PREPROCESSING PASCAL:

A COMPARISON OF TWO APPROACHES
FOR EXTENDING PASCAL VIA A PREPROCESSOR

by

R. M. Bryant, M. B. Abbott,
J. R. Bugarin, B. S. Rosenburg

Computer Sciences Technical Report #460

November 1981

Preprocessing Pascal:

A Comparison of Two Approaches

for Extending Pascal via a Preprocessor®

R. M. Bryant, M. B. Abbott,
J. R. Bugarin, B. S. Rosenburg

Department of Computer Science
University of Wisconsin--Madison
1210 W. Dayton Street
Madison, Wisconsin 53706

SIMPAS is a portable, strongly-typed, event-oriented,
discrete-system simulation language implemented via a
preprocessor for Pascal. It extends Pascal by adding state-
ments for event declaration and scheduling, entity declara-
tion, creation and destruction, linked list declaration and
manipulation, and statistics collection.

Two distinct versions of SIMPAS have been implemented.
The first version used an ad hoc parsing technique while the
second used a table-driven, locally~least-cost error
correcting LL(l) parser. Additionally, the first version
was not aware of types of variables in the SIMPAS extension
statements while the second version maintains a complete
symbol table. 1In this paper, we compare the two implementa-
tions of SIMPAS from the standpoints of efficiency, size,
maintainability, and ease of extension. In many ways, the
first version of SIMPAS is found to be the more cost effec-
tive version.

*This work was supported in part by the Wisconsin Alumni
Research Foundation and through NSF grant MCS-800-3341.

Author”s present addresses: R. M. Bryant is with the IBM T.
J. Watson Research Center, Yorktown Heights, N. Y. M. B.
Abbott is with Bell Laboratories, Denver, Colorado. J. R.
Bugarin 1is with the Hewlett Packard Desktop Computer Divi-
sion, Ft. Collins, Colorado. B. S. Rosenburg is with the
Computer Sciences Department, University of Wisconsin--
Madison.

1l. Introduction

When portability, ease of implementation, and maximal
use of existing software are of prime importance, it is com-

—mon to use a preprocessor to extend the capabilities—of an———"—

existing programming language. For example, structured
preprocessors for FORTRAN (such as RATFOR {11,12]) have
been used on many systems to provide FORTRAN-like languages
with powerful control and looping structures. For similar
reasons, we implemented SIMPAS (a strongly-typed, discrete-
system simulation language embedded in Pas-
cal [1,3,4,5,6,7]) via a preprocessor.

Numerous other proposals for extending Pascal to sup-
port quasi-parallel programming and simulation have appeared
in recent years [8,10,14,16,18,17]. These extensions have
been implemented either by constructing new compilers, modi-
fying existing Pascal compilers, or implementing new run-
time routines to allow the creation of processes in Pascal.
We wished to avoid the machine dependence of these implemen-
tations by coding SIMPAS entirely in Pascal. A preprocessor
implementation seems to be the only way to do this.

Succinctly stated, SIMPAS provides the following exten-
sions to Pascal:

(1) Event declaration and scheduling statements.
(2) Entity declaration, creation and disposal statements.
(3) Linked list declaration and manipulation statements.

(4) Statistics collection statements.

Bryant, Abbott, Bugarin, Rosenburg

(5) A predeclared library of pseudo-random number genera-
tors.
A brief summary of these extension statements is provided in

Section 2 of this paper. (For a more detailed description

see—the—references—cited—above)

This paper discusses the general problems of embedding
extensions like those of SIMPAS in a strongly-typed language
like Pascal. We do this by comparing two distinct versions
of SIMPAS. The first implementation (which we will refer to
as SIMPAS I), was a "quick and dirty" approach that
attempted to examine only the SIMPAS extension statements
and pass the rest of the program on to the Pascal compiler.
This version wused an ad hoc parsing technique that can be
described as recursive descent applied to the SIMPAS exten-
sion statements and the begin-end structure of the program.
SIMPAS II, on the other hand, used a table-driven, locally-
least-cost error-correcting LL(l) parser [9]. SIMPAS II
parses all the SIMPAS source, although much of the source is
passed through to the Pascal compiler unchanged. As can be
expected, SIMPAS I runs faster, is a simpler program, and is
harder to extend than SIMPAS II. However, because SIMPAS I
does not maintain a symbol table, it is unaware of types of
variables 1in the SIMPAS extension statements. This made it
impossible to implement certain desired features and compli-
cated implementation of other SIMPAS constructs. This paper

compares the implementation of these two versions of SIMPAS.

