IMPLEMENTATION OF SIMPAS

by

R. M. Bryant, M. B. Abbott,
J. R. Bugarin, B. S. Rosenburg

Computer Sciences Technical Report #459

November 1981

Implementation of SIMPAS*

R. M. Bryant, M. B. Abbott,
J-—R.Bugarin, B. S. Rosenburg

Department of Computer Science
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, Wisconsin 53706

SIMPAS is a portable, strongly-typed, event-oriented,
discrete-system simulation language embedded in Pascal. It
extends Pascal by adding statements for event declaration
and scheduling, entity declaration, creation and destruc-
tion, linked list declaration and manipulation, and statis-
tics collection. A library of standard pseudo-random number
generators is also provided.

SIMPAS is implemented as a preprocessor for Pascal.
This paper discusses the design and implementation of SIM-
PAS, and the difficulties involved in preprocessing a
strongly~typed language like Pascal.

keywords: simulation, preprocessor, Pascal

* This work was supported in part by the Wisconsin Alum-
ni Research Foundation and through NSF grant MCS-800-3341.

Authors present addresses: R. M. Bryant is with the
IBM T. J. Watson Research Center, Yorktown Heights, N. Y.
M. B. Abbott is with Bell Laboratories, Denver, Colorado.
J. R. Bugarin is with the Hewlett Packard Desktop Computer
Division, Ft. Collins, Colorado. B. S. Rosenburg is with
the Computer Sciences Department, University of Wisconsin-
Madison, Madison, Wisconsin.

l. Introduction

Over the past two years, we have been developing a

strongly-typed, discrete-system simulation language embedded

in Pascal. SIMPAS is the result of this development effort.

Succinctly stated, STMPAS provides the following exten-

sions to Pascal:

(1) Event declaration and scheduling statements.

(2) Entity declaration, creation and disposal statements.

(3) Linked list declaration and manipulation statements
(gqueues) .

(4) Automatic statistics collection facilities.

(5) A predeclared library of pseudo-random number denera-
tors.

A primary design goals of SIMPAS was to make it highly
portable while still retaining the full execution speed of
the host machine. Implementing SIMPAS by an interpreter
(c. £. [17]) could meet the former goal but not the latter.
Additionally, we were more interested in the simulation
extensions to Pascal instead of the problems of generating
code for expressions and Pascal control structures. For
these reasons, we decided to implement SIMPAS as a prepro-
cessor for Pascal. Given the existence of Pascal compilers
for many machines, and provided we adhered to the "standard"

Pascal subset [16] we felt that the resulting program should
be trivially transportable from machine to machine.
Numerous other proposals for extending Pascal to sup-

port quasi-parallel programming and simulation have appeared

SIMPAS Implementation

in recent years [8,18,21,22,23,25]. These extensions have
been implemented either by constructing new compilers, modi-
fying existing Pascal compilers, or implementing new run-

time —routines to—allow the creation of processes—in Pascal-

We wished to avoid the machine dependence of these implemen-
tations by coding SIMPAS entirely in Pascal. A preprocessor
implementation seems to be the only way to do this.

Given the decision to implement SIMPAS as a preproces-
sor, our second design goal was to make the extension state-
ments appear as natural extensions of Pascal. For example,
having the extension statements flagged via special charac-
ters in the SIMPAS source was not regarded as an acceptable
solution. The result of this design goal is that on most
systems where SIMPAS is installed, the preprocessing and
compilation ©phases are <called by a unified command pro-
cedure, so that the user need not know that translation of a
SIMPAS program is a two step process. This decision compli-
cated our implementation effort considerably as we shall
discuss in the sequel.

In the next sections of this paper we first describe in
a general way the implementation of SIMPAS. We then discuss
the simulation extensions that SIMPAS provides for the pro-
gramming language Pascal. We then illustrate the Pascal
translations of some typical SIMPAS statements. Having
described the task that the SIMPAS preprocessor must per-
form, we next describe the implementation of SIMPAS itself.

Finally, we discuss the difficulties we have encountered in

Bryant, Abbott, Bugarin, Rosenburg

creating a preprocessor for a block structured, strongly-
typed language such as Pascal and comment on the success of

this approach for the implementation of SIMPAS.

2. Overall Structure of SIMPAS

SIMPAS consists of the preprocessor program itself
(about 7800 1lines of Pascal) and three files that contain
the parse table, the error correction table, and a symbolic
library. The first two files are used by FMQ [11], the
table-driven, locally-least-cost error-correcting parser
used by SIMPAS. These files are generated by the FMQ parser
generator from the SIMPAS grammar and will not be described
here. (For details of the SIMPAS grammar see Section 5.)
The symbolic library is necessary because there is (at
present) no commonly accepted standard for external compila-
tion in Pascal. Thus the only completely transportable way
to build a 1library 1is to do it at the symbolic level. A
SIMPAS extension statement (include) indicates which por-
tions of the symbolic library are to be included in the pro-
gram.

Even though Pascal can be compiled in a single pass,
SIMPAS must be a two pass processor. This is because the
SIMPAS preprocessor builds the declarations for the simula-
tion event set. The structure of this set depends on the of
events declared and their arguments, and the latter are not

known until the entire source program has been examined.

SIMPAS Implementation

An alternative approach would have been to insert an
"event" declaration part following the label declaration
part in a SIMPAS program. The event declaration part would

include the event names and the names and types of the event

arguments. We did not use this approach Dbecause (1) we
wished an event declaration to be as similar as possible to
a procedure declaration and (2) using the alternative imple-
mentation, event arguments would often be declared via type
identifiers that had not vyet been declared (since the
"event" declaration part precedes the type declaration
part). While the output Pascal would be properly ordered,
the SIMPAS source program would thus violate normal declara-
tion rules in Pascal. Because of these problems we adopted
the two-pass approach.

