OPTIMIZING CONJUNCTIVE QUERIES THAT
CONTAIN UNTYPED VARIABLES

by

D. S. Johnson
and
A. Klug

Computer Sciences Technical Report #467

February 1982



Optimizing Conjunctive Queries that
Contain Untyped Variables

D. S. Johnson

Bell Laboratories

University of Wisconsin

A. Klug

University of Wisconsin

ABSTRACT

This paper addresses questions of efficiency in relational databases. We
present polynomial time algorithms for minimizing and testing equivalence of
what we call “fan-out free’’ queries. The fan-out free queries form a more
general and more powerful subclass of the conjunctive queries than those previ-
ously studied, as they can be used to express questions about transitive proper-
ties of databases, questions that are impossible to express if one operates under
the assumption, implicit in previous work, that each variable has an assigned
“‘type,”’ and hence can only refer to one fixed attribute of a relation. Our algo-
rithms are graph-theoretic in nature, and the equivalence algorithm can be
viewed as solving a special case of the graph isomorphism problem (by reducing
it to a series of labelled forest isomorphism questions).



Optimizing Conjunctive Queries that
Contain Untyped Variables

D. S. Johnson

Bell Laboratories

University of Wisconsin

A. Klug

University of Wisconsin

1. INTRODUCTION

There has been much recent work addressing the problem of optimizing queries in the
relational database model of Codd [5]. Such work has been motivated by the fact that, in the
relational data model, it is easy to express queries whose natural implementation would be very
inefficient. Thus there could be great value in a method for converting queries into equivalent
ones with more efficient implementations. From a complexity-theoretic point of view, the
seminal papers in this area are those of Chandra and Merlin [4] and Aho, Sagiv, and Ullman
[2,3], which concentrated on the natural class of ‘‘conjunctive queries.”

For conjunctive queries (which we shall define later), the main factor in the efficiency of
the implementation is the number of conjuncts contained in the query. Thus the query optimi-
zation problem becomes simply the problem of finding an equivalent query involving the
minimum possible number of conjuncts. Moreover, the problem of telling whether two
minimal queries are equivalent can be reduced to a simple syntactic test. Unfortunately, as
shown in [4], that “‘simple syntactic test’’ is equivalent to the presumably intractable problem
of graph isomorphism, and the conjunct minimization problem is NP-hard, and hence even
more likely to be intractable. (For a discussion of NP-hardness and intractability, see [1,6]).

Chandra and Merlin [4] faced this obstacle by designing exponential time algorithms for
the problem, arguing quite reasonably that since queries might well be applied to very large
databases, the savings resulting from a more efficient implementation of a query might well jus-
tify spending a large amount of time optimizing the query (that is, exponential time with
respect to query length may still be smaller than, say, linear, quadratic, or some higher order
polynomial time with respect to database size). Also, the same query may be run many times,
thus amortizing the cost of optimization.

Aho, Sagiv, and Ullman [2,3] took the alternate route of looking for special cases that
could be solved efficiently, i.e., in polynomial time. As a first step, they restricted attention to
typed queries, i.e., queries in which each variable has a specific attribute of the database associ-
ated with it as its “‘type,”” and can only refer to entries in columns of the database labelled by
that attribute. This is a significant restriction, since it seriously interferes with our ability to
derive transitive information from databases, for instance, to ask for (child, grandparent) pairs
given a relation containing only (child, parent) pairs. Given this basic restriction and an addi-
tional technical restriction to only those queries representable by ‘‘simple tableaux,” they
derived a class of queries for which minimization and equivalence testing can both be per-
formed in polynomial time: minimization in time O(n?) [3] and equivalence testing in time
O(n*) [2]. Subsequent work by Sagiv [7] has reduced both running times to O(n?). Sagiv and

A preliminary version of this paper appeared, under a slightly different title, in the Proceedings of the 22nd An-
nual Symposium on Foundations of Computing, IEEE Computer Society, Los Angeles, Calif., 1981.



-2

Yannakakis [8] have also introduced two new classes of typed queries for which the problems
can be solved in polynomial time, again O(n?) for minimization [7] and O(n? for equivalence

[8l.

In this paper we show that polynomial time algorithms exist even when the restriction to
typed queries is dropped, although new techniques are required for these more general algo-
rithms. Qur running times are, coincidentally, the same as those in the original Aho, Sagiv,
and Ullman papers [2,3].

In Section 2 we review the basic definitions and illustrate the limitations of typed queries,

as well as the other restrictions of 12,3781 In Section 3 We define a class of conjunctive
queries, the fan-out free queries, which allow untyped variables, and can be viewed as a generali-
zation of the other classes, even in the typed case. The “‘fan-out free’’ property is specified in
terms of an implication graph that is defined for any conjunctive query. In Section 4 we show
how the minimization problem for fan-out free queries can be transformed into a series of con-
nectivity tests on this implication graph and thus solved in time O(n°).

The algorithm of Section 4 is in a sense just a generalization and extension of the ideas
behind the earlier techniques of [3,7] to a much wider class (about the widest possible such
class that has a simple structural characterization). The techniques used for equivalence testing
in [2,8] do not, however, extend in any nice way once untyped variables are allowed. We
obtain an algorithm by showing that the problem, although equivalent to graph isomorphism if
we consider general (minimized) conjunctive queries, can be reduced to the well-solved prob-
lem of labeled tree isomorphism in the case of fan-out free queries. The algorithm runs in
time O(n*) and is presented in Section 5. Most of the work in the section is involved in show-
ing that an appropriately labeled breadth-first spanning forest for the implication graph of such
a query can be viewed as a canonical form for the query.

The paper concludes in Section 6 with an examination of possible extensions and
improvements on our algorithms, along with other directions for future research.

2. A FEW DEFINITIONS

A relation R can be viewed as a finite two-dimensional table with columns labeled by dis-
tinct attributes. Each attribute 4; has a domain D(A;), and entries in a column labeled by by A4;
must be elements of the domain D (4;). The relation scheme for a relation R is the sequence of
attributes labelling its columns, and may be viewed as an ordered subset of the set of all attri-
butes. Since the order of the rows in a relation has no significance, we can view a relation with
scheme (A4,,4,,...,A;) as a finite subset of D(A4,) X D(A,) X -+ X D(A). A database is a
finite sequence of tables. The relation schema for a database is the sequence of relation
schemes for the tables it contains. In what follows we shall assume for simplicity of notation
that all databases under consideration have the same relation schema (S),,...,S;).

We shall also assume that there are no data dependencies. ‘‘Functional dependencies”
can be handled just as in [2,3], by means of a preprocessing step prior to the application of our
algorithms. More complicated dependencies, such as multi-valued dependencies or the even
more general “‘algebraic’’ dependencies of [9], give rise to much added complexity, and we fol-
low [2,3] in leaving these complexities for future work.

A query can be viewed as a function from databases to relations. A query Q has target
scheme Sy if it maps databases to relations with relation scheme Sg. A conjunctive query Q can

be specified by Sp = (A4, ...,4,) and the following: (1) A set Xo = {x,,...,.x,} of dis-
tinguished variables (DV’s), (2) a set Yy = {y,,...,yq} of non-distinguished variables (NDV’s),
and (3) a set Cp = {cy, . ..,¢} of distinct conjuncts, each conjunct ¢; being associated with a

relation R(c;) of the underlying relation schema and having the form (¢;[1],...,¢;[m]), where
m = Length (c) is the number of columns (attributes) in R(c;) and each ¢[j] is either a DV,
an NDV, or a constant, i.e., an element of the domain of the j™ attribute of R(c;).

Given a database B and a conjunctive query @, the relation constructed when Q is
applied to B is



-3

gB) = {(x,,...,xp) :x; € D(A;) and there exist y,,....,y; such that for all ¢; € Cp,
(c;[1],...,¢;[m1), with the valuations of the DV’s and NDV’s substituted
in, is a row in relation R(c¢;) of B}

For simplicity, we shall often specify conjunctive queries implicitly, using a format similar to
the above, using ““R(x,y)” to stand for the statement that (x,y) is a row in relation R. For
example:

0 = {(x1,x3,x;) 7 there exist yy, y3 such that Ryj(x7,y71,x3) and R3(x1,y3%3)}-

The identities of the DV’s, NDV’s, constants, and conjuncts are all easily derived from this
shorthand.

Chandra and Merlin show in [4] how a query Q can be computed using the operations of
““selection,” “‘restriction,”” and ‘‘generalized join,”’ applied to the database which is the query’s
argument. The major factor in determining the running time for the resulting algorithm is the
number of generalized joins performed, and this number is one less than the number of con-
juncts in Cy. Thus the query minimization problem for conjunctive queries is simply the prob-
lem of finding a query equivalent to Q which has the least possible number of conjuncts.

Until now, the classes of queries for which efficient minimization algorithms have been
derived have all only allowed typed variables. A DV or NDV u is typed if it is associated with a
unique attribute type (u), i.e., if ¢;[h] = u, then the h** attribute of relation R (c;) is type (u).

