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ABSTRACT

This paper is intended to introduce those familiar with
database management issues to the problems of managing large sta-
tistical databases. We begin with a characterization of statist-
ical databases based on the structure and use of the data in the

database. Several data management problems are then described.

2
on large segments of the database during the lifetime of a sta-
tistical analysis. The organization of a data management system
which avoids this problem by caching previously computed results
and automatically maintaining their integrity is presented. We
conclude with a list of problems that this organization raises
and a discussion of related work.






1. Introduction

Researchers in the database area have lavished attention on

providing support for access to what we term "corporate" data-

pbases = databases of the supplier-parts—flavor.—Research—projeets——————

have culminated in very high-level, user-friendly query
languages, sophisticated access path mechanisms, storage struc-
tures, and database machine support.

Statistical databases exhibit different characteristics than
corporate databases, both in terms of the data (its structure and
size) and its use (types of queries). Thus, existing database
management systems cannot provide efficient access to statistical
databases. A number of software packages for analyzing statisti-
cal data exist. It is our contention that despite the fact that
these packages were designed for the specific purpose of analyz-
ing statistical data they lack suitable data management capabili-
ties. We believe that this is the consequence of the fact that
most database research has concentrated on problems associated
with "corporate" databases. Thus the developers of the statisti-
cal packages had no body of knowledge upon which to draw when
designing their systems.

The paper does not contain the answers to the problems of
statistical database management. Rather, it is intended to serve
as a framework for future research by ourselves and other com-
puter scientists., We believe that this is an important area of
research that deserves considerably more attention than it has
received in the past. We hope that this paper will serve to

spark additional interest 1in the problems associated with



statistical database management.
In Section 2 we characterize statistical databases in terms

of their structure and the operations performed on them. We then

describe some of the problems associated with managing such-data

bases. In Section 3, we outline the structure of a database
management system that facilitates access to, and management of
very large statistical databases. Section 4 contains a discus-
sion of the merits of this architecture and outlines areas that
require further investigation. Our conclusions, a survey of
related work, and a summary of the paper are presented in Section

5.

2. Data Management for Statistical Analysis

In this section we attempt to answer such duestions as:
What is a statistical database and how is it used? Next, we list
data management functions required for statistical analysis and
then critique existing data management software in statistical as
well as commercial database management packages. We conclude
with an overview of recent research in data management software

for statistical analysis.

2.1. What is a Statistical Database?

There are a large number of software packages for the sta-
tistical analysis of data sets. Some of the better known pack-
ages are SAS [SAS79], S [BECK78], Minitab [RYAN81], SPSS [NIE75],
BMDP [DIX0O79], and P-STAT [BUHL79]. Each package generally sup-
ports simple summary-statistics operations such as min, max,

mean, median, and standard-deviation in addition to complex



operations such as cross tabulations, multivariate correlations,
regression analysis, and other multivariate analysis techniques.

Some of the packages provide more sophisticated services such as

data editing and operations on files:

Although the functionality of the packages varies widely,
almost all packages provide the user with a "flat-file" view of
each data set that, much like a relation, consists of attributes
(columns) and records (rows). Like relations, the number of
attributes in a data set varies from one data set to another and
can be very large. Those attributes that together uniquely iden-

tify each record in a data set are referred to as category attri-

butes. That is, they form a composite key. Values in non-

category attributes guantify the composite value of the category

attributes with which they are associated.

The example data set shown in Figure 1 illustrates several
important points about statistical data sets. First, the number
of records (observations) in the statistical data set can equal
the cross product of the ranges of the category attributes values
(e.g. data gathered by observing the results of all combinations
of the control parameters in an experiment). Second, for those
data sets with a large number of category attributes, each of
which can assume a wide range of values, the cost of just storing
the category attribute values can become prohibitive. In order
to reduce storage space, data values, such as age in Figure 1,
are frequently encoded. Thus, a table such as that found in Fig-

ure 2 must be used to interpret the values of the AGE_GROUP
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2,143,924

Figure 1
An Example Data Set

CATEGORY VALUE

1 0 to 20

2 21 to 40

3 41 to 60

4 over 60
Figure 2

AGE_GROUP Data Set




attribute.[1l] Furthermore, this encoding can generate incon-
sistencies when different code values are used, for example in
the 1970 and 1980 census. Finally, the values of a number of

attributes—in—a —data—setmay have-been-derived-by-aggregating

over other data values in the process of forming or analyzing the
data set. For example, the values of the AVE-SALARY attribute of
the data set shown in Figure 1 were derived by computing the
average salary of all individuals in each corresponding SEX,

RACE, AGE_GROUP partition.

