SIMPAS 5.0 USER MANUAL

by
Raymond M. Bryant

Computer Sciences Technical Report #456

November 1981

SIMPAS 5.0 User Manual

R. M. Bryant¥*

Computer Sciences Department
and
Madison Academic Computing Center
University of Wisconsin-Madison
Madison, Wisconsin

SUMMARY

SIMPAS is a portable, strongly-typed, event-oriented,
discrete system simulation language embedded in PASCAL.
Facilities for event declaration and scheduling, creation
and deletion of temporary entities, declaration and mainte-
nance of linked lists (queues) of entities, and automatic
collection of simulation statistics are all provided as
natural extensions to PASCAL. In addition, SIMPAS provides
a substantial library of support routines that includes ran-
dom number generators for all of the most common distribu-
tions.

*This work was supported in part by the Wisconsin Alumni
Research Foundation and through NSF grant MCS-800-3341.

Table of Contents

INtrodUCtiON ..eeececccoccsosnconasccscscssssoansssece

T Overview of the SIMPAS Preprocessor < ssssvss
.2 Executing a SIMPAS Program .cceccecescssccsscns
3 Notation ...eececeecssscesncsacccocoscososscasasa
The Library File and the Include Statement
Event Declaration and Schedulingcccceecces
1 EventsS .t.eeececsoncossansssssssssscnssscsssoa
2 Event Schedulingecccecceesscsccsccencns
3 Start Simulation and Event Main ..cecceccoess
.4 Event Notice Utility Functionscccceceee
5 Cancel, Destroy, Delete and Reschedule
6 Reschedule and Current ..c.ceccescccossscccocscs
7 EBEvent TraCe@ ...ccocscsosesccccescsssosssessassce
Pseudorandom Number Generation in SIMPAS
Queues (Linked Lists) in SIMPAS ..c.ccccceccscs
1 Queue Declarations ..ceceeccecescecsccccccsns
1.1 ReStriCtiONS cueeeeeecescccssascsossascnnnans
2 Standard Queue and Queue Member Attributes

@ © 6 © © 0O 8 9 0 % 8 8V ® 000 S S 0 © 0 G 6 C S G GO S SO 6 OO G OO 0O EE SO

.3 Entity Creation and Disposalcccocccccecs
.4 Queue Manipulationccccecesccccccccccncsse
.5 FoOrall TLOOPS «cceccsesccccancsscsssccsssncccscscas
.6 Forall Loops and the Event Setccccc0e

Statistics Collection in SIMPAS ..ccececcscccns
.1 Regenerative Simulation with SIMPAS
.2 Printing Statistics ..c.ccceeccctccecccacccane
3 User Defined Statistics ...ccceccccccccccnces
Use Of the PreproCesSSOr ..ccccsssccccccsacccces
. Preprocessor Control Optionsccceceeeccee

1
.2 SIMPAS and PASCAL Line Numbers ..cccsvccaossce
3
4

Ul oo U1 Ut e

°

A Sample SIMPAS Program .ccceccscscocssccscos
. Execution OUtput c.ceeecccocscsccasssscssenceos
8 Acknowledgements ...cccceocccccscccscccsccccanns
Appendix A: SIMPAS Implementation Notes

A.l: The Event Set and the Simulation Control
Routine ..I.........l-C......IO.I.....'...........

A.2: Event Set StruCtuUre .eccseecccscsscsccccscac
A.3: Event Notices and Event Scheduling
A.4: Queue and Queue Member Declarations

B B R I -, e) B o) o))

W 00 ~J O Ul bW W

R N Sl
15, I Sy Y

16
17
18
19
20
21
24
25
26
27
28
28
28
31
31
33

33
33
35
36

Insert
Remove
Forall
Libfil
Watched

e

s o °
WO 1 6 n
e s 0 &w

T B P

>
g
]
=]

o
ke

Distri
¢ Charac

1 Source
endix D:

: SIMPAS

D.2: Identi
Appendix E:
and 5.0

REFERENCES

o
e}
g OO0 ww

8 @ 0 8 0 0 0 6 6 6 0 06 06 0 6006 00 OO ¢ 0 O GO OO0 OO G0 0O
© © @ @ 0 O 0 8 0 8 0 0 OG0 0 0O OO GO C 0 S OO S0 D ®© ° 0 00 o0

2 9 6 6 2 00 0 6 O @0 0 a0 000005666 086 60 G 80 S0 0 8

e Organization ...cccececccces ceeseas
Variable Implementation ...ccocececss

Reserved Words and Restrictions

d

: Reserved Wordsc... coccsessessesoacecos
.2: Implementation Restrictions ...cccecceccecss

d

Installing SIMPAS ..cccccescscancsss .
bution FOrmMat cceceecocceosccscscnsssscos
ter Set DIifferences ...cccceccoococscs

1

3

.5: Program Termination ..cccccocscscccscocaccss
6: Random Number Generatorscoccesccsccaas
7

Input and OUtpPUt ..ccoeccoscassscsas
STIMPAS Reference Guidecceecoaase
Statement SUMMArY ..cccsoeccecsssscos
fier GloSSArY cesceccsocsccosscnacococs
Differences Between version 2.0

® 5 9 9 00 606 00 06a608 083800860000 Q00006 OCS O 0 0O

@ 0 @ © 2 086 00 0 O G 9 0000 00O U G0 OO O S G SO0 006 0 B O

37
38
38

39
40

42
42
43
45
45
46
47
47
48
49
49
50

53
54

1. Introduction

SIMPAS is an event-oriented, discrete-system simulation
language embedded in PASCAL. It is implemented as a prepro-
cessor that accepts an extended version of PASCAL as input
and produces a standard PASCAL program as output. The

preprocessor itself is wrltten in standard PASCAL, and the

features of standard PASCAL Thus SIMPAS is extremely port—
able since it can run on any system which supports standard
PASCAL.

Aside from portability, the choice of PASCAL as the
target language makes SIMPAS a strongly-typed simulation
language. SIMPAS is similar in this respect to SIMULA [5,8]
although the latter is a process oriented simulation
language. Strong typing allows many of the more common pro-
gramming errors in simulation languages such as
SIMSCRIPT II.5 [11], ASPOL [15], or SIMPL/I [1] to be
detected at compilation time when the simulation is written
in SIMPAS. (See [2] for a further comparison of SIMPAS and
SIMSCRIPT II.5).

This manual describes the SIMPAS extensions to PASCAL
and discusses how to use these language extensions to write
power ful and reliable simulation programs. We assume that
the reader is familiar with PASCAL; if not, we recommend
reading [10] or some other introductory textbook about PAS-
CAL before reading the rest of this manual. We also assume
that the reader is familiar with the concepts fundamental to
event-oriented simulation such as "event routine", the
"event set", and "event notices". (See, for example [7], or
Section A.l1 of this manual).

In discussing use of SIMPAS, we will wuse lower case
letters and the character " " in identifiers. Since some

PASCAL compilers do not support lower case or "_" as a legal
identifier character, SIMPAS can easily be reconfigured to
use upper case only, and the underbar character can be
translated to some other character. (For example, in the
UNIX implementation " " is translated into "O" during
preprocessing).

This manual describes the use of SIMPAS version 5.0 and
supercedes the previous version of this manual which
described SIMPAS version 2.0 [3]. The present version is a
complete revision of the SIMPAS preprocessor that provides
the following enhancements to SIMPAS:

(LY Version 5.0 uses a table-driven, error—-correcting
parser [6] to drive the expansion process instead of
the ad hoc parser of version 2.0. The result is

1mproved error detection and recovery as well more con-
sistency between the SIMPAS extensions and PASCAL gram-
mar.

SIMPAS 5.0 User Manual

(2) Version 5.0 catches most type clash errors associated
with SIMPAS extension statements.

(3) 8Since Version 5.0 knows the types of most variables,
code which had to be expanded inline for Version 2.0
can now be converted to a procedure call. This results
in a smaller output PASCAL program when there are many
insert and remove statements in the SIMPAS source.

(4) The code generated by schedule and reschedule state-
ments has been significanly simplified.

(5) Several utility routine calls have been removed and
replaced by new SIMPAS extension statements. For exam-
ple, the clear procedure to initialize a statistic has
been replaced by a clear statement.

(6) Automatic statistics collection features have been
added to SIMPAS.

A brief introduction to this version of SIMPAS is also
available [4].

This manual is divided into eight major sections and
five appendices. The rest of this section gives some gen-
eral information about SIMPAS. Section 2 discusses the SIM-
PAS symbolic library and its use. Section 3 discusses event
declaration and scheduling and the type declarations and
routines provided to deal with the simulation event set.
Section 4 discusses the random-number generation routines
provided with SIMPAS and describes their use. Section 5
discusses queue members and queue declarations. Section 6
discusses the statistics collection features of SIMPAS.
Section 7 describes the use of SIMPAS and contains an exam-
ple SIMPAS program. Appendix A describes the SIMPAS imple-
mentation and describes the expanded PASCAL code dgenerated
by each SIMPAS declaration or statement. Appendix B con-
tains a list of reserved words and restrictions imposed by
the SIMPAS implementation. Appendix C discusses the changes
that need to be made in moving SIMPAS to a new computer sys-
tem. Appendix D contains a quick reference guide to SIMPAS.
Appendix E describes the major differences between SIMPAS
versions 2.0 and 5.0.

1l.1. Overview of the SIMPAS Preprocessor

SIMPAS consists of a large PASCAL program (about 7,200
lines) and a small file of run-time routines written in PAS-
CAL (the "library" file). Other external files contain
parse and error correction tables; these files will normally
be of no concern to the SIMPAS user.

SIMPAS is organized as a two-pass processor. On the
first pass, the input program is examined for occurrences of
SIMPAS statements; when one is found it is expanded into
PASCAL statements. During this pass the output PASCAL is
placed in a temporary file. The preprocessor also stores

Introduction

information from the SIMPAS statement for later use. For
example, when expanding an event declaration, the preproces-
sor saves the event name and the names and types of the for-
mal arguments for use in building the event-set declara-
tions.

During pass two, the intermediate code from the tem-

The declarations for the event set are constructed and
placed in the global type and variable declaration parts of
the program. Support routines are read from the library
file and placed at the top of the procedure declaration part
of the program. The simulation control routine is created
and inserted at the appropriate point, and initialization
code for the event set and other global variables is
inserted at the start of the main procedure. Other than
these insertions, the second pass of the preprocessor merely
copies the temporary file to the output.

1l.2. Executing a SIMPAS Program

To compile and execute a SIMPAS program requires three
steps: (1) Expansion: The SIMPAS preprocessor is invoked and
reads your SIMPAS program, producing a PASCAL program as
output. (2) Compilation: The PASCAL compiler is called to
compile the generated PASCAL program. (3) Execution: The
PASCAL program is executed, perhaps after a link edit step
to resolve external references.

