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ABSTRACT

In recent years, parallel sorting has been an active
field of research. However, parallel sorting algorithms
developed up to date cannot be used to sort a large file,
because they are internal sorting algorithms. Moreover, it
is not possible to implement the fastest among these algo-

rithms with current technology.

-

This thesis investigates the topic of parallel exter-
nal sorting. Several new algorithms are presented and
analyzed, using a comprehensive cost model that includes
computation, communication, and I/O. The I/O cost factor
is especially critical for .external sorting algorithms.
While an extensive literature exists that addresses compu-
tation and communication issues in parallel processing, the
impact of I/0 on the performance of parallel algorithms has
not received adequate consideration. We propose several
criteria that c¢an measure this impact, when tﬁe mass-—

storage device is a parallel read/write disk.

As a major application of parallel external sorting,
we consider the execution of complex database operations.
In particular, we propose to use a modified merge-sort as a
method for eliminating duplicate records in a large file.

A combinatorial model is developed to provide an accurate
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estimate for the cost of the duplicate elimination opera-

tion (both in the serial and the parallel cases).
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CHAPTER 1

INTRODUCTION

1.1. Motivation

It is estimated that over 25% of computer time is
spent on sorting [Knut73], when all users are taken into
account. This estimate might be even too low for a data
processing environment, where sorting of large files is
often performed. There are two reasons that explain why
such a high percentage of computer resources are utilized
for sorting. The first is that sorting is often required,
either to deliver to a user a well organized output, or as
an intermediate step in the execution of a complex algo-
rithm. The second is that sorting is a time consuming
operation, even when a very efficient sort method is used.
Therefore, there are two possibilities in order to reduce
the amount of time devoted to sorting: find alternatives

to sorting and develop faster sorting methods.

It may seem that advances in computer technology could
eliminate, or at least reduce significantly, the use of
sorting as a tool for performing other operations. For
example, when sorting 1is used in order to facilitate
searching, one may advocate that the advent of associative

memories will make sorting unnecessary. However,



associative stores are much too expensive for widespread
usage, especially when large volumes of data are involved.
In the case that sorting is required for the sole purpose
of ordering data, the only alternative is to develop faster
sorting algorithms. Many serial sorting algorithms that
perform in optimal time (that 1is sort n items in time
O(nlogn)) are known. The introduction of parallel process-
ing has added a new dimension to reseérch on sorting algo-
rithms. With the use of multiple processors, sorting time
can be reduced, at least in theory, to O(logn). During the
past decade, numerous results on parallel sorting have been
published. In particular, optimal parallel sorting algo-

rithms have been developed [Hirs78, Prep78] for a theoreti-

cal parallel processor model.

In this thesis, we investigate the use of parallel
sorting as a tool for an efficient implementation of
several database operations on a multiprocessor database
machine. our research was first motivated by our work on
the database machine DIRECT [DeWi79]. Wﬁen looking for a
way to eliminate duplicate tuples, we realized that none of
the known parallel sorting algorithms were of any value.
The main reason was that they are all internal sorting
algorithms, that is they assume that the source data can
reside in the multiprocessor”s memory during the sort

operation. Therefore, it became clear that database



machines require a "parallel external sort" facility. The

first part of this thesis is devoted to paraliel external
sorting algorithms. The second part explores the applica-
tions of sorting in relational database machines. In par-
ticular, we propose to use sorting as a tool to perform the

duplicate elimination operation, and justify this method by

developing a comprehensive cost evaluation model.

1.2. An overview of the sorting problem

Sorting is defined as the process of rearranging a
sequence of items into ascending or descending order. A
basic sorting operation deals with items which are all key,
that is the order is defined on the items themselves. A
more general sorting procedure deals with records where one
of the record fields or the concatenation of several fields
constitute the key according to which the records are to be
sorted. In a database environment, sorting mostly refers
to record sorting. The implications of dealing with record
sorting are significant in terms of storage and data move-
ment, since typically a record contains several hundred

bytes, while the key may only be a few bytes long.

When the data set to be sorted can be stored entirely
in main memory, the sorting algorithm is called internal.
The algorithm procéeds by comparing and moving pairs of

records within the memory. On the other hand, when the



size of the data set is larger than main memory, an exter-

nal sorting algorithm must be utilized. Internal and

external sorting algorithms are also termed as array sort-

ing and file sorting algorithms, respectively. This is

because internal sorting algorithms start with reading the
data set into a contiguous area of main memory (an
"array"), while external sorting algorithms are mainly used
to sort large data files that are stored on a mass storage

device.

There are numerous efficient serial sorting algorithms
[Rnut73, Lori71ll. Each has certain advantages and disad-
vantages that must be weighed in the light of the amount of
resources available for a particular application. The
tradeoffs between execution time, complexity of the algo-
rithm and storage requirements are well known. In the fbl-
lowing two sections we will briefly describe some of the
criteria that are commonly used to evaluate a sorting algo-
rithm. The primary purpose of this description is to set
”the grounds for our research on parallel sorting. It is by

no means intended to be a survey of serial sorting.

1.2.1. Internal sorting

The dominant cost of an internal sorting algorithm is
the cost of comparing and moving elements in main memory.

Therefore, an efficient algorithm must minimize this cost.




Optimal sorting algorithms require O(nlogn) comparisons and
moves. Howevér, in practice, algorithms that theoretically
require O(nz) time (such as the commonly used bubble sort),
are often preferred. In addition to the number of com-
parisons and moves, an internal sorting algorithm is judged
by several other characteristics. It 1is often the case
that a sorting scheme can take advantage of a particular
distribution of the initial data. For this reason, empiri-
cal studies are as important as analytical results since
they can supply an indication of average, best and worst
case behavior. 1In addition to closed analytical formulas,
any comprehensive survey of sqrting reports execution times
measured by experiments on real data and fast computers
[Knut73, Wirt76 p.125]1. Another crucial factor in evaluat-
ing an internal sorting algorithm is the amount of main
memory that is required to execute it. First, the program
itself may require a substantial amount of storage, when
the algorithm is complex. Second, a sorting scheme may
necessitate a substantial amount of work space in memory,
in addition to the source data space. This 1is because
instead of being sorted "in situ", records must be moved to

additional storage locations.

Sorting algorithms requiring a larger work space (e.g.
a work space as large as the data space itself) are usually

simpler and faster than sorting algorithms that require



only a small amount of memory cells in addition to the data
space. The tree selection sort and the heap sort [Knut73]
are examples of two algorithms that illustrate this idea.
To sort n=2M values, the tree selection algorithm allocates
space for a binary tree structure with n leaf nodes. The n
values are first read into the leaf nodes locations, then
moved up the empty interior nodes as the algorithm
proceeds. The highest of two sibling nodes values is moved
up to the parent node, until the maximum value reaches the
root node. For the heap sort algorithm, on the other hand,
a tree with a total of n nodes is used. The values to be
sorted are read into all the tree nodes (leaves and inte-
rior nodes). Then, the values locations are interchanged
as required for a "heap" structure. Again, the maximum
value is propagated to the root, but all the values must be
located so that a parent node always hold a value higher
than its two children nodes. After the maximum value
reaches the root, it is removed and replaced by one of the
jeaf nodes value. Then, again, the n-1 values remaining in
the tree are permuted so that they constitute a heap.
Thus, the heap sort sorts the n values in place, while the
tree selection sort requires approximately twice as much
memory. The tradeoff between using more memory Or being

faster is referred as the time-space tradeoff, and an

internal sorting scheme is usually judged by its space

requirements, as well as by its execution time.




1.2.2. External sorting

Since a large file cannot £fit in main memory, an
external sorting method must read a section of the file
from secondary storage (such as disks or tapes), process
it, and write it back to secondary storage before another
section can be processed. Because every record must be
compared to every other record, sorting cannot be performed
in a single pass over the file. Thus, the cost of 1I/0
transfers becomes a significant factor in the design and

. the evaluation of an external sorting scheme.

Merging of sorted lists is the basic building block
for external sorting. The simplest external sort algorithm
is a 2-way merge sort: It consists of iteratively merging
pairs of lists of length 2k-1 (also called "runs") into a
sorted list of length 2K for k=1,...,logn. vVariations of
this scheme include the Multiway Merge (in an N-way merge,
N runs instead of 2 are merged together at each step), and
the N-way Balanced Merge where the output runs are written
alternately on different files [Knut73, Wirt76]. 1In prac-
tice, one does not use a pure merge-sort algorithm. Typi-
cally, the file is initially partitioned into equal sec-
tions small enough to fit in main memory. Then, these sec-
tions are sorted using a fast internal sorting algorithm.

Finally, the merge sort is initiated.



The main cost factor for an external sorting algorithm
is the I/O' time, since efficient accessing to external
files is severely limited by the physical characteristics
of the mass storage device. 1In addition to the number of
block transfers, an efficient external sorting algorithm
must minimize the access time to the intermediate data

files it creates.

1.3. oOrganization of dissertation

In Chapter 2, the literature on parallel sorting is
surveyed and a taxonomy of parallel sorting is proposed.
Parallel sorting algorithms are classified according to the
type of multiprocessor architecture they apply to. We
point out that most existing algorithms should be con-
sidered as "array sorting" algorithms, and that parallel
file sorting algorithms have not been previously investi-

gated.

In Chapter 3, the concept of "parallel external sort"”
is introduced and a model for parallel external sorting is
presented. This model specifies a class of multiprocessors
that have architectural features for efficiently supporting
database operations. It also includes the specification of
several cost parameters that can be used for analyzing the
performance of parallel external sorting algorithms. In

particular, criteria for measuring the amount of I/O




activity in a parallel computer environment are defined.
In Chapter 4, several new parallel external sorting algo-
rithms are presented. For those algorithms that are based
on iterated merging, we propose to use as a building block
a new serial external merge procedure, that has the advan-

tage of synchronizing the read requests.

among the external sorting algorithms proposed, two
are parallel versions of the serial 2-way external merge
and one is an extension of Batcher”s bitonic sort [Batc68].
Each algorithm is analyzed in detail, according to the
methodology developed in the previous chapter. A perfor-

mance comparison of the algorithms concludes this chapter.

Chapter 5 is devoted to the topic of duplicate elimi-
nation. Several methods for eliminating duplicate records
in a large file are described. We contend that a modified
external sort is an efficient way to perform duplicate
elimination. In order to estimate the cost of this modi-
" fied sort (and thus support our claim), a combinatorial
model is developed that can be used to obtain a closed
analytical formula for the number of I/0 operations

required.

In Chapter 6, we contend that a parallel sorting
facility can be the basic building block for a relational

database machine. It is shown that parallel sorting can be
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used to efficiently implement the relational join., We con-
clude by summarizing the contributions of this thesis and
by indicating some directions for future research in the

area of parallel algorithms for database management.
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CHAPTER 2

TAXONOMY OF PARALLEL SORTING

Many parallel sorting algorithms exist, most of which
require a very large number of processors. Despite the
apparent disparity among these algorithms, we contend that
the majority fall into one of two categories: the network

sorting algorithms and the shared memory sorting algo-

rithms. The network sorting algorithms were the first fast
parallel sorting algorithms to be developed. They have
inspired algorithms fgr multiprocessors that have been
built, or will be built in the near future. The shared
memory sorting algorithms are faster than the network algo-
rithms, but they are based on a theoretical model of paral-
lel computation and cannot be implemented with current

technology.

Since the sorting problem has been studied extensively
for a uniprocessor, it would seem that.efficient parallel
sorting algorithms could be obtained by parallelizing
well-known serial algorithms. However, this approach did
not lead to a major breakthrough in parallel sorting.
Instead, the development of very fast parallel sorting
methods originated with the discovery of new iterative

merging rules [Batcé68, vali75] that are intrinsically
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parallel rules.

This chapter is organized as follows. 1In Section 2.1,
we show that parallelizing some serial sorting algorithms
can be done, but leads only to simple and relatively slow
parallel algorithms. Section 2.2 is devoted to the network
sorting algorithms. First, various types of sorting net-
works are surveyed. 1In particular, we describe in detail
several sorting networks that perform Batcher”s bitonic
sort. Then, bitonic sort algorithms for SIMD (Single
Instruction Multiple Data stream) computers such as the

Illiac-IV are presented.

Section 2.3 surveys a chain of results that led to the
development of very fast sorting algorithms: the shared
memory model parallel merging [Vali75, Gavr75] and sorting
algorithms [Hirs78, Prep78]. In Section 2.4, we complete
our survey of the parallel sorting literature by describing
Even”s tape sorting algorithm [Eve74], which is the only
known parallel file sorting algorithm. Finally, in Section
2.5 we briefly summarize our survey, and point out that
several problems in parallel sorting require further inves-

tigation.

2.1. Parallelizing serial sorting algorithms

Parallel processing makes it possible to perform more

than a single comparison during each time unit. Some models
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of parallel computation (the sorting networks 1in particu-
lar) assume that a key is compared to only one other key
during a time unit. This is restrictive but does not
really limit the amount of parallelism because, in general,
there are fewer processors available than pairs to compare.
Another possibility is to compare a key to many other keys
simultaneously. For example, in [Mull75], a key is compared
to n-1 other keys in a single time unit using (n-1l) proces-

SOrs.

Parallelism may also be exploited to move many keys
simultaneously. After a parallel comparison step, proces-
sors conditionally exchange data. The concurrency that can
be achieved in the exchange steps is limited either by the
interconnection scheme between the processors (if one
exists), or by memory conflicts (if shared memory is used

for communication).

The analog to a comparison and move in a uniprocessor
memory becomes a parallel comparison-exchange of pairs with
this parallel scheme. Therefore, it is natural to measure
the performance of parallel sorting algorithms by the
number of comparison-exchanges they require. Then the
speedup of a parallel sorting algorithm may be defined as
the'ratio between the number of comparison-moves required
by an optimal serial sorting algorithm and the number of

comparison-exchanges required by the parallel algorithm.
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Since an optimal serial algorithm sorts n keys in O(nlogn)
time, the optimal speedup would be achieved when n keys are
sorted with n processors in time O(logn). However, it does
not seem possible to achieve this bound by simply parallel-
izing one of the well knowh optimal serial sorting algo-
rithms, since it appears that the best serial sorting algo-
rithms have severe serial constraints that cannot be
removed. On the other hand, parallelization of straight
sorting methods (i.e. brute force methods requiring O(nz)
comparisons) seems easier but it cannot lead to very fast
parallel algorithms. By performing n comparisons instead
of 1 in a single time unit, the execution time can be
reduced from O(nz) to O(n). An example of this kind of

parallelization is a well known parallel version of the

common bubble-sort, called the odd-even transposition sort

(Section 2.1.1).

Partial parallelization of a fast serial algorithm can
also lead to a parallel algorithm of order O(n). For exam-
ple, the serial tree selection algorithﬁ can clearly be
modified so that all the comparisons at the same level of
the tree are performed in parallel. The result is a paral-
lel tree sort, that is described in Section 2.1.2. This
simple algorithm is used in the database Tree Machine

[Bent79].



2.1.1. The odd-even transposition sort

The serial "bubble sort" proceeds by comparing and
exchanging pairs of adjacent items. To sort an array (xl,
xz,..., xn), n-1 comparison-exchanges (xl,xz), (xz,x3),...,

(x (X,) are performed. This results in placing the max-

n-1
imum at the right end of the array. After this first step,

X, is discarded and the same "bubble" sequence of

comparison-exchanges is applied to the array (xl'°'°'xn—l)'

By iterating n-1 times, the entire sequence is sorted.

The serial odd-even transposition sort [Knut73, pP.65]
is a variation of the basic bubble sort, where comparisons
are alternatively performed between odd elements and their
right adjacent neighbor, or even elements and their right
adjacent neighbor. There are n phases of comparison-
exchanges. During odd phases, the pairs for the
comparison-exchanges are (xl,xz), (X3:Xg) reeo bDuring even
phases, (xz,x3) (x4,x5) ... are compared and exchanged. To
~completely sort the sequence, it is possible to show that a

total of n phases is required [Knut73, P.65] .

This algorithm calls for a straightforward paralleli-
zation [Baud78]. Consider n linearly connec;ed processors
and label them Py, P,,... P. We assume that the links are
bidirectional, so that P, can communicate with Pj_j and

P Initially xj resides in Pj for i=1,2,...,0. For a

i+l-
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parallel sort, let P;,P3,... be active during the odd time
steps, and execute in parallel the odd phases of the serial
odd-even transposition sort. Similarly, let Py,Pyres- be
active during the even time steps, and perform in parallel
the even phases. Note that a single comparison-exchange
requires 2 transfers. For example, during the first step,
X, is tranferred to Pj and compared to xj by Pj. Then, if
X1>X9, X3 is transfered to Pj; otherwise, Xj is transferred
back to P,. Therefore, the parallel odd-even transposition
algorithm sorts n numbers with n processors in n comparis-

ons and 2n transfers.

2.1.2. A parallel tree-sort algorithm

In a serial tree selection sort, n numbers are sorted
using a binary tree data structure. The tree has n leaves,
and initially, each number is stored at each leaf. Sorting
is performed by selecting the minimum of the n numbers,
then the minimum of the remaining n-1 numbers, etc... The
binary tree structure is used to find the maximum by itera-
tively comparing the numbers in two sibling nodes, and mov-
ing the smaller number to the parent node (see Figure 1l).
By simultaneously performing all the comparisons at the
same level of the binary tree, a parallel tree-sort 1is
obtained [Bent79]. I1f a processor is assigned to each of

the 2n-1 nodes of the tree, the minimum can be transferred
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step 4

Figure 1. Tree selection sort

to the root processor in 1log,sn comparison-transfer steps

(assuming that a binary tree interconnection exists between
the processors). At each step, a parent receives from its

two children an element, performs a comparison, keeps the
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smaller element and sends back the greater one. After the
minimum has réached the root, it is written out. From then
on, the processors are instructed to accept data from non-
empty children, and to select the minimum, when they
receive 2 elements. At every other step, the next element
in increasing order reaches the root. Thus, sorting is

completed in time O(n).

In a similar manner, the serial heap sort can be
parallelized, and the result is a parallel sort algorithm
that sorts n numbers with n processors. But the execution
time of this algorithm is also O(n), due to the necessity
to read off the sorted sequence serially at the root of the

tree.

The speedup achieved with these simple paralleliza-
tions schemes (logn for n processors) is not satisfactory
and many efforts have been made to improve it. The first
major improvement was reached by the sorting networks, that
sort n numbers in time (logn)2 and thus, achieve a speedup
of n/logn [Batc68]. Later, Preparata [Prep78] showed that
the optimal bound (time: O(logn), speedup: n) can be
achieved by using a theoretical model of n processors

accessing a large shared memory.

Another important issue is whether the performance

criteria by which parallel sorting algorithms have been
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previously evaluated are general enough. Clearly, assuming
that the number of processors is as large as the number of
elements to be sorted and counting the number of parallel
comparisons as the main cost factor is not satisfactory.
Communication costs and, in the case of external sorting,
I/0 costs must be incorporated in a comprehensive analyti-
cal model, general enough to accomodate a wide ranée of

multiprocessor architectures.

2.2. The network sorting algorithms

It is somehow surprising that a simple hardware prob-
lem, namely designing a multiple-input multiple-output
switching network, has motivated the development and the
proliferation of parallel sorting algorithms. The earliest
results in parallel sorting are found in the literature on
sorting networks [Voor7l, Batc68]. In Section 2.2.1, we
describe two types of sorting networks, respectively based
on the odd-even and bitonic merge rules. In Section 2.2.2,
we show that parallel sorting algorithmsﬂfor SIMD machines
can be derived from the bitonic network sort. 1In particu-
lar, we describe two bitonic sort algorithms for a mesh-

connected processor [Thom77, Nass79].

