':= {x|h(x)=0, xeX} where

constraint set S:= {x|Ax=b, 2%<x<u} as

h: R" = R" is affine and X = {x|2<x<u}.
are optimal primal and dual solutions

x*J and  p*
and hence {x™J, U*J} satisfy the saddle point

We have that
of AP (3T, 2y,
necessary optimality conditions:

%J(x*j) + <, h(x*j)> ;;%J(x*j) + <p*3, h(xV)> < ?3( )+ <p*j, h(x)> (A.1)
ueR™ and the second inequality

where the first inequality holds for all
Since f(x) i:%j(x) and %j(x):i f(x) + ed, ¥xeX,

holds for all xe X.

from the second inequality of (A.1), we have

3, h(x)>,

for all xeX (A.2)

FOCT) e () < F(x) + el + e
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The sequence (x*1 s always bounded and by the previous Temma,

{u*j} is also bounded. Let {x**,'u**} be an accumulation point of

{y*j , L'*j}

. \ i . o . e
By proposition (6.2), € = 0 as J = ®. Iihus, forany fFixed

xeX, as Jj =+ o, by the continuity of f and h,

* *k *
)

> < f(x) + <u*

FOCY + T, h(x , h(x)> (A.3)

Since the LHS of (A.2) is independent of x, (A.3) holds for all

X e X.

By the continuity of h, h(x**) = 0 and we have for all e Rm,

*k *k

y> < F(xX7) + <

FOX*) + <ps hix , h(x

(A.3)-and-(A.4) together constitute the saddle point sufficient

optimality conditions for (1.1). A

In order to prove the convergence rate result as stated in Theorem 6.7,
we need the following Temma, [see, e.g., Thakur 78], which gives the
maximum error of approximation in approximating a boundedly convex
function (or a function with a Lipschitz continuous derivative) by a

piecewise-linear function.

Lemma: Let g: [a,b] ~ R be twice differentiable on [a,b]. Let
g(x) be a piecewise-linear approximation of g(x) in [a,b], with a
subdivision interval length A. If g(x) satisfies the condition

1) ILJ”(X)| __<__Q VXE[asbjs

or i) [g'(x) - 9" (¥)] < Qlx-y| ¥x, yelasb].
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Then,

max |g(x) - g(x)| < QA2/8.

xela,b]

we have

Proof of Theorem 6.7: By the strong convexity of f,

Fly) - £(x) - 96Ty -x) > Ty - x|1% ¥x, y e [8,u].

Let {x*J} be the sequence of points generated by Algorithm 6.5.
be an optimal solution of (1.1). From the above inequality,

Let x**
we get
f(x*j) - (MY - Vf(x**)T(X*j— %) ;%]IX*j— X**HZ '
Since x** is optimal for (1.1) and x*j is feasible for (1.1), by

the minimum principle, we have that

Vf(x**)T(x*j-x**) >0.

Therefore, F(x*J) - F(x*) Z:%ﬁlx*j— x**“z
*]  xxpl_. 2 *J *k
or [0 [T G I OET) - T

Combining the above lemma with proposition (6.2), we have

. 02
ioallte,
i =

e
1

I~15

F(M) - ) <
1

where 2 is the subdivision interval Tength in the jth iteration
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Thus , 9 2 < 2 I

8

hS

alro

Since AJ = akJ'], j=1,2,..., we have

3= < [Gh gl ] o). a1z

where 0 < a < 1. Thus, the sequence {x*Jy converges to

x** Tinearly
at rate o from the very first iteration.
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