If a query contains only typed variables, then the underlying relation schema might as well
be assumed to have disjoint attribute domains, i.e., D(4;) N D(4;) = @ for all pairs 4, # A4;
of attributes in the schema. Even though in practice many databases have overlapping
domains, typed queries cannot make use of this information (except insofar as constants in the
query can be associated with more than one attribute). Consider the relation R, illustrated in
Figure 1, with its first column labelled by the attribute ‘“parent” its second labelled by the attri-
bute ‘‘child’’, and R;(x,y) if and only if x is the parent of y. The domain for each attribute is
the set of people, and of course a person can be both a parent and a child. This suggests the
possibility of deriving from R, the grandparent relation R;, where Rg has grandparent and
child columns, and (x,y) € Rg if x is y’s grandparent. This can be done quite simply using
untyped variables:

{(x1,Xx,) : there is a y, such that R (x,,y,) and R (y,x,)}

However, no typed query will suffice, because such a query cannot use the fact that a parent
can be a child.

One cannot get around this problem by simply giving both columns of the relation the
same name, say ‘‘person,”’ because our basic definitions say that all columns of a relation must
be named by distinct attributes, and this fact is crucial to the algorithms of [2,3,7,8]. A second
approach, that of using auxiliary tables, does allow us to construct the grandparent relation with
a typed query, but the results are awkward and inefficient: In the current example what we
need is a second relation R,, which captures the “‘equivalence’ of parents and children in a
typed fashion. R, has a parent column and a child column, and (x,y) € R, if and only if x
and y refer to the same person. See Figure 2. We then can specify the grandparent relation
R with the following typed query:

{(x1,x,) : There are y, and y, such that R (x,y1), R2(y2,91), and R (y2,x5)}

Note that the use of this subterfuge not only makes the query harder to understand, but also
introduces a new conjunct, and hence a new ‘‘join’’ to the query. We thus can circumvent the
restriction to typed queries, but only at a cost of lowered query efficiency.

Another problem is that the three subclasses of typed queries for which algorithms have



-4 -

been derived each impose an additional constraint on the queries they contain, and these con-
straints interfere with the use of equivalence tables. The first two of these restrictions involve
the concept of a repeated variable, which is defined to be a NDV that occurs more than once in
the conjuncts of Q.

(1) If an attribute has a repeated variable associated with it, then there is no other repeated
symbol (variable or constant) associated with it.

(2) No conjunct contains more than one occurrence of a repeated variable.

The fiTst of theése Testrictions gives Tise to the class of queries with ‘‘Ssimple tableaux,” as
defined and discussed in [2,3]. The second gives rise to the first of the two classes introduced

in [7,8].

The reader may verify that (2) makes it impossible to construct the grandparent relation
using a typed query, even if equivalence tables are allowed (and rules out the *‘great-
grandparent” relation Rg; even if untyped variables are allowed). Restriction (1) allows
grandparents, but rules out great-grandparents using either equivalence tables or untyped vari-
ables. The third restriction, corresponding to the second class from [7,8] and using the notion
of “‘covering’’ which will be defined shortly, also prevents the construction of great-
grandparents:

(3) No conjunct of Q is ““‘covered’ by more than one conjunct in Cy other than itself.

Although the class of ‘‘fan-out free’’ conjunctive queries for which our algorithms are
designed also obeys a restriction (a weaker one), this new class contains the queries required
for constructing any fixed-height ancestor relation, and this should be indicative of its increased
power over the previous classes.

A final objection to the restriction to typed queries is more theoretical in nature: the
natural symmetry between conjunctive queries and relational algebra is lost. As shown by
Chandra and Merlin [4], the set of relations constructible by conjunctive queries is precisely the
set of relations that can be constructed using the operations of select, project, and generalized
join. No analogous characterization has been found for typed conjunctive queries, unless one
allows an unnatural extension of the concept of “relation” [9].

Thus it is with no great sense of loss that we abandon the restriction to typed queries.
Since we are dropping the assumption, there is no real restriction in assuming for simplicity that
all attributes have the same domain D, and so we shall follow [4] in doing so. The next section
presents the series of definitions which leads to the definition of “‘fan-out free.”

3. IMPLICATION GRAPHS AND FAN-OUT FREE QUERIES

Suppose two queries @ and Q' have the same target scheme, and hence the same dis-
tinguished variables. Let Uy be the union of Xy, Yy, and D, and define Uy similarly. A sym-
bol mapping from Q to ¢ is a function f:Uyp—Uy which leaves all DV’s and constants fixed.
If ¢ and ¢ are conjuncts in Q and Q' respectively, we say that ¢’ covers ¢ if R(c) = R(¢) and
there is a symbol mapping from Q to @’ that sends ¢ to /. A conjunct mapping from Q to Q' is
a function g:Cy—Cy such that foralle € Cp, g(c) covers c.

A fundamental concept, both for query minimization and equivalence testing, is that of a
homomorphism. A homomorphism from Q to ' is a symbol mapping f:Uy—Uy that induces a
well-defined conjunct mapping. Alternatively, we may view a homomorphism as a conjunct
mapping g:Cy—Cqp that induces a well-defined symbol mapping. In what follows we shall
often view a homomorphism as both of the above, i.e., a function h:Q—Q’ defined on both U,
and Cp, whose symbol mapping half induces its conjunct mapping half, and vice versa.

The importance of homomorphisms comes from the following result.

Theorem 3.1 [4]. Two queries Q and Q' are equivalent (as functions defined on databases) if
and only if there are homomorphisms h:Q—Q’ and /' :Q'—Q.

Thus in both minimization and equivalence testing, our main task will be the search for



-5.

homomorphisms. In fact, it will turn out that most of our work is involved with finding self~
homomorphisms, i.e., homomorphisms from a query Q to itself. In order to model potential
self-homomorphisms, we introduce the notion of an implication graph. Given any conjunctive
query @, the implication graph of Q is a bipartite graph G[Q] = (VIQ1,E[Q]) defined as fol-
lows:

The vertices are of two types. First, there is a set Vc[Q] of conjunct-pair vertices, con-
taining a vertex <c,0> for each conjunct ¢ in Cp and a vertex <c,c > for each pair of (not

necessarily-distinct)-conjuncts-in-Cg—such-that¢—covers—c-—(#-is-a-special-symbol-indicating-that
¢ is not covered by any relevant conjunct). Second, there is a set Vs[Q]1 of symbol-pair vertices,

containing a vertex <y,z> for each NDV y € Y, and each z € Uy, such that for some
conjunct-pair vertex <c,,c,>> and index j, 1=<j<Length(c;), c;ljl =y and c,[j]l =z. (In the
future we shall often omit the “[Q]” from V[Q] and V5[Q], so long as there is no chance of
confusion). Each edge in E[Q] joins a symbol-pair vertex to a conjunct-pair vertex. There is
an edge between <y,z> and <c¢,0> if and only if there is a j, 1=<j=<Length(c), such that
cljl =y and for all ¢ such that ¢ covers ¢, ¢ [j] # z. There is an edge between <y,z> and
<c,d > if and only if there is a j, 1=j=<Length(c), such that c[j] =y and ¢[j] =2z. Figure
3 illustrates the implication graph for the conjunctive query that constructs the great-great-
grandparent relation from the parent-child relation R;.

Using the implication graph G[Q], we can test whether a symbol mapping (or a conjunct
mapping) of Q to itself corresponds to a self-homomorphism. A subset ¥V of the symbol-pair
vertices of G [Q] is said to satisfy the symbol mapping property (partial symbol mapping property) if
each y €Y, occurs as the first component of exactly one (at most one) of its vertices. It is easy
to see that any symbol mapping capable of yielding a self-homomorphism must correspond to a
set V satisfying the symbol mapping property: the subset corresponding to the symbol mapping
S issimply Vs, = {<y,z> :y €Yy and f (y)=z}.

The conjunct mapping property (partial conjunct mapping property) is defined analogously for
subsets of the conjunct-pair vertices of G[Q], none of whose second components is 6. The
subset corresponding to the conjunct mapping g is simply V¢, = {<e¢,0/> : c€Cpy and
g(c)=c}. A self-homomorphism k, viewed as a joint symbol and conjunct mapping, will then
correspond to the set Vg, UV, of symbol-pair and conjunct-pair vertices, where each half
induces the other and obeys the appropriate mapping property.

A set V' of symbol-pair vertices induces a set V" of conjunct-pair vertices if it contains all
the neighbors of each vertex in V7. We capture the notion of the set of symbol-pair vertices
induced by a set V' of conjunct-pair vertices by using the concept of implication in G[Q]:

A conjunct-pair vertex implies all of its neighbors, while symbol-pair vertices also imply
neighbors, but are more selective: A symbol-pair vertex of the form <y,y> implies nothing.
A symbol-pair vertex which is adjacent to a conjunct-pair vertex of the form <c¢,0> implies all
vertices of this form to which it is adjacent, and nothing else. A symbol-pair vertex of the
form <y,z>, y #z, implies a neighboring conjunct-pair vertex <c,c’> if and only if this is
the only conjunct-pair vertex having ¢ as first component to which <y,z> is adjacent.

The following observation is immediate (and only uses about half of the above defini-
tion).
Lemma 3.1. A conjunct mapping g of Q to itself is a self-homomorphism of @ if and only if
the set of symbol-pair vertices inplied by V¢, obeys the symbol mapping property.