2.2.1. Sorting networks

Sorting networks originated as fast and economical

switching networks. Since it can order any permutation of
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(1,2,...,n), a sorting network with n input 1lines can be
used as as a>multiple—input multiple-output switching net-
work [Batc68]. To realize a fast sorting network, it is
necessary to exploit the possibility of performing com-
parisons in parallel, that can be provided by using a
number of comparator modules. Implementing a serial sort-
ing algorithm on a ﬁetwork of comparators results in a
serialization of the comparators, and consequently, an

increase in the network delay.

One of the earliest results in parallel sorting is due
to Batcher, who exhibited two methods to sort n keys with
O(nlogzn) comparators in time 0(log2n). A comparator 1is a
module which receives two numbers on its two input lines A,
B and outputs the minimum on its higher output line L and
the maximum on its lower output line H (Figure 2) . A
serial comparator receives A and B with their most signifi-
cant bit first and can be realized with a small number of
NOR gates. Parallel comparators, where several bits are
‘compared in parallel at each step, are faster but obvicusly
more complex. Both of Batcher”’s élgorithms, the "odd-even
merge" and the "bitonic sort", are based on the principle
of iterated merging. Starting with an initial sequence of
2K numbers, a specific iterative rule is used to create
sorted runs of length 2, 4, 8, ... ,Zk during successive

stages of the algorithm.
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_________ >| A L |=======> MIN(A,B)

--------- >| B H |-=--=---> MAX(A,B)

Figure 2. A comparison-exchange module

The odd-even merge rule:

The iterative rule for the odd-even merge is illus-
trated in Figure 3. Given two sorted sequences, (al,
89pees) and (bj, bysece) s two new sequences ("odd" and
"even" sequences) are created: One consists of the odd num-
bered terms and the other of the even numbered terms from
both sequences. The odd sequence (cl, Cor...) is obtained
by merging the odd terms (a;, a3,...) with the odd terms
(by, b3s...). Similarly, the even sequence (dj, dj,...) is
obtained by merging the even terms (ay, ags...) with the
even terms (b,, by,...). Finally the sequences (cy,
CZ"") and (dy, dp,...) are merged into (ej, €97000) by
applying the following compar ison-exchanges:

&1 =<

ezl = max(ci+l,di)
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Figure 3. The odd-even merge rule
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41 = Min(Ci41,9;)
The ;esulting sequence will be sorted. (For a proof the

reader is referred to [Knut73, p.224,225],

To sort oK numbers using the odd-even iterative merge
requires 2k-1 1 by 1 merging networks (i.e comparison-
exchange modules), followed by 2k=2 2 by 2 merging net-
works, £followed by 2k=3 4 by 4 merging networks, etc...
Since a 21+l by 21+l merging network requires one more step
of comparison-exchanges than a 21 by 21 merging network, it
follows that an input number goes through at most
14+2+...+k=k (k+1) /2 comparators. This means that 2 numbers
are sorted by performing k(k+1l)/2 parallel comparisons and
exchanges. However, the number of comparators required by
this type of sorting network is (kz—k+4)2k“2—l [Batc68].
Sseveral subsequent efforts [Knut73] have been able to

reduce this number of comparators, but only for particular

cases (e.g. k<4).

The Bitonic merge rule:

For the "bitonic" sort a second jterative rule is used
(Figure 4). A bitonic sequence is obtained by concatenat-
ing two monotonic sequences, one ascending and the other

descending[1l]. Examples of bitonic sequences are:

[1] A more general definition of a bitonic sequence al-
lows a cyclic shift of such a sequence, €. 'g. 89642135 would
also be a bitonic sequence.
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Figure 4. The Bitonic merge rule
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35896421
47965432

The bitonic iterative rule is based on the observation that
a bitonic sequence may be split into two bitonic subse-
gquences by performing a single step of comparison-
exchanges. Let (al, az,...,azn) be a bitonic sequence such
that aj<a,,...<a, and  a,,.q1%8,,5>0285,: Then  the
sequences

min(ay,ag,.q) min(a,,ag, o) rees
and

max(al,an+l), max(az,an+2),...
are both bitonic. Furthermore, the first sequence contains
the n lowest elements of the original sequence while the
second contains the n highest. It follows that a bitonic
sequence can be sorted by sorting separately two bitonic

sequences that are one half as long.

To sort 2K numbers using the bitonic iterative rule we
‘can successively sort and merge sequences into larger
sequences until a bitonic sequence of size 2k is obtained.
This sequence can be split into a "lower" and a "higher"”
bitonic subsequences. Note that the recursive building
procedure of a bitonic sequence must use some comparators
that invert their output lines and output a pair of numbers
in decreasing order. This is necessary in order to build

the decreasing subsequence of a bitonic sequence (see
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Figure 5). A bitonic sort of 2K numbers requires k(k+1l)/2

steps, each using k-1 comparators.

Since the first version of the bitonic sort was
presented, the algorithm has been considerably improved by
the introduction of the "perfect shuffle” interconnection
[Ston7l] . Stone noticed that if the inputs were labeled by
a binary index, then the indices of every pair of keys that
enter a comparator, at any step of the bitonic sort net-
work, would differ by a single bit in their Dbinary
representations. Stone also made the following observa-
tions: The network has logzn stages. The ith stage con-
sists of i steps, and at step i, inputs that differ in
their ith least significant bits are compared. This regu-
larity in the bitonic sorter suggested that a more regular
interconnection could be used between the comparatprs of

two adjacent columns of the network.

Stone concluded that the perfect shuffle interconnec-

tion could be used throughout all the stages of the net-
work. "Shuffling" the input lines (in a manner similar to
shuffling a deck of cards) is equivalent to shift their
binary representation to the left. shuffling twice shifts
the binary representation of each index twice. Thus, the
input lines can be ordered before each step of comparison-
exchanges by shuffling them as many times as required by

the bitonic sort algorithm. The network that realizes this
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idea is illustrated in Figure 6 for 16 input 1lines. In

general, forvn=2k

input lines, this type of bitonic sorter
requires a total of (n/2)(logn)2 comparators, arranged in
(1ogn)2 ranks of n/2 comparators each. The network has
logn stages, with each stage consisting of logn steps. At
each step, the output lines are shuffled before they enter
the next column of comparators. The comparators in the

first (logn)-i steps of the ith stage do not exchange their

inputs. Their only use is to shuffle their input lines.

Instead of a multistage network, the bitonic sort can
also be implemented on a recirculating network, that
requires a much smaller number of comparators. For exam-
ple, an alternative bitonic sorter can be built with a sin-
gle rank of comparators connected by a set of shift regis-

ters and shuffle links as shown in Figure 7.

Since the ith stage of the bitonic sort algorithm

requires i comparison-exchanges, Batcher”s sort requires
1+2+3+...+logn = logn(logn + 1) /2

parallel comparison-exchanges. Stone”s bitonic sorter, on
the other hand, requires a total of (logn)2 steps, because
additional steps are needed for shuffling the input 1lines
(without performing a comparison). In both cases, the
asymptotic complexity is O(logzn) comp;rison—exchanges.

This provides a speedup of O(logn/n) over the O(nlogn)
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complexity of serial sorting. Therefore, it improves sig-
nificantly the previous known bound of O(n) for parallel

speedup with n processors.

Siegel [Sieg77] has shown that the bitonic sort can be
also performed by other types of networks in time O(logznl
Among the networks he considered, are the Cube and the
Plus-Minus 2i networks. Essentially, these networks can
sort because they are able to simulate the perfect shuffle
interconnection. Siegel proves that the simulation takes
0(1ogzn) time, and thus, that sorting can also be performed

within this time limit.

2.2.2. Sorting on an SIMD machine

Sorting networks are characterized by their "non adap-
tivity" property. They perform the same sequence of com-
parisons regardless of the result of intermediate comparis~
ons. In other words, whenever two keys Ri and Rj are com-
pared, the subsequent comparisons for R; in the case that
"Ri<Rj are the same as the comparisons that Rj would have
entered in the case R.<R;-. The non-adaptivity property

]
makes the implementation of an algorithm very convenient
for an SIMD machine. In particular, the sequence of com-
parisons and transfers to be executed by all the processors

is determined when the sorting operation 1is initialized.

Thus, a central controller can supervise the execution by
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broadcasting at each time step the appropriate compare-

exchange instruction to the processors.’

Sorting on an array processor:

A different sorting problem is considered in [Thom75],
in which the processors of an n by n mesh-connected mul-
tiprocessor are indexed according to a prespecified rule.
The indexing rules considered are the row-major, the
snake-like row-major, and the shuffled row-major rules
(shown in Figure 8). Assuming that n2 keys with arbitrary
values are initially distributed so that exactly one key
resides in each processor, the sorting problem consists of
moving the ith smallest key to the processor indexed by i,
for i=l...n2. As with the sorting networks, parallelism is
used to simultaneously compare pairs of keys, and a key is
compared to only one other key at any given unit of time.
Concurrent data movement is allowed but only in the same
direction, that 1is all processors can simultaneously
transfer the content of their transfer register to their
right, left, above or below neighbor. This coméutation
model is SIMD since at each time unit a single instruction
(compare or move) can be broadcast for concurrent execution
by the set of processors specified in the instruction. The
complexity of a method which solves the sorting problem
for this model can be measured in terms.of the number of

comparisons and unit-distance routing steps. For the rest
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of this section we refer to the unit-distance routing step
as a move. Any algorithm that is able to perform such a
permutation will require at least 4(n-1l) moves, since it
may have to interchange the elements from two opposite
corners of the array processor. This 1is true for any
indexing scheme. In this sense a sorting algorithm which

requires O(n) moves is optimal.

In [Thom75], two algorithms are presented that perform
this array sort in Q(n) comparisons and moves. The first
algorithm uses an odd-even merge of two dimensional arrays
and orders the keys with snake-like row-major indexing.
The second uses a bitonic sort and orders the keys with
shuffled row-major indexing. Recently, a third algorithm
that sorts with row-major indexing with similar performance
has been published [Nass79]. This algorithm is also an
adaptation of the bitonic sort where the iterative rule is

a merge of two dimensional arrays.

2.3. A shared memory model

After the bound of 0(log2n) was achieved through the
use of sorting networks, considerable effort was devoted to
improve this result and to achieve the theoretical bound of
O(logn). The first model that was able to reach this bound
may be designated as a "modified" sorting network [Mull75].

Instead of comparison-exchange modules, this model uses
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comparators which input two numbers A, B and output a sin-
gle bit x: x=0 if A<B or x=1 if A>B. To sort a sequence of
n elements, each element is simultaneously compared to all
the others by using a total of n(n-l) comparators. The
output bits from the comparators are then fed into a paral-
lel counter which computes in logn steps the rank of a key
by counting the number of bits set to 1 in the comparison
of this key with all the other n-1 keys. Finally a switch-
ing network consisting of a binary tree of logn+l levels of
single-pole, double-throw switches routes a key of rank
equal to i to the ith terminal of the tree. There. is one
such tree for each key, and each tree uses 2n-1 switches.
Routing a key through this tree requires logn time units,
and this step determines the algorithm complexity. A
diagram for this type of sorting network is presented in

Figure 9.

At the cost of additional hardware complexity (the
basic modules are more complex than comparison-exchange
modules and the network uses more of them), the above algo-
rithm sorts n keys in O(logn) time with O(nz) processing
elements. This result was the first to use an enumeration
scheme for parallel sorting. Later algorithms which we
refer to as "enumeration type" sorting algorithms exploit

the same idea.
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The sorting network model and its modified version
were embedded in a more general multiprocessor model where
n processors have access to a large shared memory. With
this scheme, sorting is performed by computing in parallel
the rank of each key (the "enumeration" phase) and routing
the keys to the location specified by their rank. The
algorithm we have just described performs the enumeration
with n(n-l1) comparators and the routing with n trees of
2n-1 switches each. Therefore, it can also be described as
an enumeration type algorithm which sorts n keys in time
0(logn) on a multiprocessor which consists of O(nz) proces-

sors sharing a common memory of O(nz) cells.

A major improvement that this algorithm requires is a
reduction in the number of processors. Even from a pure
theoretical point of view, n? processors is a discouraging
requirement for achieving a speed of O(logn). An optimal
parallel sorting algorithm should achieve the same speed
with only O(n) processors in order to show a speedup of

order n.

Faster parallel merge methods:

A shared memory model is also assumed in a study of
parallelism in comparison problems by Valiant [Vali75].
Valiant”s algorithm merges two sorted sequences of length n

and m (n<m) with Viim processors in 2loglogn+0(l) comparison
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steps (compared to log2

n for the bitonic merge). Another
fast mergingk algorithm was developed by Gavril [Gavr75].
This algorithm merges two sorted sequences of length n and
m with a smaller number of processors p (p<n<m). By using
a simple parallel binary insertion method, the algorithm
performs the merge operation with 2log(n+l)+4n/p comparisF
ons when n=m. These two fast merge procedures were the

basis for subsequent parallel sorting algorithms [Hirs78,

Prep78] of optimal complexity O(logn).

Ooptimal parallel sorting algorithms:

Hirschberg”s algorithm [Hirs78] is a "bucket sort"
which sorts n numbers with n processors in time O(logn),
provided that the numbers to be sorted are in the range {0,
l1,...,m-1}. A side effect of this algorithm is that dupli-
cate numbers are eliminated. If memory conflicts were
ignored, it would be sufficient to have m buckets and to
assign one number to each processor. The processor that
gets the ith number would be labeled P;; Py would then
place the value i in the appropriate bucket. For example,
if Py had the number 5, it would place the value 3 in
bucket number 5. The problem with this simplistic solution
is that a memory conflict may result when several proces-
sors attempt simultaneously to store different values of 1
in the same bucket. This memory contention problem may be

solved by increasing substantially the memory requirements.
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Suppose there is enough memory available for m arrays, each
of size n. Each processor can then mark a bucket without
any fear of memory conflict. To complete the enumeration
sort the m arrays must be merged. This is done by using a
sophisticated parallel merge procedure, where processors
are granted simultaneous read access to a memory location
but> no write conflict cah occur. Hirschberg generalizes
the above method so that duplicate keys remain in the
sorted array. But this degrades the performance of the
sorting algorithm. The result is a method which sorts n
numbers with n1+1/k processors in time O(klogn), where k is

an arbitrary integer.

A major drawback of this algorithm (aside from the
lack of realism of the shared memory model which will be
discussed later) is its m*n space requirement. Even when
the range of possible values is not very large, one would
like to reduce this requirement. In the case of a wide
range of values (for example if the keys are character
strings rather than integer numbers), the algorithm would

not be applicable.

In [Prep78] two new fast enumeration-type sorting
algorithms are presented. However, rather than computing
separately the rank of every single element, they first
partition the source array into a number of subarrays, sort

the subarrays and compute partial ranks by merging pairs of
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subarrays. Finally, for each element the sum of its par-
tial ranks is also computed in parallel. The first algo-
rithm uses Valiant”s merging procedure [vali75] and sorts n
numbers with nlogn processors in time O(logn). The second
algorithm uses Batcher”s odd-even merge and sorts n numbers
with nl+l/k processors in time O(klogn). The performance
of the latter algorithm is similar to Hirschberg®s algo-
rithm, but it has the additional advantage of being free
from memory contention. Recall that Hirschberg”s model
required simultaneous fetches from the shared memory, while
Preparata’s method does not (since each key participates in

only one comparison at any given unit of time).

Despite the improvement achieved by eliminating memory
conflicts, these algorithms are still not very realistic.
Any model requiring at least as many processors as the
number of keys to be sorted, all sharing a very large com-
mon memory, is not feasible with present or near term tech-
nology. However, the results achieved are of major
theoretical importance and the methods used demonstrate the
intrinsic parallel nature of certain sorting procedures.
Furthermore, it seems that many of the basic ideas in these
algorithms can inspire the design and implementation of
realistic parallel sorting methods for multiprocessors.
For example, in Section 4.6, we present a simple method for

parallel sorting by enumeration, that can be implemented on
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a backend multiprocessor. While the efficiency of this
method relies on the assumption that a fast broadcast

facility is available, no shared memory is required.

2.4. Parallel tape sorting algorithms

Each of the parallel sorting algorithms we have previ-
ously discussed can be classified as an internal sorting
algorithm since they assume that all the data to be sorted
resides in the processors” memory. However, in [Even74]
two parallel tape sorting algorithms are presented that are
external sorting algorithms. The sorting problem addressed
in [Even74] is to sort a file of n records with p proces-
sors, where p<<n. The only internal memory requirement is
that three records could fit simultaneously in each
processor”s local memory. Both algorithms are parallel
versions of an external 2-way merge-sort. They sort a file
of n records by merging iteratively pairs of sorted runs of
size 2, 22,..., oflogn]-1 1, the first method each pro-
cessor is assigned n/p records and 4 tapes to perform an
external merge sort on this subset. After p sortéd runs
have been produced by this parallel phase, a single proces-

sor merge-sorts them serially.

In the second method, the basic idea is that each pro-
cessor performs a different phase of the serial merge pro-

cedure. The ith processor merges pairs of runs of size
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231 into runs of size 21 for i=1l, 2,...[logn| (ideally n

is a power of 2 and logn processors are available). A high
degree of parallelism is achieved by using the output tapes
of a processor as input tapes for the next processor so
that as soon as a processor has written 2 runs these runs
can be read and merged by another processor. In order to
overlap the output time of a processor with the input time
of its successor, each processor writes alternately on 4
tapes (one output run on each tape). This procedure also
reduces the time for rewinding the tapes, since every tape
is emptied (that is the records it contains are read)

before it is loaded again with a sorted run (Figure 10).

The pipelined merge sort that we present in Section
4.2 is an adaptation of this tape sorting algorithm for our
multiprocessor model. We show that the delay between pro-
cessors can be shortened and that the 4p magnetic tapes
requirement can be replaced by proper use of a modified

moving-head disk.
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2.5. Summary

One conclusion emerges clearly from this survey: Most
research on parallel sorting has concentrated on finding
new ways to speedup the algorithms” theoretical computation
time, while constraints other than time have received lit-
tle consideration. Typically, algorithms have been
developed that require n processors (and in some cases,
even more than n) to sort n numbers. Figure 11 summarizes
the number of processors and the computation time required

by various algorithms described in this chapter.

2.5.1. Implementation and parallel architecture con-

straints

A general criticism against recent research in paral-
lel sorting, is that it ignores most architectural con-
straints. As indicated in Figure 10, most algorithms
require a very large number of processors. This require-
' ment was initially justified, when parallel sorting algo-
rithms were required for implementing efficient switching
networks. In this context, the processors are simple
hardware boxes, that only compare and exchange their two
inputs. Also, the number of input 1lines to a switching
network is never as prohibitive as the number of elements
that a general purpose sorting algorithm may have to sort.

However, when parallelism is invoked for Speeding-up sort-
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Algorithm Number of Execution| Other charac-
processors| time -teristics

odd-even transp. n 0 (n)
Batcher”s bitonic nlogzn O(logzn) sorting network
Stone”s bitonic n/2 0(logzn) sorting network
Mesh bitonic n? O(n) sorts n? el.
Muller-Preparata n2 O(logn)
Hirschberg n O(logn) |duplicates probl
Hirschberg nl+l/k O(klogn) |memory conflicts
Preparata 1. nlogn O(logn)
Preparata 2. nl"'l/k O(klogn) |no memory confli

Figure 11. Processors required and computation time

ing of a large array and the use of full-scale processors
is implied, then architectural considerations are at least

as important as the theoretical optimality of an algorithm.