Preprocessing Pascal

In the next section of this paper we briefly describe
the extensions that SIMPAS provides for the programming
language Pascal. We then give an overview of the implemen-

tation of SIMPAS I and II and discuss the relative advan-

mance and size comparisons of the two versions are given.

The relative costs of implementation for the two versions
are then compared. In terms of cost for features imple-
mented, our conclusion is that SIMPAS I is the more cost

effective implementation.

2. Summary of SIMPAS Extensions

Syntax diagrams and brief descriptions for the SIMPAS
extension statements are shown below. More detailed
descriptions of the SIMPAS statements are available
in [5,6,7]. Descriptions of the output Pascal generated for
these statements as well as more information on the imple-
mentation of SIMPAS II is available in [3].

In this discussion keywords are underlined and angle-
brackets ("<" and ">") enclose user supplied portions of
SIMPAS statements. Square brackets are indicate optional
portions of a statement. Braces ("{" and "}“) surround a
list of alternatives separated by vertical bars ("|"). One
alternatives in the list must be chosen to create a syntac~

tically valid statement.

Bryant, Abbott, Bugarin, Rosenburg

2.1.1. Type Declarations SIMPAS provides two new type

declarations. One is used to declare temporary entity types

in the simulation, and the other is used to declare type

representing —lists—of entities. Syntax diagrams for these

type declarations are:

<entity> = queue member
<attribute~1> : <type-1l>;
<attribute-2> : <type-2>;

° L] »

end:

<queue-type> = queue of <entity>;

For reasons outlined in [3] these declarations are required
to be simple (1. e. of the form <identifier> =
<gueue declaration>) and only allowed in the global type

part of the SIMPAS program.

2.1.2. The include Statement SIMPAS wuses a symbolic

library to provide a transportable way maintain a library of
simulation support routines. The include statement indi-
cates which sections of the symbolic library are to be
included in the current program. It is found at the start
of the procedure, event, and function declaration part of

the main program and has the format:

include <section-name-list>;

2.1.3. Event Declarations An event declaration looks

exactly like a procedure declaration except that the keyword
event replaces the keyword procedure. Event, procedure, and

function declarations can be intermixed except that events

Preprocessing Pascal

must be global and cannot be declare local to a procedure,

event, or function.

2.1.4. Simulation Extension Statements These statements

can be used in a SIMPAS program anvwhere that a Pascal

statement would be acceptable.

The start simulation statement begins execution of
events under control of the simulation event sequencing rou-

tine:

start simulation(<status>)

Schedule and reschedule statements insert event notices

into the simulation event get:

schedule <event-name>([<actual parameters>]
[named <ev_ptr>]
now
at <time-expression> |
delay <time-expression> |
before <ev_ptr>
after <ev_ptr>

reschedule <ev _ptr> { at <time-expression> |
delay <time-expression> |
before <ev_ptr>

after <ev_ptr>

now

The cancel, delete, and destroy statements remove a

previously scheduled event notice from the sequencing set:

cancel <ev_ptr>
destroy <ev_ptr>

delete <ev ptr>

Insert and remove statements put or take entities from

a queue:

Bryant, Abbott, Bugarin, Rosenburg

insert <e ptr> [{first | last |
before <e_ptr>
after <e ptr> }]
in <queue>

remove [the] [{first | last}] <e ptr> from <queue>

A forall statement allows @ gspecific statement—Sto—Dbe
repeated for all members of a queue:
forall <e ptr> in <queue> [in reverse] do S

Create and destroy statements serve the functions of
new and dispose but ensure that preprocessor defined attri-

butes of the entities are properly initialized:

create <entity-list>
destroy <entity-list>

The initialize statement sets a gqueue variable to

represent an empty queue:

initialize <queue-list>

2.1.5. Watched Variables SIMPAS II provides automatic

statistics collection features similar to those of
SIMSCRIPT II.5 [13]. A variable is marked for statistics
collection by declaring it to be of a special type that we
refer to as a "watched type". A variable declared with a
watched type 1is called a "watched variable." Watched vari-
ables can be used almost everywhere normal variables can be
used. The only difference is that whenever the value of a
watched variable is changed, statistics associated with the

variable are updated as well. For further details see [3].