The definition of implication is more complicated than is required by Lemma 3.1 because
we wish to use the implication graph to determine whether certain partial conjunct mappings
can be extended to self-homomorphisms. To this end we introduce the notion_of implication
closure. If V' is a subset of the vertices of G[Q], then the implication closure ¥V’ of V' is the
smallest superset of V7 that is closed under implication, i.e., that contains all the vertices
implied by its vertices. The implication closure of V¢ ., where g is a partial conjunct mapping
of Q to itself, is designed to include all the forced consequences of g.

Unfortunately, in the general case for conjunctive queries, these ‘‘forced consequences’



-6 -

do not provide enough information to tell us whether g can be extended to a self-
homomorphism. There is a “‘fan-out” of possibilities, and one would have to examine them all
in order to verify extendability. Thus in what follows we impose a restriction on queries that
guarantees that such fan-out cannot occur. We say that a symbol-pair vertex <y,z> is Sfan-out
Jree if either (a) all its neighbors have the same first component or (b) all its neighbors have
distinct first components. In the latter case <y,z> implies all of its neighbors, in the former it
implies none of them (except in the special case where it has only one neighbor). A conjunc-

tixc_q_u.eLy_Q,isafan,-out—ﬁee—iﬁandﬂonl'y*i»f!every*sym‘b'olq)ai'rvertex <y.z>, y#z,in Vg is
either adjacent to a vertex of the form <c,0> oris fan-out free.

To see that this restriction prevents the fan-out of possibilities, consider the consequences
of adding a conjunct-pair <c,/> to a partial conjunct mapping for a fan-out free query. If
<c,/> implies <y,z> and y #z then either (a) <y,z> is adjacent to a vertex of the form
<¢;,0> and hence no extension to a full self-homomorphism is possible, (b) <y,z> is adja-
cent only to other conjunct-pairs with ¢ as first component, none of which can be part of the
same homomorphism as <c¢,¢>, or (c) all the other conjunct-pairs adjacent to <y,z> are
implied by <y,z> and must be present in any self-homomorphism containing <c¢,0>. If a
symbol-pair vertex <y,z> with fan-out were allowed, it might have neighbors <e¢y,¢9> and
<¢1,€3>, ¢3¥c3, and we would have a choice as to which one to add in attempting to extend
our partial conjunct mapping.

Note that we do allow fan-out at vertices of the form <y,y>, but under our definitions
these vertices do not imply any of their neighbors, and the following theorem will show that
they do not need to. Let us say that a subset ¥’ of the conjunct-pair vertices of an implication
graph G[Q] is transitively closed if the implication closure of ¥ contains no new conjunct-pair
vertex, i.e., if VNV =V. A transitively closed set ¥V of conjunct-pair vertices obeys the
partial homomorphism property if it satisfies the following two conditions:

(C1) There is no conjunct-pair vertex with 6 as second component in V.
(C2) The set ¥ of symbol-pair vertices in V' obeys the partial symbol mapping property.

Observe that (C2) implies that V" itself obeys the partial conjunct mapping property, since
if V" contained two distinct conjunct-pairs with the same first component, then ¥ would have
to contain two distinct symbol-pairs with the same first component. Theorem 3.2 validates our
claim that, for fan-out free queries, we can tell whether a partial conjunct mapping extends to a
full self-homomorphism merely by computing its implication closure:

Theorem 3.2. Let Q be a fan-out free query and suppose ¥ is a transitively closed subset of
the conjunct-pair vertices of G[Q] that obeys the partial homomorphism property. Then the
set V* of vertices obtained by adding to ¥’ all symbol-pair vertices <y,y>, where y does not
occur as a first component in_V’, and all conjunct-pair vertices <c,c>, where ¢ does not
appear as a first component in V”, corresponds to a self-homomorphism of Q.

Proof. Let f and g be the symbol mapping and conjunct mapping corresponding to
Vs* = V*NVs and Vo* = p* V¢ respectively. By (C2) f obeys the symbol mapping pro-
perty and, by (C1) and our observation following the definition of the partial homomorphism
property, g obeys the conjunct mapping property. Thus by Lemma 3.1 all we need show is that
Vc* implies Vg*. This can fail to happen only if (i) ¥Vc* implies some <y,z> not in Vg* or
(ii) Vc* fails to imply some <y,z> which is in Vs*. We show that both possibilities lead to
contradictions.

(i). Suppose V¢* implies a symbol-pair <y,z> which is not in Vg*. Then <y,z> must
be implied by some conjunct-pair <c,c> that is in V* but not in V’, and hence has ¢ = ¢.
This means that z =y. The fact that <y,y>is not in Vg* means that there is some <y.,7 >,
Z # y, which is in Vg*. The fact that ¢ contains an occurence of y means that there is some
conjunct-pair vertex <c,’>, ¢ # ¢, adjacent to <y,Z > in Gg. The fact that <c,e> is in
V* means that <y,7> does not imply <e¢,0”>. Since <y,Z7> is not adjacent to any
conjunct-pair vertex with 8 as second component by (Cl), and since Z #y, the fact that Qis
fan-out free thus allows us to conclude that all vertices adjacent to <y,7> in Go have ¢ as



-7

first component. In particular, the conjunct-pair in ¥ that implies <y,7 > has ¢ as first com-
ponent, in contradiction to the fact that <c,c> isin V*,

(ii). Suppose Ve* fails to imply some symbol-pair <y,z> in Vg*. Then we must have
that <y,z> is not in ¥’ and hence z = ¥. By our definition of the implication closure, there
must be some conjunct ¢ that contains an occurrence of y. We cannot have <c,c> in Ve*,
or else Vc* would imply <y,y>. Hence there is some <c¢,d> in V¢*, ¢ #c. The vertex

<¢,d' > cannot be adjacent to <yw»> in Gy (or else it would imply it), but it must be adja-

cent to some-symbol-pair-<<y;z > with y-asfirst component. _But this means that <y,Z>isin
Vs* and 7 sy, and hence we cannot have added <y ,y> to V', again a contradiction-

Thus both cases are impossible and the theorem js proved. [J

We thus see that our restriction to fan-out free queries does what we want it to. The fact
that it is not too severe a restriction can be gleaned from the next two theorems.

Theorem 3.3. Any typed query O satisfying restriction (1) or (3) of Section 2 is fan-out free,
and there exist fan-out free typed queries that obey neither (1) nor (3).

Proof. In order for Q to fail to be fan-out free, there must be a symbol-pair vertex <y,z> in
GlQ] such that y#z and <y,z> is adjacent to three conjunct-pair vertices <cp,ep>,
<c3,c4>, and <cj3,¢5>, where c1#cy and c4#cs. Since y #z, this would mean that ¢; was
covered by two conjuncts other than itself, and so Q@ would violate (3). It would also mean
that y was a repeated variable (occurring in both ¢, and ¢ 3) and z was a second repeated sym-
bol (occurring in ¢, and ¢s) associated with the same attribute, thus violating (1). Hence any
query satisfying (1) or (3) must be fan-out free.

An example of a typed query which is fan-out free but violates both (1) and (3) is the
query which constructs the great-grandparent relation using the parent-child relation R, and the
equivalence relation R, from Section 2:

{(x1,x,) : there exist yy, ¥,, y3, and Y4 such that R (x,,y,),
R2(yZ9yl)a Rl(yZ’yB)’ Rz(l’4,J’3), and Rl(.y4’x2)}

The third conjunct of this query is covered by both the first and the fifth, thus violating (3),
and the “‘parent” attribute has two repeated variables (y, and y;), thus violating (1). To see
that the query is fan-out free, note that the only conjunct-pair vertices <c,¢ > in G[Q] with
c#c are <c,,c4>, <c4,02>, <c3,¢;>, and <¢3,¢5>, and that no <y,z>, Yy #z, is adjacent
to more than two of them or to any conjunct-pair of the form <c,c> (at least three neighbors
are required for a symbol-pair vertex to have “fan-out’). O

Thus, the class of fan-out free qQueries is more general than either of the classes defined
by the restrictions (1) and (3), even when restricted (as they are) to typed variables. The rela-
tionship between fan-out free queries and those obeying restriction (2) of Section 2 is less
straightforward. Although (2), by forbidding more than one repeated variable in any conjunct,
rules out any sophisticated use of transitivity, it does allow some queries which are not fan-out
free. A simple example would be

{(x}) : there exist y,, Y2, ¥3, and y4 such that R (y,,x,),
R101.y2), Ri(¥3.x1), and R (y3,y4)}

The query obeys (2) since the only repeated (non-distinguished) variables are yiand y; Itis
not fan-out free since <y;,y,> is adjacent to <cj,c,>, <c4,c;>, and <C4,02>.

However, note that the above query is equivalent to the fan-out free query containing the
single conjunct <y,,x;>. In fact, it is not difficult to prove the following theorem (using
Lemma 4.2 of the next section).

Theorem 3.4. Any minimal query satisfying restriction (2) of Section 2 is fan-out free.

Thus any question that can be phrased using a conjunctive query obeying restrictions (1),
(2), or (3) can be phrased using a fan-out free query, and fan-out free queries can express



-8 -

many questions that would be impossible to ask if any one of those restrictions must be obeyed.

4. MINIMIZING FAN-OUT FREE QUERIES
Our minimization algorithm, like those of [3,7], is based on the following result from [4]:

Lemma 4.1. If a conjunctive query Q is equivalent to a conjunctive query @’ that has fewer
conjuncts, then there is a self-homomorphism of @ that sends the conjuncts of Q to a proper
subset of themselves (a shrinking self-homomorphism of Q).