During the first pass, the input program is read and
parsed. Comments are removed and SIMPAS extension state-
ments are translated into standard Pascal statements. The
include statement is parsed and a list of section names to
include from the library file is created. A symbol table
containing all identifiers declared in the program is built.
Markers are placed in the temporary file at the beginning of

the global constant, type, var, procedure, and main pro-

cedure parts of the program.

The second pass copies the output of the first pass to
the output, stopping at each marker to insert additional
declarations. Program dependent declarations are built by

the preprocessor and inserted at these points. Program

Bryant, Abbott, Bugarin, Rosenburg

independent declarations are added from the symbolic
library. To simplify this task, the library file is divided

into const, type, var, procedure and main (initialization)

parts. Within each part are sections that correspond to the

section names given on the include Statement. When the
const-part marker 1is encountered, the requested sections
from the const part of the library file are added at the top
of the const part of the output Pascal program. This task
is repeated for each of the other markers.

Normally the only place a section is found 1is in the
procedure part of the library file. However, if that pro-
cedure requires a global type or variable declaration, all
that needs to be done is to include that section name and
the appropriate declaration in the type or var part of the
library file. These declarations will be included in the
output Pascal along with the procedure. Thus the include
statement implements a significantly more intelligent source

level inclusion mechanism than is supported by most systems.

3. SIMPAS Extensions to Pascal

This section describes the simulation extensions to
Pascal that have been incorporated into SIMPAS. These
extensions were inspired by the simulation features of
SIMISCRIPT II.5 [20], and in many ways SIMPAS can be thought
of as a strongly-typed implementation of SIMSCRIPT.

We assume that the reader is familiar with both Pas-

cal [16] and the basic concepts of event-oriented discrete-

SIMPAS Implementation

system simulation [12]. For simplicity, this presentation
skips some non-essential details. A more precise descrip-
tion of the language extensions is available in the latest

version of the SIMPAS user manual [2].

3.1l. Event Declaration

An event declaration has exactly the same syntax as a
Pascal procedure declaration, except that the reserved word
event replaces the reserved word procedure. Events must be
declared 1local to the main procedure. They cannot be
declared local to an event or procedure, nor can they be
declared with var arguments. The first restriction is
necessary so that the event routine can be called from the
simulation control routine, and the latter is enforced
because the event routine is called with a copy of the
actual parameters stored in an event notice. Hence all

parameters are effectively passed by value.

3.2. Start Simulation

To activate the simulation (i. e. call the simulation

control routine) one uses the statement:

start simulation(status)

Here status is an integer variable that is passed by refer-
ence to the simulation control routine. Status is set by
the simulation control routine to indicate why the simula-

tion terminated. (See [2] for further details.)

Bryant, Abbott, Bugarin, Rosenburg

While the simulation is active, the global, real, wvari-

able "time" gives the current simulation time.

3.3. Event Scheduling Statements

Event notices are created and inserted into the event

set by scheduling statements that are similar to those of
SIMSCRIPT II.5 [20]. Typical scheduling statements have the

form:

schedule <event-name> at <time-expression>
schedule <event-name> delay <time-expression>
schedule <event-name> now

The <event-name> may be followed by an <actual-argument-
list> if so required.

The difference between schedule at and delay is that
the time expression in the first case is an absolute simula-
tion time, while in the sgecond case the time expression
gives how long in the future the event should occur. The
now phrase schedules an event to occur immediately.

An event must be declared before it is scheduled. This
means that any scheduling statement referring to a particu-
lar event must lexically follow the declaration for that
event. To allow this in general, an event declaration can
be forwarded exactly like a Pascal procedure.

Each execution of a scheduling statement causes the
generation of an event notice and the insertion of the event
notice into the event set. The event arguments and the exe-
cution time of the event are stored in the event notice.

The event notice contains the information necessary to

SIMPAS Implementation

execute the event.
To identify a particular event execution, it is suffi-
cient to identify that event notice. The named clause in a

_schedule statement can be used to retain a pointer to the

event notice generated by a scheduling statement. The form

of the named phrase is, for example:

schedule <event> named <this event> <time-specifier>

where <time-specifier> is one of: now, at <time-expression>,
etc. The wvariable <this_event> must be declared as type
"ptr_event" (pointer to event notice).

Given a pointer to an event notice, it can be removed

from the event set by using the cancel statement:
cancel <event-pointer>

To put an event notice back into the event set, one uses the

reschedule statement. The reschedule statement has the same

form as a schedule statement except that one specifies a
variable of type pointer to event notice instead of an event
name. The actual arguments of the event remain the same as
those on the original schedule statement.

When an event routine is called, a pointer to the event
notice is placed in the global variable "current"., Thus if
the user wishes to reschedule the current event at a later

time he can say

reschedule current <time-specifier>

If "current" is not rescheduled by the event routine, the

Bryant, Abbott, Bugarin, Rosenburg

event notice is automatically destroyed when the event rou-

tine returns.

3.4. Queue Handling Statements

SIMPAS also provides SIMSCRIPT II.5 like "sets". Since

Pascal already includes "sets" of a different kind, we use
the terminology "queue" to describe the SIMPAS structures.
A queue consists of a particular type of entity. Only enti-

ties of that type can be placed in the queue.

jw

-4.1. Entity and Queue Declarations One declares an

entity type in the global type declaration part of the pro-
gram; the declaration has syntax similar to that of a record

declaration:

type
<entity> = gueue member
<attribute_ 1> : <type 1>;
<attribute 2> : <type 2>;

. ° °

end;

Using the normal simulation terminology, the fields of this
record declaration are referred to as the "attributes" of
the entity. However, unlike a record declaration, this
declaration results in <entity> being a pointer type, since
this is the natural declaration for a temporary entity.* The

trailing """ is included to remind the user that <entity> is

*Temporary entities are dynamically created during the
simulation. Permanent entities, on the other hand, are
static and remain in existence throughout the simulation.
Arrays of records are the natural representation of per-
manent entities in Pascal [3].