Preprocessing Pascal

The following statements are associated with watched

variables in SIMPAS:

clear <watched variable-list>
sreset <watched variable-list>

display <watched variable-list>

regen <watched variable=Tist>
recalc <watched variable-list>

2.1.6. Summary The SIMPAS extensions to Pascal are
intended (with minor restrictions) to appear as natural
extensions of Pascal and to be usable wherever a standard
Pascal statement could appear. The preprocessor”s task is

to translate the extension statements into standard Pascal.

3. Overall Structure of SIMPAS

Even though Pascal can be compiled in a single pass,
SIMPAS must be a two pass processor. One of the services of
the preprocessor is to create the declarations for the simu-
lation event set. The structure of this set depends on the
events declared and their arguments, and the latter are not
known wuntil the entire source program has been examined.
Therefore both SIMPAS I and II consist of two passes.

During the first pass, the input program is read and
parsed. Output from this pass 1is placed in a temporary
file. Comments are removed and SIMPAS extension statements
are translated into standard Pascal statements. The include
statement is parsed and list of section names to be included
from the symbolic library file is created. Tables contain-

ing the names of events (and their arguments), queues and

Bryant, Abbott, Bugarin, Rosenburg

gueue members are constructed. Markers are placed in the
temporary file at the beginning of the global constant,
type, variable, procedure declaration, and main procedure

parts of the program.

& ge i ” ;

stopping at each marker to insert additional declarations.
These declarations are either generated by the preprocessor

or read in from the library file.

3.1. Implementation of SIMPAS I

In the initial implementation of SIMPAS, our plan was
to examine as 1little of the input program as possible and
depend on the host-system Pascal compiler to catch most
errors. (We felt that completely parsing the input Pascal
would make the preprocessor too slow to be usable). To do
this we implemented a scanner that was called with a set of
"interesting" token types. The scanner read the tokens of
the input program and placed them in the temporary file
until a token in the interesting set was found. The scanner
then placed the interesting token in a global variable and
returned to its caller for appropriate action. The intent
was that the scanner could "stream" all uninteresting input
into the temporary file, and the preprocessor need only
examine the SIMPAS extension statements themselves. The
principle loop of the preprocessor could then be coded some-

thing like the following:

Preprocessing Pascal

["parse" body of SIMPAS program}
while not eof (input) do
begin
scan ([schedulewd, insertwd, removedwd, . . .]):
case currtoken.kind of
schedulewd: expandschedule;

insertwd: expandinsert;
removewd: expandremove;
end; {case}
.
end; Jwhile

This is possible because each SIMPAS extension statement is
identifiable from its first keyword.

The actual SIMPAS I "parser" is more complicated than
illustrated above. For example, to insert initialization
code, SIMPAS had to be able to find the beginning of the
main procedure. This meant that the begin-end structure of
the program had to be known to the preprocessor, and this

implied that begin, end and case had to become "interesting"

tokens. Additionally, the restriction that an event could
not be declared local to a procedure meant that procedures
and functions as well as nested procedures and functions had
to be known to the preprocessor.

These problems were handled by constructing a simple
recursive descent parser for the structural portions of Pas-
cal. An outline of the basic SIMPAS I parser is shown
below. For simplicity, we have eliminated most error han-
dling details from this code fragment. The key routines are
the procedures "gscan", "procscan" and "blockscan". Scan is
the scanner procedure, procscan is called at the start of

each procedure, function, or event, and blockscan recur-

Bryant, Abbott, Bugarin, Rosenburg

sively examines begin-end and case-end blocks. Blockscan
also calls the appropriate expansion routines when SIMPAS

extension statements are encountered.

rocedure procscan;
enter at start of procedure, function, or nested event }

begin { proc procscan

{nested event declaration}
if currtoken.kind=eventwd then error;

{output function, event, or procedure keyword}
putout(currtoken);

{ look for next procedure, function, event, forward,
or begin
scan([procwd, funcwd, eventwd, beginwd, forwardwd 1);

if currtoken.kind = forwardwd then
forwarded function or procedure
output the "forward"
putout (currtoken)
else
begin
process nested proc or func }
while (currtoken.kind <> beginwd) do begin
procscan;
scan([procwd, funcwd, eventwd,
forwardwd, beginwd]);
end; { while
examine the body of the current procedure }
blockscan:
end; | else

end; | proc procscan }

rocedure blockscan;
process begin-end, case-end blocks recursively
call expansion routines to expand SIMPAS extension
statements}

begin

[output current block opener (either case or begin) }
putout (currtoken);

[blockset consists of the reserved words: start, cancel,

delete, schedule, reschedule, begin, case, destroy,
forall, insert, remove, function, procedure, event,