Proof. By Theorem 3.1, if Q is equivalent to @’ then there exist homomorphisms h:Q-—Q" and

h:—Q. The desired seli-homomorphism 1s # composed with 4", ]
We also use the following easy observation:

Lemma 4.2. If h is a self-homomorphism of Q then the set of conjuncts in the image of h
represents a query (' which is equivalent to Q.

Proof. By Theorem 3.1 we need to show that there are homomorphisms in both directions. We
already have the homomorphism A which goes from Q to @¢'. The homomorphism in the
other direction is simply the identity self-homomorphism on @, restricted to the conjuncts and
NDV’sin Q.0

Our minimization algorithm will be based on a subroutine S which, given @, determines

whether it has a shrinking self-homomorphism, and, if so, returns one. We use S in the fol-
lowing loop.

Set O* = Q.
While S applied to O* yields a shrinking self-homomorphism k, set Q* = h(Q*).

3.  Return g* (If S applied to 0* does not yield a shrinking self-homomorphism, then Q* is
our desired minimum equivalent query).

Note that if @ has N conjuncts, subroutine S will be invoked at most NV times, since each suc-
cessful application reduces the number of conjuncts, and we always must have at least one con-
junct left.

We thus have reduced to problem of conjunctive query minimization to that of finding
shrinking self-homomorphisms. In the case of fan-out free queries, we can use the results of
the last section in doing the “finding’":

Lemma 4.3. Suppose Q is a fan-out free query. Then the following two statements are
equivalent.

(a) @ has an shrinking self-homomorphism.

(b) There is a conjunct-pair vertex <c,¢> in G[Q] with ¢ #¢ and ¢ #86, such that the
set V' of conjunct-pair vertices in the implication closure of {<c,c/>} satisfies the partial
homomorphism property and the set C{(¥’) of first components of conjunct-pairs in ¥” does
not equal the set C,(V”) of second components.

Proof. That (b) implies (a) follows immediately from Theorem 3.3. By that theorem, V'
extends to a self-homomorphism h of Q which is the identity on all conjuncts not in C,(V").
Since there is a conjunct in Cy(V') — C(V"), that conjunct will not be in the image of Cp
under h, and so h is an shrinking self-homomorphism.

To prove the implication in the other direction, let us suppose that & is a shrinking self-
homomorphism of Q, and let V" = V¢, be the associated set of conjunct-pair vertices in
G[Q]. Consider the implication closure ¥’, which is simply V" UVs, since h is a self-
homomorphism. By the definition of implication closure, ¥’ is the union of the implication
closure of {<c,/>}, for all <c,0> in V'. Let Vic,c'] be the set of conjunct-pairs in the
implication closure of <c,¢>. If C;(Vie,d]) = Cy(Vle,c]) for all <c,d> in V', then we
must have C (V') = C,(¥V') and so h would not be a shrinking self-homomorphism. Thus
there is some <c,c > such that Vlc,c] has a set of first components not equalling its set of



-9.

second components. We claim that this is the desired conjunct-pair. Clearly ¢ #¢, since the
implication closure of <.c,c> is simply that vertex by itself, and C,(Vic,c]) = Cy(Vle,c]) =
{_c_'}. Furthermore, ¢ ##0 since V' contains no vertex with 6 as second component. The set
Vlc,c'] does not contain any conjunct-pairs with 8 as second component for the same reason,
so it satisfies (C1) of the partial homomorphism property. Finally, Vlc,c] satisfies (C2) since
it is contained in V’. Thus Vlc,c'], being transitively closed, satisfies the partial homomor-
phism property, and <c¢,¢ > is the desired conjunct-pair. [

Lemma 4.3 is enough to give us a polynomial time algorithm for minimizing fan-out free
S - I ime-S—by—(1) tro—the—imroticati for- @ (2
finding the implication closure of each of its conjunct-pair vertices <c,'>, ¢ #¢, (3) testing
each implication closure to see whether its conjunct-pairs satisfy property (b) of the lemma, and
finally (4) using Theorem 3.2 to generate the corresponding shrinking self-homomorphism
when it exists.

As schematized above, our algorithm has a major potential inefficiency. If there are N
conjuncts (and hence potentially N (N—1)/2 conjunct-pairs <c, >, ¢ #¢'), the time to find all
the implication closures might be no better than O (N?) times the size of G[Q]. Such a bound
could be attained if many of the implication closures were large and overlapped, causing us to
examine the same part of the graph over and over again. In order to avoid this, we make use
of one more lemma about implication graphs of fan-out free queries.

Lemma 4.4. If Q if a fan-out free query and <c¢;,c,>, <y,z>, and <cj,c4> are vertices of
G[Q] such that <c;,c,> implies <y,z> and <y,z> implies <cj3,cs>, then <cj,cq>
implies <<y ,z> and <y ,z> implies <c¢,c,>.

Proof. For the assumed implications to hold, we must have that <y,z> is adjacent to both
<e¢,¢y> and <cj,c4>. Thus <e3,c4> implies <y,z>, since a conjunct-pair implies all
symbol-pairs to which it is adjacent. The argument for the second implication goes as follows.
Since <y,z> implies <cjc4>, we know that <y,z> is not adjacent to any conjunct-pairs
with # as second component, y #z, and c3#c;. Since Q is fan-out free, this means that all
conjunct-pairs adjacent to <y,z> have distinct first components, and thus <y,z> implies
<C1,C2>>. [m]

As a consequence of this lemma, we note that if <¢,,c,> is in the implication closure of
{<cs,cs>} and c,#0, then <cs3,c4> is in the implication closure of {<¢;,c,>}, and, in fact,
the two implication closures are equal. Thus, in the process of generating the implication clo-
sures of individual <¢,¢ >’s, we never need generate the implication closure of a conjunct-pair
<¢,d > which has already appeared in the implication closure of some earlier conjunct-pair.
Hence we only need look at each conjunct-pair vertex once in the entire process. A symbol-
pair vertex can appear in more than one distinct implication closure, if it is one of those
symbol-pairs that, for some reason, does not imply all its neighbors. However, it will only be
encountered a number of times bounded by the number of its neighbors, since each neighbor is
itself in at most one implication closure. Thus it is easy to see that the total amount of work
required to generate the relevant implication closures under this modified scheme is propor-
tional to the size of the implication graph, not N? times that size.

For those uninterested in writing special programs to generate implication closures, we
note that we can modify the implication graph so that the relevant implication closures can be
found using a standard algorithm for generating the connected components of a graph. Two
basic operations need to be performed:

(01) Coalesce into a single vertex <> all symbol-pair vertices which are adjacent to any
conjunct-pair with 6 as second component, and delete all such conjunct-pair vertices.
The new vertex <0> is adjacent to all remaining conjunct-pairs to which the <c,0> ver-
tices were originally adjacent.

(02) For each remaining symbol-pair vertex <\y,z> where either y =z or all the neighbors of
<y,z> have the same first component, split the vertex <y,z> into a number of copies
of itself equal to the number of conjunct-pair vertices adjacent to it, and let each of these



- 10 -

copies be adjacent to a corresponding one of those conjunct-pairs.

We leave to the reader the straightforward task of verifying that the connected com-
ponents of the modified graph correspond to the implication closures of the sets {<c,/ >} in
G[Q], with the union of all implication closures that contain a <c¢,§> vertex corresponding to
the single connected component containing <<#>. Since the connected components of a graph
can be generated in time which is linear in the size of the graph [1], and since the modified
graph can be constructed in time proportional to the size of G[Q], this graph-connectivity

approach will be about equivalent to the one already proposed.

Having found the Televant implication closures; we must then exaniine each to see
whether its conjunct-pair vertices satisfy the partial homomorphism property and have a set of
second components different from their set of first components. This can be done for each
V'=Vlc,c/] in time proportional to the size of V7, and hence the overall time for this part of
the algorithm is also bounded by the size of G[Q]. We test V' as follows. Condition (C1) of
the partial homomorphism property, that ¥’ contain no <c,0> vertex, can easily be checked in
the claimed time. Condition (C2), that no two symbol-pair vertices of ¥ share the same first
component, can be verified in time proportional to the number of such vertices by indexing
into an array with entries for each NDV (we avoid initializing the table by using the trick
described in Exercise 2.12 of [1]). A similar trick is used to verify that C, (V') # Cy(V").

To complete the analysis of the running time of our minimization algorithm, we must
consider how large the implication graph G [@] can be, and how much time is required to gen-
erate it. As argued above, G[Q] contains at most O (N?) conjunct-pair vertices., with at most
N having any given conjunct ¢ as first component. Each conjunct-pair vertex <c,c’> is adja-
cent to at most Length(c) symbol-pair vertices, one for each column of ¢. Thus the total
number of symbol-pair vertices, and the total number of edges in E[Q] are both at most N
times the sum of the lengths of the conjuncts in Cp, where this sum can be taken as propor-
tional to n, the size of the query itself. Since N=<n, we thus obtain O(n?) as a bound on the
size of G[Q]. The time to generate G [Q] is proportional to its size, since we can tell whether
¢ covers ¢ in time proportional to to Length(c), and if so, generate all the edges incident on
<c,d > at the same time, merely by comparing cli] and ¢ [i], 1<<i<Length(i) (using our
indexing trick to make sure that no earlier j had c[jl=c[i] and ¢ [j]1#¢ [i]).