An experiment on the STAR computer [Ston78] demon-

strated that the performance of a sorting algorithm can be
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significantly affected by the architecture of the processor
6n which it is implemented. Stone observed that although
Quicksort had a better complexity than Batcher’s bitonic
sort on the vector computer STAR (O(nlogn) compared to
O(nlogzn)), when both algorithms were implemented, Quick-
sort was actually much slower. Stone explained this result
by showing that the constants involved in the asymptotic
bounds were very different, because of the way the algo-

rithms were coded in vector instructions.

For the parallel algorithms that we ﬁave classified as“
"network sorting algorithms", the interconnection topology
is a major factor in an efficient implementation. Oon the
other hand, for the shared memory sorting algorithms, a
factor that was not accounted for is the cost of assigning
and synchronizing the processors. Further reséarch and
implementation efforts will probably indicate that not only
the theoretical complexity of an algorithm determines its
performance. Thus, "optimality" of an algorithm may be

limited to the context of a specific architecture.

As indicated by our survey, the shared memory model
algorithms have the best asymptotic complexity. However,
it is most unlikely that future technology will supply the
tools for implementing any of these algorithms. It may be
the case thét some of the simpler algorithms that have been

surveyed (such as the odd-even transposition sort, for
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example) , will be the best compromise between optimality

and feasibility.

2.5.2. Further aspects of parallel sorting

3

One aspect that has not been investigated at all, is
the way the performance of an algorithm may be affected by
the initial distribution of the data. This qgquestion 1is
irrelevant for sorting networks, because the algorithms
based on sorting networks are non-adaptive (see Section
2.2). However, the other parallel sorting algorithms that
have been discussed could perform differently when the ini-
tial data 1is partially sorted. It would certainly be
desirable to have some indication for worst and average
case behavior of a parallel sorting algorithm, but results
of this kind can generally be achieved only through experi-
ments. Many empirical results are available for commonly
used serial sorting algorithms. Since most known parallel
sorting algorithms cannot be implemented on current mul-
tiprocessors, it is unlikely that experimental runs, on
real machines and real data, will be possible in the near

future.

Another aspect of parallel sorting algorithms that
needs further investigation is the time-space tradeoff.
This tradeoff was discussed for serial sorting in Section

1.2. We pointed out that an algorithm that requires a sub-
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stantial amount of work space in memory is often faster and
simpler than other algorithms that can sort data in situ.
But despite its advantages, it would be ruled out because
of memory limitations. 1In a parallel processing énviron—
ment, the size of main memory remains a major constraint,
whether or not it is shared by multiple processors. How-
ever, designers of parallel sorting algorithms often dis-
card this constraint, and put the emphasis on execution
time rather than space efficiency. As indicated in Section
2.3, the fastest parallel algorithms require as much as

O(nz) space to sort n elements [Birs78].

One feature common to parallel sorting algorithms that
have been described in this chapter, is that there is no
mention of how the elements to be sorted have been read in
the processors” memories. While it is justified to elude
this issue when considering a serial, internal sorting
algorithm, the situation is different with parallel pro-
cessing. On a single processor, the source data can only
be read sequentially into memory. But for a multiproces-
sor, there is the possibility that several processors can
read or write simultaneously. On the Illiac-IV, for exam-
ple, a fixed-head moving disk was used for ‘concurrent I/0
by all 64 processors. Howevef, it is more reasonable to
assume that when a significantly larger number of proces-

sors is involved, only some of them will be able to perform
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I/0 operations concurrently. Thus, for parallel array
sorting, we conclude that the cost of reading and writing
the data should be taken into account when an algorithm is
evaluated. 1In particular, there would be no point in using
a parallel sorting algorithm that requires only O(logn)
time, if the startup cost to get the data in memory is

0(n).
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CHAPTER 3

A MODEL FOR PARALLEL EXTERNAL SORTING

For a conventional computer system, the distinction
between array sorting methods and file sorting methods is
well known, and there are well accepted criteria to measure
their respective performance. However, as indicated by our
survcy of parallel sorting in Chapter 2, the topic of
parallel file sorting has not yet been investigated (except
- for one very particular result [EVEN74] on parallel tape

sorting).

The motivation for designing parallel file sorting
algorithms and for developing a cost analysis framework for
these algorithms is especially strong in the database
management area. In conventional database management sys-
tems (DBMS”s), sorting is known to be a very efficient tool
for performing complex operations. 1In particular, it has
been shown [Blasg77, Astr76] that the reiational join can
be very efficiently realized by pre-sorting the operand
relations. However, research on database machines has c¢on-
centrated on parallel processing tools other than parallel
sorting, to improve the performance of DBMS“s. In particu-

lar, several designs of associative disks have been pro-

posed, that allow a very fast execution of record searching
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[Slot70, Ozka77, Bane79]. The first step in introducing
parallel sorting as a tool to be used by future database
" machines is to develop fast methods for sorting large files

in parallel.

In a previous paper [Bora80 ], we have proposed two
parallel file sorting methods, and estimated their execu-
tion time if they were run on a specific database machine.
The machine was essentially modeled as DIRECT [Dewi79 ],
and used a data cache for interprocessor communication and
disk access. Here, we depart from this shared memory
model, and propose a more general approach to parallel file

sorting.

In this chapter, a model for parallel external sorting
is investigated. This model will be used in the next
chapter to present several new parallel external sorting
algorithms. We begin by stating explicitly the problem of
parallel file sorting, and by defining some terminology.
We then investigate several aspects of this problem that
need to be modelled. More specifically, the chapter is
organized as follows. In Section 3.1, the notions of logi-
cal order of records and physical order on a disk device
are clarified. Then, the concept of (serial) external
sorting is extended to multiprocessors, and a definition of

parallel external sorting is proposed. In Section 3.2, we

specify the parallel architecture model that we propose to
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use. A major component of this architecture is a modified
moving-head disk device, that allows parallel' access to
tracks on lthe same cylinder. Finally, Section 3.3
describes a cost model for evaluating the performance of
external parallel sorting algorithms. The analysis of the
algorithms presented in Chapter 4 will be based on this

model.

3.1. Problem statement and terminology

3.1.1. Record and key sorting

Since we are addressing the problem of sorting a file
of records, some assumptions about the file logical struc-
ture, and about the meaning of sorting should be clearly
stated. We assume that the file is composed of fixed
length records. Each record is composed of a number of
attribute-value pairs. By sorting a set of records, we
mean ordering them in increasing order, with respect to the
values of one or several attributes. These attributes con-
étitute the sort "key". The key may be only a few charac-
ters long (e.g. a name or an jdentification number for a
file of employees), or it may be as long. as the entire
record. The concatenation of the key attributes values
constitutes an alphanumeric string, and the sort order is
defined as the ascending, lexicographic order of these

values. When describing sorting algorithms, we will wuse
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the terms "record sorting" and "record comparisons”.
Rather than specifying each time what the key is, we adopt
the convention that record sorting means ordering records
with respect to their key value, and comparing records
means comparing their key values. However, when computing
the execution time of an algorithm, we will consider the
impact of varying the key length, since it may take signi-
ficantly more time to compare very long Kkeys than short
ones. We do not assume that the key values are unique,
even in the case that the key is the entire record (in this
case, the file may contain duplicate records). Thus, when
two-records are compared, we may conclude either that one

is "greater" than the other, or that they are equal.

3.1.2. Physical order on a disk

When records are stored on a sequential media such as
magnetic tape, the meaning of physically ordered records is
clear. However, when a magnetic disk device is used as the
mass storage media, the concept of physical order must be
defined. If a set of records fits on a single track, the
physical order is determined, since a track is a sequential
unit of storage. However, when the set is larger than a
track, a convention is needed for ordering tracks. To gain
intuition on the number of tracks that a 1large data file
may occupy, suppose that the size of the file is about 10

Megabytes. Current disk devices have a track capacity
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close to 20,600 bytes, and 15 to 30 tracks per cylinder
(for example,vthe IBM 3350 disk has a 19,069 bytes track
capacity and 30 tracks per cylinder). Thus, a 10 Mbyte
file will occupy approximately 500 tracks. In allocating
"contiguous" disk space to store the file, we may either
decide to fill up contiguous cylinders, or to use contigu-
ous tracks on a single disk surface. The consequent track
numbering for these two choices is shown in Figure 12. In
the first case, the file would span 17 cylinders on an IBM
3350 disk. In the second case, the file would occupy one

surface.

If either of these two schemes is adopted fér number-
ing tracks, then at the end of a sort operation, the algo-
rithm must write the sorted file on 500 "contiguous"
tracks. In addition, during intermediate stages of the
sorting process, whenever a sorted subset of records is
constituted, this subset must also be written onto contigu-
ous tracks. For example, if a sorting algorithm is based
on iterative merging, it will produce sorted runs of
increasing size at each iteration. When a run becomes
larger than a single track and requires two tracks for
storage, it must be written on two neighboring tracks (that
is one under the other on the same cylinder, or one next to

each other on the same surface).
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Either disk layout scheme can have a significant
impact on the time required for disk access during all
stages of the sorting algorithm. Intuitively, it seems
that compacting the runs on as few cylinders as possible
should reduce the overall seek time. When sorting is per-
formed by a parallel processor, the possibility of reading
and writing from all tracks of the same cylinder simultane-
ously can also enforce this choice (assuming, of course,
the availability of a parallel read/write disk). Oon the
other hand, writing an entire run on a single surface may
save communication and I/O time, when a processor is asso-
ciated with each surface of the disk. In this case, a sin-
gle processor cannot directly read or write a run that is

stored on several tracks of a cylinder.

A third option is writing consecutive blocks of a
sorted run on tracks allocated randomly, one at a time, by
a controller. 1In this case, an address translation mechan-
ism must be used to identify the sequence of tracks con-
taining a sorted run. This approach, however, would make
it almost impossible to minimize the disk access time of an
algorithm. In addition, when a very large file is
involved, the necessity of maintaining a large page table
can also degrade significantly the performance of the I/0
system. For a 100 Mbyte file, if there was one table entry

for each disk block, the file directory would require as
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much as 100K bytes. Because of its size, it may not be
possible to maintain the entire table in the processors”
memory. As a result, a single data fetch may cause two
page faults (6ne for the page table, the other for the data
page). Thus, even in the case of a conventional processor,
the contiguous allocation of disk space for storing large

files is advocated [Ston8l].

3.1.3. Multiprocessor internal and external sorting

While the distinction between internal and external
sorting algorithms for a uniprocessor has been discussed
earlier, these concepts need to be redefined for a mul-
tiprocessor environment. A parallel algorithm is an inter-

nal sorting algorithm if it operates on data that resides

in the multiprocessor”s random-access memory; by sorting,
we mean that the data is permuted within this memory so
that, at termination of the algorithm, the data is arranged
in a prespecified order. When this memory is shared by the
processors, the data occupies a contiguous area of memory,
and the order is clearly defined. On the other hand, when
each processor has its own 1local memory, the notion of
order ‘must be defined. Usually, the interconnection topol-
ogy suggests a natural ordering scheme. The processors are
labelled by a serial number (e.g 1 to nj, and sorting can
be defined as bringing the smallest datum (or the first

storage unit of data) to processor 1, the next to processor
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2, ... , and the last to processor n.

A parallel sorting algorithm is defined as a parallel

external sorting algorithm if it can sort a collection of

records that is too large to fit in the total memory avail-

able in the multiprocessor. This definition is general
enough to apply to both categories of architectures: the

shared memory multiprocessors and the loosely coupled mul-

tiprocessors. For shared memory multiprocessors, an exter-
nal sorting algorithm is required when the shared memory is
not large enough to hold all the records (and some work
space to execute the sort). On the other hand, for loosely
coupled multiprocessors, the assumption is that the source
records cannot be distributed among the processors” local
memories. That is, the multiprocessor has p identical pro-
cessors, and each processor”s local memory is large enough
to hold k records, but the source file has more than p*k
records. In both cases, the processors can access a mass
storage device on which the file resides. At termination
of the algorithm, the file must be writtén back to the mass
storage device, in sorted order. This order must be
defined according to the physical characteristics of the
storage device. For a magnetic disk, we will use the phy-
sical order definition given at the beginning of this sec-

tion.
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3.2. A class of multiprocessors

The multiprocessor organization on which our parallel
algorithms are based consists of the following components:
(1) A set of general purpose processors.

”(2) An interconnection device connecting the processors.

(3) A controlling processor

(4) A modified moving head disk device, that allows for
parallel read and write of tracks on the same
cylinder.

A diagram showing this organization is shown in Figure
13, for 32 processors. 1In general, we assume that there
are as many processors as disk heads, and that processors
are physically associated with disk surfaces. Thus, once
the disk heads are positioned on a cylinder, the processors
can access in parallel all the tracks on the cylinder.
Parallelism can be increased (above the 1limit imposed by
the number of disk surfaces [1]), by uéing several disk

drives, and by associating a set of processors with each

drive.

[1] This number is typically between 15 and 30 for com-
mercially available disks. For example, the IBM 3330 has
19 tracks per cylinder, the IBM 3350 has 30 and the IBM
3380 has 15.
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3.2.1. Processor synchronization

Unlike the network internal sorting model (see Section
2.2), our model for external sorting does not rely on an
SIMD machine architecture. Since external sorting requires
the transfer of large amounts of data, we felt that the
unit of data transfer should be as large as possible
Increasing the size of the data transfer unit reduces the
communication overhead (since a message transfer has a
fixed overhead cost, in addition to a cost per byte
transferred). On the other hand, this size is clearly lim-
ited by the size of the processors” local memory. Our
algorithms assume that data is transferred in page units,
with a page size equal to the capacity of a typical disk
track. Between two data transfers, the amount of computa-
tion executed by a processor can be significant. Thus, the
granularity for processor synchronization intefvals is of
the order of several thousand instrﬁctions, rather than a

single instruction.

Recent research on database machines also advocates an
MIMD approéch by showing its superiority over an SIMD
approach for the support of inter-query
concurrency [DeWi79 1, and for processor allocation
strategies [Bora8l ]. Since we foresee that the main
application of parallel file sorting algorithms will be in

the database area, the architecture we propose is
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influenced by these earlier results.

In our multiprocessor model, the processors operate
independently of each other but can be synchronized by
exchanging messages among themselves or with a controlling
processor. At initiation time of a sorting algorithm, the
controller assigns a number of processors to its execution.
Because several other operations may be already in the pro-
cess of being executed, the controller maintains a free
list and assigns processors from this list. In addition to
the availability of processors, the size of the sorting
problem is also taken into consideration by the controller
to determine the optimal processor allocation. Finally,
some algorithms allow for a dynamic allocation of proces-
sors. That is, if they begin executing with less than the
optimal number of processors, the controller can assign to
them additional processors during intermediate stages of
execution. The "pipelined selection sort" and the "pipe-
lined merge sort" have this property. When these two algo-
rithms are presented in Chapter 4, we will investigate in
more detail the implications of a dynamic processor alloca-

tion strategy.

In addition to assigning processors, the controller is
also responsible for coordinating and supervising the
actions of the processors executing a task,, For example,

it maintains control tables that keep track of the current
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files being read or written. Most sorting algorithms
create interﬁediate sorted "runs" of data, that must be
assigned to other processors for subsequent processing. 1In
particular, in iterative merging procedures, a processor
generates an output run that becomes an input run for
another processor. 1In this case, the controller must main;
tain task tables that contain information about the source

and destination processors for these runs.
3.2.2. The 1/0 device

A high degree of 1/0 bandwidth is critical for achiev-
ing a cost-effective performance in parallel file sorting.
The cost of external sorting is dominated by the cost of
I/0 transfers. Therefore, if a parallel processor is to
achieve any significant speedup, it must be able to read
from and write to mass storage faster than a single proces-
sor. Ideally, one would have as many storage devices as
processors, and a processor would read from and write to as
many devices as are required by the sorting algorithm.
This was essentially the approach taken in [Even74al, where
4 tape drives are assumed for each processor. However, a
model of this kind, though it may help understand algo-
rithmic aspects of parallel processing, does not take into
consideration constraints imposed by technology. Like the
shared memory model for array sorting, a parallel file

sorting model that assumes a shared mass storage device
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with infinite I/O bandwidth provides very 1limited insight

into implementation aspects.

We have chosen to model our I/O device as a modified
moving head disk. Disks that allow for parallel read and
write of all the tracks on one cylinder have been
proposed [Bane78 ] and, in some cases already
built [Leil78 ]. They appear to be a good compromise
between the cost-effective, conventional moving-head disk

and the obsolete fixed-head disk.

In order to minimize seek time, we propose to con-
currently use at least two disk drives (see Figure 13).
During execution of a single phase of a sorting algorithm,
one drive can be utilized for reading and the other for
writing. In Section 3.3, we demonstrate that having a
separate drive for output makes iﬁ possible to concurrently
write several output runs while minimizing seek time. 1In
addition, a two-disk organization permits overlaping the

write time with the computation and the read times.

Finally, we propose an alternative multiprocessor
organization (see Figure 14). As we will demonstrate in
Chapter 4, this organization can improve significantly the
performance of parallel file sorting algorithms. The cost,
however, is an increase in the complexity of the hardware.

In the previous organization, a processor was physically
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associated with a specific surface of a disk drive. When
we began to analyze several of the parallel sorting algo-
rithms, we realized that numerous processor to processor
and processor to mass storage transfers were incurred when
it was necessary for a processor to access data from
another disk surface. These transfers occur only because
the processors are connected to the disk platters in a
rigid manner. If the processors are instead connected to
the disk heads by an adequate interconnection network, the
number of interprocessor data transfers required for sort-

ing can be significantly reduced.

3.3. A cost evaluation model

After some attempts to analyze the execution time of
our algorithms, we felt the need for a rigorous definition
of some basic performance parameters. These parameters
must measure the I/O cost, the communication cost, and the
processing cost for executing an algorithm on a given mul-
tiprocessor architecture. We have identified a number of
basic tasks common to all our algorithms (e.g reading a
page from disk), and have associated a cost parameter with
each. The execution-time expression for each algorithm will
be expressed in terms of the costs of these basic steps.
For different processors and mass storage device charac-
teristics, the parameters may have different values and may

relate differently to each other.
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Our first basic assumption is that data is moved and
processed by page units. The page size is determined by
the capacity of a disk track, and by the size of the pro-
cessors”® 1local memory. Our analysis assumes that this
memory capacity is approximately three times the size of a
disk track. The reason for this assumption is that a basié
computation step for external sorting is merging of two
sorted pages (while for an internal sorting algorithm, it
is the comparison of two elements). In order for a proces-
sor to efficiently perform this operation, its local memory
must be large enough to hold at least three pages. If more
memory is available, there are two ways to improve the per-
formance of the sorting algorithms. One is to increase the
page size (for example, a page size can be a multiple of a
track capacity). The other would be to replace the basic

2-page merge by an N-way merge of N pages.

3.3.1. Computation cost

We assume that a full page contains K records. If the
length of a page is approximately 47000 bytes [2], the
value of K would be about 300 for a record length of 150

bytes. The cost of performing a comparison is denoted by

[2] To obtain numerical estimates for the execution time
of the algorithms, we will assume that the disk device
characteristics are similar to the IBM 3380 (see section
4.7).
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C; the value of C depends on the length of the sort key.
For longer keys, the computation time increases. The cost
of moving a record within memory is V time units. This
cost depends on the record length. However, because in a
2-page merge all the records are moved (from an input to an
output buffer), the number of bytes moved is always V*K,
that is approximately the number of bytes in a page. Thus,
changing the record length does not affect the overall com-
putation time required for moving the records within

memory.