10

SIMPAS Implementation

a pointer type. It can be omitted if desired.
One declares a particular instance of an entity as fol-

lows:

var

<an entity> : <entity>:

<another entity> : <entity>;

Then <an_entity> and <another entity> represent two dif-
ferent <entity>’s. Attributes of each distinct entity are

referred to as follows:

<an_entity>".<attribute 1>
<another entity>".<attribute 2>

Entities by themselves are not very useful unless they
can be stored and accessed easily. In SIMPAS, a collection
of entities can be placed in a queue and retrieved in order
for later processing. To declare a queue one first declares

a gueue type:

type
<queue-type> = queue of <entity>;

where <entity> must be a previously declared dgqueue member.

This declaration may only appear in the global type part of
the program. 1In any var part of the program (or procedure)

one can declare a particular queue with a declaration like:

yar
<gqueue> : <gueue-type>;

3.4.2. Entity Creation and Disposal Since a variable of

type dgqueue member is a pointer variable, one can use the

standard Pascal procedure "new" to <create new entity

11

Bryant, Abbott, Bugarin, Rosenburg

instances. However, there is no guarantee that all the
fields of an entity created in this way will be consistent,
since Pascal does not require the initialization of vari-

—————————ables—allocated-by "new" -tor—of —variables——in—general—for———

that matter). To make sure that the preprocessor defined
fields of an entity are properly initialized, SIMPAS pro-

vides the create and destroy statements:

create <an_entity>;
destroy <an _entity>;

Create uses "new" to allocate a new entity and then initial-
izes the preprocessor defined fields. Similarly, destroy
calls "dispose" but will first insure that the entity is not
currently in a queue, since this could result in dangling

pointer errors.

3.4.3. Queue Initialization Queues in SIMPAS are

represented as doubly linked lists with head nodes. Before
any entity may be inserted in a queue, the queue must be
initialized by allocating the head node and setting the
queue attributes to represent an empty queue. Attempting to
place an entity in an uninitialized queue will result in

unpredictable behavior. The initialize statement is used to

initialize a queue:

initialize <queue>;

12

SIMPAS Implementation

3.4.4. Queue Manipulation Statements To insert or remove

entities from a queue, SIMPAS provides insert and remove

statements. To insert an entity last in a queue one can say

either:

ingert <an_entity> last in <queue>;
or
insert <an_entity> in <queue>;

Similarly, one can place the entity at the front of the

gqueue by

insert <an entity> first in <queue>;

To remove a particular entity from a queue one uses the

statement:
remove <an_entity> from <queue>;

Corresponding to insert first and insert last statements are

the statements:

remove the first <new entity> from <queue>;
remove the last <new_entity> from <queue>;

In all cases, the inserted (removed) entity must be of
a type that matches the specified queue. Attempts to insert
or remove entities in queues of the wrong type are detected

during preprocessing. Other errors, such as attempting to

insert an entity into a queue when it is already in a queue,
attempting to remove an entity from a queue it is not in,

and so forth are detected at run time.

13

Bryant, Abbott, Bugarin, Rosenburg

3.4.5. Forall Loops To simplify searching queues, SIMPAS

provides the loop statements:

forall <e ptr> in <queue> do S;

forall <e ptr> in <queue> in reverse do S;

If <queue> 1s empty then S is not executed.

The statement S must not include a remove <e ptr> from
<gueue> statement. Otherwise the 1link structure used to
implement the loop could be destroyed while the loop is exe-

cuting.

3.5. Pseudo-random Number Generation

A standard collection of pseudo-random number genera-
tors are provided in the SIMPAS library and can be incor-
porated in the user program through the include statement.
These routines all depend on a single uniform random number
generator, a portable version of LLRANDOM [12] usable on all
machines with a word size of 32 bits or larger. A 16 bit
version of this generator is also available, but is much
less efficient. Given the existence of the basic uniform
random number generator, random number generators for the

following distributions are provided:

exponential poisson

binomial discrete uniform
general discrete normal

lognormal gamma

er lang continuous uniform
beta hyperexponential

The generation algorithms were taken from [12].

14

SIMPAS Implementation

3.6. Statistics Collection

A requirement of a simulation language is that it
should provide support for the collection of simulation

statistics. SIMPAS provides automatic statistics collection

features sgimilar to those of SIMSCRIPT II. 5. Statistics

> A e e e

collection is enabled for a particular variable by declaring
it to be of a special (predefined) type, which we will refer
to as a "watched type". A variable declared in terms of a
watched type will be called a "watched variable." For exam-
pPle, to enable time-averaged statistics collection of a real
variable, one declares the variable as an "a real”™ (accumu-
lated real). A real-valued, event-averaged watched wvariable
is declared as a "t real" (tallied real). Accumulated and
tallied integer and boolean watched types are also sup-
ported.

A variable of type a real can be used in expressions
exactly as a normal real variable can. However, whenever
the variable is updated, statistics maintained about the
variable are also updated. These statistics are available
as field references of the watched variable. For example,
if =x 1is declared as an a_real, then x.mean is its average,
X.max is its maximum and so forth.