Thus the time for our subroutine S is O (n?) and hence the time for the overall minimiza-
tion algorithm is O(n?). Note however that for queries that are already near-minimal, as we
would expect them to be in practice, the time bound may reduce to O (n?), since the number of
times S is applied is at most one more than the number of redundant conjuncts in Q.

In cases where the @ is far from minimal, we might hope to speed up the algorithm by a
more sophisticated generation by S of the shrinking self-homomorphism A it returns. Clearly
our goal should be to find a shrinking self-homomorphism which has the smallest image. One
thing we could do is genmerate h from the V'=Vlc,/] that has the largest value of
|C1(V')—Co(V')|. This could be done without substantially increasing the overhead in S.

A more expensive approach would use the fact that some set of implication closures must
correspond to a maximal shrinking self-homomorphism, i.e., one which sends Cyp to a
minimum equivalent subset of itself. Thus we might attempt to combine implication closure’s
and see whether the combined implication closure (the union of two implication closures is
itself an implication closure) satisfies the conditions of Lemma 4.3 and has a larger value of
|C(V')=C,(V")| than either of its progenitors. The complexity involved in doing these tests
can be reduced somewhat by using the fact that there is a maximal shrinking self-
homomorphism which is the identity self-homomorphism when restricted to its image (this fact
can be proved by considering high-order compositions of a maximal shrinking self-
homomorphism A* with itself). Even so, the cost of finding a maximal shrinking self-
homomorphism in this manner would probably be prohibitive if there were a large number of
distinct implication closures (it would probably greatly exceed the potential savings due to
reducing the number of applications of S - we are flirting with NP-completeness here). The
best hope is to direct the merging of implication closure’s by heuristics, in hopes of finding a



- 11 -

near-maximal shrinking self-homomorphism at reasonable cost. We have not investigated this
avenue fully, although it is not difficult to show that a greedy approach can leave one arbitrarily
far from maximal.

5. EQUIVALENCE TESTING FOR FAN-OUT FREE QUERIES

The first step of our algorithm for testing whether two fan-out free queries Q and Q' are
equivalent is to perform the minimization algorithm of the previous section on both of them.

This reduces the equivalence problem to one of isomorphism, as can be seen from the follow-

ing-easily-proved-lemma:
Lemma 5.1. Suppose Q and @' are minimal queries. Then Q is equivalent to Q' if and only if

there is a homomorphism from Q to ' which is one-one and onto for both NDV’s and con-
juncts.

Note that by setting @ = @' in Lemma 5.1 we obtain the fact that any self-homomorphism of
a minimal query is an automorphism.

For the rest of this section we shall assume that both Q and ' are minimal fan-out free
queries. In light of Lemma 5.1 we may also assume that they have the same number of NDV’s
and conjuncts. The basic outline of our equivalence algorithm is as follows:

For each conjunct ¢ €Cy we construct a forest of labelled trees Forest[c] = {Treelc,c] :
¢ €Cy, ¢ covers ¢, and ¢ #c}, where Treelc,c'] is a labelled breadth-first spanning tree of the
implication closure of {<c,c’>} in the implication graph G[Q]. Similar forests are constructed
for each c€Cyp. We then make use of the following two lemmas (to be proved later). For
brevity we use the term 77 to stand for labelled forest isomorphism, and use the symbol to
denote both tree and query isomorphism.

Lemma 5.2. If f:Q—( is a query isomorphism, then Forest[c] Forest[f (c)] for every con-
junct c€Cyp.

Lemma 5.3. Suppose cj,c; € Cp and Forest [e,] Forestlc,]. Then there is a query automor-
phism f:Q—Q such that f (¢,) = c,.
These two lemmas yield the following fundamental theorem.

Theorem 5.1 Suppose ¢ €Cy, ¢ €Cgy, and Forest[c]Forest[¢']. Then there is a query isomor-
phism f:Q-—( if and only if there is a query isomorphism f":Q— with f(c) = .

Proof. Suppose there is a query isomorphism f:Q—Q'. If f(c) = ¢ we are done, so suppose
f(¢) = . Note that this implies that ¢ and ¢’ cover each other. Since ¢ and ¢ cover each
other by hypothesis, it thus must be the case that ¢ and ¢’ cover each other. By Lemma 5.2,
f(c) = ¢” implies that there is a tree isomorphism ¢: Forest [c]—Forest [¢’]. Since by assump-
tion Forest[c] Forest[c’], we conclude that there is a tree isomorphism
v:Forest [ ]—Forest[¢”]. By Lemma 5.3 we thus conclude that there is a query automorphism
J:Q—@ with f'(¢”) = ¢. The composition of f followed by f” yields our desired query iso-
morphism. [J

Our equivalence algorithm can thus proceed as follows.

1. Set@Q* =0, 0" = (', and f = @ (the empty symbol mapping).

2.  While @* contains a conjunct ¢ that contains a NDV, do the following:
If there is no conjunct ¢’ € Cgee such that Forest [c] Forest[c’'], then halt: @ and ¢
are not equivalent by Lemma 5.2. Otherwise, let ¢* be such a ¢/, and extend the
definition of f to include f(clj]) = c*[j] for every j, 1=<j<Length(c) such that
cljlis a NDV.
If f fails to be either well-defined or one-one, halt: the queries are inequivalent.
Otherwise, for each NDV u added to the domain of f, replace u and f (u) in both
@* and Q** by a new unique constant symbol u*.

3. At this point, O* no longer contains any NDV’s. If the sorted lists of conjuncts for O*



o implication-closure-of -{<<e;¢>}-in-G{@);-only-for-part-of-it.—The basic idea-is-to-start-with-the

-12 -

and Q** are identical, then the constructed f will correspond to a query isomorphism;
otherwise, no such isomorphism exists (Theorem 5.1 guarantees that if there is a query
isomorphism, the lists will be identical).

We now present the details of the construction of Treelc,c’] and the proofs of Lemmas
5.2 and 5.3. We assume without loss of generality that ¢ and ¢ are conjuncts of query Q. The
tree T = Treelc,c’] need not actually be a labelled breadth-first spanning tree for all of the

|

conjunct-pair vertex <c,c’> as root, and expand the tree until either (a) the implication clo-

sure is completely spanned or (b) there is evidence that the set of conjunct-pair vertices in the
implication closure of {<c,c >} does not induce a query automorphism.

There will actually be two labels associated with each vertex v of T, a hidden label, H (v)
and a visible label, label(v). The hidden labels are used in our construction of T and in our
proofs, but are not considered when testing for tree isomorphisms. The hidden label of a ver-
tex v is simply its name in G[Q], i.e., H[<c,/>] = <c¢,/> and H[<y,z>] = <y,z>. We
shall use H,[v] and H,[v] to denote the first and second components of the hidden label of v,
respectively.

The visible labels are the ones used in testing for tree isomorphism. The visible label
label [v] for a symbol-pair vertex v is of the form <i,4>, where i, a column index, is the
local address and A is the mapping conflict indicator. The visibie label for a conjunct-pair vertex
v is of the form <[R,j],P,4>. Here [R,j], with R being a relation name and j being a
column index, is the local address. The second component, P, is the profile, and the third, 4,
is again the mapping conflict indicator. The visible labels are assigned so that every vertex v
has a unique global address a(v), this being the sequence of visible labels for all the vertices
on the path from the root of T up to and including v.

The local address for a child ¥ of v is assigned based on the reason for the adjacency of
Hlu] and H[v] in G[Q]. If H[u] = <y,z> and H[v] = <c;,c,>, then the local address
for u as a child of v is the least column index i such that ¢,[i1 =y and c,lil =z (such an
index must exist by the definition of implication graph). If Hlu] = <c¢,,c,> and Hlv] =
<y,z>, then the local address [R,j] for u has R = R(c;) = R(c,) and j the least index such
that ¢,[j] =y and c,[j]l =z. If u is the root of Tree[c,c] and hence has no parent, its local
address is [R (¢),0] by convention.

Note that although no conjunct-pair vertex can have two children with the same local
address in Treelc,c’], a symbol-pair vertex may have a number of conjunct-pair children with
the same local address. One purpose of the profile is to distinguish between conjunct-pair chil-
dren with the same local address. The profile is present in label [v] for all conjunct-pair vertices
v, and is determined entirely by H,[v]. If H,[v] = ¢, then the profile of v, which we shall
denote by profile [c,]), is a list of the form <[J,,b,],[J3,b,),...,1J¢,bx 1>, where the J;’s are sets
forming a partition of the integers in {h : 1<<h <Length(c,)}, and the b;’s are either DV’s, con-
stants, or the special symbol @. Each set J; is a maximal set of indices & such that ¢,[k] has
the same value for all A €J;. The entry b; is this common value if that value is either a DV or
a constant. If, however, the common value is a NDV, then b; is by convention set to @ (our
visible labels must be independent of the names of the NDV’s). Thus we know that each J;
with b; = @ represents a different NDV, but not which one. Within profile [c,] the sets are
ordered according to their minimal elements, and each set has its members presented in
increasing order.