Errors can occur during any one of these steps. Error
messages during the expansion phase refer directly to a
SIMPAS statement. Error messages issued during compilation
can be traced back to a SIMPAS source line using the line
numbers inserted in the output PASCAL by the preprocessor.
(These 1line numbers appear as comments at the beginning of

each PASCAL source line and give the SIMPAS source line
number which caused the generation of that line of PASCAL.)
Errors during execution are either those caught by SIMPAS
run-time routines or by PASCAL run-time routines. The first
class of errors indicate directly in which SIMPAS statement
the error occurred. The second class of errors can be
traced back to the SIMPAS source code by first determining
in which PASCAL output 1line the error occurred, and then
using the line number encoded there to find the SIMPAS
statement where the error occurred.

On most systems where it is installed, SIMPAS can be
called by a single command procedure or macro so that the
preprocessing and compilation steps are performed automati-
cally for the user.

1.3. Notation

Throughout our discussion, we will underline keywords
.and enclose variable names in quotes. We will use angle-

SIMPAS 5.0 User Manual

brackets ("<"™ and ">") to represent portions of SIMPAS
statements that are to be replaced by appropriate user con-
structs. Thus the notation <identifier> indicates that the
user 1s to insert an identifier at this location. We will
use square brackets to indicate an optional portion of a
statement. We will use braces ("{" and "l") to enclose a
list of alternatives separated by vertical bars (“|"). One
of the alternatives in the list must be chosen in order to
create a syntactically valid statement. Since statements in
PASCAL can extend across card boundaries, we will split SIM-
PAS statements across lines in order to make them more read-
able. The statements need not be split across lines as we
have indicated.

2. The Library File and the Include Statement

Besides the default routines, which are always
included, support routines are loaded from the library file
on the user”s request. For example, the random-number gen-
eration routines that the user needs are loaded. The user
specifies which support routines to load using the include
statement:

include <name-1> [,<name-2>]1 . . . :

The include statement must follow the global var part of the
program and precede the first procedure, function , or event
declaration of the program. Typically, each <name-i> in the
include statement causes a single procedure to be included.
The include mechanism can also bring in global constants,
variables, or types required by the procedures. (Appendix A
contains a description of the library file implementation.)

The library file and the include statement implement a
symbolic library of support routines for SIMPAS programs. A

symbolic library is necessary because external compilation
is not part of standard PASCAL. If the host PASCAL compiler
supports some type of external compilation, much of the
library file can be separately compiled. Doing this will
reduce the execution time of the preprocessor and will also
reduce compile times of the output PASCAL since the library
file routines will not have to be repeatedly recompiled.

3. Event Declaration and Scheduling

Events may be declared and scheduled by a set of
natural extensions to PASCAL. Facilities are provided to
declare a particular event, to create an event notice and
schedule it, to reschedule a previously created event
notice, and to cancel and/or destroy a particular event
notice.

3.1l. Events

An event is declared exactly like a PASCAL procedure,
except that the keyword procedure is replaced by the word

Event Declaration and Scheduling

event. An event must be accessible in the main program; an
event cannot be declared within a procedure. An event may
not have any var parameters; all parameters must be passed
by wvalue. This is because the event is called with values
of the actual parameters saved in an event notice, and hence
all parameters are effectively passed by value.

As an example, the declaration

event arrival (machine_id : integer);
begin

end;

could be used to declare an event called "arrival" which has
a single integer-valued argument.

An event whose name is <event> 1is translated into a
procedure whose name is r <event>. Thus if the host PASCAL
compiler only distinguishes identifier names that differ in
the first n characters, then event names must be distinct in
the first n-2 characters.

3.2. Event Scheduling

An event is scheduled to occur at a particular simu-
lated time by a statement of the form:

schedule <event>|[(<actual argument list>)]
at <time-expression>

One can specify that an event is to occur after an interval
of simulated time by using the keyword delay instead of at.
Thus the following statements are equivalent:

schedule arrival(3) at time + 10.0;
schedule arrival(3) delay 10.0;

An event must be declared before it can be scheduled,
just as PASCAL procedures must be declared before they can
be called. An event can be forwarded exactly like a PASCAL
procedure; the body of the event is replaced by the word
forward. The formal arguments of the event must be speci-
fied when the event is forwarded; the body of the event is
given after the event heading is repeated without the formal
arguments.

The keyword now indicates that the event 1is to occur
next, before any other events scheduled for the current
simulated time. The two statements

schedule arrival(3) delay 0;
schedule arrival (4) now;

are not quite equivalent since the arrival(3) event will
occur after any other event also scheduled for the current
simulated time; the event arrival(4) will occur before any
other event scheduled for the current simulated time. If

SIMPAS 5.0 User Manual

several events are scheduled by now phrases at the same
simulated time, then the last event to be scheduled is exe-
cuted first.

A particular event notice can be identified by wusing
the named clause:

schedule <event>[(. . .)] named <evptr> . . .

<evptr> must be a simple or qualified variable or expression
of type '"ptr_event". (The type "ptr_event" is defined by
the SIMPAS preprocessor.) One can use this name to cancel,
reschedule, delete or destroy the event notice created by
this schedule statement.

Given a name for an event, another event can be
scheduled to occur at the same simulated time as the named
event by using a before or after clause:

schedule arrival(3) after <evptr>;
schedule arrival (4) before <evptr>;

In each case, the arrival event will occur at the same simu-
lated time as the event described by the event notice
pointed to by <evptr>, but in the first case the <evptr>
event occurs first while in the second case the arrival
event occurs first. Once again <evptr> must be a simple or
qualified variable of type "ptr event" or expression of type
"ptr_event".

It is an error to try to schedule an event before or
after an event that is not scheduled.

The event notice of the currently executing event is
named “"current". However, before the event is executed,
"ourrent" is removed from the event set, and therefore
"current" is not considered to be scheduled while the event
is executing. This removal allows the automatic reclamation
of the event notice if the notice is not rescheduled during
the event routine. Thus one can not normally say

schedule arrival(4) after current;
However, see Section 3.6.

If an event notice is created using a schedule state-
ment with a named clause, it is assumed that the user will
explicitly destroy the event notice. Otherwise the pointer
to the event notice may be invalid when it is used. There-
fore, if a notice is created by a schedule statement with a
named clause, the automatic reclamation of the event notice
is inhibited, and the user must use the destroy statement
(see Section 3.5) to dispose of the event notice when it is
no longer needed.

3.3. Start Simulation and Event Main

The start simulation statement is used to begin execut-
ing scheduled events. 1Its form is:

Event Declaration and Scheduling

start simulation(<status>)

While events are being executed, the global variable "time"
gives the current simulation time.

The statement after start simulation is executed only

if the event set becomes empty or an eventnoticefor—the-

event main reaches the front of the event set. <status> is

an integer variable whose value can be inspected to deter-
mine why the simulation stopped.

If the event set is empty when start simulation is exe-
cuted, the control routine will return immediately. Thus
the proper way to start a simulation is to schedule at least
one event before executing the start simulation statement.
This event will then occur immediately and it (presumably)
will schedule other events in order to maintain the simula-
tion process.

The event main is predeclared as if it looked like:

event main(flag : integer);

When event main occurs, execution resumes after the most
recently executed start simulation statement. The value of
the <status> variable in the start simulation statement is
set to the value of the argument to main specified in the
schedule main statement. This status variable can be used
to flag why the simulation stopped. For example, one can
terminate a simulation at time 10.0 and return a status of 3
to the main program by saying

schedule main(3) at 10.0;

If the event set becomes empty, a schedule main(0) now

statement is automatically executed. That is, program exe-
cution will resume after the most recently executed start
simulation statement, and the status variable will be set to
zZero.

3.4. Event Notice Utility Functions

Some utility routines have been predefined to simplify
inspecting the contents of event notices. In most cases,
these routines may be included using the include statement;
certain of the routines are always included. These routines
return information about the event notice given a pointer to
the notice. The same information is available by direct
reference to a field of the event notice (if the pointer is
not nil). The advantage of the predefined routine is that
it checks to make sure the pointer is not nil.

The first utility function is "scheduled". Scheduled
is a boolean function that returns true if the event notice
pointed to by its argument is scheduled; it returns false if
the notice is not scheduled or if the pointer is nil. TIt is
declared as:

SIMPAS 5.0 User Manual

function scheduled (name : ptr_event) : boolean;

The function "etime" returns the time of the event
described by the event notice, or -1.0 if its argument is
nil. "Etime" is declared as:

function etime(name : ptr_event) : real;

The function "etype" returns the type of the event
described by the event notice, or the value "no_event" if
its argument is nil. "Etype" is declared as:

function etype(name : ptr_event) : t_ev_1;

Here "t _ev 1" is an enumeration type defined by the prepro-
cessor. It contains the names of the events defined in the
SIMPAS program and the identifiers "no event" and "main".
For example, if you have an event "departure" you may check
to see if a particular event notice describes a departure
event by saying:

if etype(evptr) = departure then . . .
Also, the following two statements are equivalent:

if evptr = nil then . . .
if etype(evptr) = no_event then . . .

3.5. Cancel, Destroy, Delete and Reschedule

If an event has been scheduled with a named clause, the
event notice may be removed from the event set by using the
cancel statement:

cancel <evptr>

Here <evptr> must be a simple or qualified wvariable or
expression of type "ptr_ event".

Cancel does not destroy the event notice. The destroy
statement disposes of a previously canceled event notice:

destroy <evptr>

It is an error to try to destroy an event notice that is
still scheduled. To destroy a scheduled event notice use
delete instead of destroy. Delete first cancels then des-
troys the event notice.

Reschedule can be used to put an event notice back into
the event set. Reschedule has the same form as schedule
except that one specifies a pointer to an event notice
rather than the name of an event. The event pointer must
have been set by a previously executed schedule statement
with a named clause. The actual arguments of the event
remain the same as those on the schedule statement. If
necessary, the actual arguments can be accessed and modi-
fied, but this action requires knowledge of the event notice
structure. (See Appendix A for details.)

Event Declaration and Scheduling

The reschedule statement has the form:

reschedule <evptr> { at <time-expression> l

delay <time-expression> |
now |
after <evptr-1> |

before <evptr—1> }

LA~ S g S~ TVl

ables or expressions of type ptr_event.

It is an error to try to reschedule an event that is
currently scheduled. To change the time of an event, first
cancel and then reschedule the event.

Without examining the event set directly, it is impos-
sible to cancel, delete, destroy or reschedule an event
unless it has been given a name through the named clause on
a schedule statement. However, one can use a forall state-
ment to scan the event set and obtain pointers to arbitrary

event notices. In this way arbitrary event notices can be
canceled, deleted, destroyed or rescheduled. (See Sec-
tion 5.5.)

Care must be taken not to change the status of an event
notice that can be referenced by another event pointer. For
example:

var eventl, event2 : ptr_event;
schedule arrival(3) named eventl delay 10.0;
event?2 := eventl;

delete eventl;

reschedule event2 delay 20.0;

In this case, when reschedule is executed it is likely that
event?2 does not point to the event notice for the arrival (3)
event that was originally scheduled. 1In fact, depending on
the PASCAL implementation, event2 may still be a valid
pointer, but it may point to a different arrival event than
the arrival(3) originally scheduled. Needless to say, this
can cause unexpected results.