The clear statement is used to initialize a watched

variable so that it can be used. The clear statement has

the format:

clear <watched variable>

15

Bryant, Abbott, Bugarin, Rosenburg

To obtain meaningful statistics, a watched variable must be
cleared before it is used.
The clear statement sets the value of the watched vari-

able to zero. During a simulation, it is sometimes useful

3 3 : ok ietd » g cched b
without changing the variable”s current value. (e. g. at
the end of the transient interval in a steady state simula-

tion). The sreset statement can be used to do this:
sreset <watched variable>

Watched variables can also be used to generate approxi-
mate confidence intervals through regenerative simulation.

See [2] for details.

4. SIMPAS Output

As previously discussed, a SIMPAS program is translated
into standard Pascal by the preprocessor. This section

describes the generated Pascal.

4.1. Event Declarations

The declaration

event <name> (<formal arguments>);

<event-body>;
is translated to the declaration

procedure r <name> (<formal arguments>);
<event-body>;

Additionally the event name and the names and types of the

actual arguments are saved for use in building the event set

16

SIMPAS Implementation

data structure and translating the schedule and reschedule

statements.
The event set declarations are built as follows: The

enumeration —type —t-ev-l-is—declared-asa listof all-event

names declared in the current program. For each event with
arguments, the type t <name> is declared as a record type
whose field names match the names and types of the formal
parameters. Then the event notice declaration is built in

the following form:

event notice = record
prev, next : “event~notice;
e o a {some other fields for tracing, etc}
case eventtype : t ev 1 of
repeat the following for each event <name> }
<name> : (a_<name> : t <name>);

° ° °

end;

The tag "“eventtype" indicates the name of the event
described by this event notice. The field a <name> contains
the actual arguments for the event and are stored there by
the schedule statement code. The event set itself is con-

structed as a doubly linked list with head node using the

pointers "prev" and "next".

4.2. Scheduling Statements

The statement
schedule <name> (<actual arguments>) <mode> <time-expression>
is translated to

begin
c_notice (g notice, <name>);

17

Bryant, Abbott, Bugarin, Rosenburg

with g notice”.t <name> do

begin
<argument-1> :
<argument-2>

= <actual~arg-1>;
= <actual-arg—-2>;
end;
———e -insert{g—notice, nil, <time expr>,-e <mode>», ——— ——
<line number>);

end

Here g notice is a global variable of type “event notice,
<mode> is one of at, delay, or now, and <time_expr> is the
(perhaps empty) time expression. C notice creates an event
notice of type <name> and initializes its fields, and
e insert places this notice into the event set. The second

argument of e insert is wused in schedule before (after)

statements to provide e insert with the pointer to the event
notice to be scheduled before (after). The <line_number> is
the SIMPAS source line of the schedule statement and is used
in error reporting. Finally, since the schedule statement
looks to the user like one SIMPAS statement but expands to
several Pascal statements, the output is enclosed in a

(perhaps unnecessary) begin-end pair.

4.3. Queue and Queue Members

The queue and queue member declarations are translated

to appropriate record declarations in the obvious way.

Entity attributes become fields of the record and the

preprocessor inserts extra fields to hold links to the next
and previous members of the queue. 1In response to declara-
tion of a queue member of type <entity>, procedures

c_<entity> and d <entity> are output to create (and destroy)

18

SIMPAS Implementation

queue members of that type. Create and destroy statements
for entities of type <entity> are translated into calls on

c_<entity> or d <entity> respectively. The type of the

variable to--be created -or -destroyed-determines—which-of —the-

c_<entity> (d_<entity>) routines should be called. To make
this choice, the preprocessor keeps the types of all wvari-
ables declared in the program in its symbol table. (We
found that it was simpler to keep everything in the symbol

table 1instead of Jjust the variables of type gueue member,

for example, even though some of this information 1is not
needed.)

In response to declaration of a queue type named
<queue>, the SIMPAS preprocessor declares a queue initiali-
zation procedure i <queue> and queue insertion and removal

procedures p <queue> and r_<queue>. The initialize state-

ment translates into a call on i <gueue> and the insert and
remove statements translate into calls on p <queue> and
r <queue> respectively. The type of the variable to be ini-
tialized determines which i <queue> routine is to be called

by the initialize statement. Since the types of all vari-

ables are kept 1in the ©preprocessor”s symbol table, the

preprocessor can check to make sure that the entity being

inserted/removed from the queue is of the correct type for
that queue.

Declaration of the routines associated with queues and
queue members is the primary reason that these declarations

are only allowed at the global type level. Queue and gueue

19

— maintenance procedures-—can-be -made-.

Bryant, Abbott, Bugarin, Rosenburg

member declarations are required to be simple (i. e. of the
form <id>= gqueue of . . .) so that the correspondence

between the queue or gueue member type and its associated

Queues-declared —with

anonymous type names (as a field inside of a record for

example) would make this correspondence difficult.

4.4. Forall Loops

Statements of the form
forall <entity-ptr> in <queue> do S
are translated to

begin
<entity-ptr> := <queue>.head”.next;
while <entity-ptr> <> <queue>.head do
begin

4
if <entity-ptr>".ghead <> <queue>.head then
T error;)
<entity-ptr> := <entity-ptr>".next;
end;
end

Statement S may not contain a remove <entity-ptr> from
<queue> statement since this destroys <entity-ptr>".next and
makes it impossible to advance the 1loop index. The test
after the statement S 1is to ensure that <entity-ptr> is
still in the queue. The error message 1in this case is:
"user removed the loop variable in a forall loop." This test
catches some, but not all occurrences of the error.

The restriction on statement S could be avoided by
declaring a temporary variable of type <entity> for each

forall loop. But this is a complex task for the

20

SIMPAS Implementation

preprocessor, since the variable declaration must be placed
in the var part of the current function or procedure. Since

we have already passed that point when the forall is encoun-

- tered, this insertion would-have to be-done——during —Pass—2-

Our Judgement was that this convenience was not worth the

added complexity. (However, see [4]) .