Merging two sorted lists of length K requires in the
worst-case 2K-icomparisons [Knut73 ]. The number of records
to be moved is always 2K, since all the records must be
moved to the output buffer. Thus, the cost of merging two
sorted pages is essentially 2K(C+V). The computation time

of our algorithms will be expressed in T, time units, where

Tm is defined as

T, = K(C+V)
When a processor performs a traditional 2-way merge, the
computation time required for merging 2 runs of 21 pages

each into one run of 2i*l pages is 2i+1Tm,

The cost of performing an internal sort of a page is
not included in our analysis of the alternative algorithms,

since each requires that the pages be internally sorted




69

before the pages are merged together. We may assume that
before each external sorting algorithm starts executing, a
preprocessing phase is performed in order to sort indivi-
dual pages. Or, in order to reduce I/O time, the pages can
be sorted when the are read for the first time into the
processors” local memory. However, even in the case that
an initial phase is performed for the sole purpose of sort-
ing individual pages, the cost of this phase should not
affect significantly the overall cost of the algorithms,
since at most one pass over the entire file is required to
perform it. For a file of n pages, and for p processors,
sorting individual pages requires a computation time pro-

portional to
(n/p)KlogR(C+V) [3]

and a total of 2n I/O operations (to read and write the

entire file).

g.g.g. Communication time

There are two types of messages passed along the
interconnection network. The first type includes page

transfers between two processors. Each of these transfers

[3] In all our formulas, the logarithms are base 2, un-
less otherly specified. We assume that the pages are
internally sorted using a fast internal sort algorithm,
that reguires O(KlogK) comparisons and recdrd moves.
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has a fixed cost, and we have assumed that this cost is
equal to the cost of an I/O page transfer (with no access
time) . The numbers presented in Section 4.7 are based on a

16 ms page transfer cost.

The second type of messages include the control mes-
sages: short messages exchanged by the controller and the
procéssors. Examples of control messages are those neces-
sary to allocate processors, synchronization messages indi-
cating the end of a phase, and the initiation of a new
phase during execution of an algorithm. Since the number
of control messages is small compared to the number of data
messages, and since they are short (they contain only a few
words of information), we are neglecting them when compar-
ing the cost of several algorithms. The actual cost of
control is an open question that we intend to address in

the future,
3.3.3. 1/0 cost

A first indication of the efficienéy of a parallel
external sorting algorithm is the total number of 1/0
operations required. An estimation of the time required
for I/0 also requires, however, consideration of the way a
specific algorithm is able to exploit the physical charac-
teristics of the I/O device. In particular, seek time can

vary significantly, depending on how intermediate files
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created by the algorithm are read and written. For exam-
ple, seek timé can be reduced by filling up one cylinder,
and then writing on the next cylinder. If this strategy
can be implemented, two entire cylinders can be written
with a single track to track seek. An additional improve-
ment can be achieved by performing several track transfers
in parallel. Since we are proposing to access, in paral-
lel, all the tracks of the same cylinder, several proces-
sors” I/0 requests can be simultaneously satisfied provided
that the algorithm synchronizes these requests and that
concurrent requests are made for data on one cylinder.
Ideally, during the entire execution of the algorithm, I/O
requests would have this characteristic. As a result, we

could estimate the I/0 cost by the formula

(Ttr + T ) * total transfers / p

where:

Ty is a track transfer time

T.x is the track to track seek time

p is the number of processors allocated for the sort.

It is not the case, however, that all the processors
are perfectly synchronized during all the stages of the
algorithm. Often, an algorithm cannot use all the proces-
sors during certain stages. For example, in the "parallel

binary merge" algorithm that will be p:esehted in Section



' 72

4.2, one processor must finish its task alone, after the
other processbrs have been released. As a result, during .
the 1last stage of this algorithm, I/0 transfers must be
sequential. Thus, partial processor utilization can sub-

stantially limit the amount of I/O parallelism.

An additional constraint that can also result in
increasing the seek time and in serializing the I/O
transfers, is caused by the "adaptive" nature of our algo-
rithms. By adaptivity, we mean that the sequence of a
processor”s read requests depends on the data, and is not
determined by the algorithm only. For example, for some
algorithms, a processor must merge two sorted runs of data,
each of which resides on several contiguous tracks of the
same disk surface. Depending on the values of the sort
keys in both runs, the sequence of read requests can be
either:

run 1, run 2, run 1, run 2,...
or:

run 1, run 1, run 1, run 2, ...
Clearly, the seek time for the first sequence ‘'will be
higher, since the disk head must skip over the tracks on

which run 1 is stored for every other read request.

Because of the complexity of the problem, we decided
against having an estimate of the average I/O cost. A

better alternative is to consider both a "hest case" and a
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"worst case" for each algorithm. For the best case, seek
time and transfer time are minimized (by assuming that all
the active processors read and write tracks in parallel).
For the worst case, in all the situations where the algo-
rithm or the data may limit parallelism, we assume a long
seek time for each I/O request (typically, half of the
tracks on a surface), and serial track transfers. The
latter approach will also provide an estimate of the per-
formance of each algorithm when only conventional single

channel disks are available.
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CHAPTER 4

PARALLEL EXTERNAL SORTING ALGORITHMS

In this chapter, we first describe a modified 2-way
merge procedure that has the property of synchronizing its
input requests. This procedure will be used as a basic
building block for parallel external sorting algorithms
that are based on iterated merging. In Sections 4.2 to
4.6, five parallel external sorting algorithms are

presented and analyzed: the pipelined binary merge sort

and the parallel binary merge sort, which are two parallel

versions of the serial 2-way merge sort, the external block

bitonic sort, which is based on Batcher”’s bitonic sort, the

pipelined selection sort and finally the broadcast enumera-

tion sort. In Section 4.7, we have grouped numerical

results that indicate the execution time of each sort.
Based on these results, the algorithms are compared among
themselves and with a serial 2-way external merge algo-
rithm. Finally, Section 4.8 1is a brief summary of the

results presented in this chapter.

Implementation issues and usability of these algo-
rithms were a main concern in our design effort. For this
reason, we have previously defined the architecture of the

multiprocessors on which the algorithms can be executed
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(section 3.2), and the cost model that is wused for their

performance evaluation (Section 3.3).

Our algorithms are not based on a well specified,
theoretical model of parallel computation. Thus, they are
not intended to achieve "optimal speedup" or best asymp-
totic complexity. some of the ideas on which these algo-
rithms are based have been suggested before, and they will
be recognized by the reader familiar with common approaches
to the sorting problem. However, the originality of this
research results from addressing for the first time, the
problem of external sorting in a parallel environment, and
characterizing the architecture and the performance issues

that are related to it.

By describing in detail each of our algorithms, we
demonstrate how basic building blocks for sorting (such as
2-way or bitonic merge, minimum selection and enumeration)
can be used to design parallel sorting algorithms that do
_not restrict the size of the file to be sorted. However,
the parallel external sorting problem raises several issues
that are beyond the scope of algorithm design. 1In particu-
lar, the evaluation criteria associated with previous
parallel computation models capnot be used to measure the
efficiency of parallel external sorting. To motivate the
use of parallelism for external sorting, we 1investigate

parallel architectural features and cost parameters that
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enable us to perform a fair comparison between parallel

external sorting and serial external sorting algorithms.

Unlike this study, most previous research on parallel
algorithms and parallel architectures has concentrated on
showing how computation time of a complex task can be
reduced by the use of parallel processors. As a result
little consideration has been given to the I/0 problem.
Fast parallel algorithms have been developed for solving
many problems (including sorting), but when these algo-
rithms were analyzed the cost of reading the data into the
multiprocessor”s memory (at initiation time of the algo-
rithm) or writing it to mass storage (at termination) was
essentially ignored. While neglecting this cost might be
justified for tasks that require an exténsive amount of
computation per unit of data, minimizing I/0 time must be a
crucial concern when an external sorting algorithm is
designed and evaluated. Thus, an important contribution of
our study on parallel external sorting is the methodology
that we have developed for analyzing the I/O cost of an

»

parallel algorithm.

In order to evaluate the best possible performance of
each algorithm, different architecture features have been
assumed in each case (within the, limits imposed by’ our
model) . In particular, since each algorithm dictates

specific 1logical data transfer paths between the
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processors, we propose that an interconnection network sup-
ply a physical link for materializing these transfers. As
a consequence, when the performance of an algorithm is
analyzed, a specific interconnection scheme is also
evaluated. Therefore, the results of the comparison
between the algorithms provides a tool for evaluatiﬁg
architectural features as well as the efficiency of an

algorithm.

4.1. Building blocks for parallel external sorting

Three simple approaches may be taken to design an
external sorting algorithms: selection, enumeration and
bucket sorting. Serial external sorting algorithms belong-
ing to these three categories are known, and they can be
extended to generate parallel external sorting algorithms.
However, the most common approach to (serial) external
sorting is iterated merging. 1In this section, (after a
brief description of the other approaéhes) we investigate
in detail the choice of iterated merging as a building
block for parallel external sorting. 1In particular, we
describe and motivate a new synchronous, external merge
procedure. We demonstrate that performance of a parallel
external sorting algorithm based on jterated merging can be

greatly enhanced if the processors execute in parallel this
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synchronous procedure.

4.1.1. Selection, enumeration and bucket sorting

A class of simple algorithms can be generated by
iterated selection of the minimum element. For an external
sort, several passes are required since the entire file
does not fit in memory. A straightforward parallelization
of this iterated selection process can be achieved by pipe-

lining.

Another class of algorithms is based on enumeration:
A count is associated to each record, indicating its rank
in the sorted file. 1In order to establish this count, each
record must be compared to all the others. 1In a parallel
environment, many of these comparisons can be performed
concurrently by broadcasting a record to several proces-
sors. The "pipelined selection sort" and the "broadcast-
enumeration sort" that will be presented in the next

chapter respectively illustrate these two approaches.

When the range of the sort key values is known a
priori, a fast "bucket sort" can be used (whether an inter-
nal or an external sort is needed). Here, the idea is to
assign a bucket of memory buffers to each of these values.
Then, as the source file is read, each record is written
into the appropriate bucket. Again, for an external sort,

multiple passes are required, because there is not enough
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memory to allocate a large enough bucket for each value. A
serial multipass sort is described in [Kim80]. Since we
are addressing the problem of sorting a large file, without
knowing the distribution of the sort key values, we will

not investigate parallel versions of bucket sorting.

4.1.2. Iterated merging

Iterated merging is the most common way to perform an
external sort on a single processor. As in the serial
case, iterated merging can be used to design a parallel
external sorting algorithm. However, while serial external
sorting algorithms are based on an iterated N-way merge,
parallel external sorting algorithms can either use paral-
lel versions of the N-way merge, or a purely parallel merge
rule such as the bitonic merge rule (Section 2.2.1). In
either case, a basic task that must be performed by each
processor is merging two sorted runs of arbitrary length.
Therefore, it is important to describe this operation in
some detail, and to determine its cost for a given confi-
guration of memory and mass storage device. In this sec-
tion, we describe how the traditional 2-way merge can be
performed by a processor with 3 internal memory buffers.
We demonstrate that while input transfers are asynchronous,
output transfers are synchronous. While it 1is not clear
whether asynchronous I/O0 transfers are a disadvantage for a

single processor, they may affect the overall performance



80

when several processors execute an external merge procedure
in parallel.‘ For example, if the input runs are stored on
a parallel read-out disk (that is a moving-head disk modi-
fied to enable parallel reading of the tracks on a
cylinder), asynchronous input requests may result in many
additional rotations of the disk, that would not be

required if the requests were synchronous.

This observation about the traditional 2-way merge has
motivated us to develop a new 2-way merge procedure, that
has synchronous input requests. This procedure is

described below as "the synchronous 2-way merge".

The traditional 2-way merge:

A processor with an internal memory large enough to
hold only 3 pages of data, can merge two sorted runs of
length n pages (for arbitrary large n) into one sorted run
of length 2n pages. The input runs are read from a mass
storage device, such as magnetic disk or tape, and the out-
'put run is written gradually, as it is produced by the pro-
cessor, to the same type of device. The procedure is known
as the "2-way external merge sort" [Knut73]. Initially,
the input pages (from both runs) reside on a mass storage
device. Upon a request from a processor, one page from
either run is transferred from mass storage to the

processor’s local memory. A one-page input buffer is
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assigned to egch input run (Figure 15). A one-page output
buffer is assigned for writing the output run as it is pro-
duced. All three buffers are of the same size, and hold K
records. Whenever the output buffer is filled, it is writ-
ten to mass storage as the next page of the output run. At
the termination of the merge procedure, it must also bé
written to mass storage, even if it is not full. When this
merge procedure is executed, the requests for new input
pages are issued by the processor in an asynchronous
manner. Both the time when an input buffer has been com-
pletely scanned, and the identity of the buffer that is
exhausted first, are data dependent. For example, suppose
that all the values in the first page of the first run are
larger than the first value in the first page of the second

run. Then, every record from the first input buffer will

input run 1
-------------- > input buffer :
output | ==——————--- >
buffer output run

.............. > input buffer
input run 2

Processor”’s memory

Figure 15. External 2-way merge sort
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be transferred to the output buffer before any record from
the second input buffer. 1In this case, an input request
for the second page of the first run will be issued after K
comparisons and record moves (where K is the number of
records per page). On the other hand, if records were
moved from both input buffers alternately to the output
buffer, no input request would be issued at that time.
Both cases are illustrated in Figure 16. Oon the other
hand, the output buffer always fills after the processor
has performed K comparisons and K record moves (the moves
are from the input buffers to the output buffers). Thus,

the output transfers can be considered as synchronous.

A synchronous merge procedure:

) +
5'6I7’8 2’4' 6’8
5,6,7,8 5,6,7,8
v v
1,2,3,4 1,3, 5,7
Input request issued No input request issued

Figure 16. Buffers contents after 4 comparison-move steps
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It is possible to synchronize the input requests of a
2-way merge ’procedure, at the price of more record com-
parisons. This modified 2-way merge procedure is based on
the idea that the pages are always merged by pairs, to pro-
duce a sorted run of 2 pages. The first page of this
sorted run is written to disk, while the second is kept in
memory to be merged with a new input page. In order to
determine which of the two input streams is to supply the
new page, a "forecasting" mechanism must be implemented.
The forecast is made possible by keeping track of the iden-
tity of the run from which the next page mugt be read. To
make the following description clear, suppose that this
information is kept in register R. When an input page is
read, its last element is compared to the last element of
the page that previously remained in memory. Depending on
the result of this comparison, the contents of register R
is either updated or not (see Figure 17). Suppose that R
was set to 1. This indicates that the new page comes from
the first input run. If the last element of the new page
is greater than the last element of the previous page, then
R must be set to 2. On the other hand, if it is smaller
(or equal), the value in R stays 1, to indicate that the

next input page must again be read from the first run.

The time between two consecutive page transfers (input

or output) is equal to the time required by the processor
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The input runs:

17|14|10| 9 8

PRI e oo 1 i

1l6{15|13(12 11

Page in memory

]
11|8 71 6

N p—

New page
(from input run 1)

17

R=1 17>11, Set R to 2

14

——

10

9

e

I

Page in memory

17

14

1110

—

New pagde
(from input run 2)

15

13

P

12

16

R=2 16<17, Do not reset R

I1

After step II, the new page is read again from input run 2

Figure 17. Forecasting the next input page

to merge 2 sorted pages, that is the time required for 2K
comparisons and moves, where K is the number of records per
page. Some of the elements in the page remaining in memory
may be compared to elements of the input run they came
from. Thus, these comparisons are redundant. When a trad-

itional 2-way merge is performed, the computation time
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required for merging 2 runs of 2d pages each is 21+l Tm'
Wwhen a synchronous merge is performed, the same operation
requires (21+2—2) T, (where Tp is the computation time unit
defined in Section 3.3). However, the increase in the
number of comparisons can be justified when synchronization
of the input requests is necessary, Or when the processors

are fast enough to overlap the computation time with I/0.

4.2. The pipelined merge-sort

This algorithm is based on Even’s parallel tape sort-
ing algorithm (Section 2.4). It is a parallel version of
the traditional 2-way external merge, where each phase is
supported by a separate processor. An implementation of a
similar algorithm for a bubble memory device has also been
recently investigated by [Todd78]. We assume that p pro-
cessors that share access to a common disk device have been
allocated to sort a file of n pages. This file is ini-
tially stored on consecutive tracks of one disk surface.
When the algorithm terminates, the sorted file will be
written on consecutive tracks of another disk surface. In
order to obtain closed analytical formulas, we assume that
n is an exact power of 2. For the general case (when n is
an arbitrary integer number), dummy pages can be added to

the file and the cost formulas must be accordingly modi-
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fied[1l].

4.2.1. Description of the algorithm

The processors are labeled Pi/ Pyy eoes P and func-

p’
tion as a linear pipeline during execution of the sort.
First, Processor P; reads pairs of pages from the source
file, and merges them into 2-page sorted runs. Then, each
processor performs a 2-way merge of pairs of sorted runs
produced by 1its predecessor in the pipeline, as shown in
Figure 18. For 1<i<p, processor P, , merges pairs of runs
of size 21 pages produced by P. into runs of size 2itl
pages. Thus, the optimal number of processors required for
this algorithm is p=log,yn, since in this case Pp produces
one output run of size n. If less than p are available,
additional passes through the pipeline are needed to com-
plete the sort. Each pass, except possibly the last, goes
over the entire pipeline, and increases the size of the
sorted runs by a factor of 2P, We consider in detail only
‘the case n=2P since even for small values of p, 2P ‘pages
constitute a fairly large file. For example, for p=16 we
216

would be considering files that can be as large as

pages, that is about 3,000 Mbyte (for a page capacity of

[1] Since two other algorithms, the parallel binary sort
and the block bitonic sort, use the same assumption, a fair
comparison can be based on the formulas obtained when n is
a power of 2.
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47,000 bytes). 1In the case that less than logzn processors
are available to sort a file of n pages, our analysis can
be extended to estimate the cost of the additional passes.
However, this complicates the cost formulas without giving
any better insight on the relative performance of the algo-

rithms.

4.2.2. Implementation

The performance of this algorithm depends mainly on
how effiéiently the transfer of intermediate runs between
the processors can be realized. A multiprocessor architec-
ture can be specified, on the basis of the model described
in Section 3.2, that allows for an efficient implementation
of this pipelined merge (Figure 19). Since in our model
the processors” local memory can only hold three pages,
each processor must execute an external merge procedure
(Section 4.1). Thus, one possibility is to write all the
output runs to disk, and to read all the input runs from
‘disk, one page at a time. However, if the processoré are
directly connected by a linear interconnection network,
some pages can be directly transferred along the network
links, instead of being first written to disk by a proces-

sor and then read by this processor”s right neighbor.

Therefore, the logical pipelining process that we have

just described can be physically implemented by directly
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transferring output runs from processor P, to processor
Pi+l' However, since Pj.q must merge pairs of runs that
are sequentially produced by P;, every other run produced
by P; must still be written to disk. 1In order to achieve a
maximum amount of overlapping between stages of the pipe-
line, processor P, , can begin execution as soon as proces-
sor Pi has produced an entire run, and is ready to produce
the first page of the second run. At this point, pages
from the second run can be pipelined to Pi+l' Thus, output
runs produced by P; are alternately written to disk, or
directly transferred to P;.,. This implies that Pj43
merges one run that is stored on disk with a second run
that it receives from P;., since during execution of the
merge, the next input page requested by Pi+l can be either
a disk page (from the first run), or a transferred page, Pi
may be blocked when it attempts to transfer a page to Py ..
In the extreme case, the data may be such that Pi+l
receives one page from P;, but subsequently reads and
.processes 211 pages from the disk, while Pi is waiting to

transfer its second page.