2.2. How are Statistical Databases Used?

After the initial loading of the database, the statistician
spends a lengthy period of time "exploring" the data during a

process known as exploratory data analysis [TUKE77]. This ini-

tial exploration of the data begins with checking for invalid
values. For example, in the case of the data set shown in Figure
1, the data checker would ensure that all income values were
within some reasonable range. A value outside this range must be
marked as suspicious and then investigated in order to determine
whether it should be invalidated or not. Generally, data check-
ing is a lengthy procedure. The data checker must scan all the
values in each attribute of each row of each data set. This 1is
typically done using histograms or range checking programs. In
addition, for those cases in which a known relationship exists

between pairs of values, the data checker must also examine all

[1] For the 1970 Census public-use-sample database, the Dbook
describing the encoded values for each attribute type is over 200
pages of fine print [CENS72].



pairs of values to insure that they indeed behave according to
the relationship. Again this involves plotting the data,
although other, computational, techniques exist.

————————— A second—function-of theinitial-data exploration—phase—is

getting a "feel" for the structure of the data by posing such
guestions as: Do the data values in a given attribute conform
to a particular distribution? 1Is there a relationship between
the values of two attributes? During this process data may be
aggregated to «create a new, or modified, data set, when, for
example, the analyst discovers that the level of detail in a data
set 1is too fine. For example, the analyst may discover that he
no longer wants to differentiate between M and F entries for a
given age group in the data set shown in Figure 1. The new data
set would be created by, for each RACE/AGE GROUP partition,
adding the M and F populations and forming a weighted average of
the two AVE_SALARY fields.

During this preliminary stage of data analysis it may be the
case that, for some operations, there is no need for the statis-
tician to use the entire data set. Instead, in order to enhance
responsiveness, the statistician may base this preliminary
analysis on a set of sample records drawn at random from the data
set. Forming an impression of the structure of the data based on
a small sampling is sufficient.

The second phase of the data analysis process 1is known as

confirmatory data analysis. In this phase, the statistician

applies several additional tests to the initial as well as other,

perhaps enlarged, samples, and finally the entire data set in



order to confirm his initial impressions of the structure of the
data. The tests used in this phase are considerably more compli-

cated and specialized than the ones used in the exploratory

phase.

if a particular attribute does indeed follow a hypothesized dis-
tribution or a chi-squared test may be applied to a cross-
tabulation of data according to two attributes to see 1if the
attributes depend on each other (e.g. is the proportion of people
who live past 40 dependent on race?). In fact, most statistical
theory and research in statistics is devoted to building up such
tests and their interpretations. Thus there are a large number of
different operations that can be applied during this phase.

The analysis of a data set will wusually involve several
iterations of exploratory and confirmatory data analyses. At the
end of each such iteration the statistician may wish to update
the data set to incorporate what he has learned about it. The
update operations may add a new attribute to the data set to cap-
ture the results of a time-consuming calculation that are to be
used later; temporarily mark a particular record (or set of
records) as 1invalid; or, form a new data set, perhaps by either
joining, projecting, etc. existing data sets into a new one, or
by extracting new data from the raw database.

Except when a sample is used, execution of a statistical
operation on a data set almost always requires access to a few
columns of every row in the data set (e.g. computing the median
of the AVG SALARY values). Furthermore, because data analysis is

basically an ad-hoc process, access to any column 1is equally

—For—example; a goodness—of-fit—testmay be—applied—tosee—



likely.

2.3. What are the Required Data Management Services for Statist—

ical Analysis?