4.5. Watched Variables

Each watched type is actually a record type with a
field named "val" of the true base type of the variable
(e. g. val is a real field for variables of type t real).
Other fields are used to maintain the statistics associated
with the variable.

Wherever a variable appears in a place where a value is
required (on the right hand side of an assignment statement,
for example) the preprocessor checks in its symbol table to
see 1if the identifier is a watched variable. If it is, the
preprocessor appends ".val" to the variable name. This has
the effect of converting the watched variable to its
corresponding simple type.

In general, the user is free to use a watched variable
as if it were a simple type. One can declare arrays of
watched variables and fields of a record can be declared as
watched types. The only places watched variables cannot be
used are where Pascal prohibits the use of a field value in

place of a simple variable, such as the index in a for loop.

21

Bryant, Abbott, Bugarin, Rosenburg

For each assignment statement in the SIMPAS program,
the preprocessor checks to see if the wvariable being

assigned to is a watched variable. If it 1is then the

update routine. TFor example, the assignment statement:
<watched> := RHS:

is translated to a procedure call of the form:
obs <type>(assign, <watched>, RHS);

where <type> is the simple type of <watched>. The procedure

obs <type> is declared as
obs_<type>(action : s mode; var wv : watched var; RHS : <type>);

Procedure obs <type> takes the action indicated by the first
argument. For example, when action=assign, obs_ <type>
updates the statistics in watched var in accordance with the
new value RHS, then assigns the value of RHS to
watched var.val.

Other possible values for action are "clear", which is
generated in response to a clear statement, and "regen"
which is used in regenerative simulations to indicate the
end of a regeneration cycle. See [2] for details.

The problem of watched variables being passed to a pro-
cedure and modified there is handled the following way. IEf
a watched variable is used as a value argument to a pro-
cedure or function, and that argument is declared as a sim-

ple type instead of a watched type, then the watched vari-

22

SIMPAS Implementation

able instance is changed to a simple type by appending
".val" to the identifier. This corresponds to the

occurrence of the watched variable on the right hand side of

— an assignment statement. On the other hand, if the argument

type 1S a watched type, thén thée preprocessor requires this
argument to be declared as a var parameter. Any changes to
the argument in the procedure will therefore be properly
updated according to the rules described above.

A special case occurs when a watched variable is used
in a with statement. On the one hand, the watched variable
is supposed to appear as if it is an instance of its simple
type, and the target of a with statement must be a record
type. On the other hand, it is clear to the user that the
watched type 1looks 1like a record (the mean of a watched
variable named "w" is "w.mean") so that the user will natur-
ally try to say "with wdo . . .". Translating this to
"with w.val do . . ." has the effect of prohibiting watched
variables in with statements. This is handled as a special
case so that the target of the with is always a record type
and ".val" is not appended to the watched identifier. (Note
that watched variables can be present in subscript expres-
sions in the with target, for example, and must still be

expanded in this case.)

5. Implementation of SIMPAS

For a variety of reasons, SIMPAS has turned out to be a

much more complex program than we had originally envisioned.

23

Bryant, Abbott, Bugarin, Rosenburg

Much of this complexity is a direct result of our design
decisions to make the SIMPAS extensions appear as natural
parts of the language. This implied that SIMPAS had to

e pacrse—all—the —input—Pascal,even thoughit-was primarily——— ——

interested only in a small subset of the statements. SIMPAS

had to be aware of Pascal grammar because:

(1) The types of variables had to be known to the prepro-
cessor to correctly expand certain SIMPAS statements.
Determining this information without completely parsing
the type declarations appears impossible.

(2) Finding the start of the main procedure (to allow
insertion of event set initialization code) required
that the structure of a Pascal program be known to the
preprocessor.

(3) A forall loop is expanded by inserting code before and
after the statement comprising the body of the loop.
Allowing the body of a forall loop be an arbitrary Pas-
cal statement requires knowledge of Pascal grammar to
recognize when the statement ends.

Another reason for deciding to completely parse the
input Pascal was that a previous version of SIMPAS attempted
to examine only the extension statements themselves and pass
the rest of the input through essentially unchanged [5].
The following features of the language as described in Sec-
tion 2 were not implementable:

(1) watched variables

(2) clear, initialize, etc statements (These were replaced
by subroutine calls.)

(3) forall loops with simple statement bodies (The body of
the loop was required to be surrounded by a begin-end
pair.)

(4) insert, remove statements translated to subroutine
calls (Inline code was generated instead.)

24

SIMPAS Implementation

These problems occurred either because this version of
the preprocessor did not parse the Pascal portions of the

input program or was not aware of the types of variables.

.~ Additionally, this version of the preprocessor (while a

simpler program than the present version) was dJdifficult to
extend because of its hand-coded parser. We therefore
decided to use a table-driven parser to analyze all the
source input and to build a complete symbol table. This
would overcome the problems of the previous version and
allow us to easily extend the preprocessor.

The SIMPAS grammar was constructed from a grammar for
Pascal by adding productions for the SIMPAS extensions and
simplifying the grammar where possible. The original FMQ
grammar for Pascal had about 250 productions. This included
extensions for external compilation and is somewhat larger
than a grammar for "standard" Pascal. The UNIX* version of
the SIMPAS grammar has about 220 productions of which 40 are
directly related to SIMPAS constructs. There are about 65
reserved words in the SIMPAS grammar; 25 of these are asso-
ciated with the SIMPAS extensions. The SIMPAS grammar was
simplified by eliminating some of the productions associated
with code generation (for example, productions that help
maintain operator precedence while parsing expressions) and
by collapsing some of the productions for type declarations.

The resulting grammar is an extension of the Pascal grammar

*UNIX is a trademark of Bell Laboratories.

25

Bryvant, Abbott, Bugarin, Rosenburg

in the sense that any legal Pascal program will be accepted
by the parser (provided that there are no SIMPAS reserved

words in the program). Statements such as c¢lear, create,

destrov etc were all handled by g gsinale
CrOY, tc wexr a-l ranalead a-—-8ing-lk

hha® 4

the grammar that introduced
<identifier> <identifier-list>

as a new statement type in the grammar.

Semantic actions are associated primarily with SIMPAS
extension statements. The most common semantic action
turned echoing of parsed tokens either on or off. The
parser normally echoes all tokens into the Pass 1 temporary
file. Pascal control statements therefore cause no semantic
processing. When a SIMPAS statement is encountered, the
first semantic action turns off echoing so that the associ-
ated semantic routine can output the Pascal version of the
SIMPAS statement. The last semantic action of the produc-~
tion turns echoing back on. However, handling of watched
variables requires semantic processing of all expressions so

that echoing is more often off than on.

5.1. SIMPAS “Run Time” Routines

The SIMPAS “run time” routines consist primarily of the
event set maintenance routines and the simulation control
routine. Currently, SIMPAS uses a linear, doubly-linked
list of event notices to represent the simulation event set.
Alternative organizations based on heaps [14], the Franta-

Maly TL mechanism [13], and the binary search algorithm of

26

SIMPAS Implementation

Henriksen [15] have been investigated. Thus far, we have
found that other activities associated with scheduling an

event (e. g. allocating a new event notice, recording trace

_ _information) dominate the scheduling time and the differ-

ven se ecomes
extremely large. 1In such cases we surmise that the simula-
tion itself should be reorganized instead of expecting the
event set insertion routine to cope with an unreasonably
large event set.

The automatic reclamation of unused event notices by
the simulation control routine is complicated by the lack of
a function in Pascal to determine if a pointer is wvalid or
not., When an event routine returns to the simulation con-
trol routine, the event notice "current" should be destroyed
if it was neither rescheduled nor destroyed by the user.
Since there is no way to check whether a pointer is valid or
not, we adopted the conventions that an event-notice pointer
is set to nil whenever it is destroyed and that "current" is
removed from the event set before the event routine is
called. The following if statement determines whether or
not to destroy "current":

if current <> nil then

if (not scheduled (current)) and (not current”.named) then
d notice (current);

The and clause of the second if is necessary to keep the
simulation control routine from disposing of "current" in

the case that "current" was created in a schedule statement

27

Bryant, Abbott, Bugarin, Rosenburg

with a named clause. Since 1in this case the user has a
pointer to the current notice, destroying "current" may
result in dangling pointer errors. In spite of these pre-

cautions, this if statement is usually where Pascal heap

———————integrity ——checks—fail;often—long aftertheerroroccurred————

Such errors are, in general, extremely difficult to locate.

5.2. Pascal Implementation Difficulties

Pascal I/0 inefficiency has been a persistent problem.
The speed of the VAX UNIX version was nearly doubled when
instead of using Pascal input, the underlying UNIX routines
were called directly to obtain input in 1,024 character
blocks instead of one character at a time. A similar
speedup occurred in an implementation of SIMPAS for an LSI-
11 microcomputer system when the Pascal input routines were
replaced by direct file I/0 [6].

The lack of random access I/0 in Pascal has meant that
the FMQ parser is 1less effective in general than we had
hoped. The FMQ error correction file is large (65K bytes on
a VAX 11/780), and sequentially searching through this file
during error correction can be slow. In the UNIX implemen-

tation of FMQ (and hence SIMPAS) random access I/0 is simu-

lated by using operating system routines to seek to the
appropriate place 1in the error correction file. To avoid
long error correction runs by FMQ when running under Pascal
compilers that do not allow random access I/0, we have lim-

ited the number of errors it attempts to correct to 30 in

28

SIMPAS Implementation

the portable versions of SIMPAS.
In generating the output Pascal, we needed to use

numerous string constants of varying length. The only rea-

—————sonableway—to—do—this—in—Pascal—was touse writestatements

to directly output the generated Pascal (as opposed to plac-
ing the output in a buffer and writing the output when the
buffer £ills). This made it impossible to determine if the
output line is potentially too long to be read by the host
Pascal compiler. (Some Pascal compilers will not accept
input lines longer than 80 characters [10]) . This was
overcome by examining 1long lines during Pass 2 of the
preprocessor and splitting them at appropriate places. How-
ever, this reparsing of the output is duplicated effort that
we should have been able to avoid. Ada* [24] provides a
variable associated with each file indicating the current
column number in the file; this would have solved our line-

length problem.

6. Difficulties in Preprocessing Pascal

One of the primary advantages of SIMPAS over
SIMSCRIPT II.5 1is that SIMPAS inherits the strong typing of
Pascal. Thus a simulation written in SIMPAS will often be
easier to debug and maintain than the corresponding simula-
tion written in SIMSCRIPT II.5 [l]. With respect to imple-
menting SIMPAS, on the other hand, strong typing complicates

matters considerably. For example, since each queue member

*Ada is a trademark of the Department of Defense

29

Bryant, Abbott, Bugarin, Rosenburg

type and gueue type become distinct Pascal types, the
maintenance routines (c_<entity>, 4 <entity>, etc.) must be

duplicated for each type.

T'h‘”i“’s“*"cou"l*d“‘hav’e*‘b'even“"“avoi‘d'e'd*’b,y’h“aviﬁg *t‘h‘e*pw:'e‘provc*e'ss*or‘*— ““““““““““ T

represent all gueue member types as pointers to a single
variant record type. However, this would give the user no
compile-time error checking against referencing attributes
not possessed by a particular queue member, and also would
require that distinct queue members have distinct attribute
names. Our judgement was that the compile-time error pro-
tection was important enough to justify the duplication of
queue and queue member maintenance routines. Experience has
also shown that only a few queue and queue member types are
declared in most SIMPAS simulations so that the number of
maintenance routines is small [4].

