OPTIMAL CODE GENERATION FOR CONTROL STRUCTURES
By

Munagala V. S. Ramanath

Computer Sciences Technical Report #461

December 1981



OPTIMAL CODE GENERATION FOR CONTROL STRUCTURES

by

MUNAGALA V. S. RAMANATH

A thesis submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

1981




TABLE OF CONTENTS

ii

ABSTRACT...... s eseeseesas B P B 5 £
ACKNOWLEDGEMENTS....... S &
1. INTRODUCTION AND OVERVIEW. .sccccoeoscccsas 1
1.1 INTRODUCTION,...eveewn. cresecccccescsncanen 1
1.2 OVERVIEW.....ccosen ceeecsncceses caceesoene 6
2. THE ALGORITHM..... ceccesssecssososssssacons 8
2.1 MOTIVATION..... N 8
2.2 NOTATION....... D i &
2.3 THE FORMAL MODEL....ceeeeesonsscnansoasosns 12
2.4 DEFINITIONS. . it eeessnannansssos ceeeasas 22
2.5 ALGORITHM PRELIMINARIES......cc0cs. cesssses 29
2.6 THE ALGORITHM....ceo0ccecccnsancsscsasasss 30
3. PROOFS OF THEOREMS....... - Y
3.1 PRELIMINARY RESULTS...ccceecescencccecasss 44
3.2 PROOFS OF THEOREMS 1 AND 2....cc00c00000ees 67
4. THE POWER OF MULTILEVEL EXITS......ce0e0.. 71
4.1 OVERVIEW...c0c0e00 Y i §
4,2 THE CLASS OF STRUCTURED FLOW GRAPHS....... 71
4.3 THE HIERARCHY OF FLOWGRAPHS......ov0.0c0... 98
5. DISCUSSION AND CONCLUDING REMARKS......... 124
6. REFERENCES .. ..cvcveeces ceseecscessessseasass 128



iii

OPTIMAL CODE GENERATION FOR CONTROL STRUCTURES

MUNAGALA V. S. RAMANATH

Under the supervision of

Assistant Professor Marvin H. Solomon

ABSTRACT

We investigate the problem of generating code for
programs so that the number of unconditional branch in-
structions, or “jumps®, in the object code is minimized.
We show that the problem is NP-complete in general and
that polynomial algorithms exist provided the source pro-
grams are limited to using a restricted set of control
structures. 1In particular, we show that if we restrict
the set of control structures to IF-THEN-ELSE and LOOP-
ENDLOOP with multilevel exits, there is an efficient al-
gorithm for finding the minimal- jump translation. The
time complexity of the algorithm is quadratic in the size
of the program provided the maximum number of nested
loops that may be exited by an exit statement is bounded
by a constant. We show that more directed graphs can be
expressed if this bound is (i+l) than if it were 1i. We
also compare the class of flowgraphs that can be obtained
with these control structures to the well-known class of

reducible flowgraphs.




iv

ACKNOWLEDGEMENTS

It is with unqualified pleasure that I express my

————————grati . i s 7 i ; t his
perceptive comments played a formative role in this
thesis cannot be gainsaid. His belief that what can be
said in two words ought not to be said in ten resulted in
the compaction of my expansive prose. His preference for
assuming impatient curiosity, rather than conscientious
pertinacity, on the part of the typical reader led to the
inclusion of more examples and exegetic comment, to the
exclusion of meretricious and obscure notation which I
unfailingly generated and, whenever possible, to the sub-
stitution of perspicuous prose for the less transparent,
though perhaps more precise, symbolic derivations. It
will brook no denial that, but for his suggestions,
several of my proofs would be substantially more complex
than they are. His assistance 1in various advisory,
bureaucratic and academic matters was generous and
ungrudging. Most of all I am indebted to him for sug-
gesting the central problem of this thesis -- a problem
that, it can be said in retrospect, had all the desirable
attributes of formalizability, tractability and apparent
utility.

I am grateful to the members of my committee for

their helpful suggestions, especially to Dr. Raphael



Finkel for his careful reading of the manuscript and to

Dr. Charles Fischer for his assistance in locating jour-

nal articles.




CHAPTER 1

INTRODUCTION AND OVERVIEW

1. INTRODUCTION

It is widely recognized that machine code produced
by high-level language translators is not as compact and
"efficient” as could be produced by a competent
assembly~-language prbgrammer. The impact of various
inefficiencies can be moderated by sundry "optimization"
techniques. One kind of inefficiency that is not ad-
dressed by known techniques is the presence of an un-
necessarily large number of unconditional branches or
"jumps" in the object code. Figure 1 shows a source pro-
gram and two translations; all six jumps in the standard
translation can be eliminated by paying careful attention
to the 1linear order in which the blocks of machine code
are placed.

The linear order in which code is generated and ul-
timately loaded often tends to be precisely the order in
which the corresponding source code statements are sup-
plied to the compiler by the programmer; transfer of
control between noncontiguous blocks of machine code is

achieved by jumps, many of which may not be necessary.



FIGURE 1
A program and two translations
LOOP
IF Bl THEN Sl1; EXIT 1 ENDIF;
LOOP
IF B2 THEN S2; EXIT 1 ENDIF;
LOOP
IF B3 THEN S3; EXIT 1 ENDIF;
IF B4 THEN EXIT 1 ENDIF;
IF B5 THEN EXIT 3 ENDIF;
ENDLOOP;
IF B6 THEN EXIT 1 ENDIF;
IF B7 THEN EXIT 2 ENDIF
ENDLOOP;
IF B8 THEN EXIT 1 ENDIF
sS4
ENDLOOP;
S5
(a) The Source Program
START:if -1B1 then L2 L4:if B4 then L6
S1 if B5 then M5
jump M5 L3:if B3 then L4
L2:if «4B2 then L3 S3
s2 L6:1if B6 then L8
jump L8 if B7 then M5
L3:if -1B3 then L4 L.2:if B2 then L3
s3 S2
jump L6 L.8:if B8 then M5
L4:if B4 then L6 sS4
if B5 then M5 START:if 1Bl then L2
jump L3 sl
L6:1f B6 then L8 M5:85
if B7 then M5
jump L2 (c) An optimal translation
L8:if B8 then M5
S4
jump START
M5:85

(b) The standard translation

B1-B8 are Boolean expressions, S1-S5 are simple state-
ments, START is the entry point, —71 is logical negation
and "EXIT i" indicates that i levels of loops are to be
exited.




Whereas the order of the source-code statements may

*

- pe defensible —on grounds_ of readability, aesthetics,

tradition, or language Syntax, there 1S no reason for
this order to be preserved in the object code.

Given a program, we address the problem of finding a
translation in which the number of jumps is minimal.
Such a translation will result in a smaller object module
in general; if the eliminated jumps are on frequently
executed paths there may also be a substantial saving in
execution time.

We confine ourselves to translations that preserve
the nodes and arcs of the flowgraph and ignore the
specific nature of the statements represented by the
nodes; that is to say, techniques such as node splitting
and code motion are beyond the scope of this dissertation
since they modify the flowgraph. Any jump-free segment
of code in the translation determines a simple path in
the flowgraph. Any translation therefore determines a
collection of pairwise disjoint simple paths that collec-
tively cover all the nodes of the flowgraph. Such a col-

lection is called a dissection. Conversely, given a

dissection of a flowgraph, we can find a corresponding
translation such that each path of the dissection vyields
a jump-free code segment; in each case, the number of

jumps in the translation equals the number of paths in



the dissection. Finding a minimal-jump translation of a
program, therefore, corresponds to finding a minimal-
cardinality dissection for the flowgraph of the program.
Figure 2 shows the dissections corresponding to the

translations of Figures 1(b) and 1l(c).




FIGURE 2

The dissections corresponding to the two translations

Y B o U4 - '
oL Igure &




2. OVERVIEW

The problem, in its most general form, can be stated as:

THE DISSECTION PROBLEM (DP) Given a digraph G and

a positive integer K, does G have a dissection of

cardinality at most K ?

Since a special case of DP (K=1) is the Hamiltonian Path
problem (HP) which is known to be NP-Complete [1,2] even
for the restricted class of planar digraphs with both the
indegree and the outdegree of each node bounded by two,
DP itself must be NP-Complete for that class. The only
other known attempt to solve DP is [3] where a
polynomial-time algorithm for dags and a heuristic for
general digraphs are presented. We present an algorithm
to solve this problem for the class of “structured” pro-
gram graphs (those obtained by using only IF~-THEN-ELSE,
LOOP-ENDLOOP and multi-level exits).

By an SFG (Structured Flow Graph) we mean the flow-
graph of a structured program. For each r in {0,1,2,...}
let SFG(r) denote the <class of BSFGs that can be
represented by a structured program using at most r-level
exits. Our algorithm shows that DP is solvable in qua-

dratic time for each class SFG(r); furthermore, we show




that the class of all SFGs is the same as the well-known

class—of Reducible Flowgraphs (RFGs) and that the classes

SFG(r) form a strict linear order under containment, The
question remains open whether DP or even HP is NP-
Complete for RFGs.

The rest of this thesis 1is organized as follows:
Chapter 2 presents the formal model and the algorithm and
states the main theorems regarding the correctness and
the time complexity of the algorithm. Chapter 3 contains
proofs of the theorems of previous chapter. Chapter 4
shows that the class of SFGs is identical to the class of
RFGs and examines related issues. Chapter 5 contains

discussion, open questions and conjectures.



CHAPTER 2

THE ALGORITHM

1l. MOTIVATION

We consider programs that can be built up from atom-
ic statements (assignment statements, input/output state-
ments, procedure calls, but no "go to" statements) and
Boolean expressions using the following operations:

(a) Concatenation
(b) IF-THEN-ELSE-ENDIF
(c) LOOP-ENDLOOP with multilevel exits of the form
"EXIT i" where i>1 specifies the number of nested
levels of loops to be exited.
There are analogous operations that produce the flowgraph
of a compound statement from the flowgraphs of its com-
ponents. Suppose G(P) and G(Q) are flowgraphs for pro-
grams P and Q respectively. The flowgraph G(P;Q) of the
compound statement "P;Q" is obtained by drawing arcs from

the “finish” nodes of G(P) to the “start” node of G(Q):

e




The flowgraph G(IF B THEN P ELSE Q ENDIF) of the compound

statement "IF B THEN P ELSE Q ENDIF" is obtained by

creating a me i =
sion B) and drawing arcs from it to the “start” nodes of

G(P) and G(Q):

(3)

The flowgraph model, therefore, must include specifica-
tions of a “start” node and a set of “finish” nodes. 1In
the two cases above, the start node of the resulting
graph is simply the start node of G(P) in the first case
and the new node in the second; the finish nodes of the
resulting graph are the finish nodes of G(Q) in the first
case and the union of the finish nodes of G(P) and G(Q)
in the second. The case of G(LOOP P ENDLOOP) is more in-
volved. We draw arcs from the finish nodes of G(P) to

its start node; the start node of the new graph is the

start node of G(P):




10

The finish nodes of the new graph, however, ought to be
all those nodes from which an exit of this particular
loop is possible; in order to precisely identify these
nodes we augment our model with the specification of a
set of nodes called the level-i exit nodes for each i>1.

A node of G(P) is a level-i exit node iff an exit from i

nested loops surrounding the program fragment P is possi-
ble immediately after performing the computation
represented by that node. Thus, finish nodes can be con-
sidered to be level-0 exit nodes. Now, when the LOOP-
ENDLOOP operation is applied to P, the levels of all the
nodes of G(P) need to be decremented by one since one
surrounding loop is now accounted for. We can now
describe how to construct the flowgraph G(LOOP P ENDLOOP)
from the flowgraph G(P):
—- draw arcs from the level-0 exit nodes of G(P)
to its start node.
-- the start node of the resulting graph is the
start node of G(P).
-- the level-i exit nodes of the resulting graph
are the level-(i+l) exit nodes of G(P).
The level-i exit nodes may be specified by labelling each
node with an integer specifying its exit level; a single
integer may prove insufficient since a node may be both a

level-i and a level-j exit node (eg. IF B THEN EXIT i




11

ELSE EXIT j ENDIF). So we label each node with a set of

2. NOTATION

¢ is the empty set ;
r={0,1,2,...} s
t is a symbol used to label the start node of a
flowgraph ;
P(Y) denotes the power set of Y ;
|Y| denotes the cardinality of Y ;
A X B denotes the Cartesian product of sets A and B.
For any set A we define
at =aw {1}, 27 =a- {1}, A=n2an {1}

If A C 1t we define

it

A+l = {a+1 | a € AnI} U i, and,
A-1 ={a| a€eTand a+t1 €A} U A

A unit set is a set whose cardinality is one. A relation

R is any set of ordered pairs (RC A X B for some sets A,

B). If R is a relation we define
DOM(R) = {x | (x,y) € R for some y }
RAN(R) = {y | (x,y) € R for some x }

If R and S are relations, x € DOM(R) and A C DOM(R), we

define

R(x) = {y | (x,¥) € R}



12

R[A] = {y | v € R(x) for some x € A}

R = {(v,x) | (x,v) € R}

Ros = {(x,2) | (x,vy) € Rand (y,z) € S for some v}
A relation R is called a function iff |R(x)| = 1 for all
x in DOM(R). Every relation R C A ¥ B determines a func-
tion

<R> : P(DOM(R)) —--> P(RAN(R)) defined by <R>(X) = R[X].
The following special relations will be useful later:

For any set Y, id, = { (yv,v) | vevyl

Y

For any i € I, z; ((idg+) - f(0,00}) o {(0,i)}
For any k € IT, del, = (idp+) - [(k,k)}

{((t,hl o {a+,i) | i€ 1}

Finally, decr

We denote
<
z;> by Z;,
<decr> by DECR, and

<delk> by DELk.

THE FORMAL MODEL

fw
L]

A program graph G is a triple (N,A,L) where:

N is a non-void finite set of nodes.
AC NXN is a set of directed arcs.
LC NZX It is a relation that associates labels with

nodes such that IL-l(T){=1 (that is,

exactly one node is labelled by 1).




13

The unique element of L—l(T) is denoted by s(G) and

called the start node of G, the elements of L“l(i) are

called the Tevel=iexit nodesfor—each—i>0;—and—the—set—————

L_l(O) is denoted by F(G) and its members are also called

finish nodes of G. The pair (N,A) is called the digraph

of G. We will write N,, A, G

citly identify the program graph in question.

and L. if we need to expli-

Implicit in the above is the assumption that nodes
are associated with the atomic actions of a program (sim-
ple statements or Boolean expressions). Each node of a
program graph is distinguishable from all other nodes of
that program graph (by a unique name for instance). Dis-
tinct nodes of a program graph may however be associated
with the same atomic action as would happen, for example,
when the assignment "X:=0" occurs in two different places
in a program. We emphasize that labels are not used to
distinguish one node from another and so several distinct
nodes may have the same set of labels.