Since in our multiprocessor model processors are phy-
sically associated to disk surfaces, P;,; can read data
written by P, only if the disk device is designed so that

Pi writes on a surface that P;,; can read from. This

feature can be achieved by using two disk drives, and by
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skewing the disk data and control lines with respect to the
processors (Figure 19). More specifically, Pl reads from
surface #1 of drive #1, and writes on surface #1 of drive

2. P, reads from surface $1 of drive #2, and writes on
surface $#2 of drive #1, etc. This pattern implies that the
source file is initially stored on the first surface of
drive #1, and that the result file is written on a single
surface of drive #1 or #2 (depending on whether p is odd or

even) .

4.2.3. Analysis of the algorithm

The computation time can be expressed in Tm units,

that is the time required for K comparisons and K record-
moves where K is the number of records per.pade (see Sec-
tion 3.3). We assume that each processor performs the syn-
chronous merge procedure described in Section 4.1. Thus,
processor Pi (i>1) produces an entire output run by merging

2 runs of 2i pages each in time (21+2—2)T and the first

ml
‘page of another run in time T . Since a processor starts
execution right after its predecessor has produced an

entire run and the first page of a second run, the delay

for the last procr:zor Pp is

(22-1)+(23-1) + (2%4-1) +. ..+ (2P-1)

Then, P_ merges 2 runs of size 2P~l=n/2 each in time

P
(2p+l*2)Tm. Thus, the total computation time is




logz(n) processors
2 disk drives

-— o —
- - -

Figure 19. Architecture for pipelined merge sOr+
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57 (2i-n) + (2P*1-2) = (2PF2p-a)

=(4n-logn-4) Tm

Communication time:

Every other output run is directly transferred between
the processors. Thus, each processor (except the last one)
transfers half of the file to its right neighbor. It fol-
lows that the total number of page transfers is

(n/2) (logn-1)

A first estimate of the total communication time 1is given
by

(n/2)(logn--l)Ttr
where T, is the time to transfer a page across a network
link. However, many of those transfers can be done in
parallel. An accurate estimate of the parallel communica-
tion time is hard to obtain, because the transfers along
several links of the pipeline cannot always be synchron-
ized. However, an optimistic estimate can be obtained by
_accounting for the time it takes P; to transfer half of the
file to P, (thét is n/2T.,), plus the time it takes to the
last page to reach Pp (that is (p-2)Ty,), that is:

(n/2+logn-2) T,

1/0 time:

The entire source file is read from disk by Pl' and

the entire sorted file 1s written to disk by P If we

po
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assume that the processors are associated to disk surfaces
according to the scheme illustrated in Figure 20, then only
a run written to disk by Pi can be directly read by Pjiiy:
without requiring additional transfers along the network
1ink. Thus, the total number of page I1/0 operations is
(n+n/2)+(n/2+n/2)(p—2)+(n/2+n) = np+n

=nlogn+n

In the worst case, all the I/0 operations are serialized,
and each requires a 1long seek. Thus, in this case, the
total I/0 time is:

(nlogn+n)*(Tacc+Ttr)

I/0 time can be substantially reduced if the processors”
I/0 requests are synchronized so that several tracks on the
same cylinder are accessed concurrently. A (somewhat sim-
plified) estimate of the best I/0 time éan be obtained by
estimating the I/0 time for the first processor, and adding
the number of I/0 operations required to propagate the last
page through the pipeline. This assumption leads to the

following I/0 time:

[n + 2logn - 2][Tsk+Ttr]
However, it should be noted that this estimate 1is too
optimistic, since the pipeline delays make synchronization

of 1I/0 reguests very difficult to achieve.



4.3. Parallel binary merge sort

In this section, we describe a parallel 2-way merge
sort algorithm which utilizes both parallelism during each
phase and pipelining between the phases, to enhance perfor-
mance. The algorithm requires a binary tree interconnec-
tion between the processors. The mass storage device con-
sists of two disk drives, and each leaf processor is asso-
ciated with a surface on both drives (Figure 20). 1In addi-
tion, the root processor is associated with a surface of

one of the two disk drives.

4.3.1. Description and implementation of the algorithm

We assume that there are at least as twice as many
pages as leaf processors. That is, there are n pages, g
processors, and n>2(g+l)/2 [2]. Since a binary tree inter-
connection is required, g must be equal to Zi—l, for some
integér i. Then the number of leaf processors is
p={(g+l) /2. Execution of this algorithm is divided into
"three stages as shown in Figure 21. The algorithm begins
execution in a suboptimal stage in which sorting is done by
successively merging pairs of longer and longer runs until

the number of output runs is reduced to p. During this

[2] We make the simplifying assumption that n is a power
of 2. If this is not the case, the analysis should be
modified by including "dummy" pages, that are processed and
transferred in zero time
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Architecture for the parallel binary merge-sort

Figure 20.



96

4 7 13 i3
16 3 5 2
12 15 2 5
8 11} . 14 1 .
Pl . P2 23 P4 SUBCPTIMAL
16 1z 7 15 13 14 13 )
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Figure 21. The parallel binary merge-sort algorithm
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stage, only the leaf processors execute, while the interior
nodes and the root processor are idle. First, each leaf
processor reads 2 pages and merges them into a sorted run
of 2 pages. This step is repeated until all single pages
have been read. If the number of runs of 2 pages is
greater than 2p, each processor proceeds to the second
phase of the suboptimal stage in which it repeatedly merges
2 runs of 2 pages into sorted runs of 4 pages, until all
runs of 2 pages have been processed. This process contin-
ues with longer and longer runs, until the number of runs

equals 2p.

when the number of runs equals 2p, each leaf processor
merges exactly two runs of length n/2p. This merge pro-
cedure constitutes the optimal stage. When the leaf pro-
cessors produce the first page (of an output run consisting
of (n/p) pages), they transfer it to their parent proces-
SOr . At that point, the postoptimal stage starts and
parallelism is employed in two ways. First, all processors
at the same level of the tree concurrently execute-a phase
of the merge sort (e.g they merge runs of size 21 into runs
of size 21+l). Second, pipelining is used between levels.
All the processors, except the root, directly send each
page produced to their parent processor, instead of writing
it to mass storage. By pipelining data between levels of

the tree, a parent is able to start processing as soon as
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its children have produced one page. If a time wunit is
defined as fhe time to merge 2 pages and to transfer one
page, a parent node receives its first page one time unit
later than its children. Therefore, the first two pages
will reach the root processor logp time units after the
beginning of the optimal stage. From this point on, the
root processors merges the pages it receives and writes the

final output run of length n to mass storage.

It is important to note that all the processors cannot
operate synchronously. The pipelining process may imply
that a child processor is being blocked because its parent
is not ready to receive a new page from it. For example,
this happens when the data is such that two successive
pages of the left input run contaip smaller values than the

current page in the right input run.

4.3.2. Analysis

puring the suboptimal stage, each‘ processor performs
log(n/2p) phases of a serial external mérge sort on a file
consisting of (n/p) pages. Thus, the time required for
this stage 1is roughly equal to the time it would take a
single processor to execute the same merge procedure.
There is no communication time, and the computation time is
derived as for a serial external merge. Since at each qf

the log(n/2p) merge phases of the suboptimal stage a pro-
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cessor performs an external synchronous merge (Section

4.1), the parallel computation time for this stage 1is:

(n/p) [21og (n/2p) -2+ (4p/n)]  [3]
= [(2n/p)log(n/2p)=(2n/pP)+4 ] Ty

On the other hand, because the disk device is shared by P
processors and the I/0 transfers cannot always be parallel-
ized, the subcptimal stage may require more I/0 time than a
serial merge-sort. Thus, we must consider the two extreme
cases: the best case (when I/0 transfers are parallel), and
the worst case (when each read request results in a long
seek and a serial page transfer). The total number of 1I/0

operations is
2n(log(n/2p))

The write operations can always be performed in parallel by
all the processors, and require only track to track seek
time (since a separate disk drive is used for writing).

Thus, the time for writing is:

(n/p) (Tg +Ty ) 1log (n/2p)

[3] This formula is derived as follows. In Section 4.1,
we 1t was demonstrated.t?at a synchronous merge of 2 runs
of size 2171 requires (27%-2)T . At the ith merge phasg,
each processor merges (n/2'p) pairs of runs of size 27+,
Thus, the total computa&ion time is obtained by summing the
expressions (n/2'p) (2'7*-2)T_ for i=1 to log(n/2p).
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on the other hand, the time required for reading the input
runs at each step can vary, depending on the input runs
merge patterns. The best case read time occurs when all
the processors can read from the same cylinder, and when
the seek time between two input operations 1is minimal.

Thus, the best-case read time is:

(n/p) (Tg+Tyy) (log(n/2p))

The worst case read time occurs when all the input requests
result in a long seek and a single page transfer (that is

the page transfers are serialized); thus it is equal to:

n(Tacc+Ttr)(log(n/ZP))

puring the optimal and the postoptimal stage, each proces-
sor (except the root) sends each page it produces to its
parent processor. Thus, the interior nodes perform no I/0
operations. Pages are read from the disk by the leaf pro-
cessors and processed at successive 1levels of the tree.
Finally, the root processor writes each .output page it pro-

duces to disk.

The parallel computation time (for the optimal and the

postoptimal stages) is:
[2(logp-1) +2n-2]T

The communication time can be estimated by summing up the
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number of serial page transfers that occur until the first
page is ready to be sent to the root processor (that is one
transfer per level), and the number of pages transferred to

this processor (n/2). It is equal to:
[ (logp-1)+(n/2)1T,,

The root processor writes the result pages on the disk sur-
face with which it is associated. Since it does not per-
form any other I/0 operations, it can write successive
pages with minimal seek time. fherefore, the total I/0
time for the optimal and the post optimal stages is equal

to:

n(Tgr+Teyr)

4.4. The external block bitonic sort algorithm

The bitonic sort algorithm uses n/2 processors to sort
n elements in 1/2logn(logn+l) parallel compar ison-exchange
steps. This algorithm requires that n (and therefore also
the number of processors p) be a power of 2. The proces-
sors must be interconnected by a network that can material-
ize the perfect shuffle permutation and its powers. Some
of the networks that have this property have been mentioned

in Section 2.2, and we will not investigate their respec-



102

tive cost and performance. In this section, we describe a
parallel external sort algorithm that is based on Batcher”s
sort. While in Batcher”s algorithm, the processing ele-
ments were simply comparator-exchange modules (Section
2.2), we now assume that there are p full-scale processors,
each having 3 pages of local memory. We also assume that
the processors are connected by an interconnection network,

such that:

(1) There is a fixed cost associated with transferring a
data element along any of the links required for the
bitonic sort (whether the link is materialized by one

or several shuffles).

(2) All the concurrent transfers specified by the bitonic
sort can occur in parallel (with no blocking effect).

4.4.1. Dpescription of the algorithm

Batcher”s bitonic sort algorithm can be extended to
sort a file of n pages, instead of an array of n elements.
The basic task performed by a processor is merging 2 sorted
pages and exchanging the 2 pages of the sorted block pro-
duced (instead of comparing and exchanging 2 elements).
The data is transferred by page units, along the links
specified at each step by the bitonic sort algorithm. If
Batcher”s bitonic sort is extended, the resulting algorithm

is a "block bitonic sort algorithm", that sorts a file of n

pages with n/2 processors by executing a sequence of
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1/Zlogn(logn+1) 2-page operations. Each of these opera-
tions consis£ of merging 2 sorted pages and transferring
the result pages to 2 destination processors. Thus, the
processors must have 4 pages of local memory to merge 2
pages within this memory. The procedure is illustrated for
n=4 in Figure 22. A further extension of the block bitonic
sort can generate a parallel external sort algorithm. Sup-
pose that the file to be sorted has n pages and that p pro-
cessors are available where p<n/2. As with the parallel
binary merge sort, 2p sorted runs of n/2p pages each can be
produced by a preprocessing stage. puring this stage, each
processor operates independently on an equal portion of the
source file, and produces 2 sorted runs of size n/2p.

Then, an external block bitonic sort can merge these runs

and produce the result file. The number of steps required
is still equal to 1/2log2p(log2p+l). Only now, the basic
task performed by a processor must be an external merge of
2 runs of size n/2p. This output run is then split in
_half, and each of the two halves becomes an input run for a
different processor at the next step. It is important to
synchronize the processors at the end of each step so that
complete runs are produced before the next step starts.
Figure 22 illustrates how this generalized bitonic sort

produces a sorted file.
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4.4.2. Implementation

The main problem in implementing this external block
bitonic sort is that a processor must write each half of
its output run so that it can be read by another processor
at a subsequent step. For example, in the case p=8 and
n=32, during the first step processor Pz produces an Gutput
run of 4 pages; during the second step, the first 2 pages
of this run must be read by P,, and the last 2 pages must

be read by P3, According to our multiprocessor model, the

processors are interconnected by an interconnection net-
work, and each processor is physically associated with a
surface of two disk drives. If this network is the
shuffle-exchange network (or any other network that can
materialize the bitonic sort transfers), then the output
runs can be transferred, one page at a time, as they are
produced to the destination processors. The configuration
of a processor’s local memory is as shown in Figure 23.
During a step, data is read from one disk drive into the
input buffers and written from the transfer buffer to the
other disk drive (on the surface associated with the pro-
cessor) . Wwhen the output buffer fills, its contents is
transferred to the transfer buffer of a destination proces-
SOr. At the next step, the write drive becomes the read
drive, and conversely. Because of the way the output

buffers contents were transferred, each 'processor can now
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read its input runs from the surface it is associated with.

Although the addition of a transfer buffer solves the
problem of transferring the runs between disk surfaces, it
would be more efficient to implement the algorithm on a
different architecture (Figure 13). Because the output
runs produced at the ith step must be written to disk, and
then read from disk at the (i+l)st step, what is really
required is that a processor be able to read and write on

any disk surface. Thus, rather than providing an intercon-

from source
processor

'

input transf
buffer ljoutput| -er

buffer|buffer

(N

to destination to disk
processor

input
buffer 2

Figure 23. Processor”s memory for external block bitonic
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nection network between the processors, the interconnection
network shoula connect the disk surfaces to the processors.
In this case, each step of the external bitonic sort can be
implemented with exactly n/p parallel page write opera-
tions, since the output runs can be written directly ¢to
those surfaces from which they will be read during the sub-

sequent step.

4.4.3. Analysis

The analysis of the preprocessing stage~(that produces
n/2p sorted runs) was previouély presented for the parallel
binary merge algorithm (Section 4.3). However, for the
sake of completeness, we briefly repeat the results that

were obtained.

T (computation)= [ (2n/p)log (n/2p) - (2n/p)+4)] Tm
T (communication)= 0
In the best case:
T(1/0)= [(2n/p)10og(n/2P)] (T +Ty )
In the worst case: '

T(I/0)= [(n/P) (Tg +T¢p) +n(TacctTer) 1109 (n/2p)

After the suboptimal stage, the bitonic sort stage is
performed. There are 1/2log2p(log2p+l) identical steps,
during which each processor performs an external synchro-
nous merge on 2 runs of n/2p pages. Therefore, for this

stage
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T (computation)= ((2n/p)-2)T [1/21log2p(log2p+l)]

Depending on which of the two types of architecture
(described in the implementation section) is used, the com-
munication time is either null (if the processors can

access any disk surface) or is equal to

T(communication)=(n/p)Ttr[1/210g2p(1ogzp+l)]

In order to estimate the I/O time, we observe again
that writing the output runs requires only track to track
seek time for each page, while the time for reading the
input runs can vary between a lower bound (the best case)
and an upper bound (the worst case). The time for writing

the output runs is:

(n/p) [Tg+T1[1/210g2p (log2p+1)]

To estimate the best and worst-case read time, we
observe that at the beginning of a new step, all the p
input runs are aligned. Thus, the first p pages can be
"transferred in parallel. However, after the first pages of
all the input runs have been read, subsequent read requests
may require a long seek and a serial transfer. Thus, the

best and worst-case read time are respectively equal to:

(n/p) [T +T 1 [1/210og2p (log2p+l)]

and
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(2+n-29)[Tacc+Ttr][l/21092p(1092p+1)]

Some account must also be made for the cost of synchroniz-
ing the processors at the end of each step (since a step
cannot be initiated unless all the output runs of the pre-

vious run have been completely written).

4.5. The pipelined selection sort

Unlike all the previous algorithms, this algorithm
does not produce longer and lbnger runs during intermediate
steps of its execution. Thus, it does not require that the
processors merge blocks longer than a single page. Basi-
cally, the algorithm is based on iterative selection. The
"minimum® of n pages is determined, then the "minimum" of
the remaining n-1 pages is determined, and the operation is
repeated until the "maximum" page is created. By minimum
page, we mean the page that contains the K lowest records.
Thus, the order defined on pages is a partial order. To
create a total order on a set of individually sorted pages,
the pages must be merged. Merging a pair of pages produces
a sorted block of 2 pages; the first page of this block can
be designated as the "smaller" page. If it is subsequently
merged with a new page, the first page produced will now

contain the lowest K records among the 3K source records.
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4.5.1. Description of the algorithm

Parallelism is introduced by having one processor
assigned to each step of minimum selection. In other words,
the first processor selects the minimal page among n pages,
the second processor selects the minimal page among the
remaining n-1 pages, etc. If enough processors are avail-
able, the algorithm performs optimally when p=n processors
are assigned to the sort operation. 1In this case, the pro-
cessors are labeled Py, P,,...P, and logically organized as

a pipeline.

P, reads the first page of the source relation,  then
it repeats (n-1l) times the following procedure: It reads a
new page, merges it with the page that was previously in
its 1local memory, and sends the greater page (that is the

second page of the 2-page sorted block) to P,.

P, starts execution after it has received 2 pages from

P;. It executes the same sequence of steps as P;, except
that it receives b . .
pages sent by Pl instead of reading from

disk. After P, has received 2 pages, it starts processing

in the same way and sends its lower page to P3,

As the pipeline is filled, the pages flow one at a
time through the processors. When the last page reaches
P..1r Pj, for i=l, 2,...n-2, contain the ith page of the

sorted relation. The file is completely sorted when a page
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reaches Pn' This page is the maximum page, and at that
point, for 1<i<n Pi contains the ith page of the sorted
file Thus, the result file can be written in parallel by

all the processors on a single cylinder.

In the general case, when p<n, the algorithm requires
multiple phases. Each phase repeats the basic linear pipe-
line algorithm, except that the last processor must write
to disk excess pages that no other processor can receive.
puring the first phase, this creates a "bucket file" of
(n-p) pages which is not sorted. On the other hand, the p
pages residing in Py, Py,..., Pp constitute the first p
pages of the sorted relation. To enhance performance, the
direction of the pipeline should be reversed between suc-
cessive phases, so that the processor that wrote the bucket
pages can read them at the subsequent phase. For n=kp, the
algorithm will require k phases with each phase producing p
pages of the sorted relation. If n is not an exact multi-
ple of p, then the only modification is for the last phase:
1f less than p pages are left then the last phase uses a

shorter pipeline of length (n mod p).

4.5.2. Implementation

only the first and the last processor read from disk
(during the first phase, the source file and during each

subsequent phase, the bucket file). However, if each pro-
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cessor 1is associated with a disk surface, all the proces-
sors can simultaneously write their result page at the ter-
mination of each phase. Transfers between processors can
be efficiently implemented by a ring-like architecture that
allows for simultaneous transfers from a processor to its
right neighbor. The architectural features required for
this implementation are jllustrated in Figure 24. The pro-
cessors” local memory must contain at least 4 page buffers
(Figure 25), since a processor must merge a pair of pages
and keep the first page produced by this merge operation.
At any step, two buffers contain the pages being merged,
and either the first result page (that must remain in
memory) or the second result page (that must be transferred
to the next processor) are being filled. During the next
step, that page that remained in a destination buffer
becomes one source page. The second source page is the

page that is received from the left-hand neighbor.

4.5.3. Analysis

At any phase of the algorithm, the first processor on
the pipeline (P) or Pp) performs the longest computation,
since it merges pairwise all the pages of the bucket file.
Thus, the parallel computation time can be obtained by con-
sidering only the computation time of this processor. At
Phase i, the bucket file has (n-ip) ©pages. Thus it

requires time 2(n-ip-1)T_  to compute the minimal page. The
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Figure 24. Architecture for pipelined selection sort
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Source| Sourcel Source Transfer
/Dest. |/Dest. |/Dest. Buffer
Buffer| Buffer| Buffer

Figure 25. Processor”s memory for pipelined selection sort

computation time for all the phases in Tm units is:

i=k-1
$ 2(n-ip-1) =2(pk(k+1)/2 -k)=n?/p+2n-2n/p

i=0

The communication time can be estimated in a similar
manner, since all the processors (except the last on the
pipeline) transfer a result page after every 2-page merge.

Thus
T (communication) = [n2/29+3n/2-3n/P] Ttr

Finally, the number of pages read and written at the ith
phase is (n-ip), for i=0,1,...,k. Thus the total number of

1/0 operations is

nz/p-n/z
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However, since at the end of a phase p pages are written in
parallel, only the rest of the I/0 transfers must be per-

formed serially by Py and P Thus the I/0 time required

pu
by the ith phase is:
Tacc+Ttr (read the first page)
+(n-ip-1) (Tg +Ty ) (read the other pages)
+(n-ip) (T +Ty,)  (write bucket file)

+P (Tg +Te ) (write result pages)

The total I/O time is obtained by summing these expressions

for i=0 to (k-1l):

T(I/0)= (n2/p) (T +T¢ ) +(n/P) (Tacc-Tsk)

Note that this algorithm does not require an estimate of
best and worst case I/O time, since most of the 1/0
transfers must be serialized (for reading and writing at
the end of the pipeline), but the others can always be per-
formed in parallel (for writing the result pages, p at a
time). However, if n is significantly larger than p, the
number of page I/0 operations this algorithm performs 1is
O(nz/p). Thus it 1is much slower than the algorithms
presented in the previous sections (Section 4.1 to 4.3),

that required only O(nlogn/p) I/0 operations.

On the other hand, this algorithm has several advan-

tages. In particular, it appears to be simple to imple-
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ment, and requires no storage overhead. Unlike the previ-
ous sorting algorithms, it does not require that the con-
troller maintain page tables for temporary files or complex
control tables for processor reassignment. another major
advantage is that the first pages of the sorted pages are
produced very fast (after a single pass over the source
file). Thus, this algorithm may be a good choice when
sorting is only an intermediate operation. For example, if
sorting is performed in a relational database management
system, it may be the case that the sorted relation must be
joined with another relation. In this situation, perfor-
mance can be enhanced if this sorting algorithm is used and
the result pages are joined, as they are produced, with

pages of the second operand relation.

4.6. The broadcast-enumeration sort

Sorting is performed by enumerating for each record
with key value v the number of records with a kéy value
smaller than v. Once this enumeration has been performed
for all records, the file can be sorted by gathering the
records in their count order. If there are enough proces-
sors available (that is if p=n),'the records may be routed
so that the ith page of the sorted file wi}l reside in the

ith processor”s local memory. Parallelism is used in both
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phases : the enumeration phase and the routing phase.

4.6.1. Description and implementation

Enumeration phase: Initially each processor reads a page

of the source relation. As previously stated, we assume
that the pages are internally sorted. An additional
integer field (the "count" field) is appended to each
record, and is initialized to the value zero. Next, the
file is broadcast, one page at a time to all processors.
As a broadcast page is received, every processor updates
its count for each of the records in its page by comparing
the records in the broadcast page with the records in its
own pade. Since the pages are individually sorted and
there are K recoras in a page, the count can be computed
with no more than 2K record comparisons (this operation has
the same complexity as the merge of 2 sorted ?i§§té. of
length K). The procedure used to compﬁte the‘gouht.field
must guarantee that each record receive a uniqﬁe count
_value, despite the fact that there may be duplicate keys in
the source relation. A way to achieve this is to increment
the count of a record found equal to a broadcast record
only if it belongs to a page numbered higher than the
broadcast page or if it belongs to the same page but comes

after the broadcast record in this page.
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The following example illustrates this proceduré.
Suppose that the keys are initially distributed in the fol-
lowing manner:

Pl P2 P3 P4

The counts will then be equal to :

2

2 1|11

— P

4 5 01 23 6 7

Wwhen the enumeration phase terminates, a count field
has been appended to all records. This field indicates
their position in the sorted file. When there are less
processors than pages, the enumeration phase requires |n/p|
steps. During each step, the processors compute the count
for the records in p pages and write out the modified p

pages (where the count has been appended to each record).

Routing phase: During this phase of the algorithm, the K

smallest key records are routed to Pl, the next K to Py,
etc. If p=n, the routing phase terminates with theurecords
distributed, in order, among the processors. Otherwise
routing requires rh/§] steps, where each step produces P
pages of the sorted relation. Routing also requires a
broadcast of the entire relation. The processors broadcast
their page, in sequence. After a page has been broadcast,
all processors scan it and copy to an _internal buffer

records that "belong" to them. That is, processor j copies
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a record from the broadcast page to its output buffer 1if
the record coﬁnt satisfies the inequalities:
(j=1) *m*K < count < j*m*K

where m is the step number and K is the number of tuples
per page. Thus, each page broadcast is followed by the
following operations(executed in parallel by all proces-
sors: a scan of the broadcast page (to select the
appropriate records) and an internal move of the selected
records. After the entire file has been broadcast, the
processors write their output buffer and initiate the next

step.

The architecture»proposed for this algorithm is shown
in Figure 26. It is assumed that at the time the algorithm
is initiated, the entire file resides on the disk surface
associated to the £first processor. During intermediate
stages of the algorithm all the processors concurrently

write their result page on a cylinder of the output drive.

4.6.2. Analysis

For the enumeration phase, each page broadcast is fol-
lowed by approximately 2K key comparisons and 2K increments
of the count fields. If we group these operations and

designate them as Tm’, we conclude that during the enumera-

tion phase the computation time can be expressed as:

T (computation)= [(n/p)n]Tm’



120

: -
I P3

\\N;:-..-- - broadcast
Pl ~ bus

Figure 26. Architecture for broadcast-enumeration sort
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In the routing phase, a page broadcast is followed by at
most K integér comparisons (to check if the count falls in
the range assigned to the processor) and Dby K/n record
moves, on the average. In addition, after all records have
reached their destination processor, each processor must
perform an internal sort of the records residing in its
buffer. Note, however, that the internal sort may use the
counts that were previously computed, so that the cost of
sorting will be K record moves (RKV) rather than K*logK
record comparisons and moves. Thus, during the routing

phase

T (computation)= (n/p) [ n(KC+(K/n)V) + KV ]

= (n2/p) [KC] + (2n/p) [KV]

The communication cost is the cost of broadcasting the
entire file n/p times for each phase (once for the enumera-

tion phase, the other for the routing phase). Thus,
T (communication)=[2(n/p)n]T.,

In the optimal case (p=n), n pages are read and written
once, in parallel, for each of the two phases. In the gen-
eral case (p<n), the entire file must be read at each of
the (n/p) steps of each phase. During a step of the
enumeration phase, p pages are read in parallel by the pro-
cessors, then the remaining (n-p) pages are read and broad-

cast sequentially. Finally, P modified pages (with a count
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appended to each record) are written in parallel. During a
step of the routing phase, n pages are read serially, then
p pages (of the sorted file) can be written in parallel.
If two disk drives are used (one for reading’aﬁarthe other
for writing), the parallel write operations can be per-
formed with a minimal seek time (i.e only a a track to
track seek). For the enumeration phase, the parallel read
operation at the beginning of a step requires a long seek,
but the following serial read operations (except the first)
require only a track to track seek. We conclude that the

total I/0 time is:

(n/p) [2T,+2T¢ + (n-p=1) (Tgi+Ter) +Tgk+Ter]

(enumeration)

+(n/p) [N (Tgp+Tey) +(Tgk+Ter) ]

(routing)

= (2n2/p-n+n/p) (T, +T, ) +2(n/P) (TacctTer)

Like the pipelined selection sort, the broadcast-
enumeration sort requires O(nz/p) I1/0 operations (when p is
significantly less than n). However, the access time Iis
relatively 1low, because the processors always request con-

secutive pages during execution of the algorithm.

9
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4.7. Pperformance comparison of the 5 sorting algorithms

Based on the analytical formulas that were developed
in sSections 4.2 to 4.6, we have estimated the execution
time of each algorithm, under various assumptions about the
processors” capabilities, the disk device characteristics
and the file size. Because of their complexity, the cost
formulas alone do not provide a clear understanding of the
algorithms performance. For this reason, we felt that it
was necessary to determine the parallel sorting times for a
large file (100 thousand records of 100 characters each,
for example), and to compare them to the serial sorting
time for the same file. According to statistics that have
been collected a few years ago on high-performance computer
systems, tape-sorting of a file of this size takes from 15
to 19 minutes [RNUT73, p338], and external disk-sorting
takes about 12 minutes [KNUT73, p.309]. How much faster
can each of our parallel external sorting algorithms per-
form the same task? Rather than attempting to perform an
asymptotic complexity comparison of ouf algorithms (among
themselves and with a serial sorting algorithm), we have
chosen to present a numerical comparison. In this section,
we first describe how a value (or a range of values) was
assigned to the parameters that define our analytical
model. We then present estimates for the computation, the

communication and the I/O time of each algorithm, and com-
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pare the performance of the five algorithms. We also com-
pare the algorithms to a serial, external 2—wéy merge sort
and conclude this chapter by giving an indication of the

parallel speedup that the best algorithm provides.

4.7.1. Description of the parameters values

The cost formulas that have been developed for each of
the algorithms in this chapter are expressed in terms of
two categories of parameters. Parameters in the first
category characterize the I/0 device and the multiproces-
sor. They have been defined as part of our cost model, 1in
Section 3.2. The second category characterizes the file
size and to its structure. 1In this section, we describe
and justify the values that we have chosen for both

categories of parameters.

Disk device characteristics:

The analysis of our algorithms was strongly impacted
.by modelling the I/0 device as a modified moving—head disk
(that allows for parallel read/write of tracks on the same
cylinder). However, we felt that our assumptions about
track capacity and track transfer rate should be based on
the values provided by fast, but conventional moving-head
disks. 1If parallel read/write disks-become available, it
is reasonable to assume that they will provide similar

values for these two parameters. We have based our




125

estimates of I/0 time on the specifications of the IBM 3380
moving-head disk device. Originally, we had also con-
sidered the IBM 3350 disk, but the execution time of the
algorithms was significantly higher than what will be
presented below. The IBM 3380 is characterized by its very
large track capacity (more than twice the capacity of mos£
other disks) and a low average seek time. Table 4.6.1 sum-

marizes the specifications of this device.

Table 4.6.1: IBM 3380 Disk Specifications

parameter symbol value
Track capacity - 47,476 bytes
Rotation time Ter 16.7ms
Tracks per cylinder - 15
Transfer rate - 3Mbyte/sec
Average seek time - 16ms
Track-to-track seek time Tok 5ms [4]

Detailed estimates of the algorithms execution time have

been computed for the case p=32 (the number of processors).

[4] Except for the value of T_,, all the numbers in this
table have been taken from the Igﬁ 3380 Direct Access Manu-
al. However, since the track to track seek time was not
explicitly specified, we had to extrapolate from the other
specifications to obtain this 5ms estimate.
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Thus, we assume that at least 32 tracks can be read or

written in parallel.

Processors” capabilities:

The values that were assumed for the basic parameters

were:

C - the time to compare 2 keys: 10 to 100 microseconds
(depending on the key length).

V - the time to move a record, within a processor”’s
memnory: is based on the cost of 1.5 microseconds to

move a single word. Thus, for a record length of 150
bytes, V is 225 microseconds.

T - the merge cost per page; since it is equal to (C+V)
times the number of records per page, the values that
we are considering for this parameter are in the range

of 35 to 70 ms.

File size and record length:

The size file was varied from 32 to 16384 (214) pages.
with a page capacity of 47,476 bytes (tﬁe IBM 3380 track
capacity), this range corresponds to a range of file sizes
_from 7000 to 4 million 200-byte records. The record
lengths considered were between 100 and 400 bytes. The key
length was varied from 20 bytes to the entire record
length. Varying these two parameters enabled us to observe
the impact of higher computation time per page. Our con-
jecture was that parallel external sorting would be more
efficient if the ratio between computation time and I/O

time was increased. For a fixed number of processors,
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while the amount of parallelism that can be used during
computation steps is limited only by the algorithm, for the
1/0 transfers it is limited both by the algorithm and by
the I/0 device characteristics. Thus, as expected, the
enhancement in performance (shown by the parallel algo-
rithms, compared to a serial external merge) was more sig-
nificant when the computation time per page was higher. At
the extreme, when the computation time per page was low
(less than 40ms), the worst case performance of the block
bitonic sort became only marginally better than the serial

sort performance.

4.7.2. Results of the experiments

Computation time:

1f performance was not limited by the physical charac-
teristics of the I/0 device, the total execution time of a
parallel external sorting algorithm would be roughly pro-
portional to the number of 2-page merge operations required
(since every page is read before it is merged with another
page and a result page is written after the 2-page merge).
Thus, in this ideal situation, we could compare the algo-
rithms by estimating their computation time only. We have

plotted this time in T_ units as a function of the file

size, when the number of processors is equal to 32 (Figure
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27). Six curves are shown in this graph: one for each of
the parallel algorithms, and one representing the serial
2-way merge. The file size was varied from 32 to 16384
pages (that is from 1l.5Mbyte to 800Mbyte) . The lowest com-
putation time is obtained for the block bitonic sort. Next
come the parallel binary merge sort, then the pipelined
merge sort. The curves representing the computation time
6f these three algorithms get closer to each other as the
file size becomes larger. For medium size files (64 to 512
pages), the pipelined selection sort and the broadcast~
enumeration sort perform relatively well (compared to the
serial sort), but for very large files, they require even
more computation time than the serial sort. The reason for
this very poor performance for large values of n, is that
the serial sort is a fast algorithm (of order O(nlogn)),
while the complexity of the pipelined selection sort and

the broadcast-enumeration sort is O(nz/p).

As an indication of the parallel speedup that can be
achieved (for computation time only), let us consider the
case n=1024 (that is, 32 times more pages than processors).
In this case, the block bitonic sort and the parallel
binary sort require respectively 13 and 8 times less compu-

tation time than the serial sort.

Total number of page operations:
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Figure 27. Cocmputation time of the algorithms
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In order to obtain a better insight on the relative
performance of the algorithms (than what was shown by com-
paring their computation time), we have estimated the
number of parallel page transfers along the links of the
interconnection network and the total number of 1/0
transfers. In the ﬁollowing tables, we have summarized for
several n/p ratios (number of pages/number of processors)
the number of T (computation), Tip (communication) and Tjq
(I/0) units required by each algorithm. First, we have
fixed p (32), and considered several file sizes (256, 512,
1024 pages). Then, we have observed the impact of increas-
ing the number of processors (from 32 to 128), for a fixed

and large file size (8192 pages).

As indicated by the numbers in the second column of these
tables, the communication cost of the first three algo-
rithms is very low. In most cases, the number of page
transfers is from 2 to 10 times less that the number of Tm
computation units, and very significanﬁly less than the
number of I/O operations (in some cases 100 times less).
On the other hand, for the other two algorithms (the pipe-
lined selection and the broadcast-enumeration) the communi-
cation cost is very high. There are two reasons that
explain the low communication cost of the first three algo-
rithms. One is that during intermediate stages of these

algorithms, output runs produced by a processor are written
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Table 1 Number of pages:256, Number of processors: 32
Algorithm Computation|Communication I/0
pipelined merge 1012 134 1304
parallel binary merge 584 8 2048
block bitonic 314 168 11776
pipelined selection 2544 74 1920
broadcast enumeration 2064 128 4352
serial (2-way merge) 4096 0 4096
Table 2 Number of pages: 512, Number of processors: 32
Algorithm Computation|Communication 1/0
pipelined merge 2035 263 5120
parallel binary merge 1224 259 5120
block bitonic 698 336 24576
pipelined selection 9184 4816 7936
broadcast enumeration 8224 16384 16896
serial (2-way merge) 9216 0 92;6
Table 3 Number of pages: 1024, Number of processors: 32
Algorithm Computation|Communication I/0
pipelined merge 4082 520 11264
parallel binary merge 2568 515 12288
block bitonic 1498 672 51200
pipelined selection 34752 17824 32256
broadcast enumeration 32832 65536 66560
serial (2-way merge) 20480 ' 0 20480
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Number of computation, communication and I/0 units

Table 4 Number of pages: 8192, Number of processors: 32
Algorithm Computation|Communication 1/0
pipelined merge 32751 4107 114688
parallel binary merge 23560 4099 147456
block bitonic 13786 5376 458752
pipelined selection 2113024 1060096 2093056
broadcast-enumeration 2097664 4194304 4202496
serial (2-way merge) 212992 0 212992
Table 5 Number of pages: 8192, Number of processors: 64

Algorithm Computation|Communication I/0
pipelined merge 32751 4107 114688
parallel binary merge 19466 4100 "131072
block bitonic 8396 3584 557056
pipelined selection 1064704 . 536192 1044480
broadcast-enumeration 1048832 2097152 2105344
serial (2-way merge) 212992 0 212992

Table 6 Number of pages: 8192, Number of processors: 128
Algorithm Computation|Communication 1/0
pipelined merge 32751 4107 114688
parallel binary merge 17676 4101 114688
block bitonic 5052 2304 671744
pipelined selection 540544 274240 520192
broadcast-enumeration 524416 1048576 1056768
serial (2-way merge) 212992 0 212992

(Note that the pipelined merge can only use 13 processors
to sort a file of 8192 pages).
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to disk (without processor to processor transfers). For
example, both the binary merge and the block bitonic sort
have a first stage (the "suboptimal stage"), during which
the processors execute independently of each other a 2-way
merge procedure and do not communicate. The second reason
is that the algorithms take advantage of a high-bandwidth
interconnection network by transferring many pages in
parallel. If I/O transfers can also be performed in paral-
lel, then the actual number of I/O0 transfers will be

reduced by a féctor equal to the degree of I/0 parallelism.

Examination of Tables 1-6 reveals that for very large
files the performance of the pipelined selection sort and
the broadcast-enumeration sort is very poor relative to the
performance of the first three algorithms. The number of
communication and I/O page units are extremely high when
the file size 1is 8192 pages. We have also observed that
the computation cost was significantly higher for the pipe-
lined binary merge than for the parallel binary merge and
the block bitonic algorithms. Therefore, we shall now com-

pare only these two algorithms.

A surprising property of the block bitonic sort is
consistently indicated by every example presented in Tables
1-6. This algorithm requires a very large number of 1I/0
transfers: about 4 to 5 times more than the binary merge

and the pipelined merge. For 32 processors and up to 1024
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pages, it requires more I/O than the pipelined selection
algorithm. In addition, the number of 1I/0 transfers it
requires to sort a fixed size file increases with the
number of processors. This behavior is illustrated by the
last three tables (n=8192 and p=32, 64 and 128). We have
also observed this same behavior for other values of n and
p. Thus, unless I/O transfers can be performed with a high
degree of parallelism, the parallel binary merge algorithm

may perform better than the block bitonic sort.