Similarly, the watched variable observation routines
need to be more or less duplicated for six different watched
variable types (one for time-averaged and one for event-
averaged observations for each of the integer, real, and
boolean types). This costs about 250 lines of output code
in each SIMPAS simulation.

The lack of external compilation 1in Pascal also
increases the size of the programs output by SIMPAS.
Table I gives the sizes of some SIMPAS programs and the
corresponding output Pascal programs.

DISTCC and PROTOC were written as several distinct com-

pilation units; for ease of comparison here they were

30

SIMPAS Implementation

Program Input Length Output Length
DISTCC 2989 (77328) 4310 (118248)
" PROTOC 1555 (47338) 2868 (—79356)
NETPAC 1609 (38204) 3453 (97397)
P5 1309 (34469) 2545 (70241)
MM1SIM 159 (3976) 970 (24082)
TRIVIAL 8 (75) 611 (15067)
Table I

Sizes of Input and Output programs for SIMPAS
In Lines (and Characters)

combined into a single compilation unit. DISTCC is a model
of concurrency control in a distributed database sys-
tem [26], PROTOC is a model of a simulation protocol, NETPAC
is a general network of queues simulator, and P5 is a model
of distributed scheduling in a multicomputer system [7].
Each of these are non-trivial simulations. On the other
hand, MM1SIM is an M/M/1 simulator and TRIVIAL 1is the

trivial simulation:

program trivial (output);
event foo:
begin
end;
begin
end.
For a more detailed analysis of these simulations and the
SIMPAS features that they use, see [4].
The 611 lines of output generated from TRIVIAL consist

of about 250 lines of event set declaration and maintenance

routines, about 240 lines of watched type declaration and

31

Bryant, Abbott, Bugarin, Rosenburg

associated routines, 80 lines of event tracing and event set
dump routines, and 30 lines of error handling routines.

Much of this code is unchanged from simulation to simulation

and if the host Pascal compiler supports external compila-

tion, can be removed from the source output and placed in an
object library file. The VAX version of SIMPAS can output
Pascal for either case, using the external compilation con-
ventions of the UW UNIX Pascal compiler (these conventions
are similar to those of C [19]). Using the external compi-
lation feature reduces the sizes of the output Pascal to the
lengths shown in Table II. Even in this case, however, it
is clear that the output programs can be significantly

longer than the SIMPAS source.

Program Output Length Output Length

without External with External

Compilation Compilation
DISTCC 4319 (118248) 3847 (107152)
PROTOC 2868 (79356) 2399 (68118)
NETPAC 3452 (97397) 2661 (77620)
P5 2545 (70241) 1992 (56942)
MM1SIM 970 (24082) 544 (13954)
TRIVIAL 611 (15067) 246 (6436)

Table TII

Sizes of Output programs for SIMPAS
In Lines (and Characters)
Using External Compilation

32

SIMPAS Implementation

7. Concluding Remarks

SIMPAS can be thought of as a strongly-typed implemen-

tation of SIMSCRIPT I1.5 [20]. As such, we have found SIM-

PAS superior to SIMSCRIPT for the rapid and reliable con-

struction of discrete-system simulation programs [1]. The
implementation of SIMPAS as a preprocessor has resulted in a
portable simulation system and has allowed us to explore
alternate simulation language features [9]. But as a prac-
tical matter, modification of the preprocessor to allow
external compilation and to improve on the efficiency of
standard Pascal I/O is normally required in order to produce
a usable system on a new target machine. Also, random
access I/O0 1is nearly necessary for the SIMPAS parser to
function properly during its error correction phase. These
factors greatly increase the complexity of the SIMPAS
installation task. Finally, the size of the preprocessor
itself means that it will only run on a medium to large CPU
and is too large and slow to be used on small machines. The
result is that the preprocessor is not nearly as portable as
we would like.

While strong-typing is useful in program construction,
it complicates translation of a SIMPAS program. Our experi-
ence has shown that it is considerably more complex to write
a preprocessor for Pascal than it is to write a preprocessor
for a less strongly-typed language such as FORTRAN or PL/I.
A successful preprocessor for Pascal must have many of the

functions of the front end of a Pascal compiler.

33

Bryant, Abbott, Bugarin, Rosenburg

Strong typing also means that nearly identical service
routines in SIMPAS must be replicated to handle distinct

queue and gueue member types. External compilation allows

some redundant code to be placed in an object library, but

certain routines must always be included at the source level
since they depend on types declared in the SIMPAS source.

The primary justification for implementing SIMPAS as a
preprocessor was to increase portability of the language.
The implementation of SIMPAS as a preprocessor has been dif-
ficult. Many of the event scheduling primitives could be
implemented in a few weeks by using external compilation in
Pascal and constructing run-time routines to create corou-
tines (for example, as in [21]). Even though these routines
would not be portable, we could have probably implemented
several machine dependent versions of SIMPAS using this
method in the same amount of time required to implement the
preprocessor version.

In summary, while the present implementation of SIMPAS
has been a useful experimental vehicle, a production version
of SIMPAS should be implemented as a compiler. This could
be done, perhaps, by including the SIMPAS extension state-

ments in an existing Pascal compiler.

8. Acknowledgements

M. Abbott, J. Bugarin, and B. Rosenburg are primarily
responsible for the implementation of SIMPAS and without

their assistance the project would never have been com-

34

SIMPAS Implementation

pleted. D. Wasserman and V. James implemented several dif-
ferent event set maintenance routines. Prof. R. Finkel was

one of the earliest users of SIMPAS, and his perseverance in

dealing with the early versions helped us to produce a

usable preprocessor. I also would like to acknowledge the
support of the Madison Academic Computing Center, and in
particular the assistance provided by its director, Dr. T.

B. Pinkerton.

REFERENCES

[1] Bryant, R. M., "SIMPAS -- A Simulation Language Based
on PASCAL," Proceedings of the 1980 Winter Simulation
Conference, pp. 25-40 (December 3-5, 1980).

[2] Bryant, R. M., "SIMPAS 5.0 User Manual," Computer Sci-
ences Department Technical Report #456, University of
Wisconsin--Madison (November 1981).

[3] Bryant, R. M., "A Tutorial for PASCAL Users on Simula-
tion Programming with SIMPAS," Computer Sciences Techn-
ical Report #454, University of Wisconsin--Madison
(October 1981). Also Proceedings of the 1981 Winter
Simulation Conference, Atlanta, Georgia, December 9-11,
1981.

[4] Bryant, R. M., "Experience with SIMPAS," Computer Sci-
ences Department Technical Report #455, University of
Wisconsin--Madison (November 1981). Submitted for pub-
lication.

[5] Bryant, R. M., M. B. Abbott, J. R. Bugarin, and B. S.
Rosenburg, "Preprocessing PASCAL: A Comparison of Two
Approaches for Extending PASCAL via a Preprocessor,"
Computer Sciences Department Technical Report, Univer-
sity of Wisconsin--Madison (in preparation, 1981).

[6] Bryant, R. M., "Micro-SIMPAS: A Microprocessor Based
Simulation Language," Proceedings of the Fourteenth
Annual Simulation Symposium, pp. 35-55 (March 17-20,
1981).

[7] Bryant, R. M. and R. A. Finkel, "A Stable Distributed
Scheduling Algorithm," Proceedings of the 2nd

35

[8]

Bryant, Abbott, Bugarin, Rosenburg

International Conference on Distributed Computing Sys-
tems, (April 8-10, 1981).

Deminet, J. and J. Wisiniewska, "Simpascal," Pascal
News, pp. 66-68 (March 1980). Newsletter of the Pascal
User”s Group.

[9] Finkel, R. A, and R. M. Brvant, "Time Lines -- A Pro-
cess Like Simulation Construct for Event Oriented
Languages," Computer Sciences Department Technical

[10]

[11]

[12]

[13]

[14]

{151

[161]

[17]

(18]

[19]

[20]

Report, University of Wisconsin--Madison (in prepara-
tion).

Fischer, C. N., "UW-PASCAL Reference Manual for the
Univac 1100," Madison Academic Computing Center, The
University of Wisconsin--Madison (October 1977).

Fischer, C. N., D. R. Milton, and S. B. Quiring, "Effi-
cient LL(l) error correction and recovery using only
insertions," Acta Informatica 13, 2, pp. 141-154
(1980).

Fishman, G., Principles of Discrete Event Simulation,,
John Wiley and Sons, New York (1978).

Franta, W. R. and K. Maly, "An Efficient Data Structure
for the Simulation Event Set," Communications of the
ACM 20, 8, pp. 596-601 (August 1977).

Gonnet, G. H., "Heaps Applied to Event Driven Mechan-
isms," Communications of the ACM 19, 7, pp. 417-418
(July 1976).

Henriksen, J. O., "An Improved Events List Algorithm,"
Proceedings of the 1977 Winter Simulation Conference,
pp. 547-556 .

Jensen, K. and N. Wirth, "Pascal: User Manual and
Report," Lecture Notes in Computer Science 18,
Springer-Verlag Berlin, New York, (1974).

Johnson, G. F., "A Portable Discrete Event Simulation
Package for Microcomputers,”" Proceedings of the 12th
Annual Simulation Symposium, pp. 22-27 .

Kaubish, W. H., R. H. Perrot, and C. A. R. Hoare,
"Quasiparallel Programming,” Software--Practice and
Experience 6, pp. 341-356 (1976).

Kernighan, B. W. and D. M. Ritchie, The C Programming
Language, Prentice-Hall (1978).

Kiviat, P. J., R. Villanueva, and H. M. Markowitz,

36

[21]

SIMPAS Implementation

SIMSCRIPT II.5 Programming Language, C. A. C. I., Inc.,
12011 San Vicente Boulevard, Los Angeles, California
(1974).

Kriz, J. and H. Sandmayr, "Extension of Pascal by
Coroutines and its Application to Quasi-Parallel Pro-

gramming and Simulation;" Software-—~Practice——and
Experience 10, pp. 773-789 (1980).

[22]

[23]

[24]

[25]

[26]

Noodt, Terje and Dag Belsnes, "A Simple Extension of
Pascal for Quasi-Parallel Processing,”" Sigplan Notices
15, 5, pp. 56-65 (1980).

Rooda, J. E., N. G. M. Blokhuis, and C. Bron, "Discrete
Event Simulation in Pascal," Department of Mecahnical
Engineering Technical Report #7, Twente University of
Technology, Enshede, The Netherlands (April 1981).

U. S. Department of Defense,, Reference Manual for the
Ada Programming Language, U. S. Government Printing
Office, Washington, D. C. 20802. (July 1980). Proposed
Standard Document, GPO 008-000-00354-8.

Welsh, J. and M. McKeag, Structured System Programming,
Prentice-Hall (1980).

Wilkinson, W. K., "Database Concurrency Control and
Recovery 1in Local Broadcast Networks," Computer Sci-
ences Technical Report #448, University of Wisconsin-
-Madison, Madison, Wisconsin (September 1981). Ph. D.
Thesis.

37