A program expression (or simply expression) E, and

its program graph G = (N,A,L) are defined recursively:

(a) For any i € I, and any node n, E=EXIT(i,n) is an ex-
pression and N={n}, a=0, L={n} x [1,0,1i}.
[If i=0 this corresponds to the simple statement as-
sociated with n; if i>1, it corresponds to either:

IF B THEN EXIT i ENDIF or



14

IF B THEN ELSE EXIT i ENDIF
where B is the Boolean expression associated with n.]
(b) Suppose El1 and E2 are expressions, Gl=(N1,Al,Ll) and
G2=(N2,A2,L2) are their respective program graphs,
N1 n N2=¢, t is a node not in (N1 U N2) and 1 € I, i>1.
Then, E and G=(N,A,L) as defined by the five operations
below are respectively an expression and its program
graph.
BREAK
E=BREAK (E1,i), N=N1, A=Al, L=ziO L1
[ If E1 is a program, this corresponds to the new
program "E1;EXIT i". Since control can reach the
"EXIT i" only from the finish nodes of Gl we simply
replace all 0-labels with i-labels using the rela-
tion z; . Note that we do not create a new node for
the "EXIT i" statement.]
LOOP (See Figure 3)
E=LOOP (El),
N=N1, A=Al U (F(Gl) ¥ {s(Gl)}, L=decr © L1l.
[If E1 is a program, this corresponds to the new
program "LOOP El1 ENDLOOP". The “decr” relation is
used to specify that the new level-i exit nodes are
the o0l1ld 1level-(i+l) exit nodes; the new arcs are
given by F(Gl) X {s(Gl)} ]

CAT (See Figure 3)




15

E=CAT (E1,E2),

N=N1 U N2, A=Al U A2 U (F(Gl) % {s(G2)}),

L=(de100 LIy U (delTu T2)

[ This corresponds to concatenating two programs El
and E2. The two parts of the labelling relation L
specify respectively that the finish nodes of Gl are
no longer finish nodes and that the start node of G2

is no longer the start node; all other labels are

unaltered. ]
IF (See Figure 3)
E=IF (t,E1), N=N1 U {t}, A=Al © {(t,s(GL)},
L=({t} x {t,0h © (delTO L1)
[ This corresponds to either of :
IF B THEN ELSE El1 ENDIF
or IF B THEN El ELSE ENDIF where B is the Boolean
expression associated with t. The new node t is the
start node and a finish node of the new graph: this
is specified by {t} x {{,0} in the labelling rela-
tion.]
ELSE (See Figure 3)
E=ELSE (t,E1,E2), N=N1 U N2,
A=A1 U A2 U ({t} x {s(c1),s(G2) ]},
L=(del;0 (Ll U 12)) U {(e, D}
[ This corresponds to the statement

IF B THEN El ELSE E2 ENDIF ]



FIGURE 3

SPG operations

CAT

LOOP

s(at)
/o

s@z)
/a\
A

ELSE

s(a1) | s(a2)
A A

s@l)

IF

(( t
s(al)
A



17

A program graph is called a Structured Program Graph

(spG) iff it is the program graph of some expression; the

“‘“‘”“”""""“"—"“'STX“Uperations~iisteﬁ—abeveﬂmafeﬂwea%%eé~mSPG=epe£atign31~w-__,,___

The size of an expression E 1s the number of SPG-
operations used in E; the rank of E is max{ i | EXIT(i,n)
or BREAK(-,1i) occurs in E}; that is, the rank is the
maximum depth of nested loops that are exited by an "EXIT
i" statement in the program. If E is an expression, G
its program graph and H the digraph of G we will say that

G is a program graph of H,

E is an expression for H, and

E is an expression for G.
We will sometimes use graph-theoretic terms in connection
with an expression; it is to be understood in these
cases that the terms apply to the program graph of the
expression. Thus if E is an expression, the phrases:
the start node of E, the nodes of E, the arcs of E, a

path in E, all refer to the program graph of E.

REMARKS :
(1) L is always a finite relation.
(2) Each node of an SPG can have at most two numeric
labels; that is, |L(m)-{1}| < 2 for all
nodes n.

(3) An SPG can have any number of finish nodes but can



18

have at most one start node.

Several points are noteworthy about our model:

1.

We do not explicitly label the “TRUE” and “FALSE”
branches; this information, though easy to incor-
porate, is superfluous for our purposes, since ran-
domly interchanging the “TRUE” and “FALSE” branches
leaves the underlying digraph, and hence the
minimal-cardinality dissection, unchanged.

We only deal with graphs where the outdegree of
each node is bounded by two.

Other models in the literature [4,5,6] create in-
dividual nodes for the statements "EXIT i" or for
the keywords "LOOP" and "ENDLOOP" (sometimes called
"REPEAT" and "END" respectively). We diverge from
this practice for several reasons: Firstly, these
statements (or keywords) merely represent control
information like the keywords "THEN" and "ELSE" in
an IF statement and do not constitute atomic ac-—
tions as we understand them. Secondly, creating
nodes for them destroys the correspondence between
jump-free segments in the object code and paths in
the flowgraph. Thirdly, graph isomorphism in our

model becomes the more obscure "very strong




19

equivalence" in the other models [6]. Figure 4

shows an example of an infinite class of programs,

all —of —which —have —the same program graph—imour
model but have progressively larger non-isomorphic
flowcharts in the other models.

Even though we have not formally defined the rela-
tionship between a program and the expression for
it, it should be clear that given a program, a
parse tree for it provides an expression.

1f digraphs are to model programs accurately, it is
essential that they include specifications of start
and finish nodes, as our model does, since the same
underlying digraph could represent different pro-

grams depending on the start/finish specifications.

A

For instance, the digraph:

represents the following program if A is the start
node and B is the only finish node:

IF A THEN C ELSE

ENDIF ;

B
However, if B and C are both required to be finish

nodes, a more complex program is necessary:



20

LOOP
IF A THEN
IF C THEN EXIT 1
ELSE ENDIF

ELSE ENDIF;

B; EXIT 1

ENDLOOP
We make no assumptions about whether or not Boolean
expressions may have side effects; that is, we
permit the case where the evaluation of a predicate
modifies the values of the other variables of the
program via, for example, function calls. The
models of [4] and [6] assume that predicate
evaluation can have no side effects.
It is possible in our model to obtain graphs in
which there are unreachable nodes (i.e. there is
dead code in the corresponding programs). This
will happen whenever the CAT(P,Q) operation is ap-
plied and the program graph of P has no finish
nodes. We could prohibit the use of the CAT opera-
tion under such circumstances but we do not do so
since unreachable nodes do not cause any difficul-

ties in our algorithm.




21

Figure 4

An infinite class of expressions all of which have

isomorphic program graphs in our model.

E0=EXIT(O,n), Ei=LOOP(BREAK(Ei_l,l)) for i>1.

The corresponding class of programs {Pi | i€ I} is
given by:
PO : <code for n> P; ¢ 1.OOP (for i>1)

<program Pi—l>
EXIT 1
ENDLOOP
All of these expressions have the same program graph
G = (N, A, L) in our model : N={n}, A=0, L={(n,T),(n,0)}.
In the other models of the literature, the flowcharts

for these programs are "very strongly equivalent" but not

isomorphic:
n LOOP LOOP etc.
J 4
l n LOOP
4 N
EXIT 1 n
ENDLOOP EXIT 1
J, ENDLOOP
BXIT 1
ENDLOOP

3



22

4, DEFINITIONS

Throughout this section, G=(N,A,L) is an arbitrary but
fixed SPG. The definitions of this section are illus-
trated by an example at the end of the section. A la-

belled path Y(G) in G is a pair (d, ?) where:

q = (al, Byr cenr ak) is a sequence of distinct nodes

a; € N, such that (ai, ai+1) is an arc in G for

1<i<k: d 1is called the node sequence of VY, ay is

called the beginning of Y and denoted by b(Y) and

a is called the end of Y and denoted by e(Y).
B = (L(aq), L(ay) s «eny L(a,)) is called the

label sequence of Y (we will write Y for Y(G) when

there is no ambiguity).
A labelled path, as we have defined it here, is a simple
path in the digraph of G (in the usual graph-theoretic
sense) together with the sets of labels on those nodes,
If E is an expression and El1 a subexpression of E then, a
labelled path in El1 may have the same node sequence as a
labelled path in E, but their label-sequences could be
quite different owing to the difference in the 1labelling
relations of E and E1. Suppose H is an arbitrary SPG and
Y(H) = (d, ?) is an arbitrary labelled path in H such
that o is also a simple path in the digraph of G. We

write LG(Y) for the labelled path obtained from o by us-




23

ing the labelling relation L of G:

————— L =LA L3 ))

We extend this notatiom to cotlections—of-labelled-pathse+
If w is any collection of labelled paths in any SPG such
that LG(Y) is well-defined for each Y in w, then, we de-
fine:

Lgw) = { Lo | Yy ew}

This is a slight abuse of notation, since Lg is a
transformation on labelled paths (and labelled path col-
lections) and also the 1labelling relation of Gg it
should, however, be clear from the context as to which is
meant.

Two labelled paths are disjoint iff their node se-
guences have no common elements. If Y and Y° are dis-
joint labelled paths in G such that there is an arc in G
from the end of Y to the beginning of Y“, their concate-
nation, denoted by "y.y’", is the labelled path obtained
by concatenating their corresponding node and label se-
quences. A dissection v of G is a collection of labelled
paths in G such that every node of G occurs in exactly
one member of v. A dissection v of G is <called an Op-

timal dissection iff no dissection of G has cardinality

lower than |v|. The cost of G, denoted by d(G), 1is the
cardinality of an optimal dissection of G. We will write

vg or v(G) if there is need to explicitly identify the



24

SPG for which v is a dissection. We will write Vg Or
v (E) to indicate that v is a dissection for the program
graph of the expression E.

If YV = (d, (cl, eeoy ck)) is a labelled path in G,
the signature of Y, denoted by sg(Y), is the subset of T
defined by:

sg(Y) = ;l V] ck_

In other words, sg(Y) consists of all the labels of the
end of Y except |, together with {1 if it is a label of
the beginning of ¥. A labelled path Y in G is called a

T-path iff its signature is the set T (i.e. sg(y) =T), a

start-path iff it begins at the start-node of G (i.e. 1 €

sg(¥)) and a finish-path iff it ends at a finish-node of

G (i.e. 0 € sg(¥)).

REMARK (4) A dissection can have any number of finish~-
paths but at most one start-path.

The following example illustrates the concepts of this
section.

EXAMPLE (1) Two expressions R and E and their respective
program graphs H and G are shown in Figure 5. The

corresponding programs are shown below:




R: IF nl THEN E:

Ty R
P 12 w) LUEI\:«‘

LOOP

25

<program R>

LX

IF n7 THEN EXIT 2
ENDIF
ELSE né6
ENDIF
ELSE IF n2 THEN
IF n5 THEN EXIT 1
ENDIF ;
EXIT 3
ENDIF ;
IF n4 THEN EXIT 2
ENDIF

ENDIF

ENDLOOP

The following table shows some node sequences and the la-

belled paths they determine respectively in H and G.

NODE SEQUENCE LABELLED PATH IN H

Yy=(cq, ({110, {0}))

dl=(nl,n3,n6)

q2=(n2,n4) y2=(d27(¢r{012}))
d4= (n5) Y3= (5, ({1,31)
d,=(n7) Y,= (a0 (10,21

For each i, 6 _
i - LG(Yi) .

The concatenations

PATH IN G
5=y, ({11,0,0))
6,=(dy, (0, {11))
6,= (5, ({0,2]))
6,=(l,, ({1}))




26

il

6,.8;

and 64.61

((n2,n4,n1,n3,n6), (¢, {1}, {1},9,9))
((n7,n1,n3,n6), ({1},{1}.,9,0))

are well-defined labelled paths in G since (n4,nl) and

it

(n7,nl) are arcs of G; the concatenation 61.62 is not
well-defined in G since (n6,n2) is not an arc of G.

The signatures of these labelled paths are:

PATH SIGNATURE
Yy {1,0}
Yo {o,2}
Y4 {1,3}
Y, {o,2}
5, {11
5, {1}
5, {o0,2}
5, {1}
6,.6, 0
6,6, 0

The collection w = {Yl, Yor Y3 y4} is a dissection for H.
The collections

v = (8, 6,, 65, 6,},
{62.61, 84, 64}, and

i

X

y {64.61, 5,4 63} are all dissections for G.

The start and finish paths of these dissections are

given below:




27

DISSECTION START-PATH FINISH~PATHS
W y
l] llr)/zvy‘l
v bl 03
X none 63
v none 63



28

Figure 5

Two expressions and their program graphs.

R = ELSE(nl,ELSE(n3,EXIT(2,n7) ,n6) ,CAT(IF (n2,
BREAK (EXIT (1,n5),3)) ,EXIT(2,n4)))

E = LOOP(R)

H (prog. graph of R) G (prog. graph of E)

(11 (a1) (11
¢ ¢ @
ONCIOOIOACIO;
{0,2} {1,3} {o} {o,2} {1} f{o,2} ¢ {1}

The labels of each node are shown next to it. Both R

and E have rank 3; their sizes are respectively 8 and 9.




29

5. ALGORITHM PRELIMINARIES

Let D= [ v | v is a dissection for some SPG }. We

define functions # and f : (P(I+) - {6 x Db ---> I by
the number of T-paths in v

[{Yy | ¥ € v and sg(y) = T}]
£(T,v) = min { |T|, #(T,v) }

il

#(T,v)

1]

Every dissection v of an arbitrary SPG G determines a
function £ : (P(I+)—{¢}) ——-> I, called the character of
v, defined by fv(T) = f(T,v). We define an equivalence
relation on dissections based on their character:

v ~ w iff fv = fw [i.e. £(T,v) = £(T,w) for all T].
This equivalence relation has a crucial role to play in
the algorithm. Example 2 below gives the characters of
the dissections of Example 1.

For any collection X of dissections we define an op-

timal choice-set from X to be any collection of dissec-

tions Y obtained by choosing from each equivalence class

C of X, exactly one dissection whose cardinality is

minimal in C.
EXAMPLE (2) The characters of the dissections v, w, X,

and y of Example 1 are given below.



30

T £ (T £ £.(T) £(T)
{1} 0 1 0 0
{1} 0 1 1 1
{o,2} 2 1 1 1
[1,3} 1 0 0 0
{1,0] 1 0 0 0
all other T 0 0 0 0

Suppose E, El, E2 are expressions and vl, v2 are
dissections for E1, E2 respectively. We define several
operations on dissections; each operation is the analogue
of an SPG-operation and produces a set of dissections for
a composite graph from dissections of the component sub-
graphs. For each operation we provide, in addition to a
precise and formal definition using the notation of the
previous section, an informal definition where only the
node sequences of the dissections are specified, it being
understood that the labels of E are used in all cases to
obtain the corresponding label sequences. These opera-
tions are illustrated pictorially in Figure 6 (which fol-
lows these definitions) and by a specific example at the
end of the section.

(a) If E = BREAK(ELl,i) then




31

BREAK (v1,i) = { Lg(vl) }

{ The unique dissection of E whose node

sequences are exactly those of w1 }

REMARK (5) LE(vl) is a single dissection, so BREAK(vl,i)

is a unit set.

(by If E = LOOP(El) then

LOOP, (v1) = {Lg(v1)}
= {The unique dissection of E whose node
sequences are exactly those of vl }
LOOP, (v1) = { Lg(vi-{p,a}) U {Lg(@) .Ig(@} |

g is a start path and p is a finish
path in vl }

= { v | v is a dissection of E obtained
from vl by concatenating a finish path
and a start path. }

LOOP (vl) = LOOPl(Vl) U LOOPZ(Vl)

REMARK (6) LOOPl(vl) is a unit set; LOOPz(vl) may have

zero, one or more elements,.

(¢c) If E = CAT(E1,E2) then

CATl(vl,VZ)

il

{ Lg(v1) U Lg(v2) }
[ The unique dissection of E whose node



32

sequences are those of vl together
with those of v2 }

CAT, (v1,v2) = { Lg((vl-{p}) © (v2-{qg}h) ©
{LE(p).LE(q)} | p is a finish path p
of vl and q is a start path of v2 }

= { v | v is a dissection of E obtained
from vl U v2 by concatenating a £fin-
ish path of vl to a start path of v2
}

CAT (v1,v2) = CAT,(vl,v2) U CAT,(vl,v2)

REMARK (7) CATl(Vl,VZ) is a unit set; CATZ(vl,VZ) may

have zero, one or more elements.

(d) I£f E = IF(j, t, El), let p” be the

single-node labelled path (t,LE(t)) in E. Then,

IF, (t,v1) = { Ly(vl) © {p”} }
= { The unique dissection of E whose node
sequences are those of vl
together with (t) }
IF, (t,v1) = { Ly(vi-{ah U {p”.Lg(@)} |

q is a start path of vl }
= { v | v is a dissection of E obtained
from vl by concatenating (t) with a

start path of vl }




33

IF (t,v1) = IF, (t,vl) U IF,(t,v2)

l r i i r 2 ’

empty or a unit set.

(e) If E = ELSE(t, El, E2), let p” be the

single-node labelled path (t,LE(t)) in E. Then,

il

ELSE, (t,v1,v2) = { Lg(vl) U Lg(v2) U {p°} }

[ The unique dissection of E whose
node sequences are those of vl and
v2 together with (t) }
ELSEz(t,vl,VZ)
= { Lz(v2 0 (vi-{gh) © {p".Lg@} |
q is a start path of vl } o
{ Lgvi v (v2-{ah) © {p".Lg(@)} |
g is a start path of v2 }
= { v | v is a dissection of E obtained
from vl U v2 by concatenating (t) with a

start path of vl or v2 }

REMARK (9) ELSEl(t,vl,v2) is a unit set; ELSEz(t,vl,VZ)

has no more, though possibly fewer, than two elements.



34

FIGURE 6

SPG-Operations on dissections

LOOP (Vi)

CAT (v, v2)

o

>
i
R
N
(1]
m

)

IF(t



35

We will wuse OP(i,t,vl,v2) to mean any one of:

CAT(vl,v2), IF(t,vl) or

BREAK (v1.,1), LOOP (vl1l),

of the corresponding five SPG-operations.

EXAMPLE (3) We refer to Figure 5 and the dissections v,

w, x and y of Example 2.
LOOPl(w) = {v}; LOOPZ(W) = {x, y} and

LooP (w) = {v, x, v}



36

6. THE ALGORITHM

This section contains a few prefatory remarks, the main
algorithm, and the two main theorems regarding its
correctness and time-complexity; the entirety of the next
chapter is occupied with the proofs of these theorems.
The algorithm keeps track of a family of dissections
for each SPG and, as each SPG-operation is applied, con-
structs members of this family for a composite SPG from
the (recursively computed) families for the component
subgraphs. The family must be chosen with care; the to-
tal number of dissections of a program graph can grow ex-
ponentially in the size of the graph and so the family of
all dissections will not do. The family that our algo-
rithm uses is an optimal choice-set (Section 5) from the
class of all dissections. The equivalence relation .
provides sufficiently fine resolution to ensure that this
choice-set has all the necessary information (to build
the choice-set for the larger graph from the ones for the
smaller graphs) and yet is sufficiently coarse to ensure

that the number of equivalence classes does not grow ex-

ponentially in the size of the graph.




37

ALGORITHM Opt-Dissection

INPUT An_expression E.

————————QUTPUT An optimalt dissection v for—theflowgraphof B+ ——

METHOD Call Dissect(E,Y); v := MIN(Y).

(* MIN(Y) is a minimum-cardinality member from the family
of sets Y; the procedure DISSECT is defined below. *)
PROCEDURE Dissect (E,Y);

(* E is an expression ; the procedure returns an optimal
choice set in Y. *)

BEGIN IF E is of the form EXIT(i,n) THEN

Let X := {u} where u is the unique dissection
of the flowgraph of E.

ELSE (* E = OP(i,t,E1,E2) for some expressions El
and E2 where OP is some SPG-operation other
than EXIT. %)

Dissect (E1l,Yl); Dissect(E2,Y2);
Let X := { v | v € opP(i,t,vl,v2) for
some vl € Y1 and v2 € Y2 }

ENDIF;

(* The following loop creates Y from the set X

created above ¥*)

Y := 0 ;

FOR EACH equivalence class C of X (under .) DO

Y := Y U MIN(C)

END; (* of PROCEDURE Dissect *)



38

The algorithm has been stated in very general terms
to facilitate a quick overview of the various steps in-
volved. We now present an expanded version in Pascal-
like syntax; this version clarifies some implementation
details and is useful in computing the time-complexity of
the algorithm. The line numbers at left (in PROCEDURE
Create Y) are used in the proofs of the next chapter.

PROGRAM Opt—-dissection ;
VAR E : expression ;
v,w : dissection ;
Y : SET OF dissection ;
PROCEDURE Dissect( E : expression ;
VAR Y : SET OF dissection) ;

VAR Y1,Y2,X : SET OF dissection (initially void) ;

FUNCTION Compare f(v,w : dissection) : BOOLEAN ;
(* Returns TRUE if v and w have the same
character, FALSE otherwise ¥*)
VAR L : INTEGER ; S : SET ;

BEGIN (* function Compare_ f ¥*)

L := MAX{ i € I | i labels some node

in v or w } ;
s :={ie1| o<i<t }V;
(* The following loop compares the characters

of v and w; only a finite number of




39

comparisons are necessary since f(T,v) and

f(T,w) are non-zero for only finitely many T

as we shall proveinthe next—chapter—*)
FOR EACH T IN {T | |T"| < 2, TC s } DO
IF (£(T,v) # £(T,w)) THEN
Compare f := FALSE ; RETURN
ENDIF;
Compare f := TRUE ;

END ; (* function Compare f ¥*)

PROCEDURE Create Y (S : SET OF dissection ) ;

(* Creates the optimal choice-set of the set §
in the variable Y which is a reference
parameter to Dissect *)

VAR v,w : dissection ;

BEGIN (* procedure Create Y ¥*)



(L) LL : FOR EACH v IN S DO

(2) FOR EACH w IN Y DO

(3) -IF Compare f (v,w) THEN

(* The equivalence class of v al-

ready has a representative in Y ¥)

(4) -IF (|v] < |w|) THEN

(* v is a cheaper representative
and so replaces w in Y ¥*)

Y := (v-{wh © {v}

~-ENDIF

(* In either case, continue
with the next iteration
of the outer loop *)

CONTINUE LL

-ENDIF ;

ENDFOR (* Inner loop *)

(* If control reaches here, the
equivalence class of v has no
representative in Y so far; we
therefore add it to Y *)

Y := Y U {v}

ENDFOR (* outer loop ¥*)

END ; (* procedure Create Y *)




41

BEGIN (* procedure Dissect ¥*)

IF E = EXIT(i,n) THEN

LY ] T P Y °
7

Ty

[ ia o t
¥—=—{the unique dissection of E}

RETURN

ENDIF ;

(* Here E is not atomic *)

IF E = BREAK(El,i) THEN
Dissect (E1,Y1)

FOR EACH v IN Y1 DO
X := X U BREAK (v,1i)

ELSE IF E = LOOP(El) THEN
Dissect (E1l,Y1)

FOR EACH (v IN Y1) DO
X := X U LOOP (V)

ELSE IF E = CAT(E1,E2) THEN
DISSECT(El1,Y1l); DISSECT(E2,Y2) ;
FOR EACH (v IN Y1) AND EACH (w IN Y2) DO

X := X U CAT(v,w)

ELSE IF E = IF(t,El) THEN
Dissect (E1,Y1l)

FOR EACH v IN Y1 DO
X := X U IF(t,v)

ELSE IF E = ELSE(t,El1,E2) THEN

Dissect (E1,Y1l) ; Dissect(E2,Y2) ;

FOR EACH (v IN Y1) AND EACH (w IN Y2) DO



X := X U ELSE(t,v,w)

ENDIF ;

42

(* using the set X formed above, we now create an

optimal choice-set from it *)

Create_Y (X) ;

[

END ; (* procedure Dissect *)

BEGIN (* main program ¥*)

READ(E) ; Dissect(E,Y)

°
I

(* Find an element of Y whose cardinality is

minimal. *)
v := an arbitrary member of Y ;
FOR EACH w IN Y DO
IF (|w| < |v]) THEN
vV 1= W

ENDIF;

WRITE ("An optimal dissection is:" , v)

END. (* main program *)




43

The principal properties of the algorithm are summarized

by the following theorems:

THEOREM 1 The output v of the algorithm is an optimal

dissection for the flowgraph of E.

2
THEOREM 2 The running time of OPT-DISSECTION is 3°(F)n2

where r is the rank of E and n is size of E.



44

CHAPTER 3

PROOFS OF THEOREMS

1. PRELIMINARY RESULTS

LEMMA (1) Suppose T and T” are arbitrary subsets of I

and v is an arbitrary disection of an SPG G.

0 iff #(T,v) =0

I

(a) £(T,v)
(b)y £(T,v) # 0 ==> |T | < 2

(c) E£(T,v) 0 for all but finitely many T

(@) teT ==> £(T,v) = #$(T,v) <1

() T e€eTanT and ==> T=T" or #(T",v)=0
$(T,v) = 1 }

(£) || > £(T,v) ==> £(T,v) = #(T,V)

Proof

(a) and (f) follow from the definitions of # and £; (b)
follows from Remark (2); (c¢) follows from Remark (1); (a)

and (e) are simple consequences of Remark (4).

LEMMA (2) For any TC I, i € Tand k € I
(@ z;tm =(¢ifoer
{r} if 0@ Tand i g T
{vr, T o {0}, (r-{i}) v {o} } if 0o g T
and i € T.

(b) DECR Y(7) = { T+1, (T+1) U {0} }




45

(c) DELkl(T) = {¢ if kerT

L{T, T U {k} } otherwise.

Proot:
(a) I£ 0 € T, then Zi(T’) = T is impossible for any T”.
If 02 T, i € T then suppose Zi(T') = T, Since Z;
affects only 0°s and i“s, we must have
r=7-{0,1i}=7"-{0,i}. 1If either 0 or i was in 7%, i
would be in Zi(T’) = T, Hence we must have T =T.
If 0T, i € T, suppose Zi(T’)=T. As before,
r-{i}=r-{0,1i}=T7"-{0,i}. There are four possibilities:

0,ieT == T =7T7U {0}

oegT,ieT” => T =T

= T (r-{i}) u {o}

1]
]

oeT’, igrT
0,i ¢ T is impossible since i € T.

(b) Suppose DECR(T”)=T. Then T+l C T”. The only other
element that could be in T” is 0 .

(c) If k € T then DELk(T’) = T is impossible for any T”.
If Kk € T and DELk(T‘) = T then we must have T C T~ .

The only other element that could be in T” is k.

LEMMA (3) Let
c be any element of I
K be any finite set
A be any non-void subset of i

v be any element of D



46

By be any non-void subset of I' for each k € K

Vi be any element of D

[£] z £ (B V)

k € K

Y #Bvy)

k € K

"

[#]

Then
(a) min {|a|, c+If1} < min {|A], c+[#]1}
(b) Equality holds in (a) if ¢ > 0 and
|B | > |A| for all k € K.
(c) If 0,7 € A and £(A U {0}, v) > 1 then
min {|A|, -1 + £(a U {0},v) + [£1}
= min {|a], -1 + #$(a © {0},v) + [#1}

?roof:

(a) By definition of £, £(T,v) < #(T,V) for all T and v.

(b) Let LHS and RHS denote respectively the left hand
side and right hand side of the inequality (a). Sup-
pose the assumptions of (b) hold. We need only show
that LHS > RHS; equality then follows from (a).

Case I |A| < c+[f]. Here LHS = |A| > RHS.

Case II |A| > c+[f]. For all k € we have:

|Bk! > |A] > c+[£] 2 £(By,v)) and so
£(B,,v,) = #(By,vy) by Lemma 1(f); equality fol-
lows.

(c) Let LHS and RHS denote respectively the left and




47

right hand sides of the desired equality; assume
that the premises of (c) hold. Then 0 < LHS < RHS <

T &|. By assumption and from Lemma I{b) we see that—————————

la o {oh| =@ o {oh - {1}] <2 and so |a] =1

and |A U {0}| = 2. So we have: 0 < LHS < RHS < 1.
If LHS = 1 then LHS=RHS follows trivially.

1f LHS = 0, then, since |A] = 1 we must have

-1+f(A U {0},v)+[f] = 0 and so from our assumptions
we see that £(A U {0},v) = 1 and f(Bk,vk) = 0 for
all k € K. Now |a ©U{0}| = 2 and £(a U {0},v) = 1
together imply that #(A U {0},v) = 1 (Lemma 1(f)).

f(Bk'Vk) = 0 implies that RHS = 0 by Lemma 1(a).

il
&
w0

I
(o)

Thus LHS

The following Lemma proves that any dissection for a
composite program graph can be expressed in terms of
dissections of the component program graphs and expresses
the cardinality of the former in terms of the cardinali-

ties of the latter.

LEMMA (4) Suppose E, El and E2 are arbitrary expressions
and v is any dissection for E.
(a) If E = EXIT(i,n) then v is the only dissection for
for E and |v| = 1.

(b) If E = BREAK(E1l,i) then



(c)

(d)

(e)

48

(i) For any dissection wl of El,
v € BREAK (wl,i) ==> |v| = |wl]
(ii) There is a dissection wl of El
such that v € BREAK(wl,i).
If E = LOOP(E1l) then
(i) For any dissection wl of El,
v € LOOP, (wl) ==> |v|=|wl]

=> |v|=|wl|-1

v € LOOPZ(WZ)
(ii) There is a dissection wl of El such that
v € LOOP (wl)
If E = CAT(E1,E2) then

(i) For any dissections wl, w2 of El1, E2 respec-

tively,
v € CAT, (wl,w2) ==> |v] = |wl|+|w2|
v € CAT, (wl,w2) ==> |v] = |wl]+|w2]|-1

(ii) There are dissections wl, w2 of El, E2
respectively such that v € CAT(wl,w2).

If E = IF(t,El) then

(1) For any dissection wl of El1,

v € IF, (t,wl) ==> |v]=lwl] + 1

il

v € IF,(t,wl) ==> |v]=]wl]
(ii) There is a dissection wl of El such that

v € IF(t,wl)




49

(d) If E = ELSE(t,El1,E2) then

(i) For any dissections wl, w2 of El, E2

respectively;

il
11

v € ELSE, (t,wl,w2) = |v]| |wi]+|w2]+1

v € ELSE, (t,wl,w2) ==> | v] [wi]+|w2]
(ii) There are dissections wl, w2 of El, E2
respectively such that v € ELSE(t,wl,w2).

Proof:

The proof is very simple in all cases. We illustrate the
general idea by proving (d). Suppose E = CAT(El,E2);
the conclusions of (d) (i) follow directly from the defin-
itions of CATl and CAT2 (Section 6). For (ii) there are

two cases:

Case 1. Every node sequence of v is contained

entirely either in El or in E2. Hence we can
write v = vl U v2 where the node-sequences of

vl are entirely from El and those of v2 entire-

>

ly from E2. Setting wl = LEl(Vl) and w2 =

LEZ(VZ) we see that (ii) follows.

Case 2. There is a labelled path p in v which

is the concatenation of labelled paths gl and
g2 such that the node-sequence of gl is entire-

ly in E1 and that of g2 entirely in E2. We can

><p>

therefore write v = vl U v2 U {p} where the

node-sequences of vl are entirely in El and



50

those of v2 entirely in E2.
We set wl = L (vl © [q1}) and

w2 = Lo, (v2 U {g2}), and now (ii) follows.

The next six lemmas express the character of a
dissection for a composite program graph in terms of the
characters of its component dissections (whose existence
is ensured by the previous lemma). We need some notation

first.

If B is any predicate, let B denote the Boolean negation

of B. For any T C I+, any dissection w and any

g € {z;l,DECR"l,DELal,DEL}l} define:
5(#'T1W19) = #(X,W) and
X € g(7)
S(£,T,w,9) = E f(X,w).
X € g(T)

Suppose, for Lemmas (5) through (10), that B is any ex-
pression, v is a dissection for E and T is an arbitrary

element of DOM(fV),




51

LEMMA (5) If E = EXIT(i,n) then

(a) #(T,v) =(1 if T = {0,i,1}

0 otherwise

(b) fv(T) =(1 ifT={0,i,1}
0 otherwise
Proof:

E has a unique labelled path and its signature is

{o,i,1}.

LEMMA (6) If E = BREAK (E1,i) for some expression E1 and
some 1i>0, let w be a dissection for El such that v €
BREAK (w,1) [such a w exists by Lemma (4) (b) 1. Then,

(a) #(T,v) = S(4,T,w,2]5)

(b) £,() = min{ |T|,S(£,T,w,27") }
Proot: |
(a) The T-paths of v are precisely the X-paths of w such

that 2, (X) = T
-1

(b) Let h(T) = 2z

(T) .

If 0 € T then #(T,v) = 0 and so fV(T) = 0.
By Lemma 2(a), h(T) = ¢ and so S(#,T,w,h) = 0 and
hence the given equality holds.

If 0 ¢ T then by Lemma 2(a), X € h(T) ==> |X| > |T]|.

so £, (T)

£(T,v) = min {|T|, #(T,v)} (by definition)

min {|T|, S(#,T,w,h)} (using part (a))



52

= min {|T|, S(£,T,w,h)} (by Lemma 3(b))

LEMMA (7) If E = LOOP(E1) for some expression E1l, let w
be a dissection for El1 such that v € LOOP(w) ([such a w
exists by Lemma (4) (c) ]. Then,

(1) If v € LOOPl(w) then

(a) #(T,v) = S(#,T,W,DECR—l

)
(b) £ (1) = min {|T], S(f,T,w,DECR 1)}
(ii) If v € LOOPZ(w) then (by def. of LOOPZ)
v = L (w-{pl,p2}) U {q} where L is the labelling
relation of the program graph of E, pl and p2
are respectively finish and start paths of w
and g is the labelled path "LE(pl).LE(pZ)";
let
h(T) = DECR™(T),
Bl be the predicate "sg(q) = T",
B2 be the predicate "sg(pl) € h(T)",
B3 be the predicate "sg(p2) € h(T)",
K2 =(1 if Bl
&0 otherwise
K3 = {1 if B2 or B3

0 otherwise

(a) 4%(T,v) = S(%#,T,w,h) + K2 - K3




53

Nt

(b) £ (T) =( 0 Aif (B1 /\ B2 /\ B3)

min {7, S(E

k3

PO

if
o B

rWrR)

—~

[} [

Proof:

(1) (a)

(b)

(ii) (a)

(BL /\ B2 /\ B3)

or (BI A\ B2 /\ B3)
min {|T|, S(f,T,w,h)+1}

if (81 A\ B2 A BE3)
min {|T|, S(£f,T,w,h)-1}

L if BI A B2 A B3)

The T-paths of v are exactly the X-paths of w such

that DECR(X) = T.

By LEMMA 2(b) |X| > |T| for all X in h(T).

f

J(T = £(T,v) = min {|T], $(T,v) ]

min {|T|, S(#,T,w,h)} (by part(a))

I

min {|T|, S(£,T,w,h)} (by Lemma (3)b)

Ignoring the labelled paths Lp (P1), Lg (p2) and g

for the moment, we can estimate the number of T-

paths of v by counting the number of X-paths of w

such that DECR(X) = T. Corrections may be neces-

sary to this estimate for two reasons:

-~ If q is a T-path of v then we need to add one
to this estimate; K2 does this.

-- If either Lp(pl) or Lg(p2) was included in
this estimate (both cannot be, since p2 is

the start-path) we need to subtract one from



54

this estimate; K3 does this.

(b) The three combinations:

(81 A B2 A B3), (BL A\ B2 A B3),
and (B1 A B2 /\ B3) are not accounted for; but
they are impossible as can be seen from:

B3 ==> teT (€ sg(p2))

B2 ==> 1 & T (! € sg(pl) by Remark (5))

Bl ==> 1 @&T (€ sg(q) iff T € sg(pl))

Clearly v cannot have a start-path (since
v € LOOP,(w)). Now, if (B1 A\ B2 /\ B3) then t €
T and so #(T,v) = 0. Using this fact, the ex-
pression for #(T,v) of part (a) and the defini-
tions of K2 and K3 we get:
#$(T,v) =¢ 0 if (BI A B2 A\ B3)
min {|T|, s(#,T,w,h)} if
(81 A\ B2 /A B3)
4 or (BI A B2 A B3)
min {|T|, S(#,T,w,h)+1}
if (B1 A\ B2 \\ B3)
\fdn {|T], s(#,T,w,h)-1}
if (BL /\ B2 A\ B3)

By Lemma 2(b), X € DECR™I(T) ==> |X| > |T|. So
the given expressions for fV(T) follow from Lemma

3(b) and the expressions for #(T,v) derived above




55

in all cases except the last, namely,

(BL_A_B2 A B3).

h

Now, B2 ==>"syg(pl)y € h({D)

it

==> sg(pl) = (T+1) U {0} (Lemma 2(b)).
Hence f£((T+1l) U {0}, w) > 1. —————————m- (*)
So fV(T) = £(T,v)
= min {|T|, #(T,v)} (by definition)
= min {|T+1|, S(4,T,w,h)-1} (derived above)
= min {|T+1], -1 + #$((T+1) © {0}, w))
+ #(T+1,w)} (Lemma 2 (b))
= min {|T+1], -1 + £((T+1) © {0}, w)
+ £(T+1,w)}

( since (*) holds, Lemma 3(cC) applies)

= min {|T+1], -1 + S(£,T,w,h)} (Lemma 2(b))

LEMMA (8) If E = CAT(E1l,E2) for some expressions El1 and
E2, let wl and w2 be dissections for El and E2 respec—
tively such that v € CAT(wl,w2) [such wl and w2 exist by
Lemma 3(d)].

Let h(T) = DELBl(T) and h” (T) = DEL%l(T).

(i) If v € CAT, (wl,w2) then
(a) #(T,v) = S(#,T,wl,h) + S(%,T,w2,h")
(b) £ (T) = min { |T|, s(#,T,wl,h) + S(#,T,w2,h")

(ii) If v € CAT,(wl,w2) then, (by definition of CAT,)



56

v = Ly ((wi-{p1}h U (w2-{p2})) U {q} where
pl is a finish path of wl, p2 is the start path
of w2 and g is the path "LE(pl).LE(pZ)".
Let Bl be the predicate "sg(gq) = T"
B2 be the predicate "sg(pl) € h(T)"
B3 be the predicate "sg(p2) € h™ (T)"

Kl =1 if Bl
0 otherwise

K2 =1 1if B2
{0 otherwise
K3 =(1 1if B3
{0 otherwise
(a) #(T,v) = S(#,T,wl,h) + S(#,T,w2,h”)
+ K1 - K2 - K3
(b) £ (T) =(min {|T|, s(£,T,wl,h) + £(T,w2)} if

(81 A\ B2 A B3) or (BI A\ B2 A B3)

min {|T|, S(£,T,wl,h) + S(£,T,w2,h")} if
(81 A B2 A B3) or (Bl /A B2 /\ B3)
or (81 A\ B2 A B3)

min {|T|,S(f,T,wl,h) + S(£,T,w2,h") + 1}
if (B1 A\ B2 /\ B3)

min {|T|,S(f,T,wl,h) + S(f,T,w2,h") - 1}

\ if (81 A B2 A B3)

Proof:

(i) (a) The T-paths of v are exactly




57

the X-paths of wl such that DELO(X) = T and
the X-paths of w2 such that DELT(X) = T,
(b}—By LEMMA 2(c), X C h(T) B h™(T) ==> |X| > |T|.

(ii) (a)

(b)

(T) = £(T,v) = min{|T|,#(T,v)} (def. of f)

min{ |T|, S(#,T,wl,h)+S(#,T,w2,h") }
(by part (a))

min{ |T|, S(£,T,wl,h)+sS(f,T,w2,h") }

[}

(by Lemma 3(b))

We can count the T-paths of v as in (i) (a) above.
This count could be inaccurate for three reasons:
-- g has not been counted but should be;
K1 corrects for this.
-- pl has been counted but should not be;
K2 corrects for this.
~-- p2 has been counted but should not be;
K3 corrects for this.
The only combination of truth values that is not
accounted for is (BI /\ B2 /\ B3) but this cannot
occur, since,
B2 ==> sg(pl) € h(T) ==> sg(pl) - {0} =T
B3 ==> sg(p2) € h”"(T) ==> sg(p2) - {1} =T

Now (B2 S\ B3) ==> 1 ¢ T ==> } € sg(pl).

So, sg (q) sg (L

g (P1) Ly (P2))
Fa -
= (Sg(pl) U sg(p2)")



58

durT
= T and so Bl holds.
Using the expression for #(T,v) derived in (a),
the definitions of K1, K2 and K3, and the fact
that B2 ==> sg(pl) = T U {0} ==> #(T U {0}, w) =
1, we get the following expressions for #(T,v):
#(T,v) =(S(#,T,wl,h) + #(T,w2) if
(B1 /\ B2 A\ B}
or (BI A B2 /\ B3)
S(%#,T,wl,h) + S(#,T,w2,h”) if
(B1 A\ B2 A\ B3)
or (BL /\ B2 /\ B3)

——

or (BI A B2 A B3)
S(#,T,wl,h) + S(#,T,w2,h") + 1 if

(81 A\ B2 A B3)
S(4,T,wl,h) + S(#,T,w2,h”") - 1 1if

\ (B1 N\ B2 A B3)

Now from Lemma 2(c), X € h(T) O h"(T) ==> |X| >
|T| and so the given expressions for £,(T) follow
from Lemma 3(b) in all cases except the last,
viz. (81 S B2 S\ B3); in this case, B2 ==>
sg(pl) - {0} =T and so 0 € T and so £(T U {0},

wl) > 1 (since sqg(pl) = T U {0}). Furthermore,




we can assume that | € T since

ter

59

L Y 1 o= | cry m el
==>—8(4; T, wi; h)y—=1—and—S5t4+T5w27h>)

=0
U

since (B2 /\ BI) holds.

==> S(f,T,wl,h) =1 and S(f,T,w2,h")

il

==> fV(T) min {‘T‘r #(T!V)}

min {|T|, S(#,T,wl,h)

+ S(%,T,w2,h”") -

il

min {|T|, 0}

min {|T|, S(£,T,wl,h)

+ Ss(f,T,w2,h") -

We can now apply Lemma 3(c) to get the

since 0 g T, 1 € T, and £(T U {0}, wl) > 1.

LEMMA (9) If E = IF(t,El) for some expression El,

=0

1}

1}
result
let w

be a dissection for El such that v € IF(t,w) [such a w

exists by LEMMA 4(e)]. Let h(T) = DEL; (T) and gl denote
)

the single-node labelled path ({t}, {0,1}) in E.
(1) If v € IF,(t,w) then let K1 =(1 if T = 1,31
{0 otherwise,
(a) #(T,v) = S(%,T,w,h) + K1
(b) £ () = min {|T]|, S(£,T,w,h) + K1}
(ii) If v € IF,(t,w) then (by definition of IF,)
v = Lp(w-{p1}) © {ql.Lg(p1)} where

pl is the start-path of w.



60

Let g denote the path "ql.LE(pl)" and let
h(T) = DEL%l(T)
Bl be the predicate "sg(g) = T"
B2 be the predicate "sg(pl) € h(T)"
K2 = (1 if Bl
{O otherwise
1 if B2
{0 otherwise

(a) #(T,v) = S(%,T,w,h) + K2 - K3

K3

(b) £ (7) =(min {|T], S(#,T,w,h)} if (BI A\ B2)
min {|T|, S(#,T,w,h) + 1} if (B1 /\ B2)
min {|T|, £(T,w)} if (BI /\ B2)

(i) (a) We can estimate the number of T-paths of v by
counting the number of X-paths of w such that
DELT(X)=T. This estimate could be inaccurate if
gl is also a T-path of v; Kl corrects for this.

(b) By Lemma 2(c), X € h(T) ==> |X| > |T| and so
Lemma 3(b) can be applied as in the proofs of the
preceding Lemmas.

(ii) (a) We can estimate the number of T-paths of v by

counting the X-paths of w such that DELT(X) = T,
This estimate may be inaccurate for two reasons:
-- g has not been counted but should be;

K2 corrects for this,




61

~- pl has been counted but should not be;

K3 corrects for this.

- (b} The-combination of truth wvalues for Bl and B2

that is not accounted for is (B1 /\ B2), but this
case is impossible since,

Bl

=> sg(gq) =T ==> terT
B2 ==> sg(pl) € h(T) ==> tgrT
We note also that B2 ==> sg(pl) = T U {1}
==> S(%,T,w,h) = #(T,w) + 1 (by Lemma 2(c)).
Using this fact, the definitions of S(#,T,w,h),
K2 and K3, the expression for #(T,v) derived in
part (a), and Lemma 3(b) we can get the given ex-

pressions for fV(T).

LEMMA (10) If E = ELSE(t,El,E2) for some expressions E1
and E2, let wl and w2 be dissections for El and E2
respectively [such wl and w2 exist by Lemma 4(f)]. Let
gl denote the single-node labelled path (t,{1}) in E and
let h(T) = DEL¥1(T).
(i) If v € ELSE, (t,wl,w2) then let Kl =(1 if T={1}
{0 otherwise
(a) #(T,v) = S(¥,T,wl,h) + S(%,T,w2,h) + K1
(b) £_(T) = min {|T|, S(#,T,wl,h) + S(#,T,w2,h) + K1}

(ii) If v € ELSEz(t,wl,WZ) then by definition of ELSEZ,



62

either
v = LE((w1~{pl}) U w2) U {ql.LE(pl)} where
pl is the start—-path of wl.
or
v = Ly(wl U (w2-{p2}H)) © {ql.LE(pZ)} where
p2 is the start-path of w2.
We will consider only the former alternative; the

latter follows by symmetry. Let g denote the path
“ql.LE(pl)“ and let
Bl be the predicate "sg(gq) = T"
B2 be the predicate "sg(pl) € h(T)"
K2 = (1 if Bl
{0 otherwise
K3 = (1 if B2
{0 otherwise
(a) #(T,v) = 8S(%,T,wl,h) + S(#,T,w2,h) + K2 - K3
(b) £ (T) =( min {|T|, s(£,7,wl,h) + S(f,T,w2,h)} if
(BI A\ B2)
{ min {|T|, S(£,T,wl,h)+S(£,T,w2,h)+1 }

if (B1L /\ B2)

min {|T|, S(£,T,w2,h) + £(T,wl)} if
(B1 /\ B2)

Proof:

(i) (a) We can estimate the number of T-paths of v by

counting the X-paths of wl and w2 such that




63

DELT(X) = T, This estimate could be inaccurate if

gl is a T-path; K1l corrects for this.

- th)-ByLemma2{c), X € h{T) ==> %] > lv] and so

Lemma 3(b) can be applied as in the proofs of the
previous Lemmas.

(ii) (a) We can estimate the number of T-paths of v by
counting the X-paths of wl and w2 such that
DELT(X) = T, This estimate may be inaccurate for
two reasons:

-- g has not been counted and should be;
K2 corrects for this,
-- pl has been counted but should not be;
K3 corrects for this,
(b) The truth value combination that is not accounted
for is (B1 /\ B2), but this is impossible since,
BL ==> sg(q) =T ==> terT

B2 => sg(pl) € h(T) ==> T grT

We also note that

B2 ==> sg(pl) = T U {1}
==> $(TT,wl) = 1
==> S(#rTrerh) = #$(T,wl) + 1

(by Lemma 2(c)).
Using this fact, the result of part (a), the de-
finitions of K2 and K3, and Lemma 3(b) we can get

the given expressions for fv(T)_



64

The following Lemma is central to the proof of Theorem 1

and is proved using the previous six Lemmas (5-10).

LEMMA (11) Suppose E, El and E2 are expressions, vl

wl

for

(a)

(b)

(c)

(d)

(e)

and

are dissections for El, and v2 and w2 are dissections

E2.

If E = BREAK(El,i) and vl . wl then

Ww € BREAK(wl,i) ==> v . w for some v € BREAK(vl,i)
If E = LOOP(E1l) and vl . wl then

w e LOOPl(wl) ==> ¢y . w for some v € LOOPl(vl)

w € LOOPz(wl) => v . w for some v € LOOPz(vl)
If E = CAT(EL,E2), vl . wl and v2 . w2, then

w e CATl(wl,w2)

=> v . w for some v € CATl(vl,VZ)

]

w € CATZ(wl,wz) => v . w for some v € CATz(vl,VZ)
If E = IF(t,El) and vl . wl, then
w € IFl(t,wl) ==> v . w for some v € IFl(t,vl)
w e IFz(t,wl) ==> v . w for some v € IFz(t,vl)
If E = ELSE(E1,E2), vl . wl and v2 . w2, then
w e ELSEl(t,wl,WZ) ==
v . w for some v € ELSEl(t,vl,vz)
w € ELSEz(t,wl,WZ) ==>

Vv . w for some v € ELSEz(t,vl,vz)

Proof:

We illustrate the idea of the proof by proving (b)

(c)s

(b)

the other cases are similar.

Suppose E = LOOP(El), vl . wl and w € LOOP(wl).

and




65

Let h = DECR™ L.

Case 1 w € LOOP,; (wl). In this case, 1let v be the

unique element of LOOP. (vl1).

(c)

For any non-void T C I+, we have

£(T,v) min {|T|, S(£f,T,vl,h)} by Lemma 7(i) (b)

min {|T|, S(£f,T,wl,h)} since vl . wl

f(T,w) by Lemma 7 (i) (b).

Case 2 w € LOOPz(wl). In this case, w must be of the

form w Lg (wl-{pl,p2}) U {q} where pl is a finish

path of wl, p2 is the start path of wl and g =
Let v = LE(vl—{pl’, p2°}) © {q°} where p1” is a fin-
ish path of vl such that sg(pl”) = sg(pl), p2” is the
start path of vl (and sg(p2”) = sg(p2)) and g =
Le(p17) .Lp(p27). It 1is possible to choose such pl”
and p2” since vl . wl. It is easy to see that v €
LOOP, (v1l), sg(q) = sg(q”), and that s(f,T,vl,h) =
S(f,T,wl,h). It now follows directly from Lemma

7(ii) (b) that f(T,v) = £(T,w) and so v . w,

Suppose E = CAT(El,E2), vl . wl, and v2 ~ w2.

Let h = DELal and h” = DEL%l.

Case 1 w € CAT, (wl,w2). 1In this case, let v be the

unique element of CATl(vl,VZ). Now, for any non-void

T C I+, we have,



66

il

£(T,v) = min{ |T|, S(£,T,v1,h) + S(£f,T,v2,h")}

by Lemma 8 (1) (b)

min{ |T|, S(f,T,wl,h) + S(f,t,w2,h")}

since vl .~ wl and v2 . w2

f(T,w) by Lemma 8(i) (b).

Case 2 w € CATz(wl,WZ). In this case, w must be of

the form w = L ((wl - {p1h v (w2 - {p2h) U {q}
where pl is a finish path of wl, p2 is the start path
of w2, and g = LE(pl).LE(pZ).

Let v = Lo((vl - {p1”h © (v2 - {p2"h) © {q"} where

-

pl is a finish path of vl such that sg(pl)

sg(pl”), p2” is the start path of v2 (and sg(p2”)
sg(p2)) and q° = LE(pl’).LE(pZ’). It is easy to see
that v € CATz(vl,vz), sg(q) = sg(q”), S(f,T,vl,h) =
S(f,T,wl,h) and that S(f,T,v2,h") = S(£f,T,w2,h")
since vl . wl and v2 -~ w2. It now follows directly
from Lemma 8(ii)(b) that f£(T,v) = £(T,w) and so v .

w.

We now develop some results necessary for the proof of
Theorem 2. For any non-void T € I+, let
max(T) = (0 if T = {1}
{the largest integer in T otherwise.

For any r € I, let

o(r) = {T ¢ 1 | max(T) < r and |T7| < 2}.




67

LEMMA (12) For any r € I, |Q(r)| = r2+3r+3

Proof:

i ol bi o] e sl hat

o) | = ZI(IIl)’f (”51)] +1

LEMMA (13) Let E be any expression of rank r. Then

| {fw | w is a dissection of E} | = 30(r2).
Proof:
From Lemma 1l(b) it follows that

£ (T) #0 ==> max(T) <r and |7 | < 2.

< 2 for all T and w, it follows that the

Since 0 < fw(T)
maximum number of character functions possible is 3|Q(r)}

and now Lemma 12 yields the desired result.

2. PROOFS OF THEOREMS 1 AND 2

The next two Lemmas refer to the algorithm of Chapter 2.

LEMMA (14) After the set Y has been created from X at the

end of DISSECT, the following property holds:
veX==>w.vand |w| < |v| for some w € Y.

Let C be the equivalence class of v € X. Then some w =

MIN(C) must have been chosen for inclusion in Y; this w

has the required properties.



68

LEMMA (15) If Y is the output of DISSECT and r 1is the

rank of the input expression, then

(a) Distinct elements of Y have distinct characters.

(b) |¥| = 0%

(a) To form Y we choose exactly one element from each
equivalence class of X.

(b) This follows from (a) and Lemma 13.

Proof of Theorem 1:

The statement of the Theorem is a simple consequence of
the following assertion:

"If Y is the output of DISSECT(E,Y) and w is a dissec-
tion for E, then v . w and |v| < |w| for some v € Y."
We now prove this assertion. Suppose Y is the output of

DISSECT (E,Y) and w is a dissection for E. Then,

either

E = EXIT(i,n) in which case w € X and the result fol-
lows from Lemma 14.
or
E = OP(i,t,E1,E2) for some expressions El, E2 and some
OP € {BREAK, LOOP, IF, ELSE, CAT}.

In this case, by LEMMA 4, there are dissections wl and

w2 for El and E2 respectively such that w €




69

OP(i,t,wl,w2). Assuming inductively that the assertion

holds for the smaller expressions E1 and E2 we see that

there are dissections vl and v2 for El and E2 respec-—

tively such that:

vl . wl, vl € Y1, |v1]|

iA

|wif,

v2 . w2, v2 € Y2, |v2|

IA

|w2].
Using Lemmas 4 and 11 we see that

|v'| < |w| and v* . w for some v° €& OP(i,t,vl,v2).
From the way X was created we see that v* € X. The

conclusion of the assertion now follows from Lemma 14.

Proof of Theorem 2.

The cost of a single call to DISSECT is (exclusive of re-
cursion):

Cost to compute X + Cost to compute Y from X.
Since |Y1| = |Y2| = 3O(r2) from Lemma 15, it follows that
the cost to compute X (from Y1 and Y2) is:

3O(rz) 3O(rz) . O(n) = 3O(r2) n
Therefore, the outer loop (line (1) of Create Y) in the
procedure Create Y is executed 3O(r2) n times; the inner

2
0(r™) times (Lemma 15(b),

loop (line (2)) is executed 3
once for each element of Y) and each iteration involves
one call to the function Compare £ (line (3)). Each such
call costs O(rz) by Lemma 12. Hence the cost of comput-

ing ¥ from X is the product of these three gquantities



70

2
which 1is still 3O(r ) n. sSince there can be at most n
calls to DISSECT, the total running-time of the algorithm

is as asserted by the theorem.




71

CHAPTER 4

THE POWER OF MULTILEVEL EXITS

J

OVERVIEW

In this chapter we show that the class of flowgraphs
that can be produced using the SPG-operations is identi-
cal to the class of reducible flowgraphs. We show furth-
er, that (i+l)-level exits are strictly more powerful
than i-level exits in the following sense: There are di-
graphs for which no program representation using at most
j-level exits is possible but a program representation

exists if (i+l)-level exits are permitted.

2. THE CLASS OF STRUCTURED FLOW GRAPHS

A flowgraph has often been defined in the 1literature to
be a triple (N,A,s) where (N,A) is a digraph and s € N is

a distinguished node called the start node with the pro-

perty that every node in N is reachable from s. An SPG,
as we have defined it, may contain nodes that are not
reachable from the start node; consider, for example,
the SPG of the expression

CAT(LOOP(CAT(BREAK(EXIT(O,A),l),EXIT(O,B))),EXIT(O,C))



72

The corresponding program is:
1.,OOP
A;
EXIT 1;
B
ENDLOOP;
C
The node B is not reachable from the start node A. We
can, however, obtain from an SPG G = (N,A,L) a flowgraph
G = (N°,A",s) as follows:
(1) s = s(G)
(ii) N” = N - {all nodes not reachable from s}
(iii) A" = An (N X N7)

G” is called a Structured Flow Graph (SFG).

We now review a few characterizations of Flowgraph
Reducibility. If h is a node of a flowgraph F = (N,A,s),

we define the interval I(h) with header h [7] as the set

of nodes constructed as follows:
(1) h is in I (h).
(2) If ne N - {s} is not in I(h) but all the
predecessors of n are in I(h), add n to I(h).
(3) Repeat (2) until I(h) is stable.
Every flowgraph F can be uniquely partitioned into dis-
joint intervals [7,8]. From such a partition we can

create another flowgraph I(F) called the derived flow-

graph of F by collapsing each interval into a single

node. The sequence: F=IO(F), Il(F), coor Im(F) where




73

Im+l(F) = Im(F) is called the derived sequence of F and

1™(F) is called the limit graph of F. The flowgraph F is

_  gaid _to be reducible iff its limit graph has exactly one

node. Suppose G = (N,A) is a digraph and C = (aO, ay

ooy an_l) is a sequence of nodes of G. Denote addition

mod n by ®. We say that C is a

path iff 0 < i < n-1 ==> (- } is an arc of G.

a.
1+1

cycle iff 0 < i < n == ) is an arc of G.

(ajraig7
A node “a” of a flowgraph F = (N,A,s) is said to dominate
node ’b” iff every path from s to “b” contains “a”. A

simple cycle [simple path] is a cycle [path] all of whose

nodes are distinct. A node n in a subgraph C of a flow-

graph F = (N,A,s) is called an entry node of C iff there

is a path p in F from s to n such that pa C = {n}. We
call n an open node of C iff (n=s) or ( (x,n) € A for
some node x not in C). Every entry node of C must be an
open node of C but not necessarily conversely. C 1is

called multi-entry iff it has more than one entry node.

A subgraph H of a digraph G is called strongly connected

iff for every pair of nodes a,b € H, there is a path in H

from a to b. H is called a strongly connected component

(sCC) of G iff it is strongly connected and is not prop-
erly contained in any other strongly connected subgraph
of G. Any digraph G can be uniquely partitioned into

strongly connected components. An SCC is called trivial



74

iff it has no arcs and has exactly one node. A digraph G

is said to have the unique-open-node property iff every

SCC of G has a unique open node. We now define opera-
tions T1-T4 on any digraph G; T2 is applicable only if G
is a flowgraph.
T1:

For each node n of G, remove the arc (n,n) if it ex-

ists in G [9].

s

For each node n of G, if n is not the start node of G
and (m,n) is the unique incoming arc of n, then
create new arcs out of m such that every successor of

n is a successor of m., Then remove n [9].




75

T3:
For each SCC H of G, if H has a unique open node n
then delete all in-arcs of n [10]

T4:

Same as T3, but only those in-arcs of n that ori-

ginate within H are deleted.

If G is a digraph, let T3i(G) denote the digraph obtained
from G by i applications of T3; T4i(G) is defined simi-
larly. Let k = min {i | T4i(G) = T4i+l(G)}. The digraph
T4k(G) is called the core of G. The notion of Depth

First Search (DFS) may be found in [11,12]. Every DFS of

a digraph determines a set of back arcs, whose deletion
renders the digraph acyclic.

A flowgraph (N,A,s) is said to contain a forbidden
subgraph iff it has a subgraph of the form (a) or (b)
below where s, nl, n2, and n3 are all distinct nodes and
the dotted lines are disjoint paths (i.e. any pair of

paths have no nodes in common except possibly the end-

points).
(a) g:? (b) (;)
\ ]
/, \ W
\
/N ™
o= A ’ N

. -~ V4 N
@ @ Kloen N
S O
L R s



76

THEOREM 3 For a flowgraph F = (N,A,s), the following are

equivalent:

(a)
(b)

(c)

(d)

(e)
(£)

(9)

(h)

(1)

(3

(k)

(REDUCIBLE) [7] F is reducible.
(COLLAPSIBLE) [9] Repeated applications of T1 and T2
eventually yield a single node.

(ARRANGEABLE) [13] There is a total order “<” of N

such that s=a a a, is a simple path in F ==>

Or l' ° o o}

a. < a for 0 < i < n-1.

i i+l
(SINGLE-ENTRY) [13] Every strongly connected subgraph
of F has a unique entry node.

Every simple cycle of F has a unique entry node.

(WELL-FORMED) [l10] For all i>o, TBi(F) has the
unique-open-node property.

For all i > 0, T4i(F) has the unique-open-node
property.

F has an acyclic core.

F has a DFS starting at s such that the terminal node
of every back arc dominates the initial node.

(UNIQUE DAG) [9] Any two DFS”s starting at s yield

the same set of back arcs.

F does not contain a forbidden subgraph.

Some preliminary results are necessary for the proof of

this theorem.




REMARK

(a)

77

(10) For an arbitrary digraph G, and i > 0

If H is an SCC of T41(G) [respectively T31(G)] and

_— + ie a unique open—node of H, then {x} is a trivial

(b)

(c)

(d)

(e)

LEMMA
trivia
node.
Proof:
Since
Assume

trivia

scc of Taitl(g) [r3t(@).
Every scC of Tai*l(e) [T3'*1(G)] is contained in
some scc of Tal(e) rrat(@ 1.

If H is an SCC of T4i(G) [T3i(G)] with no open
nodes then, for all j > i, H is an SCC of T4j(G)
[T3j(G)] with no open nodes,.

If H is an SCC of T4i(G) [TBi(G)] with two or

more open nodes then, for all j > i, H is an SCC of
T4j(G) [T3j(G)] with two or more open nodes.

H is an SCC of T4i(G) [TBi(G)] and

H is not an scc of Taltl(ey (r3i*tl(ey]  iff
H is a non-trivial SCC of T4i(G) [T3i(G)] and

H has a unigque open node.

(16) For any flowgraph F and any i > 0, every non-

1 sCC of T41(F) [T31(F)] has at least one open

149 (r) = 730(F) = F the statement is true for i=0.

it holds for i < k for some k and let H be a non-

k+1

1 scc of Tak*l(ry [m3ktl(m)7.



78

Case 1

If H is a scC of T4K(F) [T3%(F)1, by the induction hy-
pothesis it has at 1least one open node in T4k(F)
[T3k(F)]. Now, H cannot have a unique open node in
T4k(F) [T3k(F)] by Remark (10e). So H has two or more
open nodes in T4k(F) [T3k(F)]. By Remark (10d) H has

k+1

two or more open nodes in T4 (F) [T3k+l(F)].

Case 2

If H is not an SCC of T4k(F) [T3k(F)] then, by Remark
(10b) H CJ, H# J for some SCC J of T4%(F) [T3%(F)].
Also J must be non-trivial since H is so. Now,
-- J must have a unique open node, say X, in T4k(F)
(73X (F)1 by Remark (10e).
-- H cannot contain x, by Remark (10a).
—- Since J is an SCC, every element of H is reachable
in J from x.
-- Hence H must have at least one open node in

k+1 3k

T4 (F) [T +l(F)], since T4 [T3] affects only

in-arcs of x.

LEMMA (17) Suppose F is a flowgraph and i > 0. If H is a
non-trivial SCC of T4k(F) [T3k(F)] and x is a unique open
node of H then, H is a non-trivial SCC of T3k(F) [T4k(F)]

and x is a unique open node of H.




79

Proof:

We proceed by induction. The result is trivial for i = 0

since Téo(F) = T30(F) =F,—Agsume—theresult-holds for
. . k+
all i < k., Let H be a non-trivial SCC of T4 1(F)

(T3

k+l(F)] and let x be a unique open node of H.

H cannot be an SCC of T4k(F) [T3k(F)]

(Remarks 10(c), 10(d) and 10(e)).

So, HC J, H # J for some non-trivial SCC J of

ra¥(F) [T3%(F)] (Remark 10(b)).

J has a unique open node, say y, in T4k(F)

(73X (F)] (Remark 10(e)).

by the induction hypothesis J is a non-trivial SCC of
T3k(F) [T4k(F)] and y is a unique open node

of J in T3%(F) T4k (M 1.

H cannot contain y (Remark 10(a)).

x is a unique open node of H in J since it is a unique
open node of H in T4k+l(F) [T3k+l(F)] and T4 does

not affect arcs to H from outside.

Hence x is a unique open node of H in

3%+l (p) [raktl(m .

H is a non-trivial scc of T3K*1(m [Tak*1(r))

since T3 does not affect arcs of H and H is a maximal

strongly connected subgraph of J.



80

LEMMA (18) If F is a flowgraph and i > 0 then T41(F) is a
flowgraph with the same start node as F.

Proof:

Since T4 only removes the in-arcs of the unique open node
of an SCC that originate inside the SCC, reachability
from the start node of F is unaffected.

Proof 9£ Theorem 3

(a) <==> (b) <==> (i) <==> (j) <==> (k) is shown in [9].
(a) <==> (c) <==> (d) is shown in [13].

(e) <==> (k) is easy to see.

(f) is mentioned in [10] without any mention of the no-
tion of reducibility.

We will show that (f), (h) and (k) are all equivalent to
(9).

(g) ==> (h)

Suppose the core of F has a cycle C. Let H be the SCC of
the core of F which contains C. H must be non-trivial
since there is at least one arc in C. By Lemma (16), H
has at least one open node. By definition of the core,
it cannnot have a unique open node. Hence it has two or
more open nodes and so (g) fails.

(h) ==> (9)

Suppose T41(F) fails to have the unique-open-node proper-

ty. Let H be an SCC of T4'(F) with two open nodes. By

Remark 10(d), H is a non-trivial SCC of the core of F and




81

so (h) fails.

(9) <==> (f)

bis £oll Sirectly £ :

=
N

(k) ==> (9)

Suppose for some i > 0, T4i(F) fails to have the unique-

open-node property. Let H be an SCC of T4i(F) with two

open nodes a,b, a # b. Let (a“,a) and (b”,b) be arcs of
T4i(F) with a“, b” € H.

S:l By Lemma (18), there are paths pl and

/ N p2 from s to a” and b” respectively.

N No element of H can be in pl or p2

H (otherwise we would have either a” €

i Cgi—“.,@,—--@ Hor b> € H). Since H 1is strongly

connected, there are paths gl and g2

from a to b and b to a respectively. Let c be the first
node of gl other than a that occurs in g2. Now F has a

forbidden subgraph: g:l

(9) ==> (k)

Suppose F has a forbidden digraph: S



82

Assume that (g) holds. For all i > ¢, T4i(F) must con-

tain all the arcs of pl, p2 and p3; this can be seen as

follows:
Suppose (x,y) is the first arc of "pl.p2" that is
deleted and this happens when T4 is applied to
T4j(F). This means that y is the unique open node of
some SCC of H of T4j(F) which also contains x. Since
there is a path from s to x in T4j(F) which avoids vy
(viz. an initial segment of pl.p2), it follows that H
has an open node other than y. This is a contradic-
tion of the assumption that (g) holds. A similar ar-
gument may be used for tha path "pl.p3" .

Consider the first time an element of Ppc O Py, becomes

an open node of an SCC H of some T4i(F) (if no element

ever does, the cycle " " is in the core of F and so

Ppe-Pep
(h), and hence (g), are violated).

Now H cannot contain any element of pl (otherwise an
element of pl would be another open node of H). Let a“
and b” be the first elements respectively in paths pl and
p3 which are in H. They must both be open nodes of H and

so (g) is violated. This completes the proof of Theorem

3.

We will now show that every structured flowgraph is

reducible.




83

THEOREM 4 Every SFG is an RFG .

Proof:

LetMESC—stand—for—"Multi-entry Simple Cycle." We will

show that no SPG has a MESC. The result then follows
from Theorem 3(e). We proceed by induction on the size
of the expression. Clearly, if we have an expression of
size 1, it cannot have a MESC since only one node exists
in the flowgraph. Assume that the program éraphs of all
expressions of size at most n have no MESCs. Let E be an
expression of size n+l. We will show that the program
graph of E has no MESCs. There are five cases to consid-
er, one per SPG-operation.

Case 1

Suppose E = BREAK(El,i) for some expression E1 and some

i

v

1. By the induction hypothesis, El has no MESCs
since it is a smaller expression than E. Since E has
the same nodes, arcs and start node as El, it follows
that E has no MESCs either.

Case 2

Suppose E = LOOP (El) for some expression EI1,. As be-
fore, E1 has no MESCs. Hence, any MESC of E must use a
newly created arc of the form (x, s(BE)). But by the

definition of an entry node, any subgraph containing



84

the start node has a unique entry node.

Case 3

Suppose E = CAT(E1l,E2) for some expressions El and E2.
As before, neither El nor E2 can have any MESCs. Any
simple cycle of E would have to be contained entirely
in E1 or entirely in E2. If E had a MESC, it is easy
to see that it must either be a MESC of El or a MESC of
E2 since all paths from the start node of E to any node
of E2 must pass through s(E2).
Case 4

Suppose E = IF(t,El) for some expression El and some
node t. As before E1 cannot have any MESCs. Since
s (El) dominates all nodes of El in E, we see that any
MESC of E must also be a MESC of El.

Case 5

Suppose E = ELSE(T,El1,E2) for some expressions El1 and
E2 and some node t. As in the previous cases it is
easy to show that any MESC of E must be either a MESC
of E1 or a MESC of E2.

This completes the proof of Theorem 4.

We will now show that every RFG is an SFG. An algo-
rithm for producing a structured program (using infinite
loops with multilevel exits and IF-THEN-ELSE statements)

from a well-formed flowchart is presented by Kasami et.




85

al. in [10]. Their model of a flowchart, however, is

different from ours since they associate primitive ac-

tions—with—arcs—rather than nodes. —So,rather than modi=

fy their algorithm to accomodate our model, we present an
alternative algorithm based on the concepts of [14]. Our
algorithm takes any RFG and produces a program for it us-
ing loops with multilevel conditional and unconditional

exits. We first review a few definitions from [14].

Suppose F = (N,A,s) is a flowgraph and the nodes of
F are arranged in an arbitrary but fixed linear order:
a;, a5, ... a,. For i <3, let [ay, ajl = { ay | i <k <

j}. Any arc (a;

ir aj) where i < j is called a forward

arc; any path that uses only forward arcs is called a

forward path. An arc (ai, aj) where i > j is called a

reverse arc. For i < k, [a;, a.l is called a primitive

formal loop iff

(1) (ak, a;) is an arc of F and
(ii) there is no arc (am, aj) such that
i<3j<k<m.

The following figure illustrates this definition.



a; a;
. These nodes form a .
. primitive formal loop .
. iff there is no arc aj
. like this .
ay a
. a
m

The set of nodes lay,, a.l is called a formal loop iff

(a) it is a primitive formal loop or

(b) there are indices i and j such that
(1) [ai, ak] is a formal loop and
(ii) (aj, ah) is an arc of F and
(iii) h < i <9 <k

The following figure illustrates this definition.

86




87

h h
21 aj
. I1f these nodes are a .
. formal loop, then so .
a. r are thes a.

j ¢ j

A maximal formal loop is a formal loop that is not

properly contained in any other formal loop. It is easy

to see that if (ai, aj) is a reverse arc then [a ai] is

j!
contained in some maximal formal loop and that any two
maximal formal loops are disjoint.

A linear order is called a straight order iff

(i) Every formal loop is strongly connected and

(ii) There is a forward path from the start node of F



88

to every other node, and
(iii) For every reverse arc (ai, aj), there is a for-

ward path from aj to every element of [a ai].

jl
It is possible to show, though we do not do so here, that
(iii) 1is redundant for RFGs. The following example il-

lustrates the concept of a straight order.

EXAMPLE (4) For the flowgraph (a) below, (b) 1is a

straight order but (c) is not since there is no path from

a2 to al in [al, a5].

(a) (b) (c)

al al al

/\ l |

a2 a3 a2 a2
/" \

ad as a3 a3

l !

ad ab

ab a4

Given a straight order for an RFG we see that if [ai, aj]
is a formal loop then, by Theorem 3(d) and properties (i)
and (ii) of a straight order, a; must be the unigque entry
node of that formal loop. A two-phase algorithm for pro-

ducing a straight order for any flowgraph appears

in [14]. We are now ready to present our algorithm.



89

ALGORITHM STRUCTURE

INPUT An RFG G.

unconditional (labelled) multilevel exits.

METHOD
Step 1 Using the algorithm of [14] , output the nodes of

G in straight order:

a
n

Step 2 Replace each node a; by the appropriate statements
given below: (<a;> denotes the simple statement or
predicate that corresponds to the node a;; Fj and ILj
are used to label LOOPs.)
1f a; has no successors, replace it by <a;>.
If a; has exactly one successor, aj, then

If j<i (reverse arc) then replace it by: <a;>;

EXIT ILj

If j>i (forward arc) then replace it by: <a;>;

EXIT Fj



if a; has exactly two successors aj, and Ay then

If (j>i) and (k>i) (both forward arcs), replace
IF <ai> THEN EXIT Fk ENDIF;
{EXIT Fij
If (j<i) and (k<i) (both reverse arcs), replace
IF <ai> THEN EXIT ILk ENDIF;
{EXIT ILj
If (j<i) and (k>i) (one forward and one reverse
replace a; by:
IF <ai> THEN EXIT Fk ENDIF;
{EXIT 1L
Denote by CODE(ai) the statements that replaced
this step.
Step 3 We now create the reverse arcs.
For each maximal formal loop [ai, aj] do
For m = i to j do
If a, has an incoming reverse arc then
Write { LOOP just before CODE(a_ ) and
{ILm: LOOPl

{ ENDLOOP ILm} just after CODE(aj) .

ENDLOOP

The following figure illustrates this step.

arc),

90

in




91

. °

éODE(am) LOOP

. Ilme LOOP
. m=m=> CODE (am)
CODE(aj) .

) CODE (a. )
) ENDLOOP ILm7
ENDLOOP

Step 4 We now create the forward arcs.
For m = 2 to n do
Let j be the smallest integer such that (aj, a,)

is an incoming forward arc of a .

Write "ENDLOOP Fm" just before the sequence of
LOOP-keywords that immediately precedes CODE(a).
[1f no such sequence exists then write it just

before CODE(a_).}

Write "Fm: LOOP" just before the outermost statement
that contains CODE (ay) but not CODE(a_) . [1f
no such statement exists, write it just before
CODE(aj). }

The following figure illustrates this step.



~-LOOP € The outermost statement

. X containing CODE (a.)
. but not CODE(a_) . 3
CODE(aj)

L ENDLOOP

. }‘Q,,,—-The set of statements Y

LOOP

LOOP }G;\‘The sequence of
CODE(am) LOOP-keywords

. immediately preceding
. CODE(am).
ENDLOOP

ENDLOOP

ENDLOOP Fm
LOOP
LOOP
CODE(am)

ENDLOOP

3

ENDLOOP

EXAMPLE (5) We illustrate this algorithm with

straight order given in Example 4 (b):

92

the




IF <a.,> THEN EXIT F2 ENDIF;

1 1
EXIT F3;
2 A
EXIT F4
a, Step 2 IF <a,> THEN EXIT F4 ENDIF;
c=====> EXIT F5
4 <a4>;
EXIT IL1l
5 <ag>i
EXIT ILl
LOOP
ILl: LOOP
IF <a,> THEN EXIT F2 ENDIF;
EXIT F3
<a,>;
Step 3 EXIT F4
=mmm==D .

ENDLOOP IL1l

ENDLOOP



924

The following program results after one iteration of the
"For" 1loop of Step 4 (with m = 2) to create the incoming

forward arcs of a_.

2
LOOP
IL1l: LOOP
F2: LOOP
IF <al> THEN EXIT F2 ENDIF;
EXIT F3
ENDLOOP F2;
<a2>;
EXIT F4

ENDLOOP IL1

ENDLOOP




The final program output by the algorithm is

L.OOP

95

F5: LOOP
F4: LOOP
F3: LOOP
F2: LOOP
IF <a;> THEN EXIT F2
ENDIF;
EXIT F3
ENDLOOP F2;
Step 4 <a5>j;
======> EXIT F4
ENDLOOP F3;
IF <ag> THEN EXIT F4;
EXIT F5

ENDLOOP F4;
<a4>;
EXIT IL1
ENDLOOP F5;
<a5>;
EXIT IL1
ENDLOOP ILl

ENDLOOP



96

LEMMA (19) Suppose G = (N,A,s) is an RFG that is input to

Algorithm Structure and suppose P is the output. If G” =

(N“,A”,s”) is the SFG of an expression for P, then G~
G.

Proof:

We must prove that the loops created by the algorithm are

properly nested. This is clear for the loops created in

Step 3. Call the loops created by Step 4 fake loops. We

must show that when we create a fake loop "Fm", there is

no interlocking loop as shown below:

Fm: LOOP
CODE(aj)

LOOP
CODE (a;)

ENDLOOP Fm
CODE (a_ )

ENDLOOP

We will show that if sucﬁ an interlocking loop exists,
the flowgraph cannot be reducible. Let a; be the first
node in the interlocking loop. Clearly the interlocking
loop cannot be a fake loop since we create the forward
incoming arcs to the nodes in the order a

1’ n*

Hence, a; has an incoming reverse arc and so there is a

o e o 7 a




97

formal loop of the form [ai, ak] for some k > 1i. This

formal loop is strongly connected (property (i) of a

””—————“*ﬁ————~—stratght—of&ef%—aﬁ&—hasﬂ%we—eﬂ%fy~nedesﬁaT—and—a—_vieLat—
i m
ing Theorem 3(d). Hence P is a legal program and so G~
exists.
We now need to show that s=s”, N=N", and A=A". The
first two equalities are obvious. For the last, suppose

(a aj) is an arc of A. If j<i, then it 1is a reverse

il
arc and so is created in Step 3 and so is in A", If j>i
it is a forward arc and so is created in A® in Step 4.
Hence A C A”, Now, if a node n has outdegree 2 in G~

then CODE (n) must be of the form:

IF <n> THEN EXIT __ ENDIF;
EXIT

But this can only happen in Step 2 of the algorithm if n

has 2 successors in G. So n has outdegree 2 in G and so

|a"] < |a] and so A" = A.

THEOREM 5 Every RFG is an SFG.

Proof:

Follows directly from Algorithm Structure and Lemma 19.



98

3. THE HIERARCHY OF FLOWGRAPHS

We now compare the expressive power of level—-(i+1l) exits
with that of level-i exits. 1If G is an arbitrary digraph
or flowgraph, we define the rank of G to be

min {r(E)| E is an expression for G}.
If G is not the digraph of any expression, 1its rank is

undefined; such a digraph is shown below:
Cf{f?:})
“—

That level-(i+l) exits are more powerful than level-i ex~
its can be demonstrated by showing that, for each r €
{0,1,2,...}, there is a digraph of rank r. A similar
result has Dbeen derived in [4]. Our next theorem shows
that this greater power can be demonstrated even within

the domain of directed acyclic graphs. By a Hamiltonian

dag we mean a dag which has a Hamiltonian path.

THEOREM 6 For each ie {0,1,2,...} there is a Hamiltonian

dag of rank 1i.

The dag H
i
chapter contains the proof of this assertion,

of Figure 7 has rank 1i. The rest of this




The dag H.:
L

@‘@ @ S SH T >

N




100

Several Lemmas are necessary for the proof of Theorem 6;
we now proceed to develop them.