10

Preprocessing Pascal

and end }
scan(blockset);

while (currtoken.kind <> endwd) do begin
case currtoken.kind of

startwd, cancelwd, deletewd,

destroywd, reschedulewd,

schedulewd, forallwd, insertwd, removewd:
call appropriate "expansion" routine
to expand this SIMPAS statement into
standard Pascal

3 ° L

{ recursively examine nested blocks }
beginwd,
casewd : blockscan;
end; { case
scan{ blockset):
end; { while }

{ output the "end" }
putout(currtoken);

end; { proc blockscan }

begin [part of main procedure of preprocessor |

{ examine global const, dec, var parts }
decscan;

{ process procs, funcs, events at program level }
scan([procwd, funcwd, eventwd, beginwd]):

{ mark start of procedure declaration part for second pass 1
writeln(tempfile, flagchar);

while (currtoken.kind in [procwd, funcwd, eventwd]) do begin

{all events should be found here unless nested inside a procedure
if (currtoken.kind = eventwd) then expand event
process function or procedure
else if currtoken.kind in [procwd, funcwd] then procscan;

scan([procwd, funcwd, eventwd, beginwd 1):

{finding begin or eof indicates no more procs,
funcs, events to examine}l

11

- yrite(tempfile, flagchar, mainflag:1);

Bryant, Abbott, Bugarin, Rosenburg

end; { while }
[should have found begin of main procedure at this point}

if currtoken.kind <> beginwd then error
else
begin

[flag beginning of main program }

{process body of main }
blockscan;

[check end of program }

scan(alltokenset);

if (currtoken.kind <> periodtoken) then error;
putout (currtoken) ;

end:;

end.

The procedure decscan (not shown here) is responsible
for marking the beginning and end of the global constant,
type, variable, and procedure declaration parts of the pro-
gram, as well as expanding the queue and queue member type
declarations. All other declarations are ignored. Thus the
SIMPAS I preprocessor 1is unaware of the names and types of
user declared variables. The result is that the SIMPAS T
preprocessor cannot generate code dependent on the type of a

variable in a SIMPAS extension statement.

3.2. Implementation of SIMPAS II

SIMPAS II is based around a 1locally-least-cost error-
correcting LL(1) parser [9] that we modified from [15].

Most Pascal keywords are echoed by the parser directly into

12

—first of these normally —turns off —the default

Preprocessing Pascal

the pass 1 temporary file as a "default" semantic action.
However, as soon as a SIMPAS extension statement is encoun-

tered, appropriate semantic action routines are called. The

semantic

action so that the expanded Pascal representing the SIMPAS
statement can be output instead. A complete symbol table is
maintained. It includes the types, variables, procedures,
functions, and events declared in the current program. This
version of SIMPAS corresponds in many ways to the front end
of a Pascal compiler.

If it were not for the presence of "watched variables",
most expressions could be passed through SIMPAS IT
unchanged. However, each time a watched variable 1is used,
the preprocessor must output a modified version of the
expression containing the watched variable. Since the only
way to determine if an identifier is a watched variable or
not is to look it up in the symbol table, semantic process-
ing of each expression in the SIMPAS program is necessary.
The result is that echoing of tokens into the temporary file
by the parser is more often off than on. Further details of

the SIMPAS II implementation are given in [3].

4. Comparison of SIMPAS I and II

4.1. Features Supported SIMPAS I is limited in two pri-

mary respects: (1) It only understands a little Pascal syn-
tax and (2) It is unaware of the types of user variables

found 1in SIMPAS extension statements. The first limitation

13

Bryant, Abbott, Bugarin, Rosenburg

meant that the body of a forall loop could not be an arbi-
trary Pascal statement, since the SIMPAS I preprocessor had

no way of recognizing the end of an arbitrarily complex Pas-

cal —statement. —(Code to update the forall loop—-index needs

to be placed at the end of the forall loop body.) To solve
this problem, the SIMPAS I preprocessor required the body of
a forall loop to be surrounded by a begin-end pair, even if
the body consisted of only a single statement.

The second restriction is more severe because it meant
that many of the statements described in Section 2 could not
be implemented or had to be implemented in space inefficient

ways. For example, the initialize g statement is translated

by SIMPAS II to a call on a procedure i <queue> where
<gqueue> 1is the type of g. (This procedure is generated by
the preprocessor as a side effect of processing the queue
declaration.) In the SIMPAS I version, the type of g was
unknown during preprocessing, so the preprocessor could not
determine which i <queue> call to generate. Instead the
user had to call i <queue> directly. For similar reasons,
SIMPAS I did not support the create and destroy <entity>
statements, nor was SIMPAS I capable of supporting watched
variables. These services were provided by subroutines
called by the user.

