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ABSTRACT

Consider solutions (G(x,€),H(x,E)) of the von Kirmin equations for the
swirling flow between two rotating coaxial disks

iv

(1.1)  EHT + HH''' + GG' =0
and
{1.2) €G" + HG' - H'G = 0

with boundary conditions

(1.3) H(0,€) = H'(0,€) = H(1,€) = H'(1,€) =0

(1.4) Glo,€) = s, e(1,e) =1, |s| 1.

In this work we establish the existence of solutions for € small enough. 1In
fact, if n 1is a given positive integer with sign s = (~1)? then there is -
for € > 0 sufficiently small - a solution with the additional property:
G(x,€) has n interior zeros. If n > 1 there are at least two such
solutions. If s = 0 there is at least one such solution for every positive
integer n. The asymptotic "shape” of these solutions is described.
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ON THE SWIRLING FLOW BETWEEN ROTATING COAXIAL DISKS: EXISTENCE AND NONUNIQUENESS*

Heinz-Otto Kreiss1 and Seymoﬁr Ve Parter2

In 1921 T. von Karman [5] developed tné“stmiiarity~eqna€ieas—£e£—axizsymmofric.

incompressible, steady flow - rgwirling flow". Let (qr,qe,qx) be the coordinates of
velocity in cylindrical coordinates, (r,8,x). von Karmin assumed that there is a function
H(x,€) such that
qu = -H(x,€) »

Then, as a direct consequence of the steady state Navier-Stokes equations one finds that
(see [1], [5]) there is a function G(x,€) so that the velocity components are described by
Q. =-§- H'(x,E), dg =-§-G(x,€) o

The functions (G(x,€),H(x,€)) satisfy the equations
(1.1) eﬂiv + HH''®' + GG*' =0,
(1.2) €EG® + HG* - H'G =0
The quantity € > 0 is related to the bulk viscosity. Equation (1.1) can be integrated to
yield
(1.3) €eH'’" + HH" +-% G2 --% (H')2 =1
where U is a constant of integration.

In the case originally studied by von Karmin, the flow above a single disk, we have a
problem on the infinite interval [0,#] and the constant of integration is known, ie€ey

y = 1 Q2

=39,

where &, = G(®,€).
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In [8] we considered the asymptotic behavi&r-of families of solufions (G,H) which
satisfy the bounds:
(1.5a) |a(x,€)| + |H'(x,€)| + |6(x,€)| < B .
There is a boint Xgs 0 < Xg < 1 and a constant - §, 0 < § € B such that
(1.5b) ]u(xo,su >8.
Interestingly enough we discovered that there are no such families. Moreover, a careful
analysis of our discussion makes it clear that éhe source of the difficulty is the
condition that
Lin {|8| + (8,13 # 0.
€*0
Furthermore, the physical béundary conditions (1.4a), (1.4b) together with the conditions
(1.5a), (1.5b) imply that (in the 1imit as € + 0+) the function H(x,€) may not have
nodal gzeros, i.e.
(1.6) ) tim H(x,€) may not change sign .
Therefore we turned to the question of the existence of "pathological® solutions
(G,H)  which satisfy the differential equations (1.1), (1.2), the bounds (1.5a), (1.5b);

the boundary condition {1.4a), (1.4b) and also satisfy (1.4c) with

(1.7a) ]no(e)l + ]2, @] # o, 0<ce
(1.7b) Lim {|0,(e)] + |2, ()|} =0 .
e . e*0 o?

Moreover, (1.6) implies these solutions should be essentially "positive®™ in the sense that
. H(x) = Lim H(x,€) > 0 . |

Remark: The hypothesis (1.5a), (1.5b) impiies that - after the extraction ofka subsequence
if necessary, the functions H(x,€) are convergent to a non-trivial limit function.

The results of (8] imply that ﬁ(x) must then have a special form. That is, there
are n numbers, 00,61,...,Gn, with
(1.8a) . 0=0,<0, <c°°°< g =1
and, on the interval .

o, .0,

j J+1]' j =0,1'.co'n-1
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we have
- 82 .

(1.8b) H(x) =—22L [1 - cos T,(x - 9,)1 ,
- T“ J J

) J
where

-1
1.8¢C T. = 2w (0. -0, °

( ) 3 ¢ j+1. J)

In this paper we prove that if € > 0 is small enough there are such pathological
golutions. Moreover, such solutions exist for all n, n = 1,2,ee. ;

The main result is
Theorem I: Let n > 1 be a given integer. let gg,,9, be given real numbers with
(1.9) - ' g, # 0, signg, = (1) .
Then there is an € > O and an L = L(€) such that, for all € € (0,€] there is a pair
of functions (G(x,€),H(x,€)) defined on the interval [0,L{€)] which satisfy the
diffe:%ptial equations.(1.1), (1.2) on that interval. 1In addition these functions satisfy

the boundary conditions

(1210a) - H(0,€) = H(L(e),e) = 0 ,
" {1.10b) H'(0,€) = H'(L(€),€) =0 ,
(1.10c) 6(0,€) = g0e2/3; G(L(€),€) = 9152/3 .

The functions ({G(x,t),H(x,E)) also satisfy (1.5a), (1.5b). The function H(x,€) has
n “humps®. To be precise, there are exactly n + 1 numbérs,

0 =0, <0, (€) < o0 < on_1(e) < an(e) = L(€)

0
at which H(x,€) has (relative)vminima,'that is
‘(1.11) H'(aj(E),e) = 0, H"(vj(e),e) > 0.
Moreover,

H(cj(e),e) > xe'/3
and, between the oj(e), H(x,e) is essentially positive. In fact, H(x,€) is essentially

given by (1.8b) while the function G(x,€) has the form

(1.12a) Glx,€) = (-1)jrja(x.e). 0,(8) < x < 0y (e)

-



where

(1.12b) 1, = ——, 3 = Ojlyece,n = 1 o

Finally, there is a constant T ¢ 0 such that
~ j_.1
(1.13) Lim 7 (€) = |T| .
e+0
Remark: The characterization of G(x,€) given by (1.23), (1.2b) can be made more precise.
Case 1: do 0 .

In this case G(x,€) has exactly n interior zeros, say Y1,Y2,...,Yn, and

(1.14a) vy < oy § = 1,2,000,0
(1.14b) o -y = aeV3y, 5 = 1,2y00es0 o
Case 2: 99 < 0.

In this case G{x,£) has, exactly (n + 1) zeros, say YO,Y1,YZ,...,Yn “and (1.14a),
{(1.14b) hold. Moreover

= g = 1/3
(1.14c) =0< Yy Y g, = Ote ) -

0

Once one has proven this result we obtain the pathological solutions on the interval

g
4]

[0,1] by taking

(1.15a) ) % = x/L(e), &' = €/L(E)

(115b) HG.et) = Hlx,e),  G(x,e') = LIE)G(X,E) .

The- functions (E,E) satisfy (1.1), (1.2) -~ with x replaced by % and € replaced by

€', 1In addition these functions satisfy the boundary conditioné (1.4a), (1.4b), (1.4c)

with
5/3 2/3
ﬂo = so(e') = g, / (e*) / '
3 2/3
a, =9, = g,1>%(e") /3,
Finally, if we set A
) ~ e! 51/3
(1.163 : £ = = ’
Q_ (e 5/3
i 18, (e )| lg L / |
(1.16b) | fi(x,6) = Tﬁ_T%TTT'E(;'E') - 0(c7% ,
A
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(1.16¢) 8G9 = gy §Geen = 0T
1

we obtain a solution of (1.1), (1.2), (1.4a), (1.4b), (1.4c) with € replaced by E, x
replaced by ;, with Qo replaced by 50, and 91 replaced by 51 where
noﬂgo/ga‘l 91=1 i
For completeness sake we formulate this last result as
Theorem II: Let n » 1 be an integer, Let s be a given real number. Then for €
small enough there is a solution {(G,H) of (1.1), (1.2), (1.4a), (1.4b), (1.4c) with
(1.17) 90 = 8, 91 =1,
This solution may be described in a manner similar to the description given in Theorem I.
There are exactly (n + 1) numbers
0= UO(F) < 61(5) < e0e0 < °n-1(€) < on(e) = 1
at which H(x,€) has its relative minima, i.e.,
(1.183) H'(Oj(e),e) = 0, H'(oj(s)'e) > 0 .

Moreover, between the Gj(E) the function H(x,€) is essentially positive. That is, for

any given 4 > 0, 28 < °j+1 - oj we have, for small €,

(1.18b) H(x,€) > O, cj(e) +8 <x < 0j+1(€) -8,
Furthermore

2n _ B ~d
(1.19) “ Lin(- ) = g = goltl? -

J+1(€) - Uj(€)

The function G(x,€) has at least n nodal zeros; 0 < Y1(e) < Yz(E) < voe & YA(Q) < 1.

) Moreover
(1.20a) V() < o (), 9y - 15 = 0(€), j = 1,2000,0 o
Ifu s # 0 and
sign s = (-1)n+

then G(x,€) has (n + 1) zeros. The additional zero, Yo(e) satisfies

(1.20b) 0 < Yg(€) = OCe) .
Furthernore
(1.21) pEl = (€72), el = (7)) .

.




Remark: One can choose to characterize the solution (G,H) by the number of "humps” or by
the number of interior (nodal) zeros of G(x,€). Suppose we choose to discuss the number
of humps. If s # 0 let (G(x,a),ﬁ(x,e)) be the solution described in Theorem II with

n humps and

1 -
‘gr = isfr— .

wl
H

) Then

L}

H(x,€) --[—:!THU - x,8) ,
E(x,e) ='%~G(1 - %,8)
is another solution of (1.1), (1.2), (1.4a), (1.4b) and (1.17)s On the other hand, if one
chooses to look at the number of interior zeros of G(x,€) we have the following situation
Case 1: s > 0. For every ev;p 5§ » 2 there are at least two solutions (G,H), (E,E) 6£
(1.1), (1.2), (1.4a), (1.4b) and (1.17) with G(x,€),G(x,E) having exactly f interior
zeros and which also satisfy
?(x,ﬁ) > 0, E(x,e) > 0, (essentially)
Let n=rn and (G(x,€),H(x,E)) be the solution described in Theorem II. From (1.9) we
see that
gy > o, 9g > 0.

Hence G{x,€) hashexactly n = n interior zeros. In addition, let n = n-1 and
(E(x,e),ﬁ(x,E)) be the solution described in Théorem II. Then

, .99 <0, gg<O0 (essentially)
and E(x,E) has exactly n + 1 = n interior zeros.
Case 2: 8 < 0. For every odd n>»3 ther; are at least two solutions (G,H),(g,g) of
(1;1), (1.2), (1.4a), (1.4b) and (1.17) with G(x,e),E(x,E) having exactly n interior
zeros and §1so satisfy

H(x,g) > O, E(x,s) > 0, (essentially) .
If 7 = 1 there is at least one solution (G,H) of (1.1), (1.2), (1.4c), {(1.4b), and
(1.7) with G(x,e) having exactly fi =1 interior zeros while
H(x,e) > 0  (essentially).

Let n=n and (G(x,€),H(x,e)) be the solution described in Theorem II. From (1.9) we

-8~



see that N

94 < 0, kgo > 0.
Hence G(x,€) has exactly n = n interior zeros. If 0 51 let n=18~-1 and let
(E(x,e),ﬁ(xie)) be the sﬁlution described in Theorem IXI. Then

‘ gJ > 0, gy < 4]
and E(x,e) has exactly n + 1 = n interior zeros.
Case 3: s = 0. For every n 2 1 (even or pdd) there is at least one solution
(G(x,e),H(x,€)) with G(x,€) having exactlyT i interior zeros and
H(x,é) >0 {(essentially) .
Let n=n and let (G(x,€),H(x,€)) be tﬁé solution described in Theorem II.
The basic Theorem I is proven via a Fshooéiné” argument. The basic estimates follow

from the following analysis. 'When H(x,&) ié small, i.e.

H(x,€) = o(e*/?)

then one studies the "stretched” problem: let

X "x,

(1.22a) , | k -E=—‘1—/§2,
€
(1.22b) . nE,e) = e 3u(x,e), glEe) = e/ 36(x,8) .
The functions (g;h) satisfy the equations ’ ; - _—
(1.23a) h''s + hh" + -‘2— e2/342 -—‘2- a2 = w3 2 geV3,
(1.23b) . g +hg' - h'g =0 .
With u = O(€), i.e., M = 0(1). We find that
(1.24a) h(E,e) + h(E) ; a guadratic function
of the form ’
(1.24b) . h(&) '=-g- (€ - 50)2 .
Furthermore o

g(E,€) + 3(E)
where g(£) satisfies

(1.25) : 5 +Rg' -F'g=0.

-G




e . RN

The solutions of this problem are discussed in the Appendix. On the other hand, when
H(x,E) 1is "large®, then the development in {8] shows that H,H‘,H',H"',G,G',G‘ can all

be estimated in terms of

.

G(x.e)

H(Xx,€)

Fortunately, we do not requ1ré‘that*“ﬂfx784~—be~too»laxée- In fact,

1x,e) > ke2/?

is sufficient. Hence the requirements of “small” H(x,€) and "large® H(x,€) overlap and
we are able to give a complete analysis.
Realizing these facts one proceeds as’ follows.

starting Procedure (See Theorem 3.2.) L

For every choice of ﬁ,hz,a,go there is a»solution-?ég,h) of (1;233). (1.23b) on the
interval [0,a] which also satisfies the boundary conditions
{1.26a) h(0;€) = h"(é,e)i;b;k h®(0,€) =hy > 0,
(1.26b) _ g(0,€) = g5 9(e,€) = hl@E) .
The results of Section 3 show that thi; solution (G,H) of (1.1)} (1.2) - originally
defined only on the interval [0,381/3}_ magbbe continued to entire interval [0,2% - 8]
and, on this interval A |

hz
(1.27) H(x,e) = :5-[1 - cos Tx), G(x,€) = Tﬂ(xfﬁ)
where 0 < T <1 and T 1 as o + @, The results of Section 4 show that'this solution
may in fact be continued to the larger in;erval 2“[1 + —%7] -~ & where T is a negative

| 7l
number described in the Appendixe. Furthermore, for small € we have

h
(1.282) H(x,e) = =% (1 = cos T (x - 201, 20+ §<x a1t +—] -5,
T |7l
1
(1.28b) 6lx,€) = =T H(x,€), 27 + sexcamft+—=] -8,
e 7l
(1.28¢) : T, =3l .

Thus we have exhibited 2 “humps®. Proceeding in this way we construct a solution with
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n humps. Let X, = xn(e) be the n'th relative minimum of H(x,€). In Section 5 we

n

employ an elementary degree theory argument to show that one ma

provided that

In this way we prove Theorem I.

H(xn,E) =0,

G(xnyﬁ) =g,

sign g; = (--1)n+1

-]ll-

y choose ﬁ,hz so that




2. Existence of Solutions Away from Turning Points

In this section we are concerned with solutions of the equations (1.1), (1.2)

(2.1) : en'Y + HH''' + GG =0,

(2.2) . : €G" + HG' - H'G = 0 ,

with initial data

v v - : . v v
(2.3a) d H(xo)/dx = Hv' v=0,1,2,3, 4 G(xo)/dX' = Gv' v= 0,1,
where
(2.3b) A§Qﬁ> 0 .

In dealing with this case we use a basic‘éééimate 6f Kééiss (lemma 2.1 of [7]} whiéh we . a
jnclude for the sake of completeness. -

Lemma 2.1: Consider the differential équation

(2.4) T ¥ + atoy ~Fx), a<x<B,

where a, F are continuous functions‘with |

a{x) > O

and € >0 is a posifive constant. The solutions of (2.4) satisfy the estimate

(2.5) lyte)| < IE/al, o+ otx@yt@], e <x.
‘ o B » .
Here
(2.6a) pgl = max |£(t)]
@rX ge<x
1 X
(2.6b) -~ o(x,a) = exp{- -S.I a(t)dt} .
[+ ]

proof: The solutions of (2.4) are given by

X S
v = y@ota) + [ expll | ateras) + B2 ac .
a 4 .
¥We rewrite this as
‘g ) _
F(t) 1 .
yix) = y(a)o(x,a) + £ m—y d(exp{-s—{‘ a(s)ds}) .

-12- .



For fixed x > a the function

1 t
exp{E-f a(s)ds}
x

is monotone increasing as t increases from o to X. The estimate (2.5) follows from

the mean value theorem.

Lemma 2.2: Let (ka,e),ﬂ(x,é)) be a solution of (2.1), (2.2), (2.3a), (2.3b). Let

X
s(x.xo) = exp{- %-I H(t,E)dt} .
*o

G‘(xo,s) =G, o

Then, for x 2 xg we have

(2.7a) ' (x,e)] < lc;/me,x . ﬂﬁ'lxo'x + slx,xg) |6, | »
o ' @ < ° -

(2.7) le® (x,€)| IG/HIXD'X i |x0'x + s(x,xo)tc2| '

(2.7¢) . ‘ {lH"'(x,e)l < 'G/“’xo,x . IG'Ixo'x + s(x,xg) [Hy| -

Proof: The estimatés (2.7a), {(2.7¢c) follow from Lemma 2.1 and equations (2.2), (2.})
respectively. Diffe;entiating (2.2) we’havé
(2.8) | ' EG''' + HG" = HG .
The estimate (2.7b) follows from (2.8) and Lemma 2.1.
Lemma 2.3: Let (G,H) bé a solution of the above problem in some interval xg < x < x4
with the following praoperties
(2.9) H>0 le/mi <M, x; - xg € min(1/M,1) .
0° ™1
Then there are constants Kij which depend only on Hu’ v=0,1,2,3; G

M and not on € such that

-13-




1a3c/axd <Kyso 3 =00, ; N
X, X J s .
0’1 :
(2.10)
1a3n/a S Kpis 3= 0,1,2,3 .
X ¢ X J
0"
Also e
o p—
(2.11) el S MK, + |G2|, G, = G"(xy,€) »

0’

proof: For any solution of the above equations we may apply lemma 2.2 and obtain the

estimates (2.7a), (2.7b), (2.7c). Also, the Taylor expansion

X
H'(x) = Hy + (x = xg)Hy + [ (E = x JH"" " (§)aE
X

0
gives us
. 1 2 i

] - — - st .
(2.12) iH 'xo.x < g+ |x - xglHy + 5 (x - x)71E 'Ixo'x .
Therefore by (2.9) and (2.7)

2 1 2.2

veey < Iy’ < = - ves
)4 xy%, M IH on,x1 +mjG, | + [Hg] <5 (x, - x )MIH Ixo'x1 +

I M2{|H1| + (x, - xy)H, |} + ule, | + |ugt .
By (2.9) (x; - xo)2M2 €1 and x; - X9 €< 1. Therefore
m"'lxo'x1 < 2M?(IH,| + |my|) + 2l | + 2|Hy] .

Thus we have proved the estimate for H'''. By Taylor expansion (see (2.{2)) we obtain the
estimates for H,H',H®, and by (2.7a)}and (ﬁ.?b) they follow ;lsé for‘hG,G',G'.

We shall now use these estimates to derive existence theorems.
Theorem 2.1: Consider the initial value problem (2.1)-(2.3) and assume tha£ .
(2.13) ‘Hy 2 §>0. |
Then there is an interval x, Cx <€ x4y Xy = %X52>0, independent of €, in—which the

above problem has for all &€ with 0 < € € 1 a unique solution.  Moreover the estimates

-4



(2.10) of Lemma 2.3 are valid. The constants Kij depend only on Hv,vb= 0,1,2,3;
G,V = 0,1,2 and 6.
Proof: Let € >0 be fixed. From the general existence theo;y for ordinary differential
equations it follows that there is an interval Xg < x € x; where the conditions of Lemma
2.3 are satisfied with M = 2(|Gy/Hg| + 1). We want to estimate x;. Taylor expansion
gives us
jH(x) - Hy| € (x - xg)Kpy,s [G(x) = Gy € (x = HpIKyq

Therefore H(x) ? %-HO, letx)| < |Gyl + |Hy] and |H(x)/G(x)| <M for

0 €x - xqg < min(1/x11,Ho/(2K21)) =Xy = X o
Thus the solution exists in this interval and the theorem is proven.

Now consider the limit process € * 0, We want to prove
Theorem 2.2: Assume that Gv’uv are functions of € with
(2.14a) lim B, = ,v = 0,1,2, lin Gy = Gor Hy >85>0 .
€+0 €+0

;"Assume also that
(2.14b) H3,G1,G2‘ are uniférmly bounded .
Let xg,x, be as Theorem 2.1. Then the solutions of the initial value problem (2.1)-(2.3)
converge on any interval x5 + § € x < X0 8§ > 0 to the solution of the reduced problem

v’ V= 051.12 [

(2.15a) HH'"'' + GG' = O, d“ﬁ/dx“| = H
X=X, ..
(2.15b) e - A'@=0, &lxy) =Gy »
Proof: (2.14) and (2.10) show that
EG" = 0(c) + 0 .
pifferentiating (2.1) we obtain for y = Y the equation
€y’ + Hy + H'H'*' + (c_:')2 + GG" =0 .,

' Therefore by Lemma 2.1 and (2.14)

‘
-

| < [t s (c")? + canj
i

H 1
X

(2.16) Jy(x) + {y(xg) |s(x,xg) «

o'*

By (2.14) eH"'(xD) is bounded. Therefore y(xo)s(x,xo) is bounded for x ? x, + s,

-15-




Therefore €y + 0 and the theorem follows by standard compactness arguments. This proves
the theorem.

It is easy to see that the solution of (2.15) has the form

*

B H
- - 1 2
WM__*.)_*:.LJ‘:L_COS -
ot T o 2 T(x xU))

(2.17)

Glx) = TH(x), T = G/H, -

Up till now we have only proved the convergence to G,H in the interval
Xg < x < X4+ However, we obtain immediately uniform convergence in any interval
Xg € x< §1 where ﬁ(x) » g, ¢ any constant > O. This we can also express in another
way. Let X < Xg < ¥ be the first points to the left and righﬁ of Xq with
a(i) = E(i) = 0. Then we can prove existence of solutions (G,H) of (2.1), (2.2) and
uniform convergence to (E,E) in any i;térQair % < Xq < x € xy < %¥. (Of course, if we
move Xg then we have to ch;nge the initial‘éonditions to obtain the same <E,§>).

In [8] we proved thaé a necessary condition to obtain an order one solutibn of the

rotating disc problem is that H'(X) = a!(i) = 0 i;g;’we can write (G,H) in the form

- 2 - _ - . _
(2.18) H= :5-(1 - cosT(x -Ax)), G=1TH, x<x<x+ T?T .

Hence, we shall seek such solutions.

-1}
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purposes we write the equatibn (2.1) in

another form. We integrate (2.1)

-~

For later
and get
(2.19) EH'IY + HHT +-‘— G2 -u'2) =u.

To obtain a 1imit solution of the form (2.18) it is necessary and sufficient that

lim ¥

e+0

0 because a simple calculation

shows that (G,H)

satisfies the equatlon

i1 +-‘2- (,32 -@n? =0.

For our purposes the right choice is

(2.20)

Instead of H3

. particular Hj

(2.21)

Finally we collec

Lemma 2.4:

(2.22)

(2.23)

(2.24)

(2.25)

Also

(2.26)

Proof:

: uaeu.
we can give

is bounded if

1 a2 2y -
B, + 3 (Gg = HY) = o(e),

We can write the equatlons (2.1), (2.2) in

1
- —e—f H(n)an
X

0 x

H'Y ' (x)
(1}

1 X
- [ H(n)an
X

G'(x) = G‘(xo)e-' %-i e

0

G'(x) = (G(x)/H(x))H'(X) - eG® (x)/H(x)

(HGY - GH')/Hz = —éG“(x)/Hz(x)

d
E;'(G/H)

1 X
- - E’I H(n)an
x ‘
G*{x) =

" 1
G (xo)e —e-f e
x

0

i as inxtxal condition and compute Hj

A . 1
w0l I

1
€

from (2.19). In

¥ bounded .

+ a number of formulas which we will need later.

the form

1 .4
- -E-f H(n)an

g G(E)G" (E)EE 4

1 X
-E-I H(n)dn

¥

H'(E)G(E)AE , .

-

X
[ H(M)an

& H" (E)G(E)AE .

These equations follow directly from (2.1), (2.2) and (2.8).

?
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3. Existence of Solutions when»~ﬂo is Small’

We consider again the initial value problem (2.1) (2.3) and write (2.2) in the

§ integrated form (2. 13) with u of :the form (2.14). Consider initial data of the form

(3.0 g =¢n, my = eV/n ‘} Hy = by, B = ch, hy > 0, V= 0,1,2,

]

0'

2/3 1/3 S ;
(3.2) Gy = € / 9qr Gy =€ / 9yr gv > 0,>’ v=0,1 .

ﬁ,hv,gv can be functions of € but we assume that

- 1/3 2
+u~55/g0

ﬁ:90191rh0:h1.h2 ana H3 = -

are bounded independently of €. We assume aleo that

(3.3) Gy = h1‘30 = hogy ? °’f;- ,‘

and is bounded independently of €, We-want to. prove R

Theorem 3.1: There is an lnterval xo 'S < : x1 - xo > 0 independent of €, in which
the above problem has a unlque solutzon for~a11 € w1th 0 < € € 1. Moreover

1 " .31 ’
(3.4) 0<3 Hz < H*(x) sﬁ? Hz. x. € X <X

and the estimates (2.5) of Lemma 2.1 are valid;hi,1 - xo and sthe: constants K1j depend

s,

only on H NV = 0,1,2,3; go/h0 and Gv'v = 0,1, 2. Also

= 1 2
(3-5) i eG” (x) = 0(8)' H(x) ». Ho + "4' Hz(x - xo) °
Proof: Let X, < x < x‘ be the 1argest 1nterva1 satlsfylng (3 4).  Then (2.20), (3.2),

(3.3) and (3.4) imply that G"({x) » 0. Therefore by. (2.19)

'G/“'xo.x{ < Gy/Hy = go/ho =M.

Thus Lemma 2.1 shows that da H/@x , ¥ = 0,1,2,3; d“G/QxV, v = 0,1,2 are bounded if (3.4)
holds and x4 - X < mln(1/M,1). By Taylor expansxon ’
L] - H® < - I‘I o
ju®(x) - H (x| < x xg) R |x,x0
Therefore, we can find x4, independent of 6; such that (3.4) is valid. Then (3.5)
follows from Lemma 2.1 and the assumptlon that ho >0, hy >0 and that G, is bounded

independently of €. This proves the theoren%,;

-~18~-



Now we consider the limiting process € + 0. Assume that N

1/3 - 2/3 1/3
3y +o0,n +h )0,€/g0+0,€/g1+0,gol/ho"“t1>v0.

2/3,
€ hy > 0, €70y 2 7 M

go,ho,g1,h1 can be large. However, we assume that §,€1/3gg"ére uniformly bounded and
that
2 _ 1/3

where % > 0,p are also uniformly bounded. This assumption guafantees that we have bounds

for

- 1 _1/3 2
G,=%2>0 and Hy=p+ H-3E / 94 °

By Section 2 and Theorem 3.1 (G,H) converge in a néighbourhood of xi- to a solution

(§,B) of the reduced equation. (G,H) is of the form (2.12) with % = Xge We want to

derive a relation between 11 and T. By (2.19) and (3.5)*

Glx,) Glx,) X g (x)
Az - HA(x C© 7 . o
1 o %Xy H (x)
with
x
1 X
€ f EE dx € const. € f 3 ax 2'2
x, H Xy (HO +7 Hz(x - xo) )
€ ax € t.
- _conste
[ < . =
- const. 21 53 < comst. —u5 =T 3/2
S x X - X H °h
0°0 (1 +.l ( O) ) : 0 00
a2
(4]
i.e.
G(x,) G(x,) : g
1 0 1: 0 1 :
(3.7) oy = ae * ol 375 "Rt ol573) .
1 0 h 0 h , :
0 0

Now let € + 0 then G(x1)/H(x1) + Tt and therefore
(3.8) T= go/ho + 0(1/h(3)/2) = 11 + 0(1/hg/2') .

We consider now a two-point boundary value problem for the equations (2.1), (2.13) in -

an interval

-19-




0¢€ x < xO = as1/3, a = const. > 0 .

The boundary conditions are

- ,
(3.9)  H(0) = H'(0) = 0, H"(0) = hy >.0,  GlO) = ¢ g4 Glxg) = T H(xg), T, > O .

We want to prove

Theorem 3.2: The boundary value problem (2.2}, (2.7137, (3.9 has a solution withthe

/3=

following properties. G,G',G",H,H',H“,H"' can be estimated by h2' 11, g and He

Also, G'(xo) > 0, G"(xo) > 0 provided a_ . is big enough.

Proof: Introduce new variables by

1/3~ 2/3

X = E X, G'= € g, H= 82/3

h o
Then the above equations become

hY+mh v 3 (6237 - n?) - /35

(3.10) o °
§+hg~gh=0,
(3.11) n(0) = 1.'1(0')‘ =0, n(0) = hy, g(0) = g, gla) = T,hla) .
We can solve the reduced eqﬁafions ‘ ’
(3.12) & + --12-1:12 = 0, h(0) = A(0) =0, h(0) = h, ,
(3.13) G+RS-af=0, 50 =gy §a =Th@ .
The solution of (3.10) is
(3.14) , “ f=gni’.
Introducing this éxpression into (3.13) and the boundary conditions gives us
(3.15) 3 +;—-‘?—§2§ - h2§§ =0, §(0) =gy al@) = Thia) . |

By the Appendix the general solution of the differential equation (3.15) is of: the

form ]
- 1., 1/3 1. 1/3 1 4 1/37
(3.16) §=29,(tzh,)" %) + A5 1,1 e, (G ny) %) .
where ¢1(t) decays exponentially for ¢t *+ =, w1(0) # 0 and
tpz(t) w'z(t) : sp!"_,(t)
lim 7 = 1, lim el 1, lim 5 = 1 .
ot oo ~
xro

Therefore, if a 1is sufficiently large, then
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1. 1173
9y - Tz 0yl /24,00

(3.17) A~ T A~ O .
and
(3.18) $>0,3>0 §/E ~ T, for all sufficiently large x .

By a standard perturbation argument.it follows that the full system {3.8), (3.9) has a

solution with

v ~\) - Y \Y) ~\ Ve M
(3.19) 1a°g/dx’ - a’5/dx’1_ . + td'h/ax - dB/dx 1y < C e'/3, v =0,1,2.
.. 0,a fo,a T v
Also h = 0 implies
L X N 3 1/3
. < .
(3.20) Phig  <Cpe

We return now to the original variables. By (3.17)

h seo0
H(x) =-2-,3x2 + 0(€), H'(x) = hyx +0(e¥?), wx) =n, + o), wor = nset/3

(3.21)

H

/3y .

G = e2/3§ + 0(g), G' = e1/3<§ + 0(82/3), G" =g + oce’
" This proves‘the theorem.

Assume now that «, hz, dor T1 and u are fixed and let € + 0. At X5 = as1/3 the -
conditions of Theorem 3.1 are satisfied. Thus (G,H) can be continued and converges to a
solution (G,H) of the reduced equation (2.12). .Here
(3.22) h, = B°(0) = H,
ana T,7, satisfy the relation (3.8) with i, = > o + o(e) i.e.

(3.23) T= t; + o(1/a3) + 0(e) .

We summarize the result in
Theorem 3.3: Consider the two-point boundary value problem (2.1), (2.13), (3.9). Assume
that h,, 9g/ 11 and ¥ are fixed and « sufficiently large let € * 0. Then (G,H)

converges uniformly in any interval 0 < x < xy < £ to a solution (G,H) of the reduced

equation (2.12) with T and H, satisfying the relations (3.22) and (3.23) respectively.
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] ‘ 3
4. Existence of Solutions Through a Turning Point

In the previous sections we have shown that we can construct a solution of (2.1),
(2.2) for 0 = X € x € x4 < X = T%%-bwhiéh for, € + 0 converges to a solution of the

reduced equations (2.12). For simplicity we assume that T > 0 otherwise we change G

to_ ~G. Also, x4 can be arbitrarily close to %. We shall now show that the solutions

of (2.1), (2.2) can be continued through the turning point X. Let X, < X be a point
near X where ‘

Hxp) > 0 HY(xy) < O, B*(xy) ~ By > 0, Glxy) > 0, G'lxy) < O, G (xy) > 0
for all sufficiently small €. We want to show.

Lemma 4.1. Consider (2.1) in the form (2.13) and assume that ; is given by (2.14). For

sufficiently small € there is a point x5, > xj-'with
2/3

. _ 1/3 1 = _ 3 .
H(xz) € ho > 0, H'(xz) = € h1 < °'f5 H2 < uf(xz) = h, <-5 Hy

(4.1) .
62/3g0 > 0, G'(x,) 31/3

1]

G(xz) 9, < O’.
Here ho > 0 is a sufficiently large constant and h1,go,g1 are constants which depend
only on h, and not on €. Also he
(4.2) H(x) > 0, H'(x) <0, Gx) 5%, G'(x) < 0, G"(x) >0
and H'*'(x) is uniformly bounded and can be estimated independently of 1 in the whole
interval x; € X € Xqe
Proof: There are two possibilities.
1) H(x) > 82/3h0 for all x » x,. We want to show that there must be a point X,

_where H(x) has a minimum. Let X, € x € x, be an interval where G(x) » 0, B"(x) 2 O.

-Then by (2.20) also G*(x) > 0 and (2.19) gives us

G6(x, ) x G(x,)
G(x) LI G"
(4.3) 0 < ") = ——————H(x1) - € ’{ _HZ ax < ”_—H(x1)' X, < x < Xy o
1 ' .

Thus by Lemma 2.1 H''*(x),G"(x) are uniformly bounded. Therefore, choosing x4

sufficiently close to % and Xg = %q sufficiently small guarantees

1= " 3 =
-—H_ < H*(x § = x € X €X, .

Also, in the same way as in Section 3
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* . * dx
e[ '—5~dx < const. € [ < const. h53/2
x

1 .
1 H x, (H(x4) +-2—H2(x - x4))

i.e., for sufficiently large hg,

1 G(x1) G(x) G(x1)

(4.5) 3 H(x1) H(x) H(x1)' i.e. G(x) > 0 .

Therefore we can find always an interval x4 < x < Xy with the above properties whose
length Xy~ Xy does not depend on € and x4. Choosing x4 éufficiently near to ?
makes H'(x;) as small as we like because H,H' converge to H,H'. Therefore (4.4)
implies that there must be a point x4 € (x1,x4) with H'(x3) = 0. At this minimum (2.13)
gives us
(4.6) HH® +-;— G2 = eji - emt

For sufficiently small € ané g - X4 (4.5) and (2.6c) show that H''' is bounded.
Therefore H(x3) = 0(g) wh;ch is a contradiction.

2). There is a point X, with H(xz) = €2/3h0 and H'(x) < 0 for x, < x < Xoe

Using (4.3) we find again that G"(x) > 0 and that (4.4) and (4.5) hold for
x4 < x < Xy In particular G(xz) = ezlago. Also, by (2.13),
lat(x,)| = /EE" 7 0(e) = o(e'/?) .
Therefore by (2.18)
0 ¢ =a'(x,) = oe'/?) .
) By Lemma 2.1 the bound on H''' depends only on the bound for G/H which is independent'
of N. Therefore H''' can be estimated independently of #. This proves the lemma.
Now we can proceed as in Section 3. For x 2 X, we introduce new variables
h(x) = H(x)/ez/3, gix) = G(x)/52/3, X - Xy = 51/3;, X>0.
Then we obtain the equations (3.8)

B+ hmh 4 (€352 - 12 = V3

N

(4.7)

§+hg-gh=0

with boundary conditions
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(4.8) n(0) = hy, h(0) = hy, h(0) = hy, g(0) = gy, g(0) =gy .
Also
i P 1/3 (RN == 1/3 v : i o
(4.9) h (0) =€ H (xz) = 0{e ), H "(xz) is bounded independently of u ,
and
go/hg = T, = Glx;)/H(xy) +0(1/h3/2) = T + o(e + ng¥/?)
(4.10)

gy = T1h1 + 0(1/h;) = jhl + O(e + 1/hg) .
(4.9) and (4.7) show that
1/3, . 1
(4.11) 2hgh, - h? = o(e / ); i.e. hy = - /hoh2 + O(€ /3) ’

and the uniform boundedness of H'''(x) for x; € x < X, shows that

(4.12) lim h, = H, .
€+0
We can solve the reduced problem
T . -
(4.13) ho+Bh-5n?<o0, B(0) =hy, h(0) =hy, h(0) =h,
(4.14) g+hg-gh=0 3O =gy G(O) =g, -

By (4.11) the solution of (4.13) is in any finite interval 0 € x € X, of the form

4
(4.15) h > hz(x ‘ x3) + O(e )

where ;3 is determined by

. 2h
+ 0’3y, e % o=/ L4+0"3 .

1 ~2
o =3 hy%, 3 h
2
Replacing h in (4.14) by %-hz(; - ;3)2 and introducing a new variable
1/3
§ - (2 h, (x - x,)
gives us 173 h *11/2
(4.16) a%5/aE? + £2a5/dE - %63 =0, E> E =-(+h) x, = - S + oe'/3)
° - Y 2% 3 2 2 3 ; 1/3
7 M

with boundary conditions

= = 1 -1/3
(4.17) g(Ey) = g4 - dgl§y)/at = 5h2] 9 »

By (4.10) and (4.11)
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o=

9(60) 9

13 g 1/3
20 _ (4 0 _ (X -3/2
3 =2—(2h2) — = (3n, T + O(hy +€),
g2 g By
(4.18)
" a3(E )/aE In ).1/3 I 3
g > g > g B
250 -2 2 LI 0(51/3) =22 1, 0(21/3)
0 _ / ho : 42h0h2
173
1
7 By
1/3
1 -3/2 _1/3
= ‘i"hz) T + O(ho / +; ) -

Thus by the Appendix

1/3
=y (1 -3/2 . _1/3
g(E? (2 hz) Tg1(E) + o(h, +e’7)

where 91(5) is monotone decaying with® °

9,48) g, (&) -
7 = 1, g1(0) <0, lim
Erym  E

lim
Erm E

For the original eguations (4.7) a standard perturbation analysis gives us in any finite

interval 0 < x < 24, Fle L
e 1 e~ 2 1/3
h(x) =3 hz(x - x3) +o0(e’7),
(4.19)

- 1/3
~ 1 1 1/3,~ =~ -3 1/3
g(x) = (-2- hz) 'tg1([-2- hz] / (x - x3)) + O(h /2, gV ) .

Thus we can shoot through thé turning point.  In particular, we can choose ;4 so large
that the conditions of Theorem 3.1 are satisfied. Furthermore
~ ~ T~ 23720 /3,
= TT [ °
g(xd)/h(xq) + o(h0 + )
Thus we can continue the solution of our problem to the next turning point

) where we can repeat the process.

3'::22!(-,1?+

~
T|t|
In the next section we need

Lemma 4.2: For € sufficiently small H'''(x) can be estimated independently of U
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Proof: BAway from the turning points this is clear because by Lemma 2.1 a bound for

H'''(x) depends only on a bound for G/H ‘~ T, To estimate H''' for 0O < x < ;4 we cam -

neglect the term 82/392 in (4.7). Differentiating gives us

~

X
- [ n(g)ag

vceoce e e o 0 °

LX) °
h + hh =0, h{x)y ="=e h—{0)—s

We know that h (0)/6'/° is bounded independently of # and therefore the same i true

1/3).

for h (;) because h(§) » -0O(e This proves the lemma.
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5. Existence of Solutions

Let n » 1,g0;g1 be given with
sign g, = (-1)" .

Let |
(5;1) T = I?In_1
where T is the constant given in (A.é).‘ Let
(5.2a) hy, = l(g1/[100‘rg1(0)])3l
where g,(x) is the function described by (A.1) with § =1 and (A.2a). Let
(5.2b) hy = |(200g, /19, (0)1)°| £
Let Q be the bound on ’H"'(x)l determined in Lemma 4.2. Let
(5.3) B=0g+1.
For the remainder of this section we require that
(5.4a) i €8, i.e. u] <Be, T =1,
(5.4b) : hy $hy,<h,.

Let (G(x,s;ﬁ,hz),ﬂ(x,e;i,hz)) be the solution of (2.1)(>(2.?)-Which ér;se from the
pair (g(E,E:ﬁ,hz),h(E,E;ﬁ,hz)) which satisfy the boundary vaiué‘ﬁggglem (ifé), (3.9).
The constant a is fixed with a >> 1.

By the arguménts developed in the previous sections we obtain the following resuLts.
Theorem 5.1: Let n 2 1 be a fixed integer., If a is chosen large enough and e‘ small
then (G(x.e:ﬁ.hz).H(x,e;ﬁ.hz)) exist on an interval [0,B] whose length B fis oﬁ Qrder
1. The function G(x,e;ﬁ,hz) has at least n =zeros o
(5.5a) 0 < x4 <X < °*° %X <B.

The function H(x;e;ﬂ,hz) has at least n relative minima
(5.5b) . 0<y1<1;2<"'<yn<8.

If gg < 0 then G(x,E;u,hz) has another zero x; with 0 < x5 < %4« These numbers

satisfy

(5.6a) . 0<xy=y; Col1) as € *0, j o= 1’2'";;“ '
(5.6b) Xy = 28 + o(1) ,

(5.6c) x4 -1y = (27T v o), 3= tziem
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Also
(506d) H"(xn,e,ﬁ.hz) = h2 + 0(1) °

On the interior of the interval (xj‘1,xj), j = 1,2,+4s,n we have

- ” PV P, | N
H =——-————-——-—-‘ - LA Ld .
(5.7a) H(x,€;u,h,) =351 {1 - cos|t]” "(x xJ_1)] ¥ o(1)
while :
(5.7b) Glx,€5i,h,) = (I Yix,e5l,m) + 0(1) -
If B =Bc then
(5.8a) H(x_,€;8,h,) > 0,
and, if u = ~Be then
(5.8b) H(x_,€;-8,h,) < O .
If h2 = hz, then .
- 1= 17/3 ~n1 2/3 273 2/3
(5.9a) Glx_,&,u,h,) = [(3 h, | g1(0)]e +o(e”7) > g, .

Similarly, if h2 =_§2, then

(5.9b) atx_,em,my) = [(F 1, Vsl?l“"q,w)]e?‘” +ote¥?) < g7
Corollary: The?e is a choice of i,hz which:satisfy (5.4a), (5.4b) and |
(5.10a) H(x ,€5u,h,) = 0

G(xn,e:i.hz) = g1€2/3 .

Proof: Let € > 0 be so small that Theorem 5.1 holds. Consider the mapping

(5.113) (l-llbz) hd (G(xnle}ﬁvhz)rﬂ(xnre?ﬁ'hz))’ °
With

ul <€ < <h. .
(5.11b) il <8, h,<h, <h

Since H”(xn,e,ﬁ;hz) = h2 > 0 the implicit function theorem shows that X, defined by
the n*th min:

H' (x_,€iH,h,) =0
is a continuous function of (ﬁ,hz). Thus, the mapping (5.11a), (5.11b) is a continuous

mapping.
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The properties (5.5a), (5.5b), (5.6a), (5.6b) together with an elementary "“degree®

theory argument see [20] shows that there is a solution of (5.7a), (5.7b). To see this we

consider the homotropy

. h. - h :
G (x ,e:8.m) = tg [2 - 2 (22— + (1 - v)e(x_,&:H,h,), O<EST,
t ' n 2 1 2 ‘= n 2 o
: h, - h
2" =2
Bt(xn,e;i,hz) =th + (1 - t)H(xn,E;ﬁ,hz), 0<t< L.

As t varies from O to 1 the inegualities (§.Sa), (5.5b), {5.6a), (5.6b) continue to

hold. Thus, throughout the homotropy, there is no solution on the boundary of the region

described by (5.11b). For t = 1 the equations read

: h, - h
3
(5.12a) [2 -3 (-.2 2)]91 =g . ‘
: h, - h *
2 "2
+ (5,12b) ’ ) H=0.

There is a unique solution,
= 2 -
hy=3h, +3h,, B=0.
Thus, there is a solution hz(t),ﬁ(t) for every t € [0,1]. 1In particular, there is a
golution for t = 1 and our problem has:a solution (see [201).

This corollary implies the truth of Theorem I. Theorem II and Theorem III follow as

indicated in the Introduction.
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Appendix
In this Appendix we are concerned with the equation

(n.1) g® + 6x2g' - 26xg = O, 6§50,

In fact, we need only consider the case § =1, For, if g(xiT) 1s‘a*soiution~of~>—ﬁwﬁ~—;éﬁv__ﬂhm_

(A.1) - with § = 1 - then, for any § } 0, a direct calculation ghows that the function
Y(x;8) = g(51/3x,1)
is a solution of (A.1) with this value of §.
Our first concern is with the asymptotic behavior of solutions g(&)(= g(§,1)) Qs
£+ 1=
A simple calculation using the Liouville-Green (or WKBJ) approximation (see chapter 6
of [14]) leads to the following results.

Case 1z As x > - there aré two linearly independent solutions g1(x),92(x) and

(A.2a) 91(x) ~ xz, x ¥ -2 ,
-4 x3
(3. 2b) ' gy(x) ~ x exp[—-—g], x > -,

Thus, there is a unique function, g1(E), which satisfies (A.1) with & =1 and
(A.3) g (x)/x2 > 1, x> -=.
Furthermore, a moréncareful asymptotic expansion of g1(x), e.g., using the methods

described in [25, pp. 52-61] yields,

(A.4a) gyt ~ X2 w273, x>,

(A.4b) gjx) ~ 21 + 2/3xH) (1 - 1/x2), x*-=,
and

(A.4c) gj(x) ~ 2, x* .

Case 2: The same calculations show that: as x * +° there are two linearly independent

functions w,(x),wz(x) which satisfy (A.1), with § =1, and

. 3
(A.5a) ¢1(x) ~ X 4exp[—-53]. X+,
(A.5b) ¢2(x) ~ x2, x> +°

Since the function g1(x) which is characterized by (R.3) can be written as a linear
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combination of ¢1(x) and ¢2(x) we gee that there is a uniqde constagﬁ, call it ?,
such that .
(A.6) Lim g1(#5/x2 =T.

b ag ol
Lemma A.1: Let y,(x) be the solution of (A.1) - with & = 1 - described by (A.5a). Then
@.7) 0,000 # 0 .
Proof: Suppose (A.7) is false. Then

A=91(0) # 0.

Suppose A > 0. An easy argument based on the maximum principle - or based on the

identity

d x3 - x3

= {*P,'exp["g]} = 2x‘P1exP[—§']
shows that ' '
(A.8a) Pix) >0, O0<x<c=.
(A.8b) _ ¢, (x) > 0, 0<x <.
The identity

. a (e x3' i x3

(a.9) S = {w;exp[-g-]} *—7‘2¢1exp[-—§-]

and the fact
¢;(0) = 0
implies that
w;(x)'io, Co<x<m,
Thus
¢y(x) > ax .
which contradicts (A.5a). If A < 0 we apply the above argument to -¢1(x).

We now turn to a more detailed discussion of the function g1(x).

Theorem A: Let g,(x) be the function which satisfies (Be1) = with 8 = 1 = and (A.3).

Then
(A.10a) ‘ gjlx) <0, =cx<ew,
(A.10b) 'xg; <0, “® X <®,

Let § denote the unique point at which g,{(x) vanishes, i.e,,
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(A.11a) 9,3 = 0.

Then

(A.11b) =23 <cgco.

vﬁM&WWﬁ_WV.,,‘ﬂjunallyguxme,numbenﬁyzwwofwjA.ﬁl_satiafies

~
e P 4 1
&

Proof: For negative values x << - R < 0 we have

g.(x) >0, gjl(x) <0, X<<~-R<O0.
Since g1(x) satigfies (A.1), g1(x) cannot have a positive relative minimum on the
interval (-~,0). Thus, either )
{(A.13) g,(x) > 0, -2 & x <0, -
or there is a first point g < 0 at which (A.11a) holdsf Suppose {A.13) hoid;. Then
(A.9) shows that

g;(x) >0, - < x <0,

Let x4 << =1 and x4 < x < 0, Then
‘ x a ‘
(a.14) 0 < gy(x)/x% = g, (xy)/x% - [ 1g5(e)i/tfat < g (x)/xF .
X
1

Let x4 * -=. Then

0 < g1(x)/x2 < lim g1(x1)/x$‘= 1 .

x‘+_w
Thus, if (A.13) holds,
0 < g,(x) < x2, - <& x <0, )
But then
‘g1(0) = gi1(0) =0
and

gi(x) 0.,
Since this is impossible, there is a first point g < 0 at which (A.11a) holds. Moreover
(a.15a) gj(x) <0, - ¢<x<€$g<co,

(A.15b) ‘ gj(x) > o, -2 ¢x<g<o,
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We now estimate g from below. We have
gl' (@ = 29,(8) - §%95(@ <0 .
Let x4 < g be any point such that
(A.16) . | gi''(x) €0, x <x<F.
Then
0 < g;(§) < gjlx) < gj(xq), x; € x < g< 0.
Returning to (A.14) we have

g
91(5)/62 =0= 91(x1)/X? - [ tgntey/ehae .
X
1

That is - A -
2 g 4 g 4 |
0 < gylxy)/x3 = [ laj(e)/ehiae < gf(xy) [ tisetae .
X X
1 1
Thus
(A.17) 0 < gylx)/x2 < [3(x,)/31001/131%) = (/1% %)) < a5tx)/(315% .

Let x, * ==, under the condition that.(A.16)'hold. Either-:'x1 + §1 a finite point at which
gyrE) = 0
or x4 * —®. In either case
291(31)/x$ + gj(x,) .
Thus, (A.17) yields
0< |53 <23, )
Thus we have proven that (A.11b) holds for the "first" zero of g,(x).
Our next task is to extend the range of the inéqualitiés (A.15a), (A.15b) to the
larger interval (-=,0).

Let § =1 and let Y1(x),Y2(x) be the special solutions of {A.1) which also satisfy

(A.‘Ba) 11(0) = ol Y,‘(O) -1 .
(A.18b) “ ¥,(0) = -1, ¥5(0) =0 . }
Let r, and r, be the smallest (in absolute value) negative zerosvof Y4 (x) and

Yz(x) respectively. It is an easy matter to obtain infinite series solutions for
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¥1(x),Y2(x) and see that o N
't.‘l > 11' Irzl > 1.

These estimates, together with (A.11b) and the oscillation theorems (see [16, page 421)

show that
g.(x) < 0, g<x<o0.
Thus
(A.19) g4(0) < 0.
Let

g,(x) = d,!}(x) + dy¥,(x) .
Since g1(§) = 0 and Y1(§) > 0, Y2(§) < 0 we see that 4, and d, are of the same
sign. But (A.19) gives .
dy(-1). = g,(0) < 0.
Thus,

dy, > 0, d, >0,
and
gjf0) = -4, < 0.

But, (A.1) implies that g1(x) cannot have a negative relative maximum in the interval
(g,0). Since gi(g) < 0 and gj(0) < 0 we see that

gilx) <0, g<x<0,
On this interval we have

g7 = 2xg, - x°

g} > 0, g<x<0.

Hence, we have the inequalities (A.10a) and fA.10b) on the interval (-=,0). The
completion of the proof now follows from the initial conditions g1(0),g{(0), the maximum
principle and the identity (A.9).

Remark: Since the theorem holds the quantities g and T can be determined - to any
desired accuracy - by numerical computations. Results of Jerry Browning of NCAR indicate
that

T~ -2,

§~ "091 L]
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