If a vertex of Treelc,/] has a mapping conflict indicator other than 0, we say that that
vertex has a mapping conflict. This will mean that {<c¢,¢’>} cannot be extended to a query
automorphism. There will be at most one vertex in T with a mapping conflict (as soon as such
a vertex is encountered in our tree generation process, we halt and declare T complete). If a
symbol-pair vertex v has a mapping conflict, its mapping conflict indicator 4 is the global
address of an earlier symbol-pair vertex u such that H,[u] = H,[v] and H,lul# H,lv] (the
fact that T contains such vertices means that {<c,c’ >} cannot extend to a well-defined query



-13 -

automorphism).

If a conjunct-pair vertex v has a mapping conflict, there are three possibilities: the map-
ping conflict indicator for v can either be *“1’’, “2”, or the global address of some earlier
conjunct-pair vertex. If the mapping conflict indicator for v is equal to 1, this means that H [v]
= <c¢”,0> for some conjunct ¢, in which case {<c¢,/>} clearly cannot be extended to a
query automorphism. If the mapping conflict indicator for v is equal to 2, this means that
there are at least two conjunct-pair vertices that could be children of parent(v) with same visi-
ble la—bel.*JPhe~presence*of*two~such”verti'ce's#cl'early~de'str’oys*th‘e”ﬁ’rii‘quenesﬁf’glﬁb‘él
self-homomorphism (and hence not to a query automorphism, since Q is minimal). If the
mapping conflict indicator for v is the global address for an earlier conjunct-pair vertex u, this
means that H[u] = H,[v] and H,[u] #H,[v], and so again {<c,c >} cannot be extended.

This will be explained more fully as we now present an explicit procedure for constructing
Treelc,’]. We procede by levels. Odd levels contain conjunct-pair vertices and even levels
contain symbol-pair vertices. The first level consists solely of the root, a single conjunct-pair
vertex v with HIv] = <c,¢> and labellv] = <[R(c),0],profile [c],0>. If all the vertices on
level I, I odd, have been generated and the construction of Treelc,c’] has not yet been ter-
minated, the generation of the vertices of level I+1 proceeds according to procedure EVEN-
LEVEL. (In the following a vertex v of Treelc,c'] is unprocessed if we have not as yet
attempted to generate its children; a vertex <c,,c,> (or <p,z>) in GIQ] is unspanned if
there is as yet no vertex in Tree [c,c’] with <c,,c,> (or <y,z>) as its hidden label).

Procedure EVENLEVEL
begin
Lexicographically order the vertices of level I according to their global addresses.
While there remains an unprocessed vertex on level I, let v be the lexicographically first such
vertex and do the following:
begin
Let H[v] = <c¢;,c,> and for each unspanned <y,z> that is adjacent to <c;,c,> in
G[Q], ordered by their potential local address (the least i such that c;[il=y and ¢,lil=z),
do the following:
begin
Create a new symbol-pair vertex u of Tree[c,c’], with v as parent, with i as local
address, and with H[u] = <y ,z>. If there is any already-generated vertex w with
H\lw] =y (there can be at most one), then let 4 be the global address of w, set
label[u] = <i,A>, and halt the generation of Treelc,c’] (the tree is complete
since we have encountered a mapping conflict - see Figure 4). Otherwise, set
label [u] = <i,0> and continue.
end
end
end EVENLEVEL

If all the vertices on level I, I even, have been generated and the construction of
Tree[c,c’] has not yet been terminated, then we generate the vertices of level 7+1 using the
procedure ODDLEVEL:

procedure ODDLEVEL

begin

Lexicographically order the vertices of level I according to their global addresses, deleting all
those v such that H[v] either (a) has the same first and second components or (b) equals
<y,z>, where all the vertices adjacent to <y,z> in G[Q] have the same first component (in
other words, deleting all those v which correspond to symbol-pair vertices in G [@] that do not



-14 -

imply anything).

While there remains an unprocessed vertex on level I, let v be the lexicographically first such
vertex, and do the following:
begin
Let H[v] = <y,z>. If <y,z> is adjacent in G[Q] to a vertex with 8 as second com-
ponent, do the following:

begin

Let D = {c,€Cy : there is a vertex <c,,§> adjacent to <y,z> in GIQ]}. For

each ¢y € D, let Afc;l, the potential local address of ¢, be [R,j], where
R = R(c,) and j is the least index such that ¢;[j] =y and for no ¢, with ¢,[j] =z
does ¢, cover ¢, (such a j must exist by the definition of implication graph). Then
create a new vertex u as a child of v with H[u]l = <c*,0> and label[u] =
<Alc*),profile[c*],1> where ¢* is chosen to be a lexicographically minimum
member of D with respect to the (A4 [c*],profile [c*]) pair (See Figure 5). Since a
mapping conflict has been found, halt and terminate the construction of Tree[c,c’].
end

Otherwise, all neighbors of <y,z> have distinct first components. For each potential
local address [R,j] of an unspanned neighbor of <y,z> in G[Q], in lexicographic order,
do the following:
begin
Let D = {<e¢;,c,> : <ecy,co> is an unspanned conjunct-pair vertex adjacent to
<y,z>in GIQI with R(c)=R, c,[jl=y, and c¢,[jl=z}. For each <c,,c;> € D,
in lexicographic order by values of profile [c,] do the following:
begin
Create a new vertex u as a child of v with H[u] = <¢,,¢c,> and construct its
visible label as follows:
begin
If there is a <cj3,c4> € D, <cyze> # <cyp,c,> with profilele;] =
profile [c,], then the fact that <c,,c,> preceded <c3,4> in our process-
ing of D is only due to whatever arbitrary tie-breaking procedure we used
to order conjunct-pairs in D whose first components had the same pro-
file. We could just as well have had <c;,c,> first and H [u] would then
have been assigned the value <cj,cq>. This is a mapping conflict of
type 2 (See Figure 6). Set labellu] = <I[R,jl,profile[c,],2> and ter-
minate the construction of Tree [c,c].

If there is an already-generated vertex w of Treelc,c’] with H,[w] = ¢,
(there can be at most one), then let A be the global address of w, set
label[u] = <I[R,jl,profile[c;],4>>, and halt the generation of Tree[c,¢].

Otherwise, set label[u] = <[R,j],profile [c,],0)> and continue.
end
end
end
end
end ODDLEVEL

The construction of Tree[c,c'] continues until terminated as above or until an entire level
is processed without creating any new vertices.

It should be clear that this construction yields a Forest [c] whose topology and labelling is
totally independent of the names of the NDV’s in Q and of the order of the conjuncts in Cy.



- 15 -

This information is not used explicitly in our labellings, and whenever ties are broken lexico-
graphically, the sorting is done in terms of relation names, column indices, DV’s, constant
names, profiles, and special symbols such as § and &, none of which depend on the NDV’s or
conjunct ordering, and all of which would be present in any query equivalent to Q. Thus the
proof of Lemma 5.2, that if @ @ then the corresponding conjuncts have isomorphic forests,
would only involve a straightforward (and tedious) induction, which we shall omit.

The proof of Lemma 5.3 is much more interesting, and will proceed via a sequence of
sublemmas.

Lemma 5.3.1. If profile le\] = profile [c,), then ¢, and z-cover each-other—and-anycomjumct—————

thatcovers one must cover the other.

Proof. The fact that ¢, and ¢z have the same profile means that they are the identical up to a
renaming of their NDV’s. Hence there is a symbol mapping f that sends €1 to ¢y and a symbol
mapping f that sends c, to €1, and so each covers the other. The second half of the lemma
follows from the fact that the ““covering’’ relation is transitive. (]

Lemma 5.3.2. If there is a conjunct-pair vertex u in Tree[c,c’] with a mapping conflict indica-
tor of 2, then the implication closure of {<e,0>}in G[Q] contains two conjunct-pair vertices
<cp,ey> and <es,c,>, €1#c¢3 and c,#40, either of which could have been assigned as the
value of H [u] by procedure ODDLEVEL.

Proof. Let Hlu]l = <cy,c,>. By the operation of ODDLEVEL in assigning an mapping con-
flict indicator of 2, u was the child of some symbol-pair vertex <J,z>, all of whose neighbors
had distinct first components, and there was a second conjunct-pair <e¢ 3:€4> that could also
have been assigned as H [u] with €2 ¥ 8 # cs. We now show €)=y

Suppose ¢, # ¢,. Since ¢y and c; have the same profiles and ¢, covers c;, we would have
by Lemma 5.3.1 that ¢4 also covers ¢,. Thus both ¢y and ¢4 would cover ¢i, and hence
<¢€1,62> and <cj,c4> would be distinct neighbors of <y,z> in G[Q]. However, <y 2> is
adjacent to only one conjunct-pair with ¢, as first component, and so ¢,=c4 and <¢),c3> and
<€3,¢3> are the desired conjunct-pairs. []

Lemma 5.3.3. For all conjunct-pairs <c¢,//> of Q such that ¢ covers ¢ and c#Ed, if
Treelc,c’] contains no vertex with a mapping conflict, then there is a query automorphism
S:Q—Q with f(¢c) = ¢.

Proof. 1f Treelc,c’] contains no vertex with a mapping conflict, then it must span the entire
implication closure of {<e,>}. Let ¥ be the set of conjunct-pair vertices in this closure.
We claim that v’ obeys the partial homomorphism property. Condition (C1) is satisfied since if

conflict of type 1 for a conjunct-pair vertex in Tree [e,¢']. Condition (C2) is satisfied since if
the set of symbol-pair vertices in P’ did not obey the partial symbol mapping property, it would
contain vertices <y,z> and <p,Z>, z#7, and the second of these to be encountered in the
generation of Tree [c,c’] would have had a mapping conflict (unless the generation of Tree le,c]
had already been terminated on account of some earlier mapping conflict).

Since ¥’ obeys the partial homomorphism property and <c,/> € V’, there is a self-
homomorphism of Q that sends ¢ to ¢ by Theorem 3.3. Since Q is minimal, this self-
homomorphism is the desired query automorphism. [J

Lemma 5.3.4. If there is a tree isomorphism ¢:Forest [c] — Forest [¢'] and ¢ #¢, then for each
vertex v in Tree[c,c'], H,lv] = H [t (v)].

Proof. Let Treelc ,c’] be the image under ¢ of Treelc,’]. We proceed by induction on the
levels of the two trees. In each the first level consists of a single root vertex. If v is the root
vertex in Tree[c,c’], then ¢ (v) must be the root vertex in Tree [ ,c’]. Hence we have Hlv] =
<c¢,d>and Hlt (v)] = <¢ ,¢”>, and the lemma holds for the first level.

Suppose it holds for parent (u) and t (parent (1)). We show it holds for u. First note that
t(parent (1)) = parent (¢(u)), since ¢ is an isomorphism. We now split into cases, depending
on whether u is a symbol-pair or a conjunct-pair vertex.




- 16 -

Suppose u is a symbol-pair vertex. By hypothesis there exist ¢y, €3, and ¢; such that
Hlparent (u)]l = <cy,c;> and Hlparent (t(u))] = <cy,c3>. Suppose Hlu] = <y,z> and
Hlt(u)] = <y ,Z7>. Both u and t(x) must have the same local address, say i. This means
that c,[il=y and ¢,lil=z, and also that c,lil=y and c,lil=7. But then z=y and so
H,lu]l = H,lt (u)], as desired.

Suppose u is a conjunct-pair vertex. This is a more complicated case. By hypothesis
there exist y, z, and 7 such that Hlparent (u)] = <y,z> and Hlparent (1 (u)] = <z,7>.

—————Suppose Hlul =<eie;>and Hir(w)]l=<¢3,¢,> " Sinice t preserves visible labels, we must

have profile [c,] = profile [c;]. Thus ¢; ¢ . Moreover, <ci.c>> would

be adjacent to <y,z> in G[Q]: the fact that ¢ preserves visible labels means that u and  (u)
share the same local address [R,j], which implies that ¢,[j] = H[parent (u)] = y and ¢,[j] =
Hlparent (t(u))] = z. We cannot have c, = 6, because such a vertex could exist only if there
were no conjunct cj that covered ¢, and had ¢;[j]=z. However, parent (1) can have a child
with a hidden label of <c;,c2>, ¢2#8, only if <y,z> is adjacent to no vertex in G[Q] with 6
as second component. Since Q is fan-out free, this means that all neighbors of <y,z> in
GlQ] have distinct first components. The conjunct-pair <c;,c,> is a neighbor because
<¢1,¢2> is the hidden label of a vertex in Tree[c,c/'] whose parent has hidden label <y ,z>.
We have just argued that <c,;,c;>> must also be a neighbor. Since these two conjunct-pairs
have the same first component, they cannot be distinct neighbors, and so we must have
c) = c3, as claimed. [J

Proof of Lemma 5.3. Suppose that t:Forest [c]—Forest[’] is a tree isomorphism. We must
show that there is a query automorphism f:Q—Q such that f(c) =¢. By Lemma 5.3.3, this
reduces to showing that Tree[c,c’] contains no vertex with a mapping conflict, since ¢ and ¢
must have the same profile if their forests are isomorphic, and hence must cover each other by
Lemma 5.3. We shall show that each of the four possible mapping conflicts is impossible.

(1) Suppose there is a symbol-pair vertex u in Tree[c,c’] with a non-zero mapping con-
flict indicator 4, and let v be the vertex with global address 4 in Tree[c,c’]. We must have
Hlul = <py,z> and Hlv] = <y,”7> for some Z # z. Now consider t(u) and t(v). By
Lemma 5.3.4, we must have H,lt(u)l=H,lul=z and H,[t(v)] = H,lv]l = 7. But then
H,\[t(u)]#H,lt (v)], and so there cannot be a mapping conflict between t(u) and t(v), even
though the fact that ¢ preserves labels means that there must be. Hence we have a contradic-
tion.

(2) Suppose there is a conjunct-pair vertex u with a mapping conflict of type 1. Then
Hy[u]l =46. But this means, by Lemma 5.3.4, that H,[t(u)] = 0, an obvious contradiction
since # can never occur as a first component.

(3) Suppose that there is a conjunct-pair vertex u with a mapping conflict of type 2. This
means, in our construction procedure ODDLEVEL, Hu] was chosen by an arbitrary tie-
breaking rule from two conjunct-pairs with the same local addresses and profiles, and by
Lemma 5.3.2 these pairs are of the form <¢,,c,> and <c3,¢9>, ¢;¥c;. Because ¢ preserves
labels, H [t (u)] must also have been chosen from two conjunct-pairs <c,’,c,’> and <cy,cy'>,
c’#c3. But by Lemma 5.3.4, applied to the two alternative hidden labels for t(u) in
Tree[c,c'], we must also have both ¢,"=c, and cy’=c,, so again we have a contradiction.

(4) The case where a conjunct-pair vertex u has a mapping conflict indicator which is the
global address of some earlier conjunct-pair vertex is handled in the same way as case (1), lead-
ing to a similar contradiction.

Thus all possibilities for mapping conflicts are impossible and the desired query automor-
phism exists by Lemma 5.3.3. [J

Since Lemma 5.3, together with Lemma 5.2, implies Theorem 5.1, we now know that our
equivalence algorithm works. The remainder of this section is devoted to questions of its effi-
ciency.

We first observe that labeled forest isomorphism can be tested in time proportional to the
size of the forests, i.e., number of vertices in the two forests plus the total length of the labels



————————————to-be-able-to-hold-any-relation-name-R,-distinguished-variable name-x;constant z; orindex -

-17 -

[1]. Since our basic algorithm performs at most O (N?) labeled forest isomorphism tests, where
N is the number of conjuncts in Q or @', we thus can bound the overall running time for the
labeled forest isomorphism tests by placing a bound on the size of Forest[c] for any c€Cy.
This size is in turn bounded by N times the maximum size of any Treelc,c'], ¢ covers ¢, and
so it is this latter quantity that we shall examine in detail.

In what follows, let us identify each vertex of Treelc,c’] with the value of its hidden
label. In addition, we make the standard assumption that our computer word size is sufficient

Thus the only visible labels that require more than a constant amount of space are the

conjunct-pair labels (because of their profiles) and the (at most) one label that has a global
address for its mapping conflict indicator. For the purpose of asymptotic analysis, we can
ignore the latter case, since a global address is merely a concatenation of other labels, and
hence can at most double the total space required for labels.

We first examine the symbol-pair vertices of Tree[c,c’]. All but possibly the last symbol-
pair vertex of Tree[c,/] have distinct NDV’s as first components, and since the number of
NDV’sin @ is O(n), where n is the sum of the lengths of the conjuncts in @, this means that
there are O (n) symbol-pair vertices in Tree [c,c’]. From this and the fact that each symbol-pair
label (except possibly the last) requires only constant space, we conclude that the size of
Tree [c,c'] attributable to symbol-pair vertices is O (n).

The situation is only slightly more complicated for the conjunct-pair vertices. Discounting
the last such vertex (should it have a mapping conflict), all conjunct-pair vertices have distinct
first components. Moreover, the only non-constant-sized part of the visible label for a
conjunct-pair with ¢, as first component is profile[c,], whose length is proportional to
Length(c,). Thus the total number of conjunct-pair vertices is O (N) and the total length of
their labels is at most O (n).

We conclude that the size of Treelc,c’] is at most O(n), and hence the overall time for
the labeled forest isomorphism tests is O(N3rn) = O(n* time. This will also be a bound on
the running time for the entire algorithm, so long as each Tree[c,c'] can be generated in time
O(n).

Our general plan will be first to generate the implication graph for the current query, and
then use this to generate the Treelc’,c’]s. In our overall algorithm the original queries are
modified at most N times each, so we need generate at most 2V implication graphs, at O (n?)
time each (as shown in the previous section). Since we are assuming we generate O(n®)
Tree[c ,”1s, this works out to only a constant amount of time for each. In generating the
implication graphs, we thus can afford to do some extra work. In particular, we order the adja-
cency lists for the symbol-pair vertices so that all conjunct-pair vertices with # as second com-
ponent precede all conjunct-pair vertices with a conjunct as second component. We now argue
that the time for generating an individual Tree[c,c']is O (n).