Operations for Materializing Views

Unlike corporate databases where views can be, and often
are, virtual, each analyst must have his own private concrete
view for a number of reasons. First, because of 1its enormous
size, the raw database will almost always reside on slow secon-
dary storage devices such as tapes. A typical analysis will
require access to a small portion of the database, which for rea-
sons of efficiency, must be migrated to disk storage while in
use. Using concrete views requires some additional tape storage
but avoids the generation of the view from tape storage each time
it is used. Thus, the cost of materializing the view is amor-
tized over its period of use. Second, during the lifetime of an
analysis the statistician may access the data in the view accord-
ing to certain patterns that can either be communicated to the
DBMS or perhaps gleaned by the DBMS from the use of the data.
This information can then be used, for example, to create auxili-
ary storage structures such as indices or to transpose the data
in some manner to facilitate efficient access to frequently used
data.

The operations required for materializing views are the
traditional relational operations which create and transform
tables. 1In addition, the DBMS must provide operations for refor-

matting of the data, creation of auxiliary data structures, and



control over the layout of the data on mass storage. Another,
very important, set of operators are aggregates, in particular

aggregate functions.

View-Management

The existence of multiple views of the same raw database
introduces a number of important problems that must be resolved.
First, since an analyst may update a view in the process of the
exploratory data analysis phase, it should be possible for him to
"undo" recent changes to the view if he discovers, through subse-
guent analysis, that the changes made to the view were incorrect.
Second, should views ever be shared? Suppose two analysts are
examining the same underlying data. One wishes to analyze the
effects of pollution on population by race and another wishes to
study the effect of pollution on population by age group. Third,
a mechanism is needed to insure that an analyst does not recreate
(from the raw database) a view that is either identical to one
that has already been created by another analyst or which can be
formed by a limited number of operations on an existing view.
Finally, there should be a means by which the results of an

analyst”’s data editing can be made public.

Management of the Meta-Data

Since a large statistical database may consist of several
thousand tables, each with a large number of attributes, Jjust
understanding the logical structure of the database is a non-
trivial task. 1In fact, one can view the meta-data as residing in

a separate database with its own "data model", data structures,



access mechanisms, etc. The SUBJECT system [CHAN81l] has made
some important first steps in the problem of navigating through

the meta-data. A user views the meta-data as a graph in which

nodes represent attributes. Additional, "higher=level™, nodes"

represent generalizations of lower-level nodes. A user enters
the system at a fairly high "level", navigating his way through
the meta-database down to the level of desired detail. SUBJECT
keeps track of the path followed by the user and at the end of
the session can generate requests to the DBMS for the view
described by his path through the meta-database structure. SUB-
JECT also has primitive operations that enable management of the

graph (i.e., means for updating the graph).

Support for Repetitive Transactions

During the lifetime of an analysis, the statistician may
execute an operation, such as median, repeatedly on the same data
set. (Note that lifetime here can mean a lengthy period of time
- as 1long as a few months!) The data management system should
attempt to save the result of several such computations for
future reference. This is particularly important for those cases
in which computing the value involves accessing every row in a
data set. Since updates on the view are allowed, care must be

taken to insure that "cached" values are correct.

2.4. Limitations of Statistical Packages

The database management software found in current statisti-
cal software packages is very limited or non-existent. Most

packages support only sequential files with limited or no support
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for secondary indices. In addition, although data sets are basi-
cally identical to relations, very few of the commonly used pack-

ages support the relational join operation. Thus, instead of

simply being able to join the table in Figure 2 with the table 1in

Figure 1 to decode AGE GROUP values, the statistical package user
is generally forced to manually "look up" the encoded values in a
code book.

Statistical packages are not adequate for analyzing large
data sets (like the census database) for a number of reasons.
Some packages, like Minitab [RYAN81] and S [BECK78], require a
data set under analysis to fit in the computer”s virtual address
space. An important side-effect 1is that memory is managed
according to some scheme which is not necessarily suited to the
access patterns exhibited for statistical databases. The perfor-
mance of other packages, such as SAS and SPSS, degrades signifi-
cantly when required to process very large data sets because of
excessive I/0 activity. Finally, no support for repetitive exe-

cution of operations is provided by any of the packages.

2.5. What about Conventional DBMS?

In the statistical data management literature, conventional
database management systems are cited as being inappropriate for
managing statistical data. A number of reasons are usually given
[BRAGS81] . These include (1) cost, (2) unfriendly user inter-
faces, (3) inaccessibility of database software to statisticians,
(4) lack of appropriate statistical functions and procedures, (5)

difficulty of interfacing database software to statistical
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software (recall, almost all statistical packages need to view
the data as a flat file), and (6) poor performance. Although the

first five objections are perhaps applicable to network and

hierarchical database systems, it 1s not apparent that these

objections hold for relational systems.