Another problem with SIMPAS I occurred in expansion of
insert and remove statements. Since neither the type of the
<entity> to be inserted nor of the <gueue> to be inserted in

were known to the preprocessor, no compatibility checking

14

Preprocessing Pascal

could be done at preprocessing time. Worse yet, since the
preprocessor did not know the type of <gueue>, it could not
call a procedure to do the insertion or removal.* Instead

—the ingert and remove code had to be generated inline at—an

expense of about 10 Pascal statements per insert or remove
statement.

SIMPAS I also had trouble recognizing the ends of
expressions in SIMPAS statements. For example, consider the

expression between "at" and "else" in the statement:

if exponential arrivals then
' schedule arrival
at expo(arrival ratefudisc(l,3,2)],stream)+3.0
else
schedule arrival delay 50;

This expression must be picked up and saved so that it can
be passed to the event set insertion routine. But how does
the SIMPAS I preprocessor recognize the end of this expres-
sion? The basic rule we eventually came up with was "pick
up all tokens until £finding a semi-colon, end, or else
token". This was hardly a satisfying solution.

A final problem with SIMPAS I was error correction and
recovery. If an error was detected while expanding a SIMPAS
extension statement, the expansion routine terminated and

returned control to the parser, which in turn called the

Because of the strong typing in Pascal, each insertion or
removal procedure had to be dedicated to a particular queue
and entity type pair. Use of records with wvariants as a
representation for queues and queue members was discarded
because this would not supply a sufficiently secure imple-
mentation method [3]. 1]

15

Bryant, Abbott, Bugarin, Rosenburg

scanner with the current set of interesting tokens. Mis-
placement of «critical tokens (e. g. the begin of the main

program) was treated as a fatal error.

These problems were corrected in SIMPAS II. For exam-

ple, the forall 1loop was added as a new statement type in

the SIMPAS grammar:

<STMT> s:= . /* other statements */
forall <VAR> in <VAR> do <STMT> |

Similarly, since SIMPAS II maintains a complete symbol
table, the types of all variables in an insert or remove
statement are known and can be checked for compatibility.
Type specific insertion and removal routines for each queue
type can be generated and called when queues of that type
are referenced in an insert or remove statement. This
avoids the 1inline expansion of these statements as in
SIMPAS I. Since expression syntax is known, the problem of
recognizing the end of an expression disappears. Finally,
error correction is done by the parser so that the semantic
routines need never deal with a syntactically erroneous pro-
gram.

4.2. Program Complexity SIMPAS I is about 4900 1lines of

Pascal, while SIMPAS II is about 7200 lines of Pascal. The
difference in size is made more apparent when examining the
size of the object programs (see Table T). One can see that

SIMPAS II is nearly twice as large as SIMPAS 1I.

16

Preprocessing Pascal

version code initialized data uninitialized data total

I 47104 22528 7708 77340

IT 75776 23552 47060 146388
Table T

Size of SIMPAS I and II Preprocessors
(in bytes, for a VAX/11-780)

SIMPAS II is also significantly slower than SIMPAS I
(see Table II). Our original intuition that SIMPAS I would
be faster than a grammar based version is seen to be
correct. However, SIMPAS II clearly performs much more work
than SIMPAS I so that this comparison is not completely
fair. Each version spends about 80% of its time in the
scanner and the primary execution time differences between
the two versions is mostly due to the more complex scanner
used by the FMQ parser.

Tables III and IV show a division of the 4900 lines of

SIMPAS I and the 7200 lines of SIMPAS II into modules.

SIMPAS Execution times
Program (VAX 11/780)
Length SIMPAS I SIMPAS II
166 lines 7.7s 10.3s
1310 lines 35.2s 54.2s
2989 lines 64.0s 100.8s
Table II

Execution times of SIMPAS I and II

17

Bryant, Abbott, Bugarin, Rosenburg

function lines percent of total lines
;igggi_éeclarations _;12 ———————————— é; ___________
scanner 752 15%
parser 554 11%
semantic and code
generation routines 1339 27%
pass 1l&2 & main program 1222 25%
utilities 627 13%
Total 4908
Source library file 906
Table TIII

SIMPAS I Module Sizes

18

Preprocessing Pascal

function lines percent of total lines
declarations 610 8s
scanner 501 78
FMQ parser, error 1562 22%

corrector, etc.

semantic and code

generation routines 2575 35%
pass 1l&2 & main program 958 14%
utilities 1030 14%

(symbol table, input
and output, dump routines)

Total 7236

Other supporting routines:

SIMPAS Grammar 316

FMQ Parser Generator 4341

Source library file 1495
Table VI

SIMPAS II Module Sizes

The semantic and code generation routines of SIMPAS II are
more complex because of the additional semantic actions
required for watched variables, symbol table maintenance and
the like.