3.6. Reschedule and Current

Before the current event is called, a pointer to its
event notice 1is placed in the global variable "current".
The notice named "current" is removed £from the event set
before the event routine is called; thus "current" is not
scheduled when the event is started. If when the event ter-
minates, "current" is still not scheduled, the event notice
will be destroyed.

If you wish the present event to be rescheduled at a
later time (using the same event notice), you can say

SIMPAS 5.0 User Manual

reschedule current . . .

where . . . represents any of the 1legal forms for
reschedule. By doing so, you will have scheduled "current"
and the event notice will not be destroyed.

After having rescheduled current, you may now say some-
thing like

schedule <event> after current;

However it is likely that this statement does not have the
effect you want. It appears that this statement should be
the same as

schedule <event> now;
or

schedule <event> delay 0;
But it is not. If you execute the statements:

reschedule current at 10.0;
schedule arrival(3) after current;

then the last statement is equivalent to
schedule arrival(3) at 10.0;

since "current" has been scheduled at time 10.0 and the
after clause will schedule "arrival" to the same time as
"current".

3.7. Event Trace

To simplify simulation debugging, SIMPAS provides rou-
tines to dump the event set or to print the contents of an

event notice, and provides mechanisms to selectively trace
event occurrences. Calling the procedure dmp evset (no
arguments) will print the current contents of the event set.
The procedure dmp event(evptr) will print a description of
the event described by the event notice pointer "evptr". 1In
both cases all printable arguments (integer, real, or
boolean) will be displayed as part of the dump.

There are three ways to control the event trace. One
can set the global variable "trace_all" to true. This
causes the scheduling, cancellation, and occurrence of each
event 1in the simulation to be traced. Alternatively, one
can cause the same printouts to occur for event "foo" by
setting ev_trace[foo] to true. Finally, one can trace a
particular event by setting the "trace" field of the event
to true:

schedule foo named bar at time 30.0;
bar”.trace := true;

To do this requires that the event be scheduled with a
schedule statement with a named clause so that a pointer to

10

Event Declaration and Scheduling

the event notice can be obtained.

4. Pseudorandom Number Generation in SIMPAS

All (pseudo) random-number generators in SIMPAS depend
on the basic uniform (0,1) random—-number denerator

"u random":

function u random(stream: integer): real;

The argument to "u random" is the stream identifier which
indicates which element of the array "seed v" is to be used
to as a seed to generate the random number. The absolute
value of "stream" must be between 1 and "n_seed" respec-
tively. (In the distributed version of SIMPAS, n_seed=10).
If "stream" is positive it directly indicates which element
of the array is to be used; if stream is negative then
"seed v[abs(stream)]" is used, but then the antithetic vari-
ate (one minus the generated value) is returned as the value
of wu_random. Antithetic variates are sometimes useful in
variance reduction techniques for the analysis of simulation
experiments [12]

"u random", in turn, calls a machine-dependent random
number generator named "r_ random":

function r random(var seed: integer): real;

In the distributed versions of SIMPAS, "r random" is imple—
mented in a more or less machine-independent way using the
mod function of PASCAL. The distributed version will not
work properly on machines with word sizes smaller than 32
bits. 1In any case, "r_random" can be replaced by a more
efficient, machine-dependent version as necessary. In gen-
eral we would recommend that you replace "r_random" with a

uniform (0,1) pseudo-random number generator in common use
at your computer facility or one that has passed a set of
statistical tests such as those described in [13]

The routines mentioned above ("u_random" and
"r random") are automatically included in every SIMPAS pro-
gram. The following random number generation routines are
included by requesting them in the "include" statement. The
"stream" argument always determines which random number
stream is used to generate the results:

function expo(lambda: real; stream: integer): real;
generates an exponentially distributed random variable
with parameter "lambda". This procedure uses the
inverse transform method.

function poisson(lambda: real; stream: integer): integer;
generates an integer random variable from the Poisson
distribution ~with parameter "lambda". This procedure
uses Algorithm Pl, page 440 from [77.

function binomial (r:integer; p:real; stream: integer):integer;
generates a binomial random variable. "r" is the

11

SIMPAS 5.0 User Manual

number of trials; "p" is the probability of success on
any given trial.

function udisc(a, b, stream: integer): integer;
generates a uniform discrete random variable whose
value is an integer in the range "a" to "b"
(inclusive).

function normal (mu, sigma: real; stream: integer): real;
generates a normally dlstrlbuted random variable with
mean "mu" and variance "sigma". The acceptance-
rejection method given as Algorithm N3B on page 414
of [7] is used to generate the random variable.

function lognormal (mu, sigma: real; stream: integer): real;
generates a lognormal random variable. This function
uses function "normal" so if "lognormal" is requested,
the user must request "normal” as well.

function gamma(alpha, beta: real; stream: 1nteger) real;

generates a random varlable whose den51ty is given by:

- B«
£) - e g x20

T (%)

"Alpha" need not be an integer. Algorithm G3A page 425
of [7] 1is used. This procedure 1is not optimal for
large values of alpha; instead one should probably use
Algorithm G3B page 426.

function erlang(alpha:integer; beta:real; stream:integer):real;

generates an Erlangian random variable as the sum of
"alpha" exponential random variables. The resulting
random variable has mean 1/"beta". The method is that
of Algorithm G1B page 421 of ([7].

function beta(a, b: real; stream: integer): real;
generates a random variable with the beta distribution;
here "a"-1 is the exponent of x and "b"-1 is the
exponent of (l1-x). Algorithm Bel, page 430 of [7] is
used.

function unif(a,b : real; stream : integer):real;
generates a continuous uniform random number in the
range (llall ,"b") .

function choose(a : real; stream : integer) : boolean;
returns true with probability "a"

function hyper (alpha,mul,mu2:real; stream:integer):real;
generates a random variable with the two-stage hyperex-
ponential distribution:

12

Pseudorandom Number Generation
- X - AM
Fx)=a(l-¢)4— (-a)(1-¢ 7)) az0

The obvious composition method is used.

gdisc
While not a pseudorandom generation procedure itself,

putting this name in the include list causes a collec-
tion of general discrete random variable setup and gen-
eration routines to be included. To define a general
discrete random variable, one declares it to be of type
"gdiscvar". The variable is then initialized using one
of the two routines "r gdsetup"” or "i_ gdsetup" depend-
ing on whether you want to generate real- or integer-
valued random variables. The calling sequences for the
setup routines are:

procedure r_gdsetup(var head_rand : gdiscvar;
first: boolean;
tprob, tvalue : real);

procedure i gdsetup(var head_rand : gdiscvar;
first: boolean;
tprob : real; tvalue : integer);

where:

"head rand" is the name of the random variable,
and must be declared as type
"gdiscvar".

"first" is true on the first call to the
setup routine.

"tprob" is the probability to be assigned
to "tvalue".

"tvalue" is the value (real or integer as appro-

priate).

To generate a random variable with the general distri-
bution, one calls the general discrete generation rou-
tines:

function rngdisc(head_rand : gdiscvar;
stream : integer) : real;

function i_gdisc(head_rand : gdiscvar;
stream : integer) : integer;

A run-time error will occur if when either "r_gdisc" or
"i gdisc" is called for the first time with a particu-
lar argument, the random variable is found to be defec-
tive, that 1is, if the "tprob" values saved during the
setup process do not add up to one.

The inverse transformation method 1is used, and the

values are stored as a linear linked list. For general
discrete random variables with large numbers of values

13

SIMPAS 5.0 User Manual

a binary search tree would be more efficient.

5. Queues (Linked Lists) in SIMPAS

SIMPAS provides facilities for the declaration, mainte-
nance and inspection of linked lists or queues of temporary
entities (queue members). Summary statistics about the
number of elements in a queue are also maintained.

5.1. Queue Declarations

A queue declaration consists of two parts. The first
part, which is found in the global type declaration section
of the program, specifies the type identifiers for the queue
members and the queues. Queue and queue member variables
are then declared in var parts of the program.

The gueue member type declaration is of the form:

<entity> = gueue member
<attribute-1>
<attribute-2>

<attribute-n> : <type-n>;

<type-1>;
<type-2>;

°e o0

end;

where """ is the PASCAL "up—arrow“ or pointer dereference
operator. This trailing """ is optional and is included
merely to remind the user that the queue member declaration
defines a pointer type.

There need be no user defined attributes; however in
this case the end keyword must still be present.

To declare a queue type, one uses a declaration of the
form:

<queue-type> = dqueue of <entity>;
Queue and queue-member variables can be declared using
declarations of the form:

var
<queue—-name> : <queue-type>;
<queue-member> : <entity>;

For example, to declare a gqueue of Jjobs called

"cpu queue" and a variable called "jobptr" to access members
of the queue, one would use the following declarations:

14

Queues

type (* global type declarations ¥*)

job = queue member
arrival time:real;
cpu_time:real;
memory size:integer;

end;

job_queue = queue of job;

var (* global or local var declarations *)

than

cpu_queue:job_queue;
jobptr : Jjob;

A variable of type gueue member "~ cannot be in more
one gueue at a time. Furthermore, a queue member must

be removed from one queue before it can be placed into
another dqueue. This is necessary to properly maintain the
gueue occupancy statistics.

5.1.1. Restrictions Certain restrictions have been
imposed on the queue member and queue type declarations in
order to simplify the preprocessor:

(1)

(2)

As mentioned above, the type descriptors queue member
and queue are only allowed in the global type declara-
tion part of the program. They will not be recognized
anywhere else in the program. Their presence in other
parts of the program will cause compilation time
errors.

Complex types which include the declaration Jueue or

queue member "~ are not allowed. The preprocessor will
not recognize a queue or gueue member ~ type declara-
tion unless the keyword gqueue immediately follows the
equals sign in the type declaration. Thus if one
wishes to have an array of queues or to include a queue
as a field of a record, one must first assign a type
identifier to the queue and then include the type iden-
tifier in the array declaration. Hence instead of say-
ing
type
job = queue member "~ . . . end;
job_queues = array [1..5] of queue of job;

one must say
type

job = queue member ~ . . . end;
job_queue = gqueue of job;
job_queues = array [l..5] of job_gqueue;

Similarly, one may not directly use a queue declaration
as a type in a record.

15

SIMPAS 5.0 User Manual

(3) Before a queue member can be placed in a queue, it is
necessary to initialize the queue. SIMPAS provides an
initialization statement to do this. 1Its format is:

initialize <queue> [,<queue>] ;

where each <queue> is a variable of type queue of
<some_entity>. For example:

type
job = queue member ~ . . . end;
joblist = queue of job;

var
job lists : array [1..5] of joblist;

(* to initialize job lists[5] one would say: *)
initialize Jjob lists[5];

(* to initialize all of job_lists one would say
something like: *)

for i:=1 to 5 do initialize job lists[il;

The purpose of the initialization statment is to set
the queue head pointer properly and to initialize the
queue statistics variable. An attempt to insert a
member into a queue which has not been initialized will
usually cause a run time error; it 1is impossible to
guarantee this across all PASCAL implementations.

5.2. Standard Queue and Queue Member Attributes

Every queue member has a standard 1list of attributes
defined by the preprocessor. These attributes can be
referred to wherever the queue-member variable is accessi-
ble. The user may not declare an attribute of the same name
as the standard attributes. Doing so will cause a compila-
tion time error. One refers to the attributes using the dot
notation of PASCAL; thus to refer to the attribute "size" of
queue "Jjob _queue", one would say "job queue.size". The
standard queue member attributes are:

next- This attribute is of type <entity> and points to
the next member of the gqueue or to the queue head
if this is the last member of the queue.

prev- This attribute is of type <entity> and points to
the previous member of the queue or to the queue
head if this is the first member of the queue.

inqueue- This boolean attribute is true if the queue member
is in a queue.

16

Queues

ghead- This attribute is of type <entity> and points to
the head node of the queue, or is nil if the
<entity> is not in any queue. Thus one can deter-
mine if an <entity> is in <queue> by using an if
statement of the form:

if <entity>".ghead = <queue>.head then
{k xremen 34 s RN

\, JCD o P oy i Sy J 7 . ® £
else
(* no it isn”t *) . . .

The standard queue attributes are:

empty- This boolean attribute is true if the queue is
empty.
size- This attribute gives the number of members in the

queue. Size behaves as 1if it were "watched"
integer, this means that statistics about size are
automatically collected. For example, the time-
averaged mean dueue size is available as
size.mean. See Section 6 for a description of
watched types.

head- This attribute is of type <entity> and points to
the head node of the linked list which represents
the queue. This attribute is set when the queue
is initialized. The first <entity> in the queue
is head”.next; the last entity is head”.prev. I1f
the queue is empty, both of these variables point
to the queue head.

5.3. Entity Creation and Disposal

To create a new queue member one uses the statement:
create <entity>;

where <entity> is a variable of type queue member ~. Simi-
larly, to dispose of an existing queue member one uses the
statement:

destroy <entity>
Thus the following can be used to create a new "job":

type
job=queue member ~ . . . end;

var
jobptr : job;

create jobptr;
And to dispose of a "job" one can say:

destroy jobptr;

17

SIMPAS 5.0 User Manual

Of course, one can always use the PASCAL procedures
"new" and "dispose" to do the same thing. However, by using
create and destroy the standard queue member attributes will
be properly initialized when the <entity> is created. (Ini-
tialization of fields of records created by "new" statements
is not specified in standard PASCAL.)

5.4. Queue Manipulation

SIMPAS provides a variety of queue manipulation state-
ments. The simplest forms are the statements:

insert <e_ptr> in <queue>;
remove the first <e_ptr> from <queue>;

In the first statement the entity is inserted 1last in the
queue; while in the second statement the entity removed is
the first entity in the queue. Thus these simple statements
enable a straightforward implementation of a FCFS queue.

In these statements, <e ptr> must be of type "<entity>"
and <queue> must be of type queue of <entity>. Attempts to
insert or remove an entity of the wrong type in a queue will
result in semantic errors at preprocessing time.

Other variations of the insert statement are:

insert <e_ptr> first in <queue>;
insert <e ptr> last in <queue>;
insert <e ptr-1> after <e ptr-2> in <queue>;

The second case is equivalent to the same phrase with the
word "last" omitted. 1In the third case, <e_ptr-2> must be
in the queue <queue>; if it is not, then a run-time error

will occur.

The following variations on the remove statement are
supported:

remove the first <e ptr> from <queue>;
remove the last <e ptr> from <queue>;
remove <e ptr> from <queue>;

The second statement is the opposite of the remove the first
statement. The effect of the third statement is to remove
the particular entity pointed at by <e_ptr> from the
<queue>. In this case the remove statement does not modify
the <e ptr> while in the other cases the remove statement
assigns to <e ptr> a pointer to the entity which was
removed. The keyword the in these statements is optional.

To continue our cpu_gueue example, one would normally
use the following declarations and statements to insert and
remove Jjobs from the "cpu_ queue":

18

Queues

var

cpu_queue:job queue;

event departure; forward;

event arrival;

var job_pointer : jobj
begin
(* create a job *)
create job pointer;

(* assign a cpu time to job pointer”.cpu_time *)

(* we will assume that the job at the head of the
queue is executing *)
if cpu_queue.empty then

begin
(* start cpu *)
schedule departure delay job pointer”.cpu_time;
insert job pointer in cpu_queue;

endlfR

else

insert job pointer in cpu_gqueue;

(* we will assume that inter_arrival_time has
been defined *)
reschedule current delay inter arrival tlme,
end; T(* arrival *)

event departure;
var job pointer:job;

begin
remove the first job pointer from cpu_queue;

if not cpu_queue.empty then
“reschedule current dela
cpu_queue.first”.cpu_time;

(* dispose of the job *)
destroy Jjob pointer;
end;

5.5. Forall Loops
To simplify searching queues, SIMPAS provides two types
of loop statements:

forall <e ptr> in <queue> do S;
forall <e ptr> 1n <queue> 1n reverse do S;

As before <e_ptr> must be a simple or qualified variable

of

19

SIMPAS 5.0 User Manual

type "<entity>"; <queue> must be a simple or qualified vari-
able of type queue of <entity>. Attempts to use a variable
of type <entityl> as a loop index in a forall loop where the
queue is of type queue of <entity2> will result in prepro-
cessor detected errors.

If <queue> is empty then S is not executed.

The statement S must not include a remove <e ptr> from
<queue> statement. Otherwise the 1link structure used to
implement the loop could be destroyed while the loop is exe-
cuting. To remove all members from a queue, one cannot use
a forall loop but instead must say:

while not <queue>.empty do
remove <entity> from <gqueue>;

Within a forall loop, specific fields of the <entity>
can be referred to using the dereferenced name: <e ptr>
For example, to average all of the cpu times of the queue of
jobs in the cpu queue we declared above, one could use the
following declarations and code:

var
avg_cpu : real;
]Ob pointer :]Ob'
cpu_queue : job queue;
begin
avg_cpu:=0.0;
forall job_pointer in cpu_queue do
avg_cpu:=avg_ g_cpu+job pointer”.cpu_time;
if not cpu_gqueue.empty then
avg_cpu:=avg_cpu/cpu_gqueue.size
else
avg_cpu:=0.0;
end.

Alternatively, one could use a PASCAL with statement to make
the fields accessible:

forall job pointer in cpu_queue do
w1th job pointer” do
avg_cpu=avg cpu+cpu time;

5.6. Forall Loops and the Event Set

To simplify scanning the event set, the event set is
declared equivalently to the following:

20

Queues

type
ptr_event = queue member
(* standard event attributes *)

end;

ev_queue : queue of ptr_event;
var

ev_set : ev_queue;

The event set is thus a queue of event_ notice”s and is named
ev_set; the only difference between the declaration of
ev set and that of a queue of events is that the size attri-
bute is declared as an integer instead of as an a_integer.
The result of this is that one can use a forall statement to
scan the event set:

var
ev_ptr : ptr_event;
begin
forall ev_ptr in ev_set do
case etype(ev ptr) of
no_event : begln . « . end;
main : begln . . . end;
end; (* case ¥*)
end.

However, since the event set is a queue ordered by
event time, the user is prohibited from inserting and remov-
ing event notices from the event set using the insert and
remove statements. Instead, to insert an event notice in
the event set, use a reschedule statement; to delete an
event notice from the event set, use a cancel or delete
statement.

6. Statistics Collection in SIMPAS

Starting with version 5.0, SIMPAS provides automatic
statistics collection features similar to those of
SIMSCRIPT II.5. Statistics collection is enabled for a par-
ticular variable by declaring it to be a special type, which
we will refer to as a "watched type". For example, to cal-
culate time averaged statistics for an 1nteger variable, one
declares the integer as a “a_lnteger (for accumulated
1nteger) A variable of type a_integer can be used in
expressions exactly as a normal 1nteger variable can. How-
ever, whenever the variable is updated, statistics main-
tained about the variable are also updated. These statis-
tics are available as predefined attributes of the watched
variable:

21

SIMPAS 5.0 User Manual

mean the mean value of the variable”s observed values.
variance the variance of the variable”s observed values.

max the maximum value this variable has had since it
was last cleared or reset. (Not kept for boolean
watched types).

min the minimum value this variable has had since it
was last cleared or reset. (Not kept for boolean
watched types).

nobs the number of observations made for this wvariable
to date.

For example, if x is declared as an a_integer, then
x.mean 1is its average, x.max is its maximum and so forth.
Other attributes can be added by modifying the SIMPAS source
library. The algorithm of [17] is used to stably update the
mean and variance.

To simplify printing of statistics, with statements
that involve watched variables are handled as a special
case. Nominally, the statement "with <watched var>" |is
illegal since <watched var> is supposed to behave like a an
integer, real, or boolean variable, respectively, and not
1ike a record. Strict enforcement of this rule would always
require the fully qualified name to be used to access the
statistics information. This 1is cumbersome when printing
statistics. Thus if x is an a_integer, then

with x do
writeln(mean, min, max, variance);

is equivalent to

writeln(x.mean, x.min, x.max, X.variance);

A watched variable may be declared as either event-
averaged (tallied) or time-averaged (accumulated). For a
time-averaged variable, values observed are weighted by the

length of time the value was held; event-averaged statistics
give equal weight to all values. The six watched types are:

22

Statistics Collection
t integer to obtain the event average (tally)
of an integer variable

a_integer to obtain the time average (accumulate)
of an integer variable

e e ———— oot ain—the—event—average (tally)
of a real variable

a real to obtain the time average (accumulate)
of a real variable

t boolean to obtain the event average (tally)
of a boolean variable. (Prue = 1.0,
False = 0.0).

t boolean to obtain the time average (accumulate)
of a boolean variable. (True = 1.0,
False = 0.0).

(The size attribute of a queue may be used as if it were an
a_integer).

The clear statement is used to initialize a watched
variable so that it can be used. The clear statement has
the format:

clear <watched variable> [,<watched-variable>]

In order to obtain meaningful statistics, a watched variable
must be cleared before it is used.

The reset statement (format same as for clear) can be
used to reset statistics collection during a run. It per-
forms the same function as clear except that the current
value of the watched variable 1is not set to zero. Thus
reset merely clears the statistics associated with the
watched variable. For example, it is a common practice to
discard statistics during an initial "transient" portion of
a simulation. The reset statement can be used to do this.

For a time-averaged, watched variable, one sometimes
needs to flush out the last observation when the simulation
ends. Otherwise the contribution of the last wvalue the
watched variable has will not be incorporated into the
variable’s statistics. To do this, one uses the statement:

flush <time avg variable> [,<time_avg variable>]

A watched variable can be used anywhere a simple type
can be used except as a for loop variable. Watched vari-
ables can be passed by value as simple variables to pro-
cedures and functions, or as var parameters that are them-
selves declared as watched variables, but may not be passed
by reference as simple variables or passed by value as
watched variables. Passing a watched type by reference as a

23

SIMPAS 5.0 User Manual

simple variable would allow the value of the variable to be
changed without updating the associated statistics. Passing
a watched type by value as a watched variable serves no use-
ful purpose. The error in this case can be ignored, how-
ever, if the user wishes.

The following code is therefore legal:

var
w : t_integer;

procedure foo(i : integer);
begin . . . end;

procedure glarch(var i : t_integer);
begin . . . end;

begin {main procedure}
clear w;
foo(w);
glarch (w) ;

L] e °

end.

On the other hand, declaring foo and glarch as follows would
cause preprocessing errors to occur at the procedure call
points:

procedure foo(var i : integer);
begin . . . end;

procedure glarch(i : t_integer);
begin . . . end;

6.1. Regenerative Simulation with SIMPAS

One may also declare a watched variable for confidence
interval generation based on the regenerative simulation
approach of [8,14] The classical confidence interval estima-
tors are used [9]. The regenerative simulation approach
requires that the simulation occasionally reach a state
where the simulation "“starts over". For example, in an
M/G/l queueing system simulation, every time the server
becomes idle, the past behavior of the simulation is forgot-
ten and statistics collected after this point are indepen-
dent of statistics collected before this point. Such a
state is called a regeneration state and the period of time
between regeneration states is called a regeneration cycle.

To use these features one declares the watched vari-
ables exactly as above, but includes the section name
"regen" on the program”s include statement. The effect of
this include section is to enable all watched variables in
the program for use a confidence interval statistics. The

24

Statistics Collection

standard watched variable attributes are still accessible
and the following new attributes are defined:

mid point the mid point of the confidence interval

half width the confidence interval half width. Thus

the actual interval generated is:

mid—point—+half width.
z_alpha selects the coverage probability of the
confidence interval. Set to 1.96 (95%)
by the clear statement. It may
be changed by the user at essentially
any time. (See below).

7 _alpha is the critical point chosen from a normal dis-
tribution table. For a 100(l-alpha)% confidence interval
z_alpha should be chosen so that

pr { 2 < zalpha } = 100(l-alpha/2)%
where 7 is a N(0,1) random variable.

One initializes the confidence interval variable using
the clear statement, exactly as for any watched variable.
Mid point and half width are set at the end of each regen-
eration cycle through use of the regen statement:

regen <variable> [,<variable.] . . .

Mid point and half width are not usually meaningful until 20
or so regen’s have been done. A negative half width is used
to indicate that not enought regen”s have been done to make
the result meaningful.

Z_alpha can be changed by the user and then the confi-
dence interval can be recalculated using the recalc state-
ment: _—

recalc <watched-variable> [,<watched-variable>]

Z_alpha can also be changed at any time during a regenera-
tion cycle provided only that the regeneration cycle is not
of length zero (no observations occur during the regenera-
tion cycle). After the next regen statement is executed the
confidence interval length will be adjusted to that of the
new coverage probability.

6.2. Printing Statistics

The display statement is provided to simplify printing
the contents of a watched variable. The format is:

display <watched variable>

It is intended to be used as shown below:
write ("Number of Jobs:”); display Jjobs_stat;
and produces output of the form shown below:

25

SIMPAS 5.0 User Manual

Number of Jobs:nobs=10 max=7.55e+00 mean=2.36e+00 var=5.15e+00

6.3. User Defined Statistics

The user can declare his own watched types if he
wishes. The syntax to do so is:

<watched type> = watched [<proc_name>,<suffix>] of <type>

This declaration may only appear in the global type part of
the SIMPAS program. The effect of this declaration is that
every time a variable of type <watched type> is detected as
the target of an assignment statement, SIMPAS converts the
assignment statement to a call on <proc_name>. The pro-
cedure <proc_name> must be declared as follows:

<proc_name>(flag : t_asg_flag; var LHS : <t_type>; RHS <t_type>;

line : integer; progunit : mod_name);
where

flag indicates to the procedure why it was called.
flag=assign indicates that a variable of type
<watched type> has been assigned to; flag=clear
indicates that a variable of type <watched_ type>
has been cleared. In general, the statement <id>
<var> with <var> a <watched type> is translated to
a procedure call with flag=<id>. This is how the
clear, regen, recalc etc. statements are imple-
mented.

LHS is the left-hand-side of the assignment statement.
If flag=assign then procedure <proc_ name> MUST
assign the value LHS to the appropriate part of
parameter RHS before returning.

RHS is the right-hand-side of the assignment state-
ment.

<t _type> is the true type of the watched variable. If the
<type> in the <watched type> declaration is a sim-
ple type, then the true type is this type. In
this case the <suffix> must be empty. Normally,
<type> will be a record, and suffix will be one of
the field names (including the ".") of this
record. The true type of the <watched type> in
this case is the type of that field in the record.

line , is the current SIMPAS source line.

progunit is the current program/module name (only useful in
the case of separate compilation). Line and pro-
gunit are provided primarily for printing error
messages.

Thus, the assignment statement
LHS := RHS;

26

Statistics Collection

where LHS is of type <watched type> is converted to the pro-
cedure call:

<proc_name>(assign, LHS, RHS, line, progunit)

The clear statement:

clear <var>

where <var> is a variable of type <watched type>, is con-
verted to the procedure call:

<proc_name>(clear, <var>, <var>, line, progunit)

Everywhere a variable of type <watched type> appears in
a place that requires a value, <suffix> will be appended to
the variable name. (with are an exception to this rule).
Normally, <type> will be a record and <suffix> should be a
field name in the record; the type of <suffix> will be the
true type of any variable declared as an instance of
<watched type>. Suffix is textually added to the name of
the variable of type <watched type>. If <type> in the
<watched_ type> declaration is indeed a record, then <suffix>
must include the initial ".". The only requirement on <suf-
fix> is that for any variable of type <watched_type>, the
result of appending <suffix> to the variable name must be a
legal PASCAL construct. The SIMPAS preprocessor does not
check the legality of this construction in any way.

The type of .<suffix> can itself be a record. The only
complication here 1is that if X is an instance of such a
watched type, then the statement

with x do
is NOT converted to
with x.<suffix> do

If this is indeed what the user wants, the following form of
the with statement must be used:

with x, <suffix> do
or

with x do with <suffix> do

This restriction is enforced to allow the user to use a with
statement to gain access to the statistics data in a watched
variable.

7. Use of the Preprocessor

In general the preprocessor is given the SIMPAS program
as input and produces a PASCAL program as output. The PAS-
CAL program is then compiled and executed in the normal
fashion. Since SIMPAS is designed to be portable from
machine to machine and system to system, it is difficult to

27

SIMPAS 5.0 User Manual

describe in more detail how it is to be used at your partic-
ular installation. For SIMPAS versions that run on the VAX
UNIX system and the UNIVAC 1100 system, more detailed infor-
mation is available in the machine specific manuals for
those systems. This information is normally supplied as

part—of the SIMPAS distribution package.

7.1. Preprocessor Control Options

Several actions of the preprocessor can be controlled
by placing option flags in the SIMPAS source. These options
are specified by letters that are enclosed in a pair of
matching §$ signs. Several letters can appear between the $
signs and their case is not significant. The options useful
to the user are:

L Turn on SIMPAS source level listing.
N Turn off SIMPAS source level listing.
_ Turn off translation of _ to 0.
C Turn off translation of upper to lower case.

Other option letters that are defined are S, T, D, and
A. These options turn on or off SIMPAS debugging printouts.
7.2. SIMPAS and PASCAL Line Numbers

When compiling the output PASCAL, one will get errors
(as it sometimes happens!) in terms of the output PASCAL
line numbers. These numbers can be related back to the SIM-

PAS input 1line numbers by looking for a lines that start
with a comment of the form (*nnnn%*). This output PASCAL
line number was generated from SIMPAS input line number
nnnn. If the line where the error occurred does not begin
with (*nnnn*), then examine the previous few lines looking
for such a comment. If no such line is found, the section
of code in error probably was brought in from the library
file (these lines are not numbered). Since in general this
code should not contain errors, it is likely that some error
you made previous to that point has caused these error mes-
sages to be generated.

7.3. A Sample SIMPAS Program

The following SIMPAS program simulates an M/M/1 queue-
ing system. Our discussion about this program is contained
in comments in the program text:

program example simulation (output);

{ the program reads no input because all parameters
are declared as compile time constants

const
max_departures = 5000;

28

A Sample SIMPAS Program

arrival stream
service_stream

e ws w0

U O I I 1|
HOONK

arrival rate 36;
service rate .4
normalterm :

type
job = queue member

arrival time : real;
end:;

job queue = queue of job;
yar

departures counts the number of departures ;
arrivals counts the number of arrivals
departures, arrivals : integer;

{ waiting queue is the queue of waiting jobs }
waiting_ queue : job_queue;

[status is used in the "start simulation" statement }

status : integer;

tsys_stat records the mean time in system etc }
tsys_stat is declared as a tallied integer
tsys stat : t_real;

{ sys_busy records the amount of time the system is busy
sys_busy : a_boolean;

{ fetch exponential random number generator routine
from library

include expo;

{ we could have declared event departure first, but this
shows how to forward an event

event departure; forward;

event arrival;

var
arriving job : job;

begin { arrival }
arrivals:= arrivals + 1;
create arriving job; { create a new job }

[set the jobs arrival time |}
arriving_job”.arrival time := time;

{ put the new arrival in the waiting queue and

29

SIMPAS 5.0 User Manual

schedule a departure event if necessary }
if waiting_queue.empty then

begi
I~ record end of system idle period |}
sys _busy := true;
——~—*~——v~$ﬁw&nsert—arn&v1ng ~—job-in-waiting_queue;
schedule departure

delay expo (service rate,service_stream);
end
else
insert arriving job in waiting_queue;

{ set up next arrival }
reschedule current
delay expo(arrival_rate, arrival stream);

end; { arrival }

event departure;

var
departing job : job;

begin { departure }
departures:= departures + 1;

remove the first departing job from waiting_gqueue;

{ record this job”s time in system }
tsys_stat := time - departing job”.arrival_time;

[stop simulation if requested number Jjobs have departed
if (departures >= max_departures) then
schedule main (normalterm) now;

{ otherwise dispose of this Jjob and reschedule departure
destroy departing_job;

if waiting_queue.empty then
Tecord end of system busy period }
sys busy := false
else { schedule next departure |}
schedule departure delay
expo(serv1ce rate, service stream),

end; { departure }

begin { main procedure }

initialize waiting_queue;

30

A Sample SIMPAS Program
{ initialize statistics }
clear tsys_stat, sys_busy;

{ schedule first arrival |}
schedule arrival now;

{ run the simulation }
start simulation(status);

{ print results of run }
writeln(”Simulation Terminated at:”, time:10);

-

writeln(“End of run status :”, status:10);

[flush out final busy/idle observation }
sys_busy := waiting queue.empty;

writeln(“Server utilization :”, sys_busy.mean:10);
writeln(“Number of jobs serviced :”, departures:10);
writeln ("Number of arrivals :“, arrivals:10);

[note that time average mean number of Jjobs in
waiting queue is the time average mean number
of jobs in system -- and this is recorded
automatically

writeln(’Mean number in system 7,

waiting_queue.size.mean:10);

writeln("Max number in system 7,

waiting queue.size.max:10);

writeln(“Mean time in system :”, tsys stat.mean:10);
writeln("Max time in system :”, tsys _stat.max:10);
end.

7.4. Execution Output
simulation terminated at: 1.407e+04

end of run status : 1
server utilization : 8.564e-01
number of jobs serviced : 5000
number of arrivals : 5013
mean number in system : 7.946e+00
max number in system : 5.800e+01
mean time in system : 2.232e+01
max time in system : 1.390e+02

8. Acknowledgements

Mark Abbott, John Bugarin, and Bryan Rosenburg have
worked on various phases of the SIMPAS implementation and
without their assistance the project would never have been
completed. This project was supported in part by the
Wisconsin Alumni Research Foundation and by NSF Grant MCS-

31

—provided by its—director;Dr+ Tad-B- Pinkerton.

SIMPAS 5.0 User Manual

800-3341. I would also like to thank Dr. Raphael Finkel for
his assistance in debugging the early versions of SIMPAS and
his editorial assistance in writing this manual. Finally, I
also would like to acknowledge the support of the Madison
Academic Computing Center, and in particular the assistance

32

Appendix A -- SIMPAS Implementation

Appendix A

SIMPAS Implementation Notes

A.l: The Event Set and the Simulation Control Routine

Event routines are called and the simulation clock is
advanced by the "simulation control routine" in conjunction
with the "event set". The event set is a 1linked 1list of
records ("event notices"), each of which describes the exe-
cution of an event. An event notice contains the actual
arguments for the event, the simulation time when the event
is to be executed and a link to the next member of the event
set. To schedule an event, an event notice for the event is
created, the actual arguments of the event are stored in the
event notice, the time of the event is saved in the event
notice, and the event notice is inserted in the event set.
The event set is sorted by increasing simulation time; the
next event to occur is always described by the event notice
at the front of the event set.

The simulation control routine proceeds by (1) advanc-
ing the clock to the time of the first event in the event
set, (2) removing that event notice from the event set, and
(3) calling the appropriate event routine. When the event
routine returns, this process is repeated.

The simulation control routine is itself called by the
start simulation statement. The control routine continues
to execute as described above until (1) the event set
becomes empty, or (2) an event notice for event "main"
reaches the head of the event set. 1In either of these cases
the control routine returns to its caller and the simulation
is stopped.

A.2: Event Set Structure

The event set is maintained as a doubly 1linked 1list
with head node. It thus has the same structure as a queue,
except that size is declared as an integer instead of as an
a_integer. The event set is declared as:

ev_set : record
head : ptr_event;

size : integer;
empty : boolean;
end;

These attributes have the same meaning as for dueues; see
Section 5.2 for more details. "ptr_event" is declared as

ptr_event = "event_notice;
and an event notice is declared as a record with variants:

event_notice = record
next, prev, ghead: ptr_event;

33

SIMPAS 5.0 User Manual

inqueue, named: boolean;
evtime: real;

trace boolean;
schedtime real;

schedline integer;

schedunit—:—mod name;
id : _integer;

case eventtype: t_ev_1 of
no_event s ()
main : (a_main : t _main);
<event> : (a_<event> : t <event>);

end;

"next" and "prev" point to the next and previous event
notices 1in the event set; "ghead" points to the head of the

event set. "evtime" contains the time of the event and
"eventtype" gives the name of the event (e. g. arrival,
departure, etc.). "inqueue" is true as long as the event

notice is scheduled. "trace" is the tracing flag for this
event notice. The boolean variable "named" is used to over-—
ride the automatic reclamation of the event notice after the
event is executed when the notice was created via a schedule
statement with a named clause. "schedtime", "schedline" and
"schedunit" contain the time, line, and program unit where
the event notice was last scheduled/rescheduled and are used
by the event set tracing routines. "jid" is a unique integer

assigned to this event notice for use in tracing.

The type "t _ev 1" is an enumeration type each of whose
values 1is either the name of an event or the names
"no_event" or "main". The preprocessor inserts one line 1in
this case statement for each event declared by the user. If
the event has arguments, the preprocessor declares a record
to hold them. The record is named "a_<event>" and is of
type "t <event>". The fields of "a <event>" are set to the
values of the actual arguments during the execution of a
schedule statement.

Some other global variables associated with the event
data structure are:

time : real;
g _notice: ptr_event;
current : ptr_event;

"time" contains the current simulation time. "g_notice" is
a global temporary used by the schedule statement code to
hold a pointer to the event notice being scheduled.
"current" contains a pointer to the current event notice.
This is so the user can say reschedule current

34

Appendix A -- SIMPAS Implementation

A.3: Event Notices and Event Scheduling

The schedule statement
schedule arrival delay expo(lambda, 3);
expands to

begln
c notlce(g _notice, arrival):
e 1nsert(g_ notice, nil, expo(lambda,3),
e delay, 11ne, progunit);
g notice := nil;
end;

The routine c_notice creates an event notice of the speci-
fied type (in this case of type "arrival") and returns a

pointer to the new notice in the variable "g_notice". The
routine e insert takes g _notice and inserts it at the
correct place in the event set. "line" and "progunit" are

the current SIMPAS source line and program unit names; these
names are used for error reporting.

The second through fourth arguments to e insert control
the type of insertion to be made. For example, the second
argument is nil unless the schedule (or reschedule) state-
ment uses a before or after phrase. In this case the second
argument gives a pointer to the event notice that is to be
inserted before or after, respectively. The third argument
gives the time expression of the schedule/reschedule state-

ment. The fourth argument is one of: e_at, e_delay, e_now,
e before, or e after depending on the form of the
schedule/reschedule statement.

A somewhat more complicated case is the statement
schedule terminate(leastjob) named death delay run_time;
We will assume that terminate is declared as
event terminate(jobp : job);
This statement expands to:

begin
c notice(g_ notlce, terminate);
w1th g_ notice” do begin
T a_terminate T .jobp := leastjob ;
end;
death:= g_ notice;
g notice”.named:= true;
e_insert(g_ notice, nil, run_time, e_delay, line, progunit);
g notice:= nil;
end;

The primary differences between this and the last statement
are that the argument to the event is saved in the field
"jobp" of the record "a terminate" and that a pointer to the
generated event notice is saved in the user-declared

35

SIMPAS 5.0 User Manual

variable "death".

A.4: Queue and Queue Member Declarations

The queue-member type declaration is expanded into a
record type as follows:

<entity> = queue member

<attribute-1> : <type-1>;
<attribute-2> : <type-2>;
<attribute-3> : <type-n>;
end;

becomes:

<entity> = "r_<entity>;
r_<entity> = record
next, prev, ghead: <entity>;
inqueue : boolean;
<attribute-1> : <type-1>;
<attribute-2> : <type-2>;

<attribute-3> : <type-n>;
end;
The three pointer fields are initialized to nil and

"inqueue" 1is initialized to false when the <entity> is
created. The ghead pointer is nil unless the <entity> is

currently in a queue, and otherwise the head pointer points
to the head node of the queue. This is used to check that
<entity> is indeed in a particular queue.

The gqueue head type declaration
<queue-type> = queue of <entity>
is expanded to

<queue-type> = record
: head : <entity>;
size : a_integer;
empty : boolean;

end;

Note that the gqueues are maintained as doubly-linked 1lists
with head nodes. <queue-type>.head points at the head node
of the gueue once the queue has been initialized. Thus, the
first member of the queue (assuming it is not empty) is
given by <queue-type>.head”.next; the last member is
<queue-type>.head”.prev.

For every queue member type declared in the program,
the preprocessor creates procedures c_<entity> ~ and
d _<entity> to create and destroy entities of that type.
These procedures are called by the create and destroy state-
ments respectively. For every queue type declared 1in the
program, the preprocessor creates and inserts an

36

Appendix A -- SIMPAS Implementation

initialization procedure named i _<queue>. For the queue
type named <queue> the initialization routine is named
i_<queue>. The initialization routine is called by the ini-
tTalize statement. The initialization routine sets the size
of the queue is to zero and sets empty to true. The statis-
tics portion of a_integer is cleared. A new entity of type
<entity> is generated by calling the procedure c_<entity>;
head is set to point at this entity. The next and prev
fields of head” are set to head to represent an empty,
doubly-linked 1list, head”.inqueue is set to false and
head”.ghead is set to nil. These special settings of the
fields of the head node are used in the remove statements to
detect attempts to remove a member from an empty queue.

Note that attempting to insert a member in an unini-
tialized queue will probably result in a reference through
an uninitialized pointer and a corresponding run-time error.

A.5: Insert
The statements

insert <entity> in <queue>

insert <entity> first in <queue>

insert <entity> last in <queue>

insert <entity> before <entity-2> in <queue>

are all converted to an equivalent insert after statement,

and then the insert after statement is translated to a call
on the procedure p <queue_type> ("p" stands for "put"):

procedure p <queue_type> (var <queue> : <queue_type>;
ml, m2 : <entity>;
line : integer; progunit : mod_name);

Here <queue_type> is the type of <queue>. This procedure
inserts ml after m2 in <queue>.

For example,
insert <entity> first in <queue>

is converted to

insert <entity> after <queue>.head in <queue>
and then the later statement becomes:
p_<queue_type>(<queue>, <entity>, <queue>.head, line, progunit)

insert <entity-1> after <entity-2> in <queue>
is expanded to
p_<queue_type>(<queue>, <entity-1>, <entity-2>, line, progunit)

If <entity-1> is currently in a queue, then the error mes-
sage: "tried to insert a member already in a queue at line
nnn" is printed. If <entity-2> is not in the queue <queue>,

37

SIMPAS 5.0 User Manual

the error message: "tried to insert after a member not in
the queue at line nnn" will be printed. Note that the head
node is not considered to be in the queue. Thus attempting
to insert an entity first in a queue by a statement of the
form:

insert <entity> after <queue>.head in <queue>

will also cause this execution time error.

Attempts to insert <entity> in a <queue> that is not a
queue of <entity> will be flagged by the preprocessor as an
error.

A.6: Remove
The statement

remove <entity> from <queue>

is translated to a call on the procedure r <queue_ type> ("r"
stands for "remove"):

r_<queue_type> (<queue>, <entity>, line, progunit)
The procedure r_ <queue_type> is declared as:

procedure r_<queue_type> (var <queue> : <queue_type>;
mem : <entity>;
line : integer; progunit : mod_name);

Statements of the form

remove the first <entity> from <queue>
remove the last <entity> from <queue>

are implemented as

r_<queue_type>(<queue>, <queue>.head“.next, line, progunit);
r <queue_type> (<queue>, <queue>.head”.prev, line, progunit);

respectively. Attempting to remove the first or last member
from an empty queue will be caught because
<queue>.head”.next will then point at the queue head node
which has ghead set to nil. Thus attempting to either
remove a member from a queue it is not in, or attempting to
remove the first or last member from an empty queue causes
the same execution time error message: "tried to remove a
member from a queue it is not in or attempted to remove the
first or last member of an empty queue at line nnn."

A.7: Forall

Statements of the form
forall <entity-ptr> in <queue> do S
are translated to

begin
<entity-ptr> := <queue>.head”.next;
while <entity-ptr> <> <queue>.head do

38

Appendix A -- SIMPAS Implementation

begin
5;
if <entity-ptr>".ghead <> <queue>.head then
error (ll,<line-no>);
<entity-ptr> := <entity-ptr>".next;
end;
end
The test after the statement S is to ensure that <entity-
ptr> is still in the queue. The error message in this case
is: "user removed the loop variable in a forall loop."

Statements of the form
forall <entity-ptr> in <queue> in reverse do S

are translated similarly, except that "prev" is used instead
of "next".

A.8: Libfile Organization

The libfile consists of six parts. The parts of the
libfile are indicated by a line which begins with a dollar
sign and they correspond to the parts of a PASCAL program:

$dependencies tells which sections depend on other
sections so that all sections that
are needed are brought in

$const insertions for the const part
Stype insertions for the type part

$var insertions for the var part
$procedures insertions for the procedure part
$main insertions for the start of the

main program (initialization code)

Within each of these parts of the libfile are the sec-
tions which the wuser requests on the "include" statement.
The start of a section is flagged by a line which begins
with an asterisk. The rest of the line gives the section
name.

The algorithm for including sections from the 1libfile
is the following. During the second pass of the preproces-
sor, the beginning of the global const, type, var, pro-
cedure, and main program parts of the SIMPAS program are
detected by recognizing flags put at the appropriate places
during the first pass. When the global const part of the
program is found, for example, the const part of the library
file 1is read. Every section whose name is on the include
list (created by the first pass) is inserted in the program.
This process is repeated for each of the other sections.

39

SIMPAS 5.0 User Manual

The include list consists of the sections explicitly
included by the user, plus all of the sections that those
sections depend on, plus certain sections included in
response to declarations in the SIMPAS source. For example,
the section "events" is included whenever the user declares

A i-on name‘__ngmagrl__y_*app@arq in_several pari‘q of the
library le. For example, the section name "events"
appears in both the type part and the procedure part of the
library file. There is no requirement that an included sec-
tion appear in any particular part of the library file. A
preprocessor error will occur if a requested section name is
not found in any part of the library file.

Each section of the library file 1is uninterpreted by
the preprocessor. When the appropriate section is found all
lines up to the end of the section are inserted in the out-
put program. Thus, while the most common case is for a sec-
tion to contain a single procedure, it may contain several.
If the user has access to the library file, he may easily
customize it to satisfy his own requirements.

A:9 Watched Variable Implementation

An a_integer is implemented as if it were declared as

a_integer = watched[ai observe,.val] of record
val : integer;
mean: real;
variance: real;
min,max : integer;
nobs: integer;

end;

(See Section 6.2). Thus every time a variable of type
a_integer 1is assigned to, the procedure ai_observe is
called. This procedure updates the other fields of the
record so that the statistics stored there remain correct.
Before returning, ai_observe assigns the RHS parameter to
LHS.val. Similarly, if x 1is of type a integer, then the
assignment statement

y = Xj
is expanded to
y := x.val;

The other watched types are implemented in a similar
fashion. The names of the routines are:

ti observe for t_integer
ai_observe for a_integer
tr_observe for t real
ar_observe for a real
tb observe for t boolean

40

Appendix A -- SIMPAS Implementation

ab_observe for a boolean

Including the name "regen" on the include statement
causes a different set of definitions for the watched types
and the procedures given above to be loaded. This also
enables use of the regen, recalc statements.

41

Reserved Words and Implementation Restrictions

SIMPAS 5.0 User Manual

Appendix B

b
& b @ P

jw

The following words
of the reserved words of PASCAL plus those of

include all

the SIMPAS extensions:

after
and
array
at
before
begin
cancel
case
const
create
delay
delete

destroy
div

do
downto
else
end
event
file
first
for
forall
flush

In addition the

forward
from
function
goto

if

in
include
initialize
insert
label
last
member

mod

named

nil

not

now
observe
of

or
otherwise
packed
procedure

identifiers:

are

system,

reserved

in SIMPAS.

program
queue
record
remove
repeat
reschedule
reverse
schedule
set
simulation
start
system

the
then

to

type
until
var
watched
while
with

external, and

are reserved words in the VAX UNIX implementation.

The following identifiers are reserved for use

preprocessor:

assign
a_boolean
a_integer
a_real
assign
c_notice
clear
current

d notice
display
dmp_event
dmp_evset

e insert
e _mode
e_now
error_p
error_x
ev_set
ev_trace
ev_name
event _notice
flush

g _notice
i ev

42

regen
recalc
reset
s_control
scheduled
seed_v

t boolean
t ev_1
t_integer
t _real

t asg_flag
t main

by

These

module

the

Appendix B -- Reserved Words and Restrictions

dmp evnotice main time
do_event n_seed trace_all
e after no_event true_false
e before no stat u_random

e delay r_random

The user should also avoid using identifiers which are the
same as names of routines in the libfile.

Finally, the preprocessor defines some identifiers in
response to declarations made by the user:

For an event named <event> the following names are gen-
erated and used by the preprocessor:

r <event> 1is the event routine name
a_<event> used to hold actual arguments of event
t <event> is the type of a_<event>

For a queue member of type <entity> the following names
are generated and used by the preprocessor:

c_<entity> entity creation routine
d <entity> entity destruction routine
r <entity> record type for entity

For a gqueue of type <queue type> the following names
are used:

i _<queue_type> gqueue initialization routine
p_<queue_ type> put in queue
r_<queue_type> remove from queue

B.2: Implementation Restrictions

To simplify preprocessor implementation, we enforce
certain restrictions on a SIMPAS program:

If the host PASCAL compiler supports both upper and
lower case, the entire program is translated to lower case
to simplify identifier comparisons. The boolean "tranupper”
enables this translation.

Names generated by the preprocessor must be unique.
Thus if the host PASCAL only distinguishes between identif-
iers which differ in the first 8 characters, declaring
events with names "aaaaaaaa" and "aaaaaabb" will cause com-
pile time errors. The reason is that these events will
become procedures named "r aaaaaaaa" and "r_aaaaaabb" and
the compiler regards these two names as identical. Since
most PASCAL compilers distinguish identifiers in more than 8
characters, this is not as bad a problem as it may appear.

An event may not have var arguments.
Events with names "main" or "no_event" are not allowed.

43

SIMPAS 5.0 User Manual

A schedule or reschedule statement uses the global
variable "g notice" to hold a pointer to the event notice
being scheduled. Therefore if during a schedule or
reschedule statement a user-defined procedure or function is
called, that procedure or function cannot itself contain or

__cause_the execution of another schedule or reschedule state-

ment.

The loop variable must not be removed from the <queue>
in a forall <entity> in <queue> statement. In most cases
this will cause an execution time error, but the error can
not always be detected.

The queue member and gueue declarations may only appear
in the global type declaration part of the SIMPAS program.
See also the restrictions given in Section 5.1.1.

Extremely long input lines in a SIMPAS program can
cause lines of output to be created which cannot be com-
piled. Without discussing specific systems, it is difficult
to quantify the maximum length an input line can have;
extremely long expressions with few blanks per line are the
most common culprit. Blanks are squeezed from the source
input before expansion so that blanks are not significant

when discussing line length.

44

Appendix C -- Installing SIMPAS

Appendix C

Installing SIMPAS

This Appendix gives those details of the implementation
which are machine specific and which must be modified when
installing SIMPAS on a new machine. This Appendix assumes
that the target machine is not one of the machines for which
"standard" versions of SIMPAS are available from the Program
Librarian, Madison Academic Computing Center, University of
Wisconsin-Madison, 1210 W. Dayton Street, Madison, Wiscon-
sin, 53706. Standard versions presently exist for DEC VAX”s
running the Berkeley version of UNIX and Univac 1100 systems
using UW-PASCAL.

C.1l: Distribution Format

SIMPAS is distributed as a 9-track, 1600 bpi, unla-
beled, fixed-block, ASCII tape. Each record on the tape
consists of 80 characters and contains one card image. The
blocks contain no control information and no special charac-
ters are used to compress out blanks.

There are five files on the tape; the files are
separated by hardware end-of-file marks. The files contain
a total of about 10,000 card images. The files contain the
following:

file Contents
1 simpas preprocessor
2 fmg parser table
3 fmg error correction table
4 simpas library file
5 test program
6 simpas bnf

Files 2, 3, and 4 are auxillary files required by SIMPAS.
Files 2 and 3 are generated by the FMQ parser generator.

FMQ [6,16] is the error correcting parser used in ver-
sion 5.0 of SIMPAS. The FMQ parser generator is separately
licensed and is not distributed as part of SIMPAS. File 6
is useful only if you have purchased FMQ as well. For
details about FMQ, contact Prof. C. N. Fischer, Department
of Computer Science, 1210 W. Dayton Street, University of
Wisconsin--Madison, Madison, Wisconsin 53706, Phone 608-
262-1204.

To install the preprocessor copy the first £five files
on the tape onto disk. File 2 must be made to correspond to
the internal PASCAL file "ptableout". File 3 must be made
to correspond to the internal PASCAL file "etableout". File
4 must be made to correspond to the internal PASCAL file
"libfile". Modify the source of the preprocessor so that

45

SIMPAS 5.0 User Manual

this correspondence is correct.

Proper execution of the SIMPAS preprocessor does not
depend on the following features of PASCAL. These features,
while part of the standard, are often not implemented:

(1) Global goto’s.

(2) Procedures as parameters to functions and procedures.

Version 5.0 of the preprocessor, however, does require that
"dispose" be a working procedure (and not a dummy) on your
system. Version 2.0 will function on systems that do not
support dispose.

C.3: Character Set Differences

Since character sets differ from machine to machine,
some adjustment of the PASCAL code will be necessary in
order to run SIMPAS on your system. The most complicated
case occurs if your computer system only supports upper case
since you will have difficulty even reading the distribution
tape. We will assume that somehow you get the entire thing
translated to upper case and read into a disk file on your
system. You can then do the rest of the changes described
below using a text editor.

The most common character set problems deal with the
characters " ", """, and "horizontal-tab". "_" is special
so let”s discuss it first. We will assume for the moment
that " " is part of the character set supported by your sys-
tem, but that your PASCAL compiler does not allow "_" as a
character in identifiers. (If this is not the case, then
you will have to translate this character to something else
when you read the distribution tape.) Now go into the SIM-
PAS source and find procedure init. (It”s at line 6280 or
thereabouts. The word "procedure" is in column 1l.) Now go
about 30 lines further. You are looking for the pair of
statements:

tranunbar : false;
ub = 77,

To eliminate ©~ © in the PASCAL output by SIMPAS, change

these statements to
tranunbar := true;
ub := 707 ;

This will cause all occurrences of ° “ to be translated to
‘0.

The standard version of SIMPAS assumes that the input
will not contain tab characters. If it is possible for tabs
to appear in the SIMPAS source, the preprocessor must be
reconfigured to handle this case. To do this, look for
"procedure scan;" .(its at about line 4590) and then look for
"scan - main body". Shortly thereafter is the statement

46

Appendix C -- Installing SIMPAS

until (ch <> blank) or endfile;
Change this to
until (ch <> blank) or (ch <> tab) or endfile;

Then in the const part of the program, find the declaration
of constant "tab" and define it as necessary. (Its
presently defined as a "blank").

The preprocessor also translates all input to lower
case. If you don”t like this feature, find the statement
"tranupper := true;" in procedure init and change it to
"tranupper := false;".

One last comment about character sets deals with the
pointer dereference operator w~w o On some systems this is
represented by the two character graphic "->". Whatever the
character is on vyour system, go through and change all
occurrences of """ to the appropriate symbol throughout all
of the SIMPAS files.

C.5: Program Termination

Another problem with standard PASCAL is that there is
no standard way to terminate program execution. Some PASCAL
compilers require every program to terminate by falling off
the end of the main program; this usually means using a glo-
bal goto in order to terminate a program from inside of an
arbitrary procedure. Most PASCAL compilers supply a routine
named "halt" or "abort" which causes program termination.

These variations are handled in the SIMPAS preprocessor
and run-time by calling the procedures abort and error_x
respectively. Procedure abort is part of the preprocessor
and is called when a catastrophic error is encountered. Fix
this procedure to do whatever is necessary to terminate a
PASCAL program on your system. Error_ X is the error routine
inserted in the output PASCAL produced by the preprocessor.
It is declared in the library file. Change this procedure
the same way you changed procedure terminate.

C.6: Random Number Generators

As discussed in Section 4, all random number generators
depend on the basic random number generator r _random.
R _random is a portable implementation of LLRANDOM [7] that
will properly function on any system with a word size of 32
bits or larger. For other systems you will have to supply a
suitable r_random. Even if the standard r_random will work
on your system, you may wish to replace the default r random
with a procedure tailored to your machine. 1In general we
would recommend that you replace r random with a uniform
[0,1) pseudo-random number generator which is in common use
at your computer facility or which has passed a set of sta-
tistical tests such as those described in [13].

47

SIMPAS 5.0 User Manual

C.7: Source Input and Output

The distributed version SIMPAS reads the input source
program from the standard input and directs the output
source program to the file whose internal name is "outfile".
If you wish the input to come from a file you should declare

a new text file as appropriate-and-then modify-the-read —and——
readln statements in procedure readline as necessary.

The expanded PASCAL output by the preprocessor will be
placed in the file which corresponds to the internal file
name "outfile". Since the method of establishing this
correspondence is system dependent, we will not discuss it
here. We will point out, however, that convenient places
for establishing this correspondence (assuming this can be
done from inside of a PASCAL program) can be found in the
procedures OpenFiles and Pass2. This is where the input
files, the temporary output file used by pass one, and the
final output file are reset and rewritten.

48

Appendix D -- SIMPAS Reference Guide

Appendix D

SIMPAS Reference Guide

D.l: SIMPAS Statement Summary

include <name-1> [,<name-2>] . . .;

start simulation(<status>);

event <event—name>[<formal parameter list>];
<label-part>
<type-part>
<var—-part>
<procedure and function decl part>
begin
<statement-list>
end;

schedule <event-name>|[<actual parameters>]
[named <ev_ptr>]
now
at <time-expression>]
delay <time-expression> |
before <ev_ptr>
after <ev_ptr>

cancel <ev_ptr>

destroy <ev_ptr>

delete <evptr>

reschedule <ev_ptr> { at <t1me—expre551on> l
delay <time-expression> ‘
before <ev_ptr>

after <ev ptr>
now

<entity> = queue member
<attribute-1> : <type-1>;
<attribute-2> : <type-2>;

end;

<queue-type> = gqueue of <entity>;

<watched type> = watched [<proc_name>,<suffix>] of <type>;

insert <e_ptr> [{first | last |
before <e ptr>

49

SIMPAS 5.0 User Manual

after <e ptr> }]
in <queue>

remove [the] [{first | last}]
<e ptr> from <queue>

forall <e ptr> in <gueue> [in reverse] do

create <entity>

“<statement>

[,<entity>]

destroy <entity> [, <entity>]
initialize <queue> [, <queue>]

clear <watched variable> [,<watched variable>]
reset <watched variable> [,<watched var1able>]

dlsplaz
regen

<confidence interval>

<watched variable> [, <watched var1able>]

[,<confidence interval>]

recalc <conf1dence interval> |, <conf1dence _interval>]

Identifier Glossary

D.2:
a_<event>
c_<entity>
c_notice
current
d <entity>
d notice

do_event

e insert
error p

error_x
ev_set

event notice

g _notice

A record of type t <event> used in
event notice to hold the actual parameters for
event <event>.

This is the creation routine for queue members
of type <entity>.

An internal routine called to

event notice.

generate an

Contains a pointer to the current event
notice.
This is the destruction routine for gueue

members of type <entity>.

An internal routine called to destroy an event
notice.

A preprocessor generated routine which actu-
ally calls the event routines when the next
event is determined. Called by s control.

called to insert an event

set.

An internal routine
notice in the event

An internal routine called to print execution

time errors.
Standard error exit routine.
the event set

A record type created by the
hold event notices.

preprocessor to

A globa], temporary variable of type ptr_event
which 1is wused to hold a pointer to the event

50

Appendix D -- SIMPAS Reference Guide

notice being scheduled in the schedule or
reschedule statement.

i_<queue> This is the initialization routine for a queue
of type <dqueue>.

i ev An internal variable used during initializa-
tion.

main A pseudo-event corresponding to the main pro-
gram.

n_seed The number of elements of seed_v. Normally

n_seed=10.

no_event A dummy constant name in the enumeration type
t ev 1. Returned by procedure etype if the
argument to etype is nil.

ptr_event A type name defined as “event notice.

r <event> The name of the event routine (procedure) for
the event named <event>.

r random The basic, uniform (0,1) random number genera-
tor. May be machine dependent.

s_control the simulation control routine

scheduled Returns true if its argument points to a
scheduled event notice.

seed_v seed v[i] contains the current seed for random
number stream "i". seed v 1is declared as:
array [l..n_seed] of integer.

t ev 1 An enumeration type containing the names of
all the events in the program as constant
values.

t <event> A type identifier used to declare the record

named a_<event> in the record event_notice.

t main A record type used to declare the record which
holds the <status> variable for event main.
Needed for uniform treatment of all event
arguments.

time The current simulation time. Time is a real
variable.

<t> observe A routine called when an assignment to a
watched variable is made. The following table
gives the correspondence between the type of
the watched variable and what <t> is:

type <t>
t_integer ti
a_integer ai
t real tr

51

SIMPAS 5.0 User Manual

a_real ar
t _boolean tb
a_boolean ab
u_random The basic uniform (0,1) random number genera-

tor. It knows about random number streams and _ R
antithetics, while r random does not.

52

Appendix E -- Differences Between version 3.5 and 5.0

Appendix E

Differences Between version 2.0 and 5.0%*

The syntax for declaring and using a queue member has
changed. A queue member type is declared as:

<entity> = queue member

<attribute-1> : <type-1>;
<attribute-2> : <type-2>;
end;
The trailing = is optional. Specific queue members are

declared directly in terms of the type <entity> instead of
using the type ptr <entity> as with SIMPAS 3.5.

Several new statements have been introduced to replace
functions supported in SIMPAS 3.5 via procedure calls:

clear <watched-var> replaces clear (<statistic>, <type>)
initialize queue replaces i <queue> (queue)

regen <watched-var> replaces c _observe (<watched-var> .
Other new statements are flush, display, recalc. These

statements relieve the user of the necessity of remembering
the type of the target variable in order to clear a vari-
able, intialiaze a queue and the like.

The r _observe, i_observe, b_observe procedure calls and
the statistic type have been replaced by the concept of
"watched variables". The result is that the observation
routines are called automatically for the user whenever a
watched variable is updated. See Section 6 for details.

The preprocessor automatically generates procedures to
trace event execution and to dump the event set in a read-
able form.

The body of a forall loop can be any statement and 1is
not restricted to being a begin-end pair as it was in SIM-
PAS 3.5.

The preprocessor now checks for type compatibility
between the items inserted in a queue and the type of the
queue itself.

*Version 2.0 corresponds to VAX UNIX version 3.5.

53

SIMPAS 5.0 User Manual

REFERENCES

[11]

SIMPL/1 (Simulation Language Based on PL/l): Program
Reference Manual SH19-5060-0. 1972 .

2} Bryant; R+ Ms7 "SIMPAS—-—-A Simulation —Language—Based

on PASCAL," Proceedings of the 1980 Winter Simulation

[31]

[4]

(5]

[6]

(7]

(8]

[91]

[10]

[11]

(12]

[13]

Conference, pp. 25-40 (December 3-5, 1980).

Bryant, R. M., "SIMPAS User Manual," Computer Sciences
Depar tment Technical Report #391, University of
Wisconsin--Madison (June 1980).

Bryant, R. M., "A Tutorial for PASCAL Users on Simula-
tion Programming with SIMPAS," Computer Sciences Techn-
ical Report #454, University of Wisconsin--Madison
(October 1981). Also Proceedings of the 1981 Winter
Simulation Conference, Atlanta, Georgia, December 9-11,
1981.

Dahl, 0. J., K. Nygaard, and B. Myhrhaug, "The Simula
67 Common Base Language,," Pub S-22, Norwegian Comput-
ing Center, Oslo. (1969).

Fischer, C. N., D. R. Milton, and S. B. Quiring, "Effi-
cient LL(l) error correction and recovery using only
insertions," Acta Informatica 13, 2, pp. 141-154
(1980).

Fishman, G., Principles of Discrete Event Simulation,,
John Wiley and Sons, New York (1978).

Franta, W. R., The Process View of Simulation, Elsevier
North-Holland, Inc., New York (1977).

Iglehart, D. L., "Simulating Stable Stochastic Systems,
V: Comparison of Ratio Estimators," Naval Research
Logistic Quarterly 22, 3, (September 1975).

Jensen, K. and N. Wirth, "Pascal: User Manual and
Report," Lecture Notes in Computer Science 18,
Springer-Verlag Berlin, New York, (1974).

Kiviat, P. J., R. Villanueva, and H. M. Markowitz,
SIMSCRIPT II.5 Programming Language, C. A. C. I., Inc.,
12011 San Vicente Boulevard, Los Angeles, California
(1974).

Kleijnen, