DISCRETE SYSTEM SIMULATION WITH ADA

by
R. M. Bryant

Computer Sciences Technical Report #458

November 1981

Discrete System Simulation with Ada

R. M. Bryant*
Department of Computer Science

University of Wisconsin-Madison

IZ2ZIU"W. Dayton Street
Madison, Wisconsin 53706

Ada, the new Department of Defense "standard" language,
contains many features designed to facilitate the rapid con-
struction of software for embedded computer system applica-
tions. Two of these features are "tasks" and "packages".
Even though Ada is not designed to be a simulation language,
these features allow the construction of powerful, process-
oriented, discrete-system simulation packages in Ada. In
this paper we provide a design for such a package and illus-
trate its use in a simple simulation program.

* This work was supported in part by the Wisconsin Alumni
Research Foundation and through NSF grant MCS-800-3341,

Author”s present address: IBM T. J. Watson Research Center,
Yorktown Heights, N. Y.

l. Introduction

Ada* [10,2,11] is a new programming language designed

at the initiative of the United States Department of

Defense. While primarily intended to support embedded com= ”

puter system applications, Ada is also suitable for more
general programming tasks. Furthermore, the size of the Ada
project, not to mention its backing by DOD, implies that Ada
will have significant impact on the state of the art in pro-
gram construction.

In this paper we provide a tutorial introduction to the
features of Ada applicable to the construction of discrete-
system simulation programs. We will concentrate on the con-
cepts of "tasks" and "packages". Tasks represent indepen-
dent threads of execution in a program and can be used to
implement simulation processes similar to those of
SIMULA [5,6]. However, a task cannot be assumed to run to
completion before the physical processor is reassigned to
another task. Thus, the tasks of Ada are more akin to the
parallel computation model of processes implemented in
MODULA [12] than the co-routine model of processes in
SIMULA. The latter can be implemented in Ada through syn-
chronization primitives that only allow one task to run at a
time.

Packages allow the definition and use of separately

compiled 1libraries of commonly used routines. Packages

* Ada is a trademark of the Department of Defense.

R. M. Bryant

ensure that implementation details of a library routine can
be hidden from the user and that the strong typing of Ada is

not violated across separate compilation units. Addition-

ally, Ada allows the definition of generic packages that can

be parameterized at compile time to represent abstract data
operations on user defined types. 1In this paper we outline
an Ada package to implement queues of entities similar to
those supported by SIMPAS [3] (originally inspired by the
"sets" of SIMSCRIPT II.5 [8]), and a task-scheduling pack-
age called "simulation" that implements a task scheduler and
a simulation delay statement "hold" 1like the one in
SIMULA [5].

We assume that the user is familiar with the concepts
of strong typing as implemented, for example, in Pascal [71.
Since Ada is based on Pascal, many of these concepts carry
over in a straightforward way to Ada. We do not, however,
intend to provide a complete introduction to Ada. The
reader is directed to the existing literature for a more

complete introduction [10,2,11].

2. A Queue of Entities Package in Ada

We will wuse the attribute-entity terminology of
SIMSCRIPT II.5 [8] to describe objects that are present in a
simulation. We distinguish between two types of entities:
temporary and permanent. Permanent entities are those
present throughout a simulation run. The standard way to

represent permanent entities in Pascal is by records or

Discrete System Simulation with ADA

arrays of records [4]. Fields of the records represent the
attributes of the entities. This representation can be used
in Ada as well as in Pascal.

Pointer types are the natural way to represent tem-

porary entities, since the object pointed to can be created,
moved through the simulation and destroyed as necessary.
Pointer types are called access types in Ada. One can thus
Ccreate SIMSCRIPT II.5-like temporary entities using records

and access types as shown below*:

declare

current_time : real;
when_arrived : real;

type job rec; -- incomplete type declaration
type ptr_job is access job rec;

type job rec is -— that is completed down here
record
arrival time : real;
memory size : integer;

end record;

new_job : ptr job;

begin

new_job := new ptr job;
new_job.arrival_ time := current time;

when_arrived := new_job.arrival time;

end;

*We will adopt the conventions that keywords of Ada will
be underlined, that names enclosed in "<" and ">" will
represent identifiers to be supplied by the user, and items
enclosed in braces ("{" and "1y are optional and may be om-
itted.

R. M. Bryant

Notes:

(1) Comments in Ada begin with "--" and continue to the
right margin.

(2) The duplicate declaration of job 1is necessary to
regsolve the forward reference problem, i. e. we want

ptr_job to be of type access job, but the

record job_rec also depends on ptr_ job.

(3) Variable declarations are not preceded with the keyword
var as in Pascal. Thus the variables declared in this
block are new_job, current_time, and when arrived.
Type and variable declarations can be intermixed and
are not restricted to type and var declaration parts as
in Pascal.

(4) The "allocator" new serves the function of the pro-
cedure new in Pascal. Unlike Pascal, access objects in
Ada exist so long as they are accessible. It is
assumed that some type of garbage collection or refer-
ence count mechanism is used to identify and delete
inaccessable objects. Hence there is no "dispose" pro-
cedure in Ada.

(5) Unlike Pascal, Ada does not (normally) require the use
of an explicit pointer dereferencing operator. Thus
one uses new_job.arrival time to refer to this field of
the record while in Pascal, one would have had to use
new_job”.arrival time.

Normally, one wants to maintain lists of entities

("queues" in SIMPAS and "sets" in SIMSCRIPT II.5). Lists

can be implemented by allocating link fields in each entity
and creating a record type to represent the head of the
queue. Queue insertion and removal routines can then be
constructed. In Pascal, the queue data structure and the
queue maintenance routines would be declared separately and
no connection between the declarations would be apparent.
In Ada, a queue package can be declared that encapsulates
the data structure and maintenance routines into a single

unit.

Discrete System Simulation with ADA

2.1. Packages in Ada The main structuring unit of Ada is

the package. It (normally) consists of two parts: a

specification part and an implementation part. The specifi-

cation part describes the interface to the package, and the

implementation part contains the procedures and internal
data structures that implement the package. A package is

declared as follows:

package <name> is -- specification part
{private ~-—- private declarations
end;

package body <name> is ~—- package body

- ° °

end <name>;

The package specification declares the externally
accessible procedures, types and variables defined by the
package. Bodies of these procedures are contained in the
package body. Outside the package, variables, procedures
and types declared within the package specification are
accessed by a dot notation like that used to access fields
of a record in Pascal.

Types declared within the private part of the package
are made available to the wuser without revealing their
internal structure. The user may declare instances of the
private type but still be shielded from changes in the
implementation. For example, a package to implement a queue

of jobs might be declared as follows:

R. M. Bryant

package job queue is -- FIFO queue
type queue is private;

procedure init(q : out queue);

.

ob-: in ptr job; g : gueue);

1=

procedure put(
it

function take(qg : in out queue) return ptr job;

type link record;
type link is access link record;
type link record is

record
next, prev : link;
job : ptr_ job;
end;

type queue is
record -- queue 1is doubly linked
-— list with head node

head : link:
size : integer
empty : boolean;

end;

end job queue;

package body job queue is

procedure init(g : out gueue) is

begin -- initialize g
g.head := new link;
g.head.next := J.head;
d.head.last := g.head;
g.size := 0;
g.empty := true;

end;

procedure put(job : in ptr job; g : queue) is
holder : link:; = - T
begin -—- put job at end of g
"g.size := g.size + 1;
g.empty := false;

holder := new link;
holder.job := ptr_job;
holder .prev := g.head.prev;
holder .prev.next := holder;
holder .next := g.head;

Discrete System Simulation with ADA

g.head.prev := holder;
end;

function take(q : in out queue) return ptr_job is
holder : link:

begin -— take first job from g
if not g.empty then -- see note
g.size := g.size - 1;

gL.empty T= g.size =03

holder := g.head.next:;
gd.head.next := holder.next;
gd.head.next.prev := g.head;

~ o8

return (holder.job
else

return (null);
end if:

end:;
end job queue;
Note: The control structures of Ada are essentially the
same as those of Pascal. However, like Modula, Ada allows
the body of a control statement (such as the if statement
given above) to contain a statement list rather than a sin-

gle statement. This rule eliminates most of the begin-end
pairs used in Pascal.

Since "queue" is declared as a private type, the user
of this package can declare variables of type "queue", but

cannot access the internal structure of the record. The

package implementor may change how the queue is represented
without effecting the user program.

The queue itself is represented by a 1list of 1link
records that point to the job. The reason for not placing
the link fields in the Jjob record itself will become
apparent in the next section. Also we see that because the
link records are declared only in the private type of the
specification, they cannot be accessed outside of the pack-

age.

R. M. Bryant

As an example of the use of this package, the following
code declares two queues and moves the contents of one queue

into the other:

aeCJ.are
Job : ptr jobs
queue_1 : job _queue.queue; -- use the type declared in
queue_ 2 : job queue.queue; -- package job queue

begin

-— put some jobs into queue 1

° ° L]

—-= NOw copy dqueue_ 1l to queue 2
while not queue 1.empty loop
job := job_queue. take (queue 1);
job_queue. put (job, queue_ 2);

end loop,

end;

One can avoid qualifying all of the procedures and

types defined in package "job queue" with the package name

by placing the statement
use job queue;
in the declaration part of the block. The effect of this

specifiication 1is that references to the identifier "queue"
are interpreted as job_queue.queue, "take" as job_queue.take

and so forth.

2.2. Generic Packages One of the problems with the

job_gqueue package is that it can only be used for queues of
job entities. 1In order to use this package for queues of
another type of entity, the entire package declaration would
have to be repeated with a new type identifier inserted

where appropriate.

Discrete System Simulation with ADA

Ada solves this problem through generic packages. The
idea of a generic package is that the package declaration

can be parameterized in terms of types, variables, or pro-

cedures to be specified at package instantiation time. aA

generic package thus specifies a template used to create a
particular package.

For example, let us suppose we want to generalize the
package given above so that it can be instantiated as a
queue of jobs, or as a queue of messages, where a message is

declared as:

type message is

“record
size : integer;
sequence number : integer;

end record:

type ptr_message is access message;

We can now change the declaration of job queue to:

generic

type entity rec is private;
type ptr_entity is access entity rec;

package queue is -- FIFO queue
type queue is private;
procedure init(g : out queue);
procedure put(entity : in ptr entity; g in out : gueue);
function take(q : in out queue) return ptr entity;

type link record;
type link is access link record;
type link record is

10

R. M. Bryant

record
next, prev : link;
entity : ptr_entity;
end;

type dqueue is
record

head : link:

size 7 integer
empty : boolean;
end;
end job queue;

package body queue is

° ° °

end;

The package declaration is essentially as before except that
every occurrence of "ptr job" has been replaced by
"ptr_entity".

This generic package has two generic parameters: the
record type representing the entity we wish to place in the
queue and an access type for that record type. Since the
entity record is declared as a private type, the body of the
package cannot use fields of the record. (Exactly as the
user of the package cannot access fields of the queue
record). This is the reason for using the 1link records in
the package declaration rather than placing the "next" and
"prev" fields in the job or message declarations themselves.
If the 1link fields were placed in the entity record, they
could not be accessed inside of the package body.

One can now instantiate a queue package for each of

jobs and messages:

declare

11

Discrete System Simulation with ADA

message_queue 1is new queue (message,ptr message);

waiting Jjobs : job_queue.queue;
waiting messages : message queue.queue;

job : ptr_job;
message : _ptr message;
begin

job_queue.put(job, waiting jobs);
message_queue.put (job, waiting messages);

begin;

In SIMPAS or SIMSCRIPT II.5 separate routines are
declared by the language processor for each type of gueue or
set declared. While an Ada implementation may handle
instantiation of a generic package by duplicating the code,
for our example the compiler could use exactly the same pro-
cedures for each type of queue. Thus the package concept
not only hides the implementation of queues from the user,
it also can allow different types of queues to share the

same maintenance routines.

3. Tasks and Task Types

A task represents an independent execution that runs in
parallel (at least conceptually) with all other tasks. A

task is declared by a syntax similar to that of packages:

declare
task <name> is -- specification
entry <name> {(<parameterlist>)};

end <name>;

12

R. M. Bryant

task body <name> is -- body
[declarative part}
begin

end <name>;

begin -- body of block in which task is declared

. ° °

end;

Entry declarations are the only declarations allowed in a
task specification.

Execution of a task begins as soon as the task that
"elaborated"* the task declaration reaches the begin of the
body of the block where the task was declared. Task execu-
tion continues until the task reaches the end of its body or

until another task executes an abort statement for the task:
abort <task>;

(There are other ways to terminate a task; abort is suffi-
cient for our purposes. See [10] for further details.) The
elaborating task is not allowed to leave the block until all
tasks declared in the block have terminated.

Tasks communicate by calling entries in other tasks.
Corresponding to each entry declaration in a task are one or
more accept statements in the task body. For example, con-

sider two tasks, the first one having the specification:

task synch is

*When a block is entered various actions need to be per-
formed to bring the objects declared in a block into ex-
istence. For example, array bounds may need to be evaluat-
ed, generic packages need to be instantiated, and in the
present case, tasks need to be created and made ready to
run. This process is referred to as "elaboration".

13

Discrete System Simulation with ADA

entry wait;
end synch;

task body synch is
begin

[
0

- L]
accept-wait

o]

‘O

end;

end synch;
and the second containing the call:
synch.waitg;

Whichever task reaches its call or accept statement first
waits for the other. When both tasks have reached the
corresponding statements (this situation is called a "ren-
dezvous"), parameters in the call are transferred and the
body (if any) of the accept statement is executed. The cal-
ling task is delayed until the body of the accept statement
has been completed.

Task declarations do not allow task instances to be
dynamically allocated. To do this, one must declare a task

type:

task type <name> is

end <name>;

task body <name> is

end <name>;

To declare a particular task instance one declares a vari-
able of type <name>. One can also declare access types of

type task. The tasks referenced by an access type become

14

R. M. Bryant

active when they are allocated via the new operator. This
allows the programmer to dynamically create a variable

number of tasks and will be useful to us in the implementa-

tion of package "simulation".

4. Package “Simulation”

In process-oriented simulation languages like SIMULA,
each process runs until it blocks by calling procedure
"hold". There is no need to use synchronization primitives
to guarantee mutually exclusive access to global variables
since there is only one process active at any given time.
In Ada, tasks execute in parallel (or perhaps quasi-parallel
if there is only one physical processor) under the control
of Ada run-time routines. At any time, several processes
may be active. To avoid data synchronization problems and
follow standard process—-oriented simulation practice, we

will need a mechanism to make sure that only one task is

running at any time. This is the purpose of package "simu-
lation".
This package provides the following services:

(1) Tt maintains the current simulation time in a user-
accessible variable called "sim time".

(2) It implements the procedure hold:
procedure hold (delay : float);

whose purpose is to delay the current task until simu-
lation time sim_time + delay.

(3) It guarantees that only one simulation task will be

active at a time, provided that the user follows cer-
tain conventions in writing the simulation task.

15

Discrete System Simulation with ADA
To implement this package, we will use task types to
create synchronizing objects [1]:

task type synch is
entry send;

entry wait;

end; —
task body synch is
begin

accept send;

accept wait;

end;
A task can now delay itself until a signal is sent as
follows:
declare
signal : synch;
begin

-- signal was activated when the block was entered

. ° °

-- wait for some other process to do a signal.send
signal.wait;

. ° °

end;

When the block is entered, a new synch task becomes active.
It runs until it reaches the "accept send" statement and
stops. When the creating task executes the call
"signal.wait", it 1is delayed because the synch task is not
ready to execute the "accept wait" statement yet. Until
some other task executes a "signal.send" call, both tasks

will be delayed.

4.1. Implementing the “hold” Procedure

Given synchronizing objects, the procedure hold is
implemented by maintaining a linked list of records declared

as follows:

16

R. M. Bryant

type future event notice;
type £ event link is access future event notice;
type future_event notice is
record
sched time : float; — —- task reactivation-time
signal : synch; -— used to delay task
next : £ event link; ~-- points to next notice
end record;
first £ event : £ event link; -- head of future event list

Each task delayed by a "hold" procedure call is assoclated

with one such record. Procedure "hold" executes as follows:

(1)

(2)

(3)

(4)

(5)

Calculate the simulation time when the <calling task
should be reactivated:

reactivate_time := sim_time + delay

Create a new future event notice and set its time:

new_event := new future_event notice;
new_event.sched time := reactivate time;

The future event list is maintained in increasing event

time order. Search the list and insert new_event in

the appropriate place.

Wake up the simulation task scheduler (see below):
schedule.next;

Delay the calling process by executing the entry call:

new_event.signal.wait;

A complete implementation of procedure "hold" is given in

the Appendix.

4.2.

Implementing the Simulation Task Scheduler

In order for a delayed task to proceed, some other task

must execute the call

new_event.signal.send;

17

Discrete System Simulation with ADA

The simulation task scheduler is the task responsible for
executing this entry call.

Use of the scheduler is complicated by the requirement

thatonly one simulation task be active at a time. Ideally,

one would like the scheduler to start a simulation task,
wait until that task blocks itself, then schedule the next
task and so forth. Unfortunately, there is no direct way to
do this in Ada. We will therefore adopt the conventions
that (1) procedure "hold" will activate the scheduler before
delaying the calling task and (2) if a simulation task ter-
minates, the last thing it does before terminating 1is to
activate the scheduler. Given these conventions we can

implement the scheduler task as follows:

task scheduler is
entry start;
entry next;

end scheduler;

task body scheduler is

begin

-—Wait for simulation start call.
accept start;
loop -- forever

-~Tf no more notices then wait
--until next scheduler.next call.
if first f event /= null then

--Ready to run next simulation task.

--Advance clock.
sim_time := first f event.sched time;

~--Activate the task.
first_f event.signal;

end if

~e

18

R. M. Bryant
-~Wait until that task blocks itself.
accept next;

--Advance to next future event notice.
first £ event := first f event.next;

end Toop;

end scheduler;

The simulation can be initialized by creating some simula-
tion tasks and then calling scheduler.start. We assume that
the main task will always execute the procedure call
"hold(run_ time)" after starting the simulation. The future
event set should only become empty if the scheduler becomes
active before the main task can execute the "hold(run_time)"
procedure call. Since the hold procedure does a
scheduler .next call in this case, the package should func-
tion properly.

An outline of the entire simulation package is given in

the Appendix.

5. An Example Simulation

As a combined illustration of the ideas presented in
this paper, we discuss the simulation of a simple queueing
system in Ada. For this example, we assume that the pack-
ages "queue" and "simulation" are available and that a pack-
age named "random" that implements an exponential random
number generator has also been implemented. The program
header indicates that these packages are to be made accessi-

ble within program "example simulation":

with queue, simulation, random; -- Bring in necessary packages.

19

Discrete System Simulation with ADA

procedure example simulation is

use simulation, random:;

The use statement means that we can say "hold(t)" rather

than ‘"simulation.hold(t)" and "exponential (rate)" rather

than "random.exponential (rate)".

To simplify the presentation, we assume that all param-

eters of the simulation are compile-time constants:

run_time : constant := 1000.0; -- run for 1000 time units
lambda : constant := 1.0; -- arrivals per second
mu : constant := 2.0; -~ services per second

We will use two tasks in the simulation. One will

represent the arrival process and one will represent the

service process:

task arrival is
entry start;
end arrival:

task service is
entry start;

entry wakeup:
end service:

Entry "start" is used to initiate the simulation. Entry
"service.wakeup" is used to restart the service process at
the end of an idle period.

Customers in the system are represented by type "job".

A job has two attributes:

type job;
type job ptr is access job;
type job is

record
arrival time : float;
job id : natural;

end record;

20

R. M. Brvant

A generic instantiation of package "queue" is used to

represent a queue of jobs:

job_queue is new queue (job,job ptr);

waiting queue : job queue.queue;

We assume that there are some statistics collection

variables, but we will not specify them:

—--gtatistics collection variables

o e °

We are now ready to specify the arrival and service

tasks:

task body arrival is
new_job : Jjob ptr;
arrival count : integer := 0;
use random;

begin
accept start; -- Wait for simulation start.
loop -- forever

-- Wait for time of next arrival.
hold (exponential (lambda)); -~ exponential defined in
-- package "random"

-- Create a new job.
new_Jjob := new job;

-— Set attributes of the new job.
new_job.arrival time := sim time;

arrival count := arrival count + 1;
new_job.job_ id := arrival count;

--Place new job in waiting queue.
--I1f system is idle, wake up the service task.
if waiting_queue.empty then
job_queue.put (new_job, waiting queue);
service.wakeup;
else
job_queue.put(new_job, waiting queue);
end if;

21

Discrete System Simulation with ADA

end loop;

end arrival;

task body service is

departing job : job ptr;
time—in system : float;
use random;
begin
accept start; --Wait for simulation start.
loop -- forever

if waiting queue.empty then
--No jobs to service - sleep until job arrives.
accept wakeup;
else
--Sleep for duration of job service time.
hold (exponential (mu)):

--Take the first job out of waiting queue.
departing job := job_queue.take(waiting queue);

—--Observe time in system and record statistics.

time_in system := sim_time - departing job.arrival time;

° ° °

-—-Let storage allocator reclaim job.
departing job := null;

end if;
end loop;

end service;

The main procedure initializes the waiting queue,
starts the simulation tasks, and then blocks itself until

the simulation run time has expired:

begin -- main procedure

--Initialize the waiting queue.
job_queue.init(waiting queue);

~-Scheduler, arrival, service all blocked now;
--Start them and the simulation.
scheduler.start;

arrival.start;

22

R. M. Bryant

service.start;

--Wait until simulation run time has expired.
hold (max_run_time);

All that’s left to do is stop the simulation tasks and print

statistics:

--Terminate simulation tasks.
abort arrival;

abort service;

abort scheduler;

--Print statistics.

end main;:

6. Concluding Remarks
Until the introduction of Ada, implementation of port-
able, discrete-system simulation packages in existing

higher-level languages often required that the package be

event- rather than process~oriented. As we have shown, the

task construct of Ada allows one to create process-oriented
simulation packages. Generic packages allow the definition
of statistics and queue packages that can be parameterized
to represent statistics for real, integer, or boolean vari-
ables, or that represent queues of arbitrary user types.
The essential features of languages like SIMSCRIPT II.5 or
SIMPAS can thus be supported within Ada. This flexibility
should promote the creation of standard discrete-system
simulation packages within Ada similar in impact to GASP-
IV [9] but with the advantages of strong-typing for effi-

cient and reliable construction of large discrete system

23

Discrete System Simulation with ADA

simulation programs [3]. The design we have presented

should be a first step in this direction.

7. Acknowledgement

.
1.0

I.wonld like to thank Raphael Finkel for his hel

hon
il =tk

+

answering my questions about the Ada language specification

and his suggestions for improving this paper.

24

R. M. Bryant

Appendix -- Simulation Package Declarations

package simulation is

procedure hold(delay time : float);
sim—time—+—Efloat—r=~0+0+

task scheduler is
entry start;
entry next;

end scheduler;

end;

package body simulation is

task type
entry

entry
end;

synch
send;
wait;

task body

begin
accept send;
accept wait;

synch is

end;
type future event notice;
type £ event link is access
type future event notice is
record
sched_time : float;
signal : synch;
next : £ event link;
end record;

first f event : £ event link := null;

task body scheduler is
begin

accept start;

loop -- forever

if first f event /= null then

future_event notice;

simulation time of this task
used to delay task
points to next notice

-- head of future event Tist

sim_time := first f event.sched time;

first f event.signal;
end if;
accept next;

25

Discrete System Simulation with ADA
first £ event := first f event.next;

end loop;

end scheduler;

procedure hold(delay time : float) is

new notice,

tr ailiug__yt:. 7
loop ptr : £ event_ link;
begin
new_notice := new future event notice;
new__ " notice. sched time := sim_ time + delay time;

1f first £ event = null then

first f event := new_notice;
new_notlce.next := null;

else T
trailing ptr := null;
loop ptr := first £ event;
loop

~- Insert new notice here?
if new_ notice.sched time <
loop ptr. sched time then
if trailing _ptr = null then
--Insert at front of future event
new_notice.next := first f event;

first f event := new notice;
exit;

else
--Insert after trailing ptr.
new notice.next T= loop ptr;
tralllng _pbtr.next := new notlce,
exit;

end 1f

end 1f

-- No., Advance down list.
trailing ptr := loop ptr;
loop ptr := loop ptr.next;

-- Check for insert at end of 1list.
if loop ptr = null then
tralllng ptr next := new notice;
new notice.next := null;
exit:
end if;

end loop;

--Wake up the scheduler.
scheduler .next;

26

set.,

R. M. Bryant

--Delay this task.
new notice.signal.wait;

end hold:

[31]

[4]

[5]

(6]

[71]

[8]

[91]

[10]

[11]

Barnes, J. G. P., "An Overview of Ada," Software--
Practice and Experience 10, pp. 851-887 (1980).

Brender, R. F. and I. R. Nassi, "What 1is Ada?," IEEE
Computer 14, 6, pp. 17-24 (June 1981).

Bryant, R. M., "SIMPAS -- A Simulation Language Based
on PASCAL," Proceedings of the 1980 Winter Simulation
Conference, pp. 25-40 (December 3-5, 1980).

Bryant, R. M., "A Tutorial for PASCAL Users on Simula-
tion Programming with SIMPAS," Computer Sciences Techn-
ical Report #454, University of Wisconsin--Madison
(October 1981). Also Proceedings of the 1981 Winter
Simulation Conference, Atlanta, Georgia, December 9-11,
1981.

Dahl, 0. J., K. Nygaard, and B. Myhrhaug, "The Simula
67 Common Base Language,," Pub S-22, Norwegian Comput-
ing Center, Oslo. (1969).

Franta, W. R., The Process View of Simulation, Elsevier
North-Holland, Inc., New York (1977).

Jensen, K. and N. Wirth, "Pascal: User Manual and
Report," Lecture Notes in Computer Science 18,
Springer-Verlag Berlin, New York, (1974).

Kiviat, P. J., R. Villanueva, and H. M. Markowitz,
SIMSCRIPT I1.5 Programming Language, C. A. C. I., Inc.,
12011 San Vicente Boulevard, Los Angeles, California
(1974).

Pritsker, A. A. B., The GASP IV Simulation Language,
John Wiley and Sons, Inc., New York (1974).

U. S. Department of Defense,, Reference Manual for the
Ada Programming Language, U. S. Government Printing
Office, Washington, D. C. 20802. (July 1980). Proposed
Standard Document, GPO 008-000-00354-8.

Wegner, P., "A Self-Assessment Procedure Dealing with
the Programming Language Ada," Communications of the
ACM 24, 10, pp. 647-678 (October 1981).

27

Discrete System Simulation with ADA

[12] Wirth, N., "Modula: A language for Modular Multipro-
gramming," ©Software Practice and Experience 7, 1, pp.
3-35 (1977).

28