Since we did not implement the FMQ parser and parser
generator (these were essentially unmodified from that
of [15]), the lengths of these pieces of code should be
subtracted from the total length to compare the implementa-

tion effort of each version. When these 1800 1lines (code

19

Bryant, Abbott, Bugarin, Rosenburg

plus declarations) are subtracted, it appears that the
amount of new code implemented for each version is about the

same (4900 lines versus 5400 lines). However, SIMPAS II is

a more complex program than SIMPAS I. For example, a typi-

cal SIMPAS statement 1is parsed in the following way.
Several intermediate semantic routines are called that pick
up portions of the SIMPAS statement and record information
on the semantic stack. Toward the end of statement parsing,
a final semantic routine is called that examines the seman-
tic stack and outputs the appropriate Pascal code. If an
error is now detected, it can be a non-trivial task to
determine where the error occurred. While this organization
is typical of most syntax directed compilation techniques,
it is more complex than the SIMPAS I parser.

On the other hand, for obvious reasons, it is easier to
extend SIMPAS II than it is to extend SIMPAS I. 1In general,
all that is required to add a new statement to the language
accepted by SIMPAS II is to update the grammar, rebuild the
parse tables, add the new semantic routines and proceed.
Extending SIMPAS I requires that the extension statements
fit within the confines of the SIMPAS I parser. One of the
reasons for implementing SIMPAS II was that SIMPAS I had
reached the limits of the language that it could process.
To continue our investigations into simulation and queueing
network modelling software implementation, it was clear that

we needed a more powerful preprocessor than SIMPAS I.

20

— to Summer 1981%

Preprocessing Pascal

5. Use of SIMPAS
SIMPAS I has been use in the Computer Sciences Depart-

ment at the University of Wisconsin-Madison from Spring 1979

Tt has been used for a variety of —computer——

system related simulation projects (cf. [2,19]) as well as
for teaching a graduate level computer science course in
simulation.

SIMPAS II was completed during the Fall of 1981, so we
have had less experience with its use. However, we have
converted five SIMPAS I simulations to SIMPAS II and counted
the number and type of SIMPAS extension statements that were
used in each simulation. The lengths and number of events
declared 1in each of these simulations is given in Table V.
(For a discussion of the simulations themselves see [5]).

As can be seen, none of these simulations are in the
10-15,000 1line range sometimes encountered in industrial

applications. In an academic environment, however, DISTCC

Program Lines Events Declared
DISTCC 2989 11
PROTOC 1555 9
NETPAC 1609 1
P5 1309 8
MM1SIM 159 2

Table V

Sizes of Example Simulations

21

Bryant, Abbott, Bugarin, Rosenburg

would be regarded as a large simulation program and each of

the

next three would be considered typical of simulations

designed to explore computer architecture or operating sys-

tems performance questions

—S.OLQ

SIMPAS Statement Usage Counts of the number of SIM~-

PAS extension statements used in each of the simulations are

given in Table VI.

The table shows that the number of insert and remove

statements is small. 1Inline expansion of these statements

would not increase program length significantly.

Statement DISTCC PROTOC NETPAC P5 MM1SIM
event 22 18 2 8 3
schedule 13 23 11 8 4
reschedule 0 5 0 4 1
cancel 0 0 0 3 0
create 4 8 3 3 1
destroy 3 4 1 3 1
insert 6 11 4 6 2
remove 5 8 6 3 1
forall 3 0 33 6 0
initialize 2 6 16 3 1
<command> 42 0 11 15 6
Table VI

SIMPAS Extension Statement Use

NOTES :
(1) The number of event statements may be more than

number of events declared due to the presence of for-

warded events.

(2) A <command> is a statement of the form <identifier>
<identifier> that is not a create, destroy or initial-

ize statement. Examples are clear or display.

22

Preprocessing Pascal

All the programs (except for PROTOC) use a substantial
number of <command>“s. In SIMPAS I, these commands are

implemented by procedure calls, while in SIMPAS II, the

<command>"s 100k like SIMPAS extension statements. The pri-

mary advantage of the latter approach is that the user need
not remember the type of the variable to be cleared, ini-
tialized etc. SIMPAS II remembers this information for the
user. To do so, SIMPAS II must parse and remember all vari-
able declarations in its symbol table. This is a non-

trivial task.

5.2. Statistics, Queue and Queue Member Declarations The

extension types declared and number of variables declared of
each type in the five example simulations are given in
Table VII. The counts of declared variables do not include
declarations of pointers to objects that contain queues or
watched variables. Thus there are watched variables

declared in NETPAC and there are queue variables declared in

DISTCC PROTOC NETPAC P5 MM1SIM

member types 3 1 2 2 1
gueue types 3 1 2 2 1
member vars 34 16 35 14 2
gueue vars 4 5 1 0 1
watched vars 21 0 0 11 2
assign to

watched var 26 0 10 16 3

Table VII

SIMPAS Extension Types Use

23

Bryant, Abbott, Bugarin, Rosenburg

P5 but these are declared within records that are only
accessed by pointer variables.

We note the small number of assignments to watched

variables in these programs. This is in part due to the

straightforward transliteration of the programs from
SIMPAS I to SIMPAS II, but it seems to imply that statistics
are collected and then assigned to a watched variable. For
example, the number of preemptions a job in service at a CPU
might be counted during the execution time of the job and
then this total assigned to a watched variable when the job
departs. The explicit assignment mechanism for watched
variables in SIMPAS I (a procedure call) seems as well
suited for this type of statistics collection as does the
automatic statistics collection feature of SIMPAS II. The
latter, as we have pointed out, requires significant imple-

mentation effort.

5.3. Summary The SIMPAS I implementation has been used
for more than 100 simulation programs. Error recovery is
not as good as in SIMPAS II, but most users report that they
rarely encountered a SIMPAS error; most errors were those
found by the host system”s Pascal compiler. The primary
advantage of SIMPAS II is the implementation of watched
variables. These can be replaced by the explicit statistics
collection routines of SIMPAS I. The user, therefore, is
likely to be unwilling to pay the increased preprocessing

costs associated with SIMPAS II.

24

Preprocessing Pascal

From the implementor”s point of view, the SIMPAS II
implementation is much simpler to extend than SIMPAS I.

However , SIMPAS II is a more complicated program and it is

fair to say that it 1is not currently as reliable as

SIMPAS I. From these considerations, we would say that
SIMPAS I met its implementation goals and at a much lower
cost for benefit derived than does SIMPAS II.

Both implementations are substantially more complicated
than the implementations of coroutines or quasi-parallel
programming in Pascal (e. g. [8,14]). Some of these pack-
ages required only a few man-weeks to implement. The

difference is the cost of making SIMPAS portable.

6. Concluding Remarks

In general, the preprocessing of a highly-structured
language such as Pascal is more complicated than preprocess-—
ing a language such as FORTRAN. Unless one is willing to
create 1inline code for the extension statements, it appears
that a successful preprocessor for Pascal must be aware of
the types of variables present in the extension statements.
Otherwise, the preprocessor will often be unable to deter-
mine the correct translation of a statement. If the exten-
sion statement is at all complex (such as the insert and
remove statements of SIMPAS) it will be advantageous to gen-
erate a procedure call instead of the 1inline code. Addi-

tionally, if the extension statements include new control

structures (such as the forall statement in SIMPAS), the

25

Bryant, Abbott, Bugarin, Rosenburg

preprocessor must be aware of Pascal statement syntax.
Thus, a successful preprocessor for Pascal must be nearly a

complete front end for Pascal.

Ifone is willing to accept a less than perfect —imple~

mentation of the extension constructs, simpler preprocessors
can be created. SIMPAS I does provide a usable service, at

the expense of some "syntactic sugar" (e. g. clear, initial-

ize) and increased output program size. From the user’s
standpoint, the primary advantage of SIMPAS II over SIMPAS I
is the facility for automatic collection of simulation
statistics. Given the difference 1in program complexity
between the two versions, it 1is not clear that this advan-
tage has completely Jjustified the implementation effort.
Finally, when comparing the implementation effort required
to make SIMPAS as portable as it is to the effort required
to implement coroutines or quasi-parallel programming exten-
sions to Pascal, it appears that the cost of making SIMPAS
portable has been very high in relation to the results

obtained.

7. Acknowledgements

M. Abbott, J. Bugarin, and B. Rosenburg are primarily
responsible for the implementation of SIMPAS and without
their assistance the project would never have been com-
pleted. Prof. R. Finkel was one of the earliest users of
SIMPAS, and his perseverance in dealing with the early ver-

sions helped us to produce a usable preprocessor. I also

26

would

Preprocessing Pascal

like to acknowledge the support of the Madison

Academic Computing Center, and in particular the assistance

provided by its director, Dr. T. B. Pinkerton.

REFERENCES

[11]

[2]

[3]

[4]

[5]

[6]

[71

[8]

191

Bryant, R. M., "SIMPAS -- A Simulation Language Based
on PASCAL," Proceedings of the 1980 Winter Simulation
Conference, pp. 25-40 (December 3-5, 1980).

Bryant, R. M. and R. A. Finkel, "A Stable Distributed
Scheduling Algorithm," Proceedings of the 2nd Interna-
tional Conference on Distributed Computing Systems,
(April 8-10, 1981).

Bryant, R. M., M. B. Abbott, J. R. Bugarin, and B. 8.
Rosenberg, "Implementation of SIMPAS," Computer Sci-
ences Department Technical Report, University of
Wisconsin--Madison (in preparation, 1981).

Bryant, R. M., "Micro-SIMPAS: A Microprocessor Based
Simulation Language," Proceedings of the Fourteenth
Annual Simulation Symposium, pp. 35-55 (March 17-20,
1981).

Bryant, R. M., "Experience with SIMPAS," Computer Sci-
ences Department Technical Report #455, University of
Wisconsin--Madison (November 1981). Submitted for pub-
lication.

Bryant, R. M., "SIMPAS 5.0 User Manual," Computer Sci-
ences Department Technical Report $#456, University of
Wisconsin--Madison (November 1981).

Bryant, R. M., "A Tutorial for PASCAL Users on Simula-
tion Programming with SIMPAS," Computer Sciences Techn-
ical Report #$#454, University of Wisconsin--Madison
(October 1981). Also Proceedings of the 1981 Winter
Simulation Conference, Atlanta, Georgia, December 9-11,
1981.

Deminet, J. and J. Wisiniewska, "Simpascal," Pascal
News, pp. 66—-68 (March 1980). Newsletter of the Pascal
User”s Group.

Fischer, C. N., D. R. Milton, and S. B. Quiring, "Effi-
cient LL(l) error correction and recovery using only
insertions," Acta Informatica 13, 2, pp. 141-154
(1980).

27

[10]

[11]

Bryant, Abbott, Bugarin, Rosenburg

Kaubish, W. H., R. H. Perrot, and C. A. R. Hoare,
"Quasiparallel Programming," Software--Practice and
Experience 6, pp. 341-356 (1976).

Kernigham, B. and P. Plaugher, Software Tools,
Addison-Wesley (1976).

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Rational FORTRAN," Softwa}e——Practice and Experience 5,
4, pp. 395-406 (Oct.-Dec. 1975).

Kiviat, P. J., R. Villanueva, and H. M. Markowitz,
SIMSCRIPT II.5 Programming Language, C. A. C. I., Inc.,
12011 San Vicente Boulevard, Los Angeles, California
(1974).

Kriz, J. and H. Sandmayr, "Extension of Pascal by
Coroutines and its Application to Quasi-Parallel Pro-
gramming and Simulation,” Software--Practice and
Experience 10, pp. 773-789 (1980).

Mauney, J., "FMQ User”s Guide," Computer Sciences
Department Technical Report, University of Wisconsin-
-Madison (in preparation, 1981).

Noodt, Terje and Dag Belsnes, "A Simple Extension of
Pascal £for Quasi-Parallel Processing," Sigplan Notices
_];é, 5’ ppo 56"'65 (1980) °

Rooda, J. BE., N. G. M. Blokhuis, and C. Bron, "Discrete
Event Simulation in Pascal," Department of Mecahnical
Engineering Technical Report #7, Twente University of
Technology, Enshede, The Netherlands (April 1981).

Welsh, J. and M. McKeag, Structured System Programming,
Prentice-Hall (1980).

Wilkinson, W. K., "Database Concurrency Control and
Recovery in Local Broadcast Networks," Computer Sci-
ences Technical Report #448, University of Wisconsin-
-Madison, Madison, Wisconsin (September 1981). Ph. D.
Thesis.

28