Performance is, however, an important problem when a conven-
tional database system is used as the basis for statistical data
management. First, many statistical applications require only
sequential access to all rows in a data set, not the need to
model and process complex relationships. Furthermore, because of
this sequential access to arbitrary columns, normal techniques to
enhance performance such as indices and sorting will not work.
Finally, because each analyst generally works with a private data
set that is infrequently updated, the overhead of sophisticated

concurrency control and recovery mechanisms cannot be justified.

2.6. Recent Work

In the past few years several projects have been initiated
to enhance analysis of very large data sets. These efforts have
taken a variety of approaches to the problem. One line of
research has concentrated on compression techniques [EGGES8O0,
EGGE81] to reduce the storage space occupied by the data set and
hence the I/0 time necessary to access and process it. Another
approach, as exemplified by SEEDIS (Socio-Economic-Environmental
Demographic Information System) [GEY80], has relied on the
development of customized software to enhance access to one par-

ticular database.
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A more general purpose approach to the problem has been
taken by the ALDS/SDB [BURN81] and RAPID [TURN79] systems. Both

of these systems rely on the use of transposed files to minimize

access time to a column of a data set. Transposed files facili=

tate the processing of statistical operations primarily £for two
reasons., First, since the patterns of access shown by explora-
tory and confirmatory data analysis operations are generally
oriented towards a few columns of the data set and every row, a
transposed file organization will minimize the number of I/0
operations needed to retrieve all entries in a column. The
second advantage of transposed files is that run-length compres-
sion techniques [EGGE80, EGGE81] are more likely to improve
storage efficiency when they are applied down a column rather
than across a row.

The major disadvantage of transposed files is that they pro-
vide poor performance on "informational" queries such as "find
the average salary and population of all white males in the 21-40
age group". Performance of transposed files for informational
queries is further degraded when compression techniques leave
attribute values from the same row at different positions in
their respective files. Despite this drawback, the transposed
file structure appears to be the best all-around storage struc-
ture for statistical data sets since the higher-level software
can continue to view the data set as a flat file, while drasti-
cally reducing the number I/O operations required to process a

statistical (as opposed to informational) operation.
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2.7. Summary
In summary we feel that the proper software architecture for

the development of statistical database software requires that

——individual views of the data be materialized for —each —analyst.

Implementation of such a system requires that a number of prob-
lems be investigated and solved. First, the operation of materi-
alizing a view will need the appropriate tools
(software/hardware) for specifying exactly what view is to be
materialized and for providing reasonably efficient access to the
very large raw databases from which the view will be formed.
Once materialized, software should be provided for "managing" the
view. Included should be tools that permit an analyst to "undo"
recent changes to the view and "intelligent" access methods that
interpret reference patterns to the view and dynamically reorgan-
ize the storage structures used to maintain the view. Finally,
the view software should facilitate the efficient execution of
repetitive operations on the view. 1In the following section, we
will present an overview of the techniques we are investigating

for achieving the final objective.

3. A Preliminary Architecture for a Statistical DBMS

The types and sizes of data sets as well as the complexity
of the structure of the data determine, to a large extent, the
amount of time required to analyze a data set. For our research
we have assumed that data sets will require lengthy analyses -
perhaps spanning several man-months. In this section we briefly

discuss how the use of an ordinary statistical package to analyze
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a flat file may result in unnecessary computation. We then pro-
pose an architecture for the data management component of a sta-

tistical package that would eliminate the need for the unneces-

sary—ecomputation;—particularly—in—theexploratory-data—analysis

phase.

3.1. The Problem of Repetitive Computations

As indicated in Section 2, much of the data analyst”s time
is spent exploring the data. At several points, outliers may be
encountered. These must be investigated to ascertain whether
they indeed reflect an abnormal measurement (as in the case of a
5 digit salary in Beverly Hills) or an incorrect measurement (a
person”“s age recorded as 1,000). In the latter case the value
must be marked as invalid -- "missing value" in the statistics
vernacular.