4.7.3. Evaluation of I/0 time

One question that naturally arises at this point is
how strongly the I/O time required by the algorithms dom-
inates the other two cost components (computation and com-
munication) . Obviously, the ratio between the I/O and the
computation plus the communication times depends on the
degree of 1I/0 bandwidth that is available. 1In order to
gain intuition on the ideal value for the I/0 bandwidth;
the following criterion can be used. The "ideal" bandwidth

provides an average track transfer time T(ideal) such that:

(I/0 units)*T(ideal) <

(Computation units*T )+ (Communication units*Ty,)

We have estimated the value of T(ideal) for the (n,p) con-

figurations that appear in the previous examples. A few of
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the results that we have obtained are listed in Table 28.

For a single track transfer time of 16ms and an aver-
age access time of 16ms, these results indicate that, for
the block bitonic sort, the 32 processors must be able to
concurrently read or write 32 tracks. Thus, absolute syn-
chronization of the I/0 requests is necessary to insure a
satisfactory performance from +his algorithm. For the
binary merge, on the other hand, 1less parallelization of
the track transfers is required. However, since in this
case the algorithm itself limits the amount of I/O paral-
lelism (by requiring a single processor to perform a long
sequence of write operations), it might not be possible to

take advantage of a high degree of I/0 bandwidth.

32 processors configuration:

n T(ideal) T (ideal)
binary merge block bitonic

256 4.98 1.42
1024 10.06 1.52
8192 7.63 1.53

Figure 28. Ideal track transfer time in milliseconds
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Worst case and best case execution time:

The ideal I/O bandwidth criterion provided some prel-
iminary indication of the relative performance of the algo-
rithms. It has shown, for example, that the block bitonic
sort requires a much higher I/0 bandwidth than the parallel
binary merge sort to perform well. However, a more accu-
rate comparison can be obtained by estimating the best and
worst case execution time for each algorithm (Figure 29).
These times are respectively obtained by using the best and
worse I/O time formulas that were established for each
algorithm (Section 4.3 and 4.4). Figure 30 shows that,
when the best case I/O time is assumed, the block bitonic
sort achieves the lowest execution time. With 32 proces-
sors, this algorithm can sort a large file approximately 10
times faster than a serial sorting algorithm. However,
while the best I/O time obtained for the block bitonic sort
is the lowest, the worst I/O time of this algorithm is very
bad (it is only marginally better than the serial execution
time) . The parallel binary merge sort, on the other hand,

provides a speedup of 5, even in the worst case.

4.8. Conclusion

Of the five algorithms that have been considered, the
parallel binary merge sort appears to have the best overall

performance. Depending on the merge pattern forced by the
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139

record values, the block bitonic sort can either perform
_extremely well or very poorly. Although the probability to
hit the worst case performance is low (since it implies
that each track transfer requires a long seek and a serial
transfer), it must be taken into consideration. The pipe-
lined merge sort is limited in the amount of parallelism it
can use and cannot perform as well as the parallel binary
merge. Finally, the other two algorithms (the pipelined
selection sort and the broadcast-enumeration sort) perform
poorly when the file is very large. However, for smaller
files, their performance is comparable to the other algo-
rithms. In this case, their simplicity might make them
more attractive than the algorithms based on iterated merg-

ing.

By comparing the total execution time of the parallel
external sorting algorithms and the serial 2-way external
merge sort, we have obtained an indication of the parallel
speedup that can be expected. The results indicated that
by using 32 processors, the execution ‘time of external
sorting can only be reduced by a factor of 10. With the
worst case assumptions (that is, when the merging pattern
of every pair of input runs forces the track transfers to
be serialized), the parallel speedup achieved is even

lower.
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Empirical measurements (if they ever become available)
might be another way of evaluating parallel external sort-
ing algorithms. For serial external sorting, numerous
empirical studies have been done on real computers and real
data. The results of these studies have complemented
analytical results, and supplied valuable information on
serial external sorting methods. 1In the near future, the
high cost of external sorting will probably motivate the
implementation of parallel external sorting algorithms. As
in the case of serial external sorting, experiments will
indicate new ways to improve and evaluate parallel external

sorting techniques.
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CHAPTER 5

DUPLICATE ELIMINATION

Files of data frequently contain duplicate entries and
the decision whether and when to remove them must be made.
For example, in relational database management systems
(DBMSs) the semantics of the projection operator require
that a relation be reduced to a vertical sub-relation and
that any duplicates introduced as a side-effect be elim-
inated. 1In general, duplicate records may be introduced in
a file either by performing an incorrect update operation
or by being given a restricted view of the file. 1Identify-
ing record fields such as names are often masked from an
application program or from an output file before it is
delivered to a user. In these cases, the amount of dupli-
cation can be significant and the cost of removing the

duplicates substantial.

Duplicate elimination on a single processor is almost
universally done by sorting. Because of the expense of
sorting, relational DBMSs do not always eliminate dupli-
cates when executing a projection. Rather, the duplicates
are kept and carried along in subsequent operations. Only
after the final operation in a query is performed, is the

resultant relation sorted and duplicates eliminated.
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The decision whether to eliminate duplicates or not
(at various ‘stages of the query execution) lies with the
guery optimizer subsystem of a DBMS. The purpose of a
query optimizer is to schedule instructions from a query in
a manner that will minimize the total query execution time.
Typical factors affecting the decisions of an optimizer
are: the types of operations in the query, the availability
of auxiliary information about files (such as indices), the
size of the input files, and the expected size of the
intermediate and output files. For relational DBMSs, the
expected size of intermediate relations is often kept in
the form of "selectivity factors" which reflect the
observed values of previously executed operations on the

same relation.

To our knowledge, existing query optimizers do not
adequately schedule duplicate elimination operations. The
problem lies in the fact that the literature does not con-
tain a model for analyzing the cost of this operation. 1In
this chapter, we propose a combinatorial model for tﬁe use
in the analysis of algorithms for duplicate elimination.
We contend that this model can serve as a useful tool for a
query optimizer to decide when to eliminate duplicates. We
also describe a modified sorting method for eliminating
duplicates and use our model to show its superiority over

the accepted method of first sorting a relation and then
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eliminating duplicates with a linear scan. These results
are first presented for serial sorting. Then, the same
model 1is used to evaluate a parallel duplicate elimination

procedure.

In Section 5.1, we discuss particular aspects of
duplicate elimination in relational DBMSs. We present
three methods for performing duplicate elimination in Sec-
tion 5.2. The rest of this chapter concentrates on a per-
formance evaluation of one of these methods - a modified
merge-sort procedure. In Section 5.3, we develop a com-
binatorial model that enables us to estimate the size of
intermediate sorted runs produced by merging. 1In Section
5.4, we present some numerical evaluations based on this
model. Our conclusions and suggestions for potential
applications and extensions of our results are presented in

Section 5.5.

5.1. Duplicate Elimination i

a Relational DBMS

In relational database management systems, duplicate
elimination constitutes a major part of the projection
operation. Projecting a relation requires the execution of
two distinct phases. First, the source relation must be
reduced to a vertical subrelation by discarding all attri-
butes other than the projection’attributes. Then, dupli-

cate tuples that may have been introduced as a result of
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the first operation must be removed in order to produce a
proper relation. The first operation, forming the pro-
jected tuples, can either be performed in a linear scan of
the relation or may be performed in combination with an
operation preceding the projection, in which case the cost

of this step would be negligible.

For example, consider the "supply" relation:

supplier-no l part-no I source l destinacion l gty i

If we want to know which suppliers supply which parts in
quantities larger than 1000 units, the relation must be
restricted to (gty>1000) and projected on (supplier-no,
part-no) . Rather than creating a temporary relation for
the restriction and then scanning it to discard the fields
gty, source and destination, these fields should be elim-
inated as the restriction is executed. Since in the "sup-
ply" relation there may be‘ many tuples with the same
supplier-no and part-no attribute values, the result will
be a list of non-unique two-attribute tuples. The second
part of the projection consists of eliminating the dupli-

cate tuples that are introduced by the first phase.

The amount of duplication introduced by the projection
depends on the nature of the projection attribute(s). If

we project on a primary key, then no duplicates will be
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introduced.[1] On the other hand, if we discard a primary
key and project on other attributes, a large amount of

duplication may appear among the resulting tuples.

5.1.1. Implementation of the Projection Operation

Despite the fact that the duplicate elimination is an
integral part of the projection operation as defined in
Codd”s relational algebra, relational database systems do
not automatically implement it. Relations with duplicate
tuples (which are not proper relations according to the
relational algebra semantics) are in fact operated on by
restrictions, joins, and other relational operators.
Because duplicate elimination is expensive and because the
tradeoffs between performing it or putting up with some
inconsistent and redundant data are not clear, most data-
base systems implementations (including relational systems
such as System R [ASTR76] and INGRES [STON76]) postpone it
to the very last stage of query processing. At that stage,
the result tuples are sorted and duplicates are eliminated.
If duplicate elimination is not systematically performed
with every projection, the sets operated on by the rela-
tional operators such as selection and joins are not rela-

tions, and the database management system does not really

(1] A primary key is an attribute or a set of attributes
which uniquely identifies a tuple.
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conform to the relational model. Katz and Goodman [KATZ81]
are currently investigating an extension of the relational
model that allows for duplicates in relations. This exten-
sion deals with multisets that are viewed as a generaliza-
tion of relations.[2] [KATZ81] shows how the relational
algebra operators selection, join, and projection can Be
generalized to multisets, and introduces a new operator to
explicitly specify duplicate elimination. Our study does
not deal with the semantics of duplicate elimination. 1Its
goal 1is to develop tools for implementing and evaluating
the cost of this operation, whether or not it is done in
the context of a relational database management system. In
the case of a relational database, establishing an accurate
cost formula for the projection can make improved query
processing strategies possible. The first step in estab-
lishing such a formula is to evaluate the number of tuples

in the projection.

5.1.2. Size of the Projected Relation

It is usually assumed that the database system dic-
tionary can supply a reliable estimate of the size of a
relation projected on any specified subset of attributes.

This estimate may be based on an "a priori" knowledge about

[2] [KNUT73] defines a multiset as a set of non-unique
elements. In Section 5.3, we define more specifically mul-

tisets that are relevant to our study.




147

the number of distinct values that the projection
attribute(s) ‘can take on. It is reasonable to assume that
this kind of information would be stored for all permanent
relations, since it indicates the cardinality of the attri-
butes domains. However, the same information will neither
be readily available for temporary relations created during
intermediate stages of a query execution nor be inexpensive
to compute. In the event that the size of a projected
relation must be quickly estimated, a reasonable approxima-
tion may be achieved by assuming that a relation size is
proportional to its tuple length [KERS80]. Let |R] and
lRpl denote the number of tuples in the source relation and
in the projected relation, respectively. Then,
|Rpl = fp*IRl

where the "projectivity" f_ equals the tuple 1length in

j<
bytes divided by the length of the projection attribute(s)

in bytes. When indices on the projection attributes exist,

the size of the projection can be estimated as
Ir|* TT (1/55)
a.
JG.A

where A is the set of the projection attributes and Sj is

the index selectivity for attribute aj [YAO79] .

Assuming that we have a reliable estimate for the size

of the source relation and the size of its projection, the
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cost of the projection can be essentially defined as the
cost of eliminating duplicates in a multiset of records,
knowing the size of the multiset and the number of distinct

records in it..

5.2. Algorithms for Duplicate Elimination

Using any sorting method with the entire record taken
as the comparison key will bring identical records
together. Since many fast sorting algorithms are known,
sorting appears to be a reasonable method for eliminating
duplicate records. This section briefly describes three
methods for duplicate elimination, two of which are based
on sorting. For the sake of simplicity, only the serial
version of these methods will be described. However, each
of them can be extended to a parallel method for duplicate
elimination. The first method is an external 2-way merge-
sort followed by a scan that removes the duplicates. A
parallel version of this method that will be investigated
is based on the parallel binary merge sort (Section 4.3).
The second method is a modified version of an external 2-
way merge-sort, which gradually removes duplicates as they
are encountered. The third method consists of using an
auxiliary bit array that is obtained by hashing the record
fields. This method was introduced by [BABB79], for effi-
ciently realizing the relational join and projection opera-

tions. We discuss it for the sake of completeness, but we
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do not compare it with the other methods as it requires the

use of specialized hardware for efficient operation.

We assume that the file resides on a mass storage dev-
jce such as a magnetic disk (although for very large files,
magnetic tape may be used as the storage media) . It con-
sists of fixed size records that are not unique. The
amount of duplication is measured by the "duplication fac-
tor" £ which indicates how many duplicates of each record
appear in the file, on the average. The records are
grouped into fixed size pages. An I/0 operation transfers
an entire page from disk storage to the processor”’s memory
or from memory to disk. The file spans N pages, where N
can be arbitrarily large, but only a few pages can fit 1in
the processor”’s memory. The cost of processing a complex
operation such as sorting or duplicate elimination can be
measured in terms of page I/0”s because I/0 activity dom-

inates computation time for this kind of operations. [3]

5.2.1. The Traditional Method

For a large data file, duplicates are usually elim-
inated by performing an external merge-sort and then scan-

ning the sorted file. Identical records are clustered

(3] In fact, since for algorithms such as merge-sort the
sequence of pages to be read is known in advance, pages can
be prefetched enabling computation time to be completely
overlapped with I/0 time.
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together by the sort operation, therefore they are easily
located and removed in a linear scan of the sorted file.
We assume that the processor”s memory size is about three
pages and some working space. In this case, the file can
be sorted using an external 2-way merge sort (Section
4.1.1). A 2-way merge procedure requires 1092N phases with
N page reads and N page writes at each phase (since the

entire file is read and written at each phase) .

After the file has been sorted, duplicate elimination
is performed by reading sorted pages one at a time and
copying them in a condensed form (i.e. without duplicates)
to an output buffer. Again an output buffer is written to
disk only after it has been filled, except for the last
buffer which may not be filled. Thus the number of page
1/0°s required for this stage is:

N (reads) + ceil(N/f) (writes)
The total cost for duplicate elimination measured in terms
of I/0 operations is:

2Nlog,N + N + ceil(N/f)

5.2.2. The Modified Merge-sort Method

Most sorting methods can be adapted to eliminate
duplicates gradually. [MUNR76] establishes a computational
bound for the number of comparisons required to sort a mul-

tiset, when duplicates are discarded as they are encoun-
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tered. Since we are dealing with large mass storage files,
we are solely interested in working with an external sort-
ing method. A two-way merge-sort procedure can be easily
modified to perform a gradual elimination of duplicates.
If 2 input runs are free of duplicates, then the output run
produced by merging them should retain only one copy of
each record that appears in both input runs (see Figure
31). Whenever two input tuples are compared and found to
be identical, only one of them is written to the output run
and the other is discarded (by simply advancing the
appropriate pointer to the nekt tuple). The cost of the
duplicate elimination process using this modified merge-
sort is then determined by two factors: the number of
phases and the size of the output runs prodﬁced at each

phase.

Number of Phases

The number of phases required to sort a file with gra-
dual duplicate elimination is the same regardless of the
number of duplicate tuples. That is, 1092n merge phases
are required to sort a file of n records. This is true
even in the extreme case when all the file records are
identical. 1In this particular case, the run size is always
1 and every merge operation consists of collapsing a pair
of identical elements into one element. By the same argu-

ment, if we start an external merge-sort with N internally
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______________________ I
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2 input runs 1 output run (shorter than 2 input runs)

Figure 31. Modified Merge

sorted pages, the number of phases required is logzN,

whether or not duplicates are eliminated.

Size of Output Runs

Since we know the number of phases, the number of I/0
operations required to execute the modified merge-sort will
.be completely determined if we have a method to measure how
the runs grow as the modified merge-sort algorithm
proceeds. When a two-way merge-sort is performed, the size
of the runs grows by a factor of 2 at each step. However,
if t%@ merge procedure is modified in order to »eliminate
duplicates as they are encountered, the size of the runs
does not grow according to this regular pattern. Suppose

that the modified merge-sort procedure is executed without




throwing away the

Instead, the duplicates would

step of the algorithm they

Then, the size of an output

duplicates
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as they are encountered.

only be marked so that at any
identified.

can be rapidly

run produced at phase i would

still be 2! but the number of distinct elements in the run

would only be equal to the number of unmarked elements.

Thus, it seems that a reasonable estimate for the average
csize of a run produced at the ith phase of a modified merge
procedure is the expected number of distinct elements in a
random subset of size Zi of a multiset. In Section 5.3, we

present a combinatorial model that provides us with such an

estimate.
5.2.3. The Hashing Method

Essentially, this method works as follows. A bit
array (M(I), I:l..k) with about as many entries as the

number of distinct records is used to check for duplica-

tion. Rather than comparing the records themselves, a hash

function provides a way to establish if 2 records are

identical. Initially, all the entries in M are set to

zero. Then, for each record read, all the fields are con-

catenated and the resulting string is hashed to provide the

appropriate index, say I. If M(I)=0, the current record is

written to the output list and M(I) is set to 1. This pro-

cedure ensures that no record is written twice to the out-

put list, since identical records must hash to the same
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address. However, some records may be left out only
because they "collide" with previously read records. Thus,
each collision means loosing a "good" record. For this
reason, it is very important to minimize the number of col-
l1isions. One way to achieve this goal is to increase the
size of the bit array ([BABB79] recommends 4 times as many
entries as the number of distinct records). A further
improvement can be achieved by using several hash functions
rather than a single one. The source file is scanned once
for each hash function, and an output file (of non-
colliding records) is‘createdk for each scan. Then the
union of the output files is taken as the result file. The
probability of missing records can be substantially reduced
by wusing several statistically independent hash functions,
since it is unlikely that different records will collide

for each of these functions.

[BABB79] shows that the hashing method can be very
fast, when specialized hardware is used. The main problem
remains the probability of missing any récords. I1f there
is not enough a priori knowledge on the data in order to
determine that the expected number of missing records will
be extremely small [4], or if no chance to miss a record
can be taken, the cost of performing duplicate elimination
with this method becomes extremely high (since it would

require scanning the source file again to check if no
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record has been left out of the output file).

Oon a conventional computer, it seems that any dupli-
cate elimination method not based on sorting would require
an exhaustive comparison of all records and therefore lead
to a slower performance. However, parallel processing may
offer other alternatives. Various parallel architectures
and algorithms are investigated for the elimination of
duplicates in two recent studies ([BORA80], [GoOD8O0]). 1t
may be the case that features such as broadcast of data to
several processors will be the source for faster algorithms
for duplicate elimination. The results that have been
obtained in this area are not conclusive and will not be

presented as they are beyond the scope of this study.

5.3. A Combinatorial Model for Duplicate Elimination

In this section, we consider the problem of finding
all the distinct elements in a multiset. A multiset is a

set {Xl, Xor oo ,xn} of not necessarily distinct elements.

We assume that any two of these elements can be compared

yielding Xj>X4, X{=Kj OF X;j<Xj. The x;”s may be real

numbers or alphanumeric strings that can be compared

according to the lexicographic order. Or they may be

[4] For 50K distinct records, [BABB79] estimates that a
bit aiiay of 1M bits and 4 scans can reduce the error rate
to 107+,
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records with multiple alphanumeric fields, with one (or a
subset of fields) used as the comparison key. The elements
in the multiset are duplicated according to some distribu-
tion £y, f5, ..., f£g. That is there are f; elements with a
"value" vy, £, elements with a value vy, ... , f elements

with a value v and > £f; = n. When n is large and the

ml

values are uniformly distributed, we may assume that
fl=f2= --.=fm=f

.and therefore

n = £*m

In this case, we define f as the "duplication factor"™ of

the multiset.

5.3.1. Combinations of a Multiset

Consider the following problem. Suppose we have a
multiset of n elements with a duplication factor of £ and m
distinct elements so that n=f*m. Let k be any integer less
or equal to n. How many di;tinct combinations of k ele-
ments can be formed where all the m distinct elements
appear at least once? This number is denoted by Cem(k).
We consider combinations rather than arrangements because
we are interested in the identity of the elements in a sub-
set but not in their ordering within the subset. The nota-
tion (g) is used to represent a g-combination of p distinct

elements, with the convention (2):0 for g>p.
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Lemma 1:

cpn (k) = (M= M) + G 2y D™ M) )

Proof: The intuitive meaning of lemma 1 is that the number
of combinations with exactly m distinct elements is equal
to the number of combinations with at most m distinct ele-
ments minus the number of combinations with m~1, m-2, ...
,1 distinct elements. To prove the lemma, we express the
total number of combinations of size k in terms of the
number of combinations of size k with m distinct elements,
of the number of combinations of size k with m-1 distinct

elements, etc.

(EXMy = cont) + (D) cgpo1) ) + (3) g (qogy (k) + oo
EH) = cg(pony 0+ ™1H ce(moz) () * ™31 cg (m-3) (K)
+ o o o

o o @

By combining these expressions to form the right-hand side
sum in lemma 1, all the c(k) cancel each other except for
cfm(k). Notice also that k might be gréater than £(m-i)
for some i>0 which according to our notation, would imply
that some of the terms in the right hand side sum become

Zero.
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5.3.2. The Average Number of Distinct Elements

Starting with a multiset that has m distinct values
and a duplication factor £, there are (im) subsets of size
k. Thus, the probability that a random subset of size Kk
contains exactly d specific distinct elements (d<m) is
equal to:

ceq )/ (FR™ )
The expected number of distinct elements in a random subset
of size k can be computed by averaging over all possible
values of d. The lowest possible value of d is [k/f] since
d distinct elements cannot generate a set larger than £*d.
on the other hand, there can be at most m distinct values
since we are considering subsets of a multiset with m dis-

tinct values.

Lemma 2: The expected number of distinct elements in a
subset of size k is:
min(k,m)
*
ave (k)= { S axMrcga)} 7 (™)
d=[k/£]

Lemma 3: For i>1l
(m-i) - m-i+l)*(d) 4+ @-1+2)%() - ... =0
Proof: Let us consider the product xm'i(l-x)i. By expénd—

ing the second factor, we have

xm—l(l_x)l = fm-i (i)xm—1+l + (;)xm—i+2 - ..
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and
4 (™ Ha-nt) = (-1 x™ - (nei by mee2) (™ L
For x=1 and i>1 this derivative is equal to zero.

Lemma 4: For k>m

k
SaMsceqk) = m(EEM-m(FMLH)
a =[k/f]

Proof: Let

m
5= Z  a*(g)*cgg(k)
d=[k/f]

Since for each k, Cg3(k) is a linear combination of terms
of the form (f(mEi)) and since the upper bound for d in S
is m, S may be rewritten backwards as a linear combination
of terms of the form (f(m;j))' j=0,1,... Then the coeffi-
cient of (im) is m(g). The coefficient of (f(m;l)) is (m-
1)@ - n® = -m

_For i>1l, the coefficient of (f(mai)) is:
(m-i) - (m-1+1) (hysm-1+2) §) - ...
which is null by lemma 3.

Theorem 1: If k>m

ave () = m - me{ (FOTy (B )
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It is interesting to notice that when f is large (that 1is
the duplication factor is high), avfm(k) becomes a function
of m and k only. This can be proven as follows:
k
(f(m;l)) / (f:m) = TT'(f*m—f—k+i)/(f*m—k+i)
i=1
which is approximately equal to (m—l/m)k for large £f.

Therefore, ave (k) = m(1l - (m—l/m)k) for large m.

This result cbnfirms the intuitive idea that the
number of distinct elements in a random subset of a large
multiset depends only on the size of the subset and on the

number of distinct values in the multiset.

For smaller duplication factors, as we keep f and m
constant, avg (k) increases monotonically as a function of
k, until for some k=k, it reaches the value m. From then
it remains constant as k increases from k0 to f*m. Figure
32 displays the function avg (k) for £*m=32768 and for
three different values of f (8, 16, 32). The value k; is
of particular interest. It indicates how large a random
subset of a multiset must be in order to contain at least

one copy of all the distinct elements.

It is interesting to note that the problem we address
here is somehow related to the classical "occupancy prob-

lem" of the Bose-Einstein statistics [FELL68]. The n ele-
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Figure 32. Number of Distinct Records in Successive Runs
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ments of a multiset may be identified with n particles and
the m distinct elements in the multiset may be pictured by
m distinct cells in which the particles can fall. All the
duplicates of one element are then represented by the set
of particles that fell into a single cell. Assuming that
all elements are equally duplicated, i.e. n=£f°m and that
there are f copies of each element, is equivalent to assum-
ing that all cells end up containing the same number of
particles. 1In fact, this is only one of many possible
states and a more accurate modeling of duplication should
consider the number of particles in one cell as a random
variable with mean equal to f=n/m. It is known that for
large n and m, the distribution of this variable is a Pois-
son distribution with mean n/m [FELL68]. Estimating the
number of distinct records in a multiset is similar to
estimating the number of occupied cells. Here again, it
has been shown that the number of empty cells (that is m-
the number of occupied cells) is a random variable with a
_Poisson distribution. Thus, for very large duplication
factors, the probability of finding a specified number of
distinct records in a subset of records can be estimated
using the tools developed for the classical occupancy prob-

lem.
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5.4. Cost Analysis of Duplicate Elimination

As discussed in Section 5.2, the cost of a modified
merge sort 1is completely determined if the size of inter-
mediate output runs can be estimated. 1In this section, we
evaluate this cost and compare it to the cost of a tradi-
tional merge-sort. We then use a very similar technique to
evaluate the cost of a modified parallel binary merge sort.
We assume that the source file consists of n non-unique
records, with a duplication factor £f. The modified merge
algorithm will produce an output file of m=n/f distinct
records. Both the source file and the output file records
are grouped into pages and all pages, except possibly one,
contain the same number of records ("page size" below). The
cost of duplicate elimination is measured by the number of
pages read and written, assuming that the main memory can
f£it no more than two page input buffers and one page output
buffer. Wwhen an intermediate run is produced, records are
also grouped into full pages before any output buffer is
written out. Only the last page of a rﬁn may not be full.
Therefore, the number of pages written when an output run
is produced will be:

ceil(number of records in a run / page size).
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5.4.1. Cost of serial duplicate elimination

We assume that the external merge procedure starts
with internally sorted pages, and that each of these pages
is free of duplicates. This assumption 1is legitimate if
the records are uniformly distributed across pages in the
source file, and if the number of distinct records is much
larger that the number of records that a single page can

hold.

1f there were no duplicates, the number of records in
each input run read at phase‘i would be 21-1 times the page
size, since the merge procedure is started with runs that
are one page long. Similarly, the number of records in an
output run produced at phase i would be 21 times the page
size. Suppose the page size (measured in number of records
that a page can hold) is p. Therefore, when duplicates are
gradually eliminated, the expected number of records in an
input run read at phase i is equal to avfm(zi‘lp), and the
expected number of records in an output run produced at
phase i is equal to avfm(zip), using the notation defined
in Section 5.3. On the other hand, the number of runs pro-
duced at phase i is n/Zip (where n=fm is the number of
records in the source file). Therefore, the number of

pages read at phase i is

2 * ceill avfm(zi“lp)/p] * n/2lxp
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and the number of pages written is
ceill av(Zip)/p] * n/Zi*p

Using these formulae, we have summarized in Figure 33 the
total number of page I/0”s required to eliminate duplicates
from a file of 131072 records. With 128 records per page,
this file spans 1024 disk pages. We have considered vari-
ous duplication factors from 2 (i.e. there are 2 copies of
each record) to 64 (64 copies of each record) The results
indicate that a modified merge sort requires substantially
fewer page I/0°s than a standard merge sort, especially
when the amount of duplication is large. When a standard
merge sort is used to eliminate duplicates, it must be fol-
lowed by a linear scan of the sorted file. Therefore, we
also show this augmented cost in the rightmost column of

the table in Figure 33.

A further reduction of page I/O”s can be achieved by
terminating the modified merge procedure as soon as the
runs have achieved the result file size. When this happen,
all the output runs will essentially be identical and each
of them contains all the distinct records. As we observed
in Section 5.3, this may occur a few phases before the
final phase, e.g. at phase number (logzN)-i , for some i>1
(N being the number of pages spanned by the source file).

When this phase is reached, a single run may be taken as
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-—————_—-—————-———-—_————--.—————-———————.—-——_——_—.—_.———————-———

£ modified merge standard merge std merge+scan
2 19008 20480 22046

4 17400 20480 21760

8 15664 20480 21632

16 13840 20480 21568

32 12000 20480 21536
64 10192 20480 21520

Figure 33. Cost of serial duplicate elimination

the result file since it contains all the distinct records
and no duplicates. Therefore, the elimination process 1is
complete and one may save the additional 1I/0 operations
which serve only to collapse together several identical
runs. Figure 34 shows the I/O cost of this "shortened”
procedure, compared to the cost of a complete modified
merge sort: For this file size, the savings in page 1I/0”s
can reach up to 7% of the total cost. For a smaller file
size (32K records) and a small duplication factor, we have
observed an improvement of the order of 10%. When varying
the file size and the duplication factor, we have observed

that the improvement was greater for véry small or very
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large duplication factors, while it was smaller in the

mid-range values (e.g f£=8 and f=16) .

5.4.2. Cost of parallel duplicate elimination

B parallel binary merge sort (Section 4.3) can be
modified, like the serial 2-way merge, in order to perforﬁ
gradually the duplicate elimination. During the suboptimal
stage, each processor independently executes the first
phases of a serial 2-way merge. Thus, during this stage,
the number of I/0 operations is the same as the number of
1/0 operations in the serial algorithm divided by the

number of processors (assuming that the I/0 transfers can

2 19008 17728 1280
4 17400 16264 1136
8 15664 15280 384
16 13840 £ 13264 576
32 12000 11328 672
64 10192 5472 720

-—_————--—————-——————_—_-—_.-.»-——..—-——-——————————————-.———.—_-

Figure 34. Early termination of modified merge
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be done in parallel). After the suboptimal stage, addi-
tional 1I/0 operations are needed only for reading the file |
in parallel once (during the optimal stage), and for writ-
ing the result file. Writing the result file is done seri-
ally by the root processor. In the case of parallel sort-
ing without duplicate elimination, this last operation was
very slow. However, in the case of a modified sort, the
result file can be very small compared to the source file
(if the duplication factor is high). Thus, the cost of the
serial write is not as prohibitive. Figure 35 summarizes
the cost of parallel duplicate elimination for a binary
tree configuration with 16 leaf processors. The same
assumptions as before were made about the size and the

structure of the file.

5.4.3. Non-Uniform Duplication

Since we have only estimated the expected size of the

runs, our numbers are only accurate provided that the

“actual run size does not fall too far away from that ‘aver-

age. This will certainly not happen if the records are
uniformly distributed in the source file. Finally, it |is
very important to note that if there is no a priori infor-
mation about the number of duplicate records present in the
source file, the modified sort-merge can still be used to
eliminate duplicates and the procedure can be terminated as

soon as the run size stop growing. When this condition is
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£ serial modified merge modified parallel merge
2 19008 1278
4 17400 1015
8 15664 872
16 13840 ' 778
32 12000 696
64 10192 608

Figure 35. Cost of parallel duplicate elimination

verified, a single run can be taken as the result file,
although a precise statement about the probability that

such a run indeed contains all the distinct records

requires a more elaborate statistical model than the one we

have used.

5.5. Conclusion

In this chapter, we have presented a model for
evaluating the cost of duplicate elimination. We have
shown how, by modifying a 2-way merge-sort, duplicates can
be gradually eliminated from a large file at a cost which

is substantially less that the cost of sorting. Accurate
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formulas have been established for the number of disk
transfers reduired to eliminate duplicates from a mass
storage file, first with a serial algorithm, then with a
parallel algorithm. These formulas can be used whenever
there exists an a priori estimate for the amount of dupli-
cation present in the file. When such an estimate is not
available, it is argued that the modified merge-sort method
(serial or parallel, depending on the context) should still
be used. In this case, a condition for testing that all

duplicates have been removed is described.

We have based our analysis on a combinatorial model
that characterizes random subsets of multisets. Only a
‘particular category of multisets has been considered, where
all elements have the same order. Thus, our results are
only accurate for files with a uniform duplication factor
(i.e. each record is replicated the same number of times in
the entire file). Refining our analysis would require the
use of more sophisticated statistical tools to model more
accurately the distribution of duplicates. However, for
files with a large number of records and with many dupli-

cates, our model would provide a reasonable approximation.

In addition to generalizing our cost evaluation model
to the case where the records are not uniformly duplicated,
it would be of interest to model the cost of duplicate

elimination on parallel computers, using methods other than
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parallel sorting. As mentioned in Section 5.2, algorithms
for performihg this operation have already been developed
([BORA8B0O], [GOOD8O0]) . However, measuring the execution
time of these algorithms requires the need of a different

cost model.

The motivation for our work was the need for a method
to evaluate the cost of duplicate elimination. To our
knowledge most query optimizers in relational DBMSSs
schedule a duplicate elimination operation in an ad hoc
manner. The model developed in this paper can serve as a
tool to be used by a query optimizer in estimating the cost
of eliminating duplicates from a relation. Using this
estimated cost an optimizer can-:schedule operations so that

the total execution time of the query is minimized.
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CHAPTER 6

CONCLUSION

In this final chapter, we summarize the contributions
of this dissertation and point to areas for future

research.

6.1. Contributions

While an extensive literature exists that addresses
computation and communication issues in parallel process-
ing, until now, the impact of 1/0 on the performance of
parallel algorithms has not received adequate considera-
tion. 1In particular, the problem of parallel external
sorting has not been previously addressed. 1In this thesis,
we have deﬁonstrated that parallelism can be employed to
efficiently sort very large files. We have proposed
several new algorithms for parallel external sorting, and
~estimated their execution time. By assuming that several
processors shared access to a modified, moving-head disk
device, we have demonstrated that external sorting can be
performed faster than by a conventional processor. How-
ever, the parallel speedup achieved is not as high as the
speedup provided by fast parallel internal sorting algo-

rithms.
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In the context of parallel external sorting, we have
considered tﬁo aspects of parallel processing that had not
previously been considered. One is the implementation and
the feasibility of parallel algorithms, within the limits
imposed by current technology. The other is the develop-
ment of a comprehensive cost analysis framework for thoéé

parallel algorithms that perform I/0 intensive tasks.

In our performance evaluation of parallel external
algorithms, we have accounted for three major cost com-
ponents: computation, communication and 1/0. While
estimating the computation and the communication times did
not require the development of new techniques, modeling 1/0
time was difficult. Several criteria have been proposed to
estimate the disk access time and the number of page
transfers required by a parallel external sorting algo-

rithm.

As a major application of parallel external sorting,
we have considered its use as a tool for the execution of
complex database operations. 1In particular, we proposed to
perform the duplicate elimination operation by using a
modified merge-sort algorithm. A new combinatorial model
has been developed, that provides an accurate estimate for
the cost of this operation (both in the serial and the

parallel cases).
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6.2. Future research

There are two main research directions that we plan to
pursue. One is to investigate applications of parallel
sorting in the area of database management systems. The
other is to refine our methodology for the analysis of
parallel algorithms. 1In this section, we point at specific
problems in these two directions that we intend to study in

the near future.

6.2.1. Parallel sorting in database machines

In recent years, specialized hardware has been pro-
posed to enhance the performance of DBMS”s. Several basic
architectures have been proposed for "database machines"
that unlike traditional computers, are designed with data-
base applications in mind. Support of massive parallelism
has been investigated in most database machines designs
({ozka75], [Lin761, [Su75], [Bane78], [DeWi79]). However,
research on database machines has, for the most part, been
warchitecture oriented. As a result, parallel algorithms
for database operations have not received much considera-
tion, and performance evaluation tools have rarely been
investigated [DewWi8l]. Although an extensive literature
exists on parallel computation and parallel sorting, it
does not address the problems specific to database manage-

ment, namely the necessity of dealing with very large
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volumes of data.

The join operation is one of the most time-consuming
operations in a relational database management system.
Thus, many algorithms have been investigated for its reali-
zation. In conventional systems, a variety of methods are
used, depending on the availability of auxiliary struc-
tures. In the general case, sorting has been shown to be
the best approach [Blasg77]. For database machines that
use parallel processors, both indexing [Hsiao79] and hash-
ing [Good80] have been proposed as building blocks for a
fast realization of the join. 1In the case that an effi-
cient broadcast facility is available, a simple nested-
loops algorithm can achieve a relatively high performance
when one of the operand relations is not too large

[Bora8l].

A parallel join of two relations can be performed by

first doing a parallel sort on both relations to be joined
- (assuming that they are not both already sorted on the join
attribute). After both relations have been sorted, they are
joined by a single processor. Since the relations have
been sorted, the complexity of the join step is the cost of
merging two sorted files. Let n and m be the sizes in
pages of the R and T relations, respectively. Also, let Sj

be the join selectivity factor. Then, for this algorithm,

the time to perform the join of R and T is equal to
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+3
i

T(sort R) + T(sort T) +

+ T(merge 2 sorted files)

= Tgort(n) + Tgore(m +

+ (n+m) * (T, +T,) (read sorted relation)

+ 2*max (n,m)*T (join n to m pages)
*n* : 4

+ m*n Sj* (Tgk+Ter) (write result relation)

An improvement of this join algorithm may be achieved
by overlapping the sorting of the two files. This can sig-
nificantly reduce the execution time of the join if a
"pipeline type" algorithm is employed. To illustrate this
assumption, let us consider the simplified case where R and
T both contain n pages and the number of processors is also
n. 1In this case half of the time to sort R using the pipe-
lined merge algorithm is for propagating the last page of R
through the pipeline; now, as soon as the first processor
has processed the nth page of R, it can start reading and
processing pages of T. By using the pipeline again, we are
_able to replace 2T_, .. (n) by 3/2Tgort(n) in the execution
time for the join. Furthermore, since pages of T emerge
one at a time from the pipeline, we may begin merging the 2
sorted relations as soon as the first page of the sorted T

relation is produced.

Another possible improvement would be to use a paral-

lel rather than a sequential scheme for joining the two
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sorted files, if such a scheme could be designed. At this
point, it is not clear to us if parallelism can improve the

bound of (n+m) I/O operations for the merge.

Tt should be noted that by using a merge sort algo-
rithm to perform the join, we obtain a relation sorted with
respect to the Jjoin attribute; this property might be
desirable if the result relation is the final result of a
query, or if it becomes the source relation for a subse-

quent join using the same joining attribute.

However, in the general case, the relative performance
of a parallel sort-merge join and other parallel join

methods are still unknown.

6.2.2. Control cost of parallel algorithms

Aside from the three major processing cost components
that we have considered (computation, communication and
1/0), several issues remain to be investigated for a more
comprehensive evaluation of parallel algorithms. In par-
ticular, estimating the cost of controlling a complex
parallel algorithm has been eluded by most researchers.
Except in a few theoretical studies [RobiB80, Vish8l], no
account is usually made for the cost of assigning (or reas-
signing) processors, or for the synchronization of proces-
sors at the initiation of a new stage of gxecution. While

this cost may be negligible when parallel ©processors are
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highly synchronized (in an SIMD architecture, for example),
or when the parallel algorithm is simple, it might become a
significant overhead when complex parallel sorting algo-
rithms are executed. Controlling the execution of a paral-
lel algorithm incurs both a communication overhead (for the
exchange of messages between the controller and the proces-
sor) and processing overhead (for the controller to lookup
and update various task and file tables). Thus, adequate
tools are needed to accurately model this aspect in the

analysis of parallel algorithms.
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