It is not difficult to see that the time for generating the children of any conjunct-pair ver-
tex <cy,c,> in Treelc,c] will be proportional to Length(c,). Such a vertex <c;,¢,> is adja-
cent to at most Length(c,) neighbors. For each such neighbor <y,z> we first (temporarily)
delete <c;,c,> from the adjacency list for <y,z> in G[Q], so that in generating the children
of <y,z> we will not have to look at <c¢,,c,>, which is already in the tree. Then we add
<y,z> to the tree if it is not already there. The total time is proportional to Length(c;) if
adjacency lists are stored as linked lists in G[Q], with special fields so that temporary deletions
can be made using the trick from [1] that allows us to dispense with initialization. (We also use
this trick to allow us to test in constant time whether a new symbol-pair vertex has a mapping
conflict).

For a symbol-pair vertex, none of whose children has a mapping conflict, it is not difficult
to see that the time is proportional to the size of the children in Tree[c,c’]. By our deletion
trick above, we know we only have to look at those children that are not already in the tree,
and each label can be generated in time proportional to its length (there is, in fact, no need to



- 18 -

compute the profile, since profiles for all conjuncts can be generated in a preprocessing step).
What sorting needs to be done can be done in time proportional to the lengths of the profiles
using standard lexicographic sorting techniques [1], and mapping conflicts with earlier vertices
can once more be checked with our indexing trick.

The only potential difficulty comes when generating the children of a symbol-pair vertex
<y,z> which has a child with a mapping conflict, since we might end up looking at all the
neighbors of <y,z> and then generating only one child. However, note that, since @ and all
the queries derived from it are fan-out free, <y,z>> is either adjacent to a <c,,#> vertex or
else all of its neighbors have distinct first components.

In the first case, our generation of the implication closure insures that the <c,,6> ver-

tices will head the adjacency list for <<y,z> in the implication closure. In order to generate the
only child of <y,z> (and last vertex of Tree[c,c’']), we must order these vertices lexicographi-
cally by (local address, profile) pairs. This ordering can be done in time O (n), since there is at
most one vertex to consider with any conjunct as first component, local addresses are of con-
stant length, and so the total length of relevant profiles is proportional to the sum of the
lengths of the conjuncts.

In the latter case, the total work involved in generating all the children of <y,z> up to
the one with the mapping conflict will also be O(n), since it will again be proportional to the
sum of the lengths of the first components. If a global address must be found for the mapping
conflict indicator, this will again be doable in time proportional to the size of the already-
generated tree.

Thus the time for generating Tree [c,c’] will be proportional to its size, which is O(n),
plus a final O(n) for the last vertex, or O(n) in total, and the overall running time of the
equivalence testing algorithm is O (n*).

6. CONCLUDING REMARKS

We have extended the class of queries for which minimization and equivalence testing can
be performed in polynomial time to a new class, the “‘fan-out free’’ queries, that is a generali-
zation of classes considered in [2,3,7,8], and allows for queries which are not restricted to
untyped variables and hence can ask for transitive information about databases. The running
times for our algorithms - O(n®) and O(n*) respectively - are the same as the corresponding
running times in the original papers [2,3] on ‘‘simple”’ queries. One direction for future
research would be to try to improve the running times of these algorithms, as did [7] for the
simple query algorithms. For example, in the equivalence testing problem, it would seem pos-
sible to do a certain amount of “‘pruning’’ to our Treelc,c']s and still get our algorithm to
work, although whether such an approach will yield an asymptotic improvement in worst-case
running time is more problematic.

Another direction for further research would be to further extend the class of queries that
can be handled. The minimization algorithms of [7] for the class of typed queries in which no
conjunct has more than one occurence of a repeated variable (the queries obeying restriction
(2) of Section 2), would seem to extend more-or-less directly to the untyped case, yielding
O (n?) algorithms. Although we have already remarked that queries in this class cannot ask any
questions that a fan-out free query couldn’t also ask, there are queries in the class that are not
fan-out free. One might hence be able to construct a combined minimization algorithm, which
not only handled all queries that either obeyed restriction (2) or were fan-out free, but also
could deal with queries which were in neither class, but partook of certain aspects of both.
Whether one could also obtain a polynomial time equivalence algorithm for such an expanded
class appears to be a harder question.

One also might look to see what can be done when the restriction to conjunctive queries is
removed. Sagiv and Yannakakis [8] examined this question in the case of typed queries. What
can be said when untyped variables are allowed? Also, what about databases obeying more
complicated dependencies than mere functional dependencies?



-19 -

Finally, we note that the techniques of Section 5 may have implications beyond database
theory. Essentially what we did in this section was show that a special case of the graph iso-
morphism problem could be solved by constructing canonical labelled forests and using known
algorithms to test for isomorphism between them. It may well be that there are other isomor-
phism or equivalence problems which, although equivalent to graph isomorphism in general,
have meaningful special cases which can be solved in an analogous fashion.




-20-

REFERENCES

A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, MA (1974), 84-86.

A.V. Aho, Y. Sagiv, and J.D. Ullman, “Equivalences among relational expressions,”
SIAM J. Computing, 8 (1979), 218-246.

A.V. Aho, Y. Sagiv, and J.D. Ullman, “Efficient optimization of a class or relational
expressions,” ACM Trans. on Database Systems, 4 (1979), 435-454

A K. Chandra and P.M. Merlin, ‘“‘Optimal implementation of conjunctive queries in rela-

tional data bases,” Proc. 9th Ann. ACM Symp. on Theory of Computing, Association for
Computing Machinery, New York (1977), 77-90.

E.F. Codd, *‘A relational model of data for large shared data banks,”” Commun. ACM, 13
(1970), 377-387.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Co., San Francisco (1979).

Y. Sagiv, ““Quadratic algorithms for minimizing joins in restricted relational expressions,”’
Report UIUCDCS-R-79-992, Department of Computer Science, University of Illinois,
Urbana, IL (1979).

Y. Sagiv and M. Yannakakis, ‘‘Equivalences among relational expressions with the union
and difference operators,” J. Assoc. Comput. Mach., 27 (1980), 633-655.

M. Yannakakis and C. H. Papadimitriou, ‘““Algebraic dependencies,” Proc. 21st Symp. on
Foundations of Computer Science, IEEE Computer Society, Long Beach, CA (1980), 328-
332.



.2‘_

Parent Child
George-HI Adolphus
Victoria Alice
Albert Alice
Adolphus Mary
George V George VI

Mary George VI
Elizabeth Elizabeth II
George VI | Elizabeth II
Victoria Edward VII
Edward VII George V

Figure 1. Relation R, with scheme <Parent,Child>. If R,(x y),
then x is the parent of y.

Parent Child
George 111 George III
Victoria Victoria
Albert Albert
Adolphus Adolphus
George V George V
Mary Mary
Elizabeth Elizabeth
George VI George VI
Edward VII | Edward VII
Elizabeth IT | Elizabeth I

Figure 2. Relation R, with scheme <Parent,Child>. If R,(x ,y)
then x is the same person as y.



Base Relation Scheme R, = <Parent, Child>
Target Relation Scheme Ry = <Great-great-grandparent, Child>

- Y S
Xo={x %2} Yo =1y 5y}

= 3 . » NIV 2,7 3) lLv?an)}
<¢'2,Cl> <yl’xl>
<c¢3,01> n <y2,yl>
<C2,C4> <y2,XI>

<c€3,04> \ <y3.x;>
\

<c€3,03> — <yny3:>
<C3,6'2> \ <y2,x2>
<Cl,0> )

<y21y3>
<cy,0> <V3X3>
<c3,0> <y1.y2>
<cg4,0> <y3,y,>

Figure 3. A query Q and its implication graph Go.



-23-

c1=Ry(u), ca=R,(v)
Treelc,,c,] c3=Ry(u,y), ca=Ry(v,z)

cs=Rs(u,y), ce=R3(v,x)

(vertices represented by ‘‘hidden label : visible label’’)

<cp,Cy>> t <[R,,01, <[{1},8]>,0>

<u,y>:<1,0>

<cye> : <[Ry11, <I{1},2],[{2},2]>,0> <cs,ce> 1 <[R3,11, <I{1},21,[{2},2]>, 0>

<y,z>:<2,0> <y x> <2,(<[R0], <[{1},8]>,0> <1,0>...)>

Figure 4. Example of a symbol-pair mapping conflict. The full
MCI is the concatenation of all visible labels on the path from
<cy,c,> through <y,z>.



~24-

c1=Ri(u), c=R(¥), c3=R(u,5), c4=R,(v,10)

<C1,€2> ¢ <[Rl10]: <[{1}’¢]>’0>

<u,v> : <1,0>

|

<c3,0> 1 <[R,,1], <[{1},2],[{2},5]>, 1>

Treelc,,c,)

Figure 5. Example of a conjunct-pair mapping conflict in which the
MCI has value 1.

Clle(u), C2=R1(V)1 03=R2(10,u ,10,}’), c4=R2(]0,u,10,z), (,‘5==R2(10,V,10,X)

<Cl,(.‘2> . <[Rl,0],<[{1},Q]>,O>

|

<u,v>:<1,0>
Treelcy,¢)l l

<epes> 1 <[Ry21,<1{1,3},101,[{2},21,[{4},2]>,2>

Figure 6. Example of a conjunct-pair mapping conflict in which the
MCI has value 2. For simplicity, we have used a non-minimal
query as our example. A minimal query with the same mapping
conflict can be otained by adding extra conjuncts to insure that the
NDVs cannot map to each other.