Assume that E is an expression and E1 is a subex-
pression of E; this assumption will remain in effect up
to the end of Lemma 28.

A node of El1 is called incomplete iff its indegree
in E is strictly greater than its indegree in El. A node
y of E is called a successor of El iff for some node x in
El, (x,y) is an arc of E but not of El. Two expressions

will be called equivalent if they have tha same rank and

the same SFG. We write E® C E if E” is a subexpression
of E. If El1, E2, ... are expressions, we will denote the
set of nodes of their respective program graphs by N1,

N2’ - o0 °

LEMMA (20)
x is incomplete in El ==> x = s(El).
The only node to which incoming arcs may later be added
is s(El).
COROLLARY Any subexpression of E can have at most one in-
complete node.
We say that E is a
BREAK-expression if E = BREAK(E”,i) for some i, E”,

LOOP-expression if E = LOOP(E”) for some E~,




101

CAT-expression if E = CAT(E”,E””) for some E°, E*7,

IF-expression if E = IF(t,E”) for some t, E7,

ELSE-expression if E = ELSE(t,E”,E"”") for

some t,E”,E"”.
If E = OP(E1,E2,t,i) for some SPG operation OP, we say

that E1 and E2 are immediate subexpressions of E and that

E is the immediate superexpression of E1 and of E2.

LEMMA (21)
E1 has i successors ==> r(El) > i-1,.
Proof:
Let L1 be the labelling relation of the program graph of
El and let SUCC(El) denote the set of all successors of
El. Assume El has i successors, Suppose there is a
function g : A ---> SUCC(E1) such that

(i) A C RAN(L1) and

(ii) g is onto.

Then, |SUCC(EL) | |RAN (g) | (since g is onto)

A

|DOM (g) | (true for any function)

IA

|RAN (L1) | (since A C RAN(L1))

in

r(E1l) + 1 (by definition or rank)
and so we have r (El) > SUCC(El) - 1 =i - 1.
We will now define a function g with the required proper-

ties (i) and (ii).



102

Let H = { (E*,n,i) | E® is a subexpression of E and
"i" is one of the labels of n in E” }

We define a partial function h: H --> H U [nodes of E}

by

h(E",n,0) = x 1iff( (x s(E”) and LOOP(E”) C E) or

s(E””) for some E°” such that

%
i

CAT(E",E”") C E )

h(E*,n,i) = (E°”,n,j) iff one of the following holds:
(a) E”“=BREAK(E” ,k) and
((i >0and i = j) or (i = 0 and j = k))
(b) E““=LOOP(E”) and j = i - 1
(c) E° = CAT(E”,E1) for some El and
(i =3 and i > 0)
(&) i = j and

E;;

CAT(E1,E”) for some El or

- IF(t,E”) or

E
E°” ELSE(t,E”,El) or for some E1
E°” = ELSE(t,El,E") }

We note that the value of h depends only on i and E”. (¥*)
Let R be the transitive closure of the relation h. Sup-
pose E2 is an immediate subexpression of E° and (E”,n,j)
€ H and n is a node of E2. By examining the various
cases that arise depending on the SPG operation that was

applied to E2 to get E”, it is easy to see that there is




103

an element (E2,n,i) in H such that (E2,n,i) R (E",n,]):

that is, n must have had some label i in E2 which result-

od
S WA

in its having the label j in E” By using this argu-

ment inductively we can prove that

E2 C E7 For some (E2,n,1i) € H,
(E’,n,j) € H === (E2,n,i) R (E’Inlj) ——=(**)
n € N2

Every element p € H determines a unique sequence called

the h-sequence of p: P=Pys Pyr Pyr -eer Py where
(a) p; € H for 0<igk
(b) h(p;) = pj,q for 0<i<k and
(c) Either h(pk) is undefined or it is a node of E.
[ If p = (E",n,i), the node n may, at some future
stage, acquire a successor as a consequence of its
having the label i in E”; 1if it does, h(pk) iden-
tifies this successor node. ]
Suppose Py = (X,n,i) and qp = (X,m,i) are two elements of
H, As noted earlier (*), the value of h depends only on
the first and third components of the argument. It fol-
lows that the h-sequences of Py and q, are of equal
length and h(pk) and h(qk) (the 1last elements of the
respective h-sequences) are either both undefined or are
equal.
We are now ready to define the required partial

function g: RAN(L1l) ---> SUCC(EL)



104

g(i) = m iff { for some triples ul = (El,n,i) and

u2 = (E”,n,0) in H we have h(u2) = m

and (ul,u2) € R.
By the conclusion immediately preceding this definition,
we see that g is well-defined. We now need to show that
g is onto. Suppose m is a successor of El; we will show
that g(i) = m for some i. By definition of successor,
there is some node n in El such that (n,m) is an arc of E
but not of El. Hence there is a triple (E”,n,0) = u in H
such that h(u) = m and E1 C E". By (**), there is a tri-
ple (El,n,i) = v in H such that (v,u) is in R. By defin-

ition of g, g(i) = m and so g is onto.

LEMMA (22)

El is a LOOP-expression }===> r(E) > i

and E1 has i successors }

Assume that E1 = LOOP(E2) and |SUCC(El)| = i. Let L1 and
L2 be the labelling relations of E1 and E2 respectively.
Then L1 = decr O L2 by definition of the LOOP operation
and so |RAN(L1)| = |RAN(L2)| - 1 < (x(E) + 1) - 1 = r(E)
and the result now follows as in the proof of the previ-

ous Lemma.




105

LEMMA (23)

No expression for a Hamiltonian dag can have an ELSE-

Suppose G is a Hamiltonian dag and E is an expression for
it. Suppose El = ELSE(t,E2,E3) is a subexpression of E.
It is easy to show inductively that if E1 C E® C E then,
any path from s(E”) to s(E2) or s(E3) must pass through
the node t. |

Since g is Hamiltonian, there is a path from s(E2) to
s (E3) or one from s(E3) to s(E2). Assume without loss of
generality that the former is the case. The path, say p,
from s(E2) to s(E3) does not exist in El and does exist
in E; let E4 be the smallest subexpression of E in which
it exists. E4 must be a LOOP-expression: E4 = LOOP(E5).
Hence p must be of the form "s(E2) .pl.s(E5) .p2.s (E3)"
where pl and p2 are some paths. By the assertion made at
the beginning of this proof, the path "s(E5).p2.s(E3)"
must contain the node t and so G has a cycle (which is a
subsequence of "t.s(E2).pl.s(E5).p2"). This contradicts

the assumption that G is a dag.



106

LEMMA (24)
If n is a finish node of E and is not a finish node of El
then, E1 C E2 C E for some LOOP-expression E2.

Proof:

If 0 is not a label of n in El, no operation other than

LOOP can create it.

LEMMA (25)

Suppose (al, CPVRRRRY an) is a simple path in E. Then,
1 <1< 3j<n and ay € N1 for all k
a; aj € N1 and ===> { such that 1<k<i.
aj is incomplete in El

By the Corollary to Lemma 20, a; is complete in El1 and so

a.

i1 € N1. This argument may be repeated on a;_q1-

LEMMA (26)

For arbitrary expressions A, B and C,

(a) CAT(A,CAT(B,C)) and CAT(CAT(A,B),C) are equivalent.
(b) BREAK (CAT (A,B) ,1) and CAT (A,BREAK(B,1)) are
equivalent.

Proof:

It is easily seen from the definitions that

del, for all k € I'.

k k

K o) delj delj o) delk

(i) del, o del

il

k

(ii) del for all k,j € I'.




107

(i11) z; 0 delT delT ° z,; for all i € X.

(iv) z; O delo = delo for all 1 € X.

(v) Composition is distributive over union,

Obviously the pairs in (a) and (b) have the same rank,
the same nodes and the same arcs. We will show that they
have the same labelling relations.

(a) By definition of the CAT operation, the labelling re-
lation of CAT(A,CAT(B,C)) is:

(del, © L,) U (delT O ((dely © Ly) U (delT ° Lo)))

0

(del. 0 del. © LA) U (del, © delT o LB)

0 0 0
1] (delT o] delT o] LC) (by (i), (ii) and (v) above)

(del0 o) ((del0 o) LA) [1] (delT o) LB))) L] (delT o) LC)

(by (i) and (v) above)

the labelling relation of CAT (CAT(A,B),C).

(b) may be similarly proved using (iii), (iv) and (v).

LEMMA (27)

Suppose El and E1° are equivalent. If E” is the expres-
sion obtained from E by replacing El with E1”, E and E~
are equivalent.

It is obvious that E and E” have the same rank and the
same set of nodes. Let E2 be the immediate superexpres-
sion of E1 and let E2” be obtained from E2 by replacing

El with E1°. From the definitions of the various SPG



108

operations we see that E2 and E2° are equivalent, The
argument may be repeated with E2 in place of El. The ar-

gument, may be repeated with E2 in place of El.

LEMMA (28)
Suppose El = CAT(A,B) and only CAT or BREAK operations

are used between E1 and E and s(E) = s(A). Then there is

an expression E” CAT (A,E2) for some E2 such that E and
E” are equivalent.

Consider the immediate superexpression E2 of El1 in E. We
must have E2 = CAT(CAT(A,B),C) or E2 = BREAK (CAT(A,B) ,1) .
By Lemma 26, there is an expression E2° of the form
CAT (A,E3) which 1is equivalent to E2. By Lemma 27, the
expression obtained by replacing E2 with E2° in E |is

equivalent to E. Repeating the process with E2”° in place

of E1 we eventually arrive at the required expression E”.

All the Lemmas hereafter refer to the dag Hi (Figure
7. Assume that E is an expression for Hi' We define a

few aliases for some of the nodes for notational conveni-

ence:

Let
i+l = Xq
8ri+2 = x

2'




109

a2j = my for 1 < j £ i and
a2]-l = ﬂ:J for 1 < j < i,
LI T P I S e - B B PETE R R e B
v={mj!l§j51}={azj!l.<_:ls.1},
x={ajIli]_<_21+l}=WUVlm{x1}r
v=1{y;l1<3<il.

LEMMA (29)

If E1 € E and x, is not a node of El then, INLnY| <1
Suppose otherwise. Let j < k be the two smallest indices
such that yj, Y, € N1 Y. Since Y3 has an in-arc from

the preceding node t (which is either another

L g o=

node of Y or xz), it follows that Yj must be
incomplete in El. Now y, has an in-arc from

outside E1 (either from another element of Y

& o o

between Yj

be 1incomplete in El. This contradicts the

and Y, ©Or from t) and so must also

s
=

Corollary to Lemma 20.



110

LEMMA (30)

2

El € E and ===> (xl, Xx.. € N1 and j=1) or
INLnY]| > 2

Y5 is complete in El
for some j > 1.

Proof :

We show that under the assumptions of the Lemma, |N1 n Y|

1’ ¥o € N1 since

and (x,, y;) are arcs of H,. Suppose INLn Y| =

=1 ===> j = 1. It then follows that x
(xll Yl)
1 and j > 1; we must have yj__l € N1 Y since (Yj—l’ yj)

is an arc of Hi‘ This contradicts our assumption that

|[NLn Y| = 1.

LEMMA (31)

El1 € E and For some k, 1 < k < i,
Y N1 = (p and m==> X - {mk} C N1.

X, is complete in El

Proof: Let E2 be the smallest subexpression of El in

which X, is complete. Since X, is complete in E2 we must
have W U {xl} C N2. If all the elements of WU {xl} are
complete in E2 then X C N2 C N1 and the Lemma holds.

Otherwise, let

k = (i if x, is incomplete in E2 ——-=————m—mmmemm (*)
j-1 if nj is incomplete in E2 =————---—==—=--= (*%)
* for some j, 2 < j £ i.
! (note: n, is always complete)




111

We claim that m, € N2 for all r such that 1 < r < i and

r # k. If this were not the case, let r be such that

1 <r<i, r # k and m, & N2.

If r = i then Xy must be incomplete in E2 and by (*), we
have k=i=r contradicting our assumption that r # k.

If r < i then N must be incomplete in E2 and by (*¥*),
we have k = (r+l) - 1 = r and this is a contradiction
as before.

Hence, for all r with 1 < r < i, r # k, we have m. € N2.

So X - {mk} C N2 C N1 and we are done.

LEMMA (32)
If E1 is as assumed in the previous Lemma and is a LOOP
expression, r(E) > i.

Proog:

By the previous Lemma, there is some k such that 1<k<i,
and X - {m } c N1. Therefore E1 has i successors:
the elements of Y if m, € N1

the elements of (Y - ) O {m.} otherwise.

W (ke ]
The result now follows from Lemma 22.

LEMMA (33)
1f El1 is as assumed in Lemma 31, r(E) > 1i.

groof:

Let E2 be the smallest subexpression of El in which X, is



112

complete. Using Lemma 23 and the fact that BREAK creates
no new arcs, we see that E2 must be an IF, CAT, or LOOP
expression. We deal with these cases separately.

Case 1 E2 = LOOP(E3).

The result follows from Lemma 32.

Case 2 E2 = IF(t,E3).

By Lemma 20, X, = s(B3). If 3 € N3 then X C

t=x, N3 by Lemma 25. Hence, t € Y. This contrad-

icts our assumption that N1 ¥ = ¢. 8o x; ¢

s(€3) N3. But X4 € N2 since (xl, x2) is an arc of

Z{ii}x H; and X, is complete in E2. So t = x,. Now
W C N3 since X, is complete in E2.

Since all the elements of W are complete in E3, we have
WOV - {mi}) C N3. Now E3 has (i+l) successors:
the elements of ¥ U {m;} if m;, € N3
{ the elements of Y U {xl} if m, € N3.

The result now follows from Lemma 21.

Case 3 E2 = CAT(E3,E4).

By Lemma 20, X, = s(E4). By Lemma 31, X -
A {m } C N2 for some k such that 1 < k < i. If
Xq is a node of E4, we would have X C N4 (by
Lemma 25) and so E3 would be void; hence Xq
s(Ey)=%,
i j must be a node of E3. Two cases arise ac-
cording to whether or not m, € N2.

Case 3.1 m € N2. (Hence X C N2)




113

There are two cases depending on whether N4 has any

nodes of X.

Case 3.1.1 X N4 = 0

Here, we must have X C N3 and so E3 has i+l succes-

sors: Y U {xz}. The result follows from Lemma 21.
Case 3.1.2 X N4 # 0.

Let p=max { § | 1 <3 < 21, ay € N4 }. By

Lemma 25, aj € N4 for all j with 1 < j < p.

Now a € X ¢ N2 and of p, ap+l € N3. Also, a

p+1 pt+l
must be incomplete in E2 since a, € N4 and there
are no arcs in E2 from N4 to N3. Now E2 has (i+l)
successors, namely, the elements of Y U {ap}, The

result now follows from Lemma 21.

Case 3.2 m £ N2

There are two cases, depending on whether E4 contains
some node of X - {mk}.

Case 3.2.1 E4 has no nodes of X - {m}.

We must have X - {m ]} ¢ N3 and so E3 has i+l suc-
cessors, namely, the elements of (¥ - {y,_, ;1 ©

{mk, xz}. The result again follows from Lemma 21.

Case 3.2.2 E4 has some node of X - {m }.

Since a =

ok is not in N2 and a5 . € X - {mk} c

my

N2, a2k+1 must be incomplete in E2. Since x, is

incomplete in E4, a,,.q is in E3 and incomplete

there. Let g =max{ j | 1 <3 < 2i, a; € N4}. Now

J



114

q < 2k-1 is impossible since it implies that aq+l

is another incomplete node of E3 other than a,, .4
in violation of Lemma 20. Likewise, g > 2k-1 1is
also impossible since it implies, by Lemma 25, that

a2k = my € N4 C N2. Hence q = 2k-1 and so by Lemma

25 we have {aj | 1 <3 < 2k-1} C N4,

so {a,y 4

X1s Bgpanr weer a21+1} C N3. Let E5 be the smal-

lest superexpression of E2 that has more nodes than
E2. E5 exists since E has more nodes than E2. By
Lemma 23, E5 must be an IF or a CAT expression. We
consider these cases separately.

Case 3.2.2.1 E5 = IF(t,E6).

Since E6 has the same set of nodes as E2, Aok+1
must be incomplete in E6 (since P ¢ N2). But

a2k+1 is not the start node of E5 and hence is

complete in E5 and so t = a, = WM. Now E5 has
(i+1) successors, namely the elements of Y U

{a2k} and the result follows from Lemma 21.

Case 3.2.2.2 E5 = CAT(E6,E7).

Here E2 can be a subexpression of either E6 or of

E7 and so we have two further subcases.

Case 3.2.2.2.1 E2 is a subexpression of E7.

Since E2 has the same nodes as E7, a
2k+1
be incomplete in E7. Hence s(E7) = asp.q and

must

it is complete in E5; so a5 € N6 and must be




115

incomplete in E6 since q,k-1 € N2 = N7. Hence

any member of YAN6 must be complete in E6.

No i € N ==

N —

X, € N6. Since a5k is incomplete in E6, any
element of N6nY must be complete in E6. This
means that N6nY is void (otherwise Lemma 30 is
violated). Therefore, E6 has only one node:

m, = aj, (all other nodes are either in Y or in

k
E7. Now E5 has i+l successors, namely, the
elements of Y U {azk}. The result now follows
from Lemma 21.

Since N6 = N2, must be incomplete in E6.

q2k+1
By assumption, E2 and Y have no common nodes
and so E6 and Y are likewise. By Lemma 29, N7
and Y can have at most one common element; if
they have no common elements at all, E7 has ex-
actly one node: A = M and the result fol-
lows as usual from Lemma 21 since E5 has i+l
successors, namely, the elements of Y ©U

{a2k+1}' We now consider the case when they

have exactly one element in common (|N7nY| =

1). That one element must be Yqir by Lemma 25,
Now (Xy, ¥;p) is an arc of Hj and so x; must be

a finish node of E6. But .31 € N3 and so cannot



116

be a finish node of E2. By Lemma 24, there is
a LOOP expression E8 with E2 C E8 C E6. Now ES8
#

has i successors, namely, the elements of (Y -
{¥; 141D U {m} and so the result follows from
Lemma 22. This completes the proof of Lemma

33‘




117

LEMMA (34)

A
na

Tol
e}
o

bt |
porgs

N1 = XU {x

Proof:

If X, is complete in El, the result follows from Lemma

33. Otherwise, E1 has i+l successors, namely, the ele-

ments of Y U {xz} and the result follows from Lemma 21.

We now prove that the rank of Hi is at least 1i.

LEMMA (35)

If E is any expression for H;, £(B) 2 i.
Proof:

Let El1 be the smallest subexpression of E such that YaNl

# ¢ and x, € N1. El must be a CAT or an IF expression by

2
Lemma 23. We deal with these cases separately.

Case 1

El = CAT(E2,E3). There are two possibilities for X,

Case 1.1 %, € N2 and N3nY # d.

By assumption about El, N2 and Y have no common ele-

ments. By Lemma 29 |N3nY| = 1. THe unique node in
N3nY must be complete in E1 and so by Lemma 30,
N3nY = {yl}. since (x,, y;) is an arc of H;, we must

have s(E3) = Yq-.



118

Now we have two possibilities for Xy .

Case 1.1.1 x, € N3.

1

Here x, is complete in E3 and by Lemma 25, X C N3,

1
Now E3 has i+l successors, namely, the elements of

YU {xz} and Lemma 21 yields the result.
Case 1.1.2 %, € N2.
is complete in E2 the result follows from

If X,

Lemma 33. Otherwise X C N2 by Lemma 25 and now the

result follows from Lemma 34.

Case 1.2 x, € N3 and N2nY # §.

2
By assumption about El, N3nY is void. By Lemma 29,

N2 n Y| = 1. Also x, € N3 implies that x, must be

complete in El. We now have two subcases depending

on whether X, is complete in E3.

Case 1.2.1 x, is complete in E3.

The result follows from Lemma 33.

Case 1.2.2 x,

By Lemma 20, we must have s(E3) = x2. There are

is incomplete in E3.

two possibilities for Xy

Case 1.2.2.1 x; is in E3.

Since X, is incomplete in E3, Xy must be complete

in E3. By Lemma 25, X C N3 and the result fol-

lows from Lemma 34.




119

1.2.2.2 x; is in E2.

By Lemma 30 the unique element y of N2nY must be

incomplete in E2 and soO S(EIY = s(E2) = y. Hemnce
X, is complete in E2 and by Lemma 25 we have X C
N2, Let L (which may not exist) be the largest

LOOP subexpression of E2 containing y. There are

two possibilities for L.

Case 1.2.2.2.1 L does not exist or y is its only
node.
Let J be the largest subexpression of E2 that
contains y and no other nodes. J exists since
y must be created by EXIT(j,y) for some j (if y
were created by an IF(y,-), there would be an
arc from y to X which is clearly impossible; vy
cannot be created by an ELSE(y,-,—) by Lemma
23). If L exists L. C J. Since J has only one
node node, there must be at least one operation
between J and E2. Now, the first operation on

J cannot be an IF(-,J) or a CAT(-,J) since

s(BE2) = y; it cannot be a LOOP or a BREAK due

to our assumptions about J. Hence we must have
CAT (J,E4) C E2 for some expression E4. By as-
sumptions about J and L, and by Lemma 23, there
can only be CAT or BREAK operations between J

and E2. Using Lemma 28, we get an expression



120

E2” = CAT(J,E5) which is equivalent to E2. By
Lemma 27 we can replace E2 with E2° in E to get
an expression E” which is equivalent to E. Now
E5 is a subexpression of E” which has all the
nodes of X (this is shown at the beginning of
Case 1.2.2.2). Hence E5 has i+l successors in
E“, namely, the elements of Y U {xz} and Dby
Lemma 21 we have r(E") > i, Since E is

equivalent to E”, r(E) > 1i.

Case 1.2.2.2.2 L has at least one node

other than y.
Since E2 has exactly one element of ¥, we see
that LAX # 0. Let k = max{ j | 1 < j < 2i+1,
ay e 1}. By Lemma 25, for all j with 1 < j <
k., aj € I, since vy = s(E2) = s(L). We will show
that L cannot have fewer nodes than E2. Assume
otherwise, Let J be the largest subexpression
of E2 that contains L. and has no more nodes
than L. By assumption E2 # J and so there is
at least one SPG operation between J and E2.
The first such operation must be of the form

CAT (J,E4) (IF(-,J) and CAT(-,J) are ruled out

since s(E2) = s(L) s(J) = y; BREAK and LOOP
are ruled by the way J was defined; ELSE 1is

ruled out by Lemma 23). Since ay is in J, it




121

cannot be a finish node of CAT(J,E4). But ay

must be a finish node of E2 since (al, x2) is

an arc of H, and x, = s(E3) is complete in E3.

By Lemma 24 there is a LOOP expression that
contains CAT(J,E4) and is contained in E2.
This violates our assumptions about L and J.
Hence L has all the nodes of E2. The result
now follows by Lemma 22 since L has i succes-

sors, namely, the elements of (Y - {y}) © {xz}.

Case 2 El1 = IF(t,E2).

It is impossible that t € Y and X, € E2 since there are
no arcs from Y to X. By assumption about El1, E2 has no
nodes other than those of X. Hence it must be the case
that t = x

2
By Lemma 20, the unique element of N2 Y is complete in

and N2n Y # ¢. By Lemma 29, |N2naY]| = 1.

El and by Lemma 30, that element must be yl. Let E3 be
the subexpression of E2 which created the arc (xl, ¥ -

Now E3 = IF(x E4) or E3 = CAT(E4,E5) are both impos-

17
sible since they require Yy to be complete in E3 and
hence in E2. Hence E3 = LOOP(E4) where 3 is a finish
node of E4 and Yy = s(E4). By Lemma 25, X C N4 and so
E3 has i successors, namely, the elements of (Y - {yl})

U {x,} and now the result follows from Lemma 22.



122

Proof of Theorem 6.

Figure 8 shows a program of rank i for Hi' The Theorem

now follows from the previous Lemma.




123

Figure 8

A program of rank i for Hi:

LOOP
LOOP
L.OOP
IF <nl> THEN
IF <ml> THEN
IF <n2> THEN
IF¥ <m2> THEN
IF <ni> THEN
1F <mi> THEN
Ir <xl> THEN BEXIT 1
ENDIF
ELSE EXIT 1 ENDIF
ENDIF
ELSE EXIT (i-1) ENDIF
ENDIF
ELSE EXIT i ENDIF
ENDIF
IF <x2> THEN EXIT 1
ENDIF;
BXIT 2
ENDLOOP;
IF <yl> THEN EXIT 1
ENDIF:
EXIT 2
ENDLOOP
BXIT 1

<y, >
ENDLOOP;
<Y'>

1



124

CHAPTER 5
DISCUSSION AND CONCLUDING REMARKS

We have provided an algorithm that finds a minimum-
jump translation for structured programs obtained by us-
ing loops with multilevel “counting” exits. Labelled ex-
its are easily handled since they can be converted to
“counting” exits. In addition, a wide variety of control
structures, such as the REPEAT-UNTIL and WHILE loops of
Pascal and the loop of Modula, are subsumed as special
cases by our model.

We have shown that the class of flowgraphs that can
be generated by such structured programs is the same as
the class of reducible flowgraphs. Our algorithm can
therefore be used to perform jump minimization in any ob-
ject module, regardless of the compiler that produced it,
provided it represents a reducible flowgraph; one need
only apply our program structuring algorithm to get a
structured program from the flowgraph and use this as in-
put to our dissection algorithm. Obviously the efficien-
cy of this procedure depends on the efficiency of the
program structuring algorithm and also on the rank of the
program it produces. The problem of producing a
minimum-rank program from a given flowgraph needs further

investigation.




125

No time complexity analysis is provided by Earnest

et. al. in [14] for their algorithm which produces a

straight order for the nodes of an arbitrary <flowgraph;

inasmuch as their algorithm is used by our program struc-
turing algorithm for reducible flowgraphs, it would be
useful to derive the time complexity of their procedure
and to investigate whether improvements in speed are pos-
sible if we restrict ourselves to reducible flowgraphs.
Our jump minimization algorithm can also provide a
good, though not necessarily optimal, translation for ir-
reducible flowgraphs. We identify a set of arcs that can
be deleted to leave a reducible flowgraph which has all
the nodes of the original irreducible flowgraph and then
find an optimal dissection for this residual flowgraph.
Obviously, the smaller the number of arcs deleted, the
better the chance that the result of this procedure is
close to optimality. Finding such a set of arcs to
delete is not hard (we could, for instance, do a depth
first search and delete all back arcs) though finding one
with the smallest number of arcs could be. This gives
rise to a question analogous to the problem of finding a
minimum feedback-edge set for digraphs:
Given a flowgraph G and a positive integer K, does G
have a set of K or fewer arcs which, when deleted,

leave a reducible flowgraph ?



126

Whether the Dissection Problem is NP-complete for
reducible flowgraphs is an open question. We conjecture
that the Hamiltonian Path problem is NP-complete even for
the restricted class of flowgraphs which are acyclic ex-
cept for a single incoming arc to the start node, that
is, flowgraphs that become acyclic if a single incoming
arc to the start node is deleted.

Performing jump mimization could affect other code
improvement procedures. For instance, preliminary evi-
dence suggests that generating code for machines that
have 1long and short branch instructions [15] after per-
forming jump minimization is likely to yield better code
than doing it before. Another related issue that will
pear investigation is the impact of jump minimization on
the dynamic behaviour of the program in a multiprogram-
ming environment: It appears likely that the number of
page faults and cache misses will be favourably affected.

0f theoretical interest are the connections between
the cardinality of an optimal dissection of a digraph and
certain graph-theoretic parameters. Let d(G) denote the
cardinality just adverted to. Two nodes x and y in a di-

graph G are called arc independent iff neither (x,y) nor

(y,x) is an arc of G; they are called path independent

iff there is no (directed) path from x to y and there is

no (directed) path from y to x in G. The maximum number




127

of arc-independent nodes in G is called the [16] stabili-

ty number of G; denote this number by (G). The maximum

number of path-independent vertices in G is called the

path independence number of G; denote this number by

i(G). Then, we have:

i(G) < d(G) < d(G).
The first inequality is easy to see; the second 1is
proved in [16,17]. It is easy to show by means of simple
examples that all three of these parameters could, in
general, be distinct. Whether, and under what condi-
tions, equality obtains is not known.

We have a linear algorithm for the case when only
IF-THEN-ELSE and REPEAT-UNTIL constructs are used
(without EXIT statements) [18]. When WHILE statements
are included, a more complicated, but still linear, algo-
rithm exists. This suggests that the complexity of algo-
rithm for the general case can be significantly improved
by refining the process whereby dissections for smaller
graphs are combined to produce dissections for the larger

graph.



[1]

[2]

[31]

[4]

(5]

(6]

[71

(8]

(91

[10]

[11]

128

REFERENCES

M. R. Garey and D. S. Johnson, Computers and Intrac-
tability - A Guide to the Theory of NP-Completeness,
W. H. Freeman, San Francisco (1979).

J. Plesnik, "The NP-completeness of the Hamiltonian
cycle problem in planar digraphs with degree bound
2," Information Proc. Letters 8, 4, pp. 199-201
(April 1979).

F. T. Boesch and J. F. Gimpel, "Covering the points
of a digraph with point-disjoint paths and its ap-
plication to code optimization," Journal of the ACM
24, 2, pp. 192-198 (April 1977).

S. R. Kosaraju, "Analysis of structured programs,"
Journal of Comp. and Syst. Sci. 9, 3, pp. 232-255
(1974).

J. C. Cherniavsky, P. B. Henderson, and J. Keohane,
On the Equivalence of URE Flowgraphs and Reducible
Flow Graphs, Proc. 1976 Conf. on Inf. Sci. and Sys.,
Johns Hopkins University ().

H. F. Ledgard and M. Marcotty, "A Genealogy of Con-
trol Structures," Comm. of the ACM 18 , pp. 629-639
(1975 ).

A. V. Aho and J. D. Ullman, The Theory of Parsing,

Translation, and Compiling Volume 2: Compiling,
Prentice-Hall (1972).

F. E. Allen and J. Cocke, "A Program Data Flow
Analysis Procedure," Comm. of the ACM 19, 3 , PP.
137-147 (1976 ).

M. S. Hecht, Flow Analysis of Computer Programs,
Amer ican Elsevier, New York (1977).

T. Kasami, W. W. Peterson, and N. Tokura, "On the
capabilities of while, repeat, and exit statements,”
CACM 16, 8, pp. 503-512 (August 1973).

R. E. Tarjan, "Depth First Search and Linear Graph
Algorithms," SIAM J. Computing 1, 2, PP. 146-160
(1972).




[12]

129

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The
Design and Analysis of Computer Algorithms,
Addison-Wesley (1976).

t131]

[14]

[15]

[16]

[17]

(18]

V. N, Kasyanov,
Graphs," Information Processing Letters 2, 4 , PP.
113-117 (1973).

C. P. Earnest, K. G. Balke, and J. Anderson,
"Analysis of Graphs by Ordering of Nodes," Journal
of the ACM 19, 1, pp. 23-42 (Jan 1972 ).

T. G. Szymanski, "Assembling code for machines with
span-dependent instructions," CACM 21, 5, pp. 300~
308 (April 1978).

C. Berge, Graphs and Hypergraphs, North Holland, Am-
sterdam (1973).

T. von Gallai and A. N. Milgram, "Verallgemeinerung
eines Graphentheoretischen Satzes von Redei," Acta.
Sc. Math. 21 , pp. 181-186 (1960 ).

M. V. S. Ramanath and M. H. Solomon, "Generating op-
timal code from flowgraphs," Computer Languages,
(1982) To appear.