Several values computed during the exploratory data analysis
phase are used later. For example, the min and max values of an
attribute are required for axis labeling in plots as well as for
generation of histograms. Another example is the use of measures
of central tendency and dispersion such as mean (M) and standard
deviation (SD). At some early point during the analysis the
analyst may wish calculate these values for a given attribute.
Later on, he may wish to count the number of (possibly unique)
values that lie outside the range defined by the M + k*SD, for
some k. Yet another example is the use of guantiles. Initially,
the analyst may be interested in finding out the 5th and 95th

quantiles. Later, the analyst may ask for the trimmed mean (the



15

mean of all the values in a given range) bounded by the 5th and
95th gquantile values of the same attribute.

One approach is for the analyst to record (on a piece of

paper—or —ina database) the resultsof the various computations—

that he has performed. Alternatively, he can simply rerun the
computations whenever their results are required for further
analysis. Clearly, for the analysis of a 1large data set, the
first choice is much more appealing. Therefore, the data manage-
ment component of a statistical package should provide the users
with the capability of storing, and easily retrieving, results of
previous computations. In some cases these results should be
saved for the duration of the entire analysis (the median of most
columns, for example) whereas in other cases it should be stored
for a short period of time (less general order statistics, such
as the 10th largest value, can usually be disposed of early on in

the analysis).

3.2. Proposed Organization of the DBMS

In Figure 3 we show the overall organization of the data
management component of a statistical database management system
that we are currently investigating. We envision several con-
crete views over a single raw database. Each view is private to
a single user (or a group of users). Associated with each view

is a Summary Database. The main purpose of the Summary Database

is to reduce the number of accesses to the database (actually the
view) by acting as a cache for frequently used data.

A second component of this organization 1is the Management
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Database. One Management Database is associated with the DBMS.
The purpose of the Management Database is to serve as a reposi-

tory for information that describes the organization of the data,

————the functions that are—applied—to—it; —rules—for —manipulating———

information in the Summary Databases, view definitions, update
histories of the views, and other control information. Below, we
describe the organization of both databases and the manner in

which the DBMS would use them.

The Summary Database

Each Summary Database serves as a cache for the user view,.
Rather than storing frequently used data in the Summary Database
we choose to store results of query (or function) executions.
This leads to a savings in execution time each time a function
whose result is already in the cache is invoked. In addition,
the size of the cache is much smaller, reflecting the relation-
ship between the sizes of the results of and inputs to most func-
tions. As is the case with all caches there is some overhead for
managing the cache. 1In this case it involves detection of incon-
sistencies caused by updating the view. However, the relatively
static nature of statistical databases indicates that this over-
head will be more than offset by the gains due to the time and
space savings of this approach.

A second function of the Summary Database is as a repository
of certain descriptive, or summary, information about the data in
the view. Included in the summary information are mode, mean,

median, quartiles, the ranges of values in each column (min &
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max) , the number of unique values, and some measure of frequency
of wvalues. Additional summary information to be stored in the
Summary Database, perhaps under user control, might include his-

tograms—and—verbal—descriptions—of—the-data—set(for—example;—a

statement of how far analysis has proceeded, what difficulties
have been encountered, etc.). Note, however, that computing the
median (or any summary values) of the AGE GROUP attribute in Fig-
ure 1 does not make sense. Thus, the system will have to rely on
meta-data to decide for which attributes summary information
should be computed.

A Summary Database will contain results of significantly
different types. For example, the mean of a column (attribute)
will be stored as an integer (or a floating point), whereas a
histogram will be stored as two vectors (one for specifying the
ranges and the other for the number of values that fall in each
range) . As shown in Figure 4, the Summary Database can be logi-
cally viewed as a 2-dimensional array with three columns. The
first entry in a row contains a description of the function. The
third entry in a row contains the result of applying the function
specified in the first column to the attribute(s) identified in
the second column. Note that implicit here is the fact that the
values in the third column will be of varying length.

Searching a Summary Database will require using a function
name-attribute name(s) pair as the search argument. If the
desired pair is found, the corresponding result will be returned.
Otherwise, after the function has been applied to the

attribute(s) specified, the new information will be inserted into



FUNCTION_ NAME ATTRIBUTE NAME RESULT

Min POPULATION 2,143,924

Max POPULATION 33,422,988

Median AVE SALARY 29,933
Figure 4

Example Summary Database
for Data Set in Figure 1
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the Summary Database. To enhance access to the Summary Database
(which may itself become relatively large), we envision the wuse
of a secondary index on function name-attribute name. Data will

. most likely be clustered on attribute name to facilitate effi-

¢iént access to all results on a given column.

As stated above, one problem with maintaining the summary
information is that inconsistencies in the database may arise due
to updates to the view. In some instances this may not present
any problems to the user -- a change of one or two values has
very little effect on the value of the median. However, there
will be other cases when the user will require the values in the
Summary Database to accurately reflect the state of the view,
The user should have the capability of communicating his wishes
regarding the desired accuracy for answers to his gquestions to
the system (see discussion in Section 5). Whether or not a value
in the Summary Database must be precise at all times, the DBMS
must be able to periodically bring it up to date. We believe
that this should be done automatically (given the user”s initial
wishes regarding the frequency of the updates).

One possibility for obtaining the updated value is to recom-
pute the function wusing the updated data as input. A more
attractive alternative is to incrementally recompute the result
using the o0ld function value, changes made to the data, and
perhaps some auxiliary information, without having to access all
of the data used for the initial function computation. Clearly,
code to incrementally recompute some of the functions used by

analysts can be generated manually. However, since new
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statistical methods are evolving it would be desirable to have
some means for automatically generating an incrementally recom-
putable algorithm for a function given the function definition in

some high—-level form., In Section 4 we discuss some work that has

been—donmetowards—achieving that—goal—and—some—issues—that—must

be addressed.

The Management Database

As indicated above the Management Database serves as a repo-
sitory for control information. Of particular importance is the
information regarding the formation and maintenance of all the
views on the database. Keeping a history of updates for each
view will enable the DBMS to roll a view back to a previous state
should such an action be desired by the analyst. The update his-
tory of a view may also be used by other analysts who wish to use
some of the data in the view. Rather than repeating the mundane
and time consuming data checking operations they can examine what
actions were taken by their predecessors and use the "clean" data
for their needs.

Our discussion of the wuse of incrementally recomputable
algorithms as a means for efficiently updating values in the Sum-
mary Database implied that the incrementally recomputable code
for each function must be stored someplace. One could view, and
possibly store, the code as a collection of rules for wupdating
the values. These rules are stored in the Management Database.
In addition to rules defining how a function is to be recomputed

we propose to store rules that describe how derived data is to be



20

updated when the data upon which they are based are changed. To
illustrate consider the following example.
Since the residuals of a model may be required for several

"goodness of fit" tests they are typically stored as a new attri-

buteinma data set (tise.; they areincorporated—into—the—view)s
Updating even a single value in the attribute upon which the
residuals depend requires regeneration of the entire vector
(since the model may change). Thus, the rule stored in the
Management Database for this case would specify regeneration of
the entire vector (or simply marking it as out of date).

As an another example consider storing in a new column the
result of a different function, say the sum of three attributes,
or the logarithm of some attribute. For both of these functions
the derived wvalue 1is dependent only on values in the same row.
Thus, the rule stored in the Management Database would indicate
that the effect of the update to the input attribute is "local",
i.e., it will require the computation of only one value.

To summarize, our proposed statistical DBMS organization
consists of several Summary Databases and a single Management
Database. Each Summary Database acts as a cache for results of
previous function executions as well as a storing house for com-
monly accepted and used summary values describing the structure
of the data for a specific concrete view over the database. The
Management Database contains rules to be used by the DBMS when
accessing the Summary Database and when updating the user views.
In other words, the Management Database contains control informa-

tion that drives the operation of the DBMS on the concrete views
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as well as their respective Summary Databases.

4. Discussion

In Section 3 we motivated and outlined the overall organiza-

tion of the data management component of the statistical database

system that we are investigating. In this section we discuss
several 1issues that arise in the proposed environment that must
be resolved before we can proceed with an implementation. In
some cases we shall describe a potential solution to the problem
we raise. 1In others, we will indicate the line of thought we are

pursuing.

4.1. Handling Updates

We envision that the analyst will specify an update to the
data set by wusing a predicate in a similar manner to what is
currently done in relational systems. Thus, the operation speci-
fies the attributes affected and the nature of the update. We
propose to cluster values stored in the Summary Database on the
attribute name. Thus, given an attribute name we can retrieve
all the values associated with that attribute, along with their
respective function names, stored in the Summary Database. For
each function we must retrieve from the Management Database the
list of rules that specify the actions to be applied in order to

obtain the new value,

4.2. Specification of the Update Rules

Given the description of a function, in some suitable high-

level form, how do we obtain rules that specify computation of
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the new value without accessing data in the view? This problen,
described in other terms, has received some attention in the
literature. Of particular interest is the work on finite dif-

ferencing [PAIG80]. The purpose of finite differencing is to

gram by taking the "derivative" of the original code segment.

The origin of finite differencing 1is in Cocke”s reduction of
operator strength -- a method for program optimization. The
basic idea is outlined below.

We have a code segment that computes the function f on argu-
ments x1,x2,...,xn, that is f(x1,%2,...,xn). Assume that we have
computed f for specific values of the argument list. Now, sSup-
pose we need to recompute f several additional times for the same
argument values, but with the value of some argument, say x2,
changing each time. We illustrate this in Figure 5. What finite
differencing attempts to do is to generate a new version of the
function £, say £, that will take advantage of the fact that the
values of most of its arguments are to remain constant. In fact,
f” may only have one argument (x2). Description of the method
used to accomplish this task is beyond the scope of this paper.
We do wish to mention, though, that Koenig and Paige [KOENS81]
discuss the application of finite differencing to the generation

[initialize x1,x2,...,xn}

for i := 1 to n do
x2 := g(i); {g is some function}
result[i] := £(x1,x2,...,%¥n);

end:

Figure 5
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of the incrementally recomputable code for several commonly used
aggregate operators. In particular, they consider totals and
averages.

It is not clear to us, at this point, whether finite dif-

median. The problem lies in the fact that some functions reflect

an ordering on the input data. Updating the data will change the
ordering and, possibly, the result of the function. (Most
updates to the data set will not affect the min or max values;
medians, on the other hand, are more susceptible to changes in
the data). Unlike the total or average operators, there are no
methods for describing the ordering of the data in some concise
manner which can be manipulated to yield a description of the new
ordering of the data after the update operation.

An alternative to the use of finite differencing, or any
other automatic technique, for the "difficult" functions is to
deal with them manually. Thus, for the median and quartiles (and
other commonly used order statistics) one can use the following
approach (described for the median). Initially, we must compute
the median. Rather than saving a single value as the result of
this computation, we will store, in the Summary Database, a his-
togram of some number, say 100, of values around the median.
Associated with the histogram will be a pointer which will ini-
tially be set to the median. As updates are made to the original
data set the pointer can be moved up and down the list reflecting
the changes. When the pointer runs off the list a new histogram

will have to be generated.
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An important observation to be made is that generation of
the new histogram will require only a single pass over the data.
We will know what the approximate range of values for the new

histogram will be since updates to the list cause the value of

£l 13 ] ] Liehtlv. ] i .  mole i
scheme that has 101[2] buckets we can generate the new histogram
passing over the entire data set only once (the 10lst bucket is

used for all the values other than the 100 desired values) [3].

4.3. Database Machine Support

Our interest in management of statistical databases arose
because such databases seem to be a natural candidate for data-
base machine support. Statistical database are very large;
update operations are relatively infrequent (in most types of
statistical databases); and, operations access large amounts of
data in a regular manner. We began our work on this project in
the Summer of 1981 hoping to select the data management component
of some statistical package and use it as a front-end for a data-
base machine. We found, to our chagrin, that the state of data
management software in statistical packages in relatively poor.
Thus, we felt that we had to begin by characterizing the data
management functions of statistical packages before examining how

a database machine could be used to improve the performance of

[2] Note that we may wish to have more than 100 buckets if we
are not sure what the density of the values is around the expect-
ed new median.

[3] Floating point values present some difficulties for this
scheme.
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such packages.
It is still too premature to indicate exactly how a database
machine could be used in the environment that we have proposed.

_____________There are, however, four obvious areas to examine. First, since

o auxiliary information exists about the traw database, a data~
base machine might be used to materialize views by executing the
various relational operators (selection, join, projection, aggre-
gate). However, it is not clear to us that whether the use of a
database machine for view materialization is viable if the raw
database cannot be kept "on-line".

A database machine could also be used to manage the Summary
Databases., Operations on the Summary Databases are primarily
searches whose result sets are small. A pseudo-associative disk
[SLOT70] of some type seems to be reasonable database machine
organization for this purpose.

It may be the case that the overhead associated with manag-
ing the Summary Database may be too high; or that generating
rules for incrementally recomputing functions is a research topic
still unripe for implementation. 1In that event a Summary Data-
base could still be maintained. However, after each update
operation all the values associated with the updated attribute
will be marked as invalid. When required they will be regen-
erated using the original algorithm. A database machine may be
used to perform the function computation if the concrete view can
maintained on a "fast" mass storage device, such as disk. Note
that unlike the previous proposed use for a database machine, the

machine organization would have to be considerably more
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sophisticated than an associative disk because of the nature of
the operations performed.

Another possible use for a database machine is for execution

Ofw&gpﬁlatignswﬁwhosew_yaluesﬁhwillahnot_bewstogedmin@theMSHmmafyu___ ............

Database. Examples are operations whose results are vectors
which are added to the data set stored in the concrete view

(e.g., the residuals of a linear regression).

5. Conclusions and Future Plans

5.1. Summary

In this paper we have presented a description of how sta-
tistical databases are structured and accessed. In particular,
we have demonstrated that they exhibit significantly different
characteristics from "corporate" databases, both in terms of the
data they contain (its structure and size) and its use (types of
queries). It 1is our contention that neither existing database
management software nor statistical software provide users of
scientific and statistical databases with efficient and easily
used means for accessing the data.

We have also presented a preliminary organization for a
database system to facilitate the statistical analysis of very
large data sets. The key components of the proposed system
include concrete views of the raw database for each analyst, a
Summary Database for each view that automatically maintains the
results of a number of system and analyst defined functions while
the view is being edited, and a Management Database that is used

for maintaining definitions of new functions and the history of
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changes that have been made to each view (including a specifica-
tion of the operations that were utilized to materialize the
view). This organization is intended to serve as a framework for

future research by ourselves and other computer scientists

interested—in——statistical—datamanagement—problemss

We feel the proposed design is a viable approach for sta-
tistical database management systems as it appears to have the
potential of providing a flexible but very responsive environment
for statistical data management. Two papers at a recent workshop
on Statistical Database Management, describe research efforts
similar to ours.

A group of researchers from the Universities of Tsukuba and
Hiroshima described enhancements to an existing relational system
[IKED81]. The data dictionary of the DBMS is expanded to include
definitions of statistical functions, means for specifying cod-
ings (as in Figure 2), and certain summary statistics such as
mean and standard deviation. In addition the DBMS provides the
user with the capability of creating and querying summary tables
which are essentially cross tabulations. Finally, sophisticated
means for displaying the data (particularly complex cross tabula-
tions) are provided. The main differences between this approach

and ours are:

(1) Reliance on a conventional DBMS and the storage structures

and access mechanisms it provides.

(2) Updates to the raw database are not propagated to the sum-

mary data.
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(3) No means for examining the update history to a view and/or

undoing updates are provided.

Neil Rowe of Stanford University [ROWE81l] proposed using a

Database Abstract in which some precomputed values of statistical

functions will be stored. A set of inference rules will be used
to calculate the results of other functions, based on the values
stored in the Database Abstract.

All three research projects are "close" in the sense that
they all try to reduce the number of accesses to the database (in
our case the view) by storing summary descriptions of the data.
The Database Abstract differs from the other two projects in that
it attempts to provide the users with estimates as the results of
gueries. All three projects need to deal with queries whose

results are non-scalar.

5.2. Future Plans

After further investigation of the problems outlined in Sec-
tion 4, we intend to design and implement the statistical data-
base system that we have proposed. The basis for this system
will most likely be the Wisconsin Storage System (WiSS). WiSS is
package of storage structures and access methods that is
currently being implemented at Wisconsin by David DeWitt, Randy
Katz, and a group of students. As the basis of the statistical
software components of the proposed system, we intend to investi-
gate using the S [BECK78] system from Bell Labs. ’

After implementation we intend to analyze the performance of

the resulting system to locate bottlenecks. Then, we intend to
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design and implement a database machine to eliminate these

bottlenecks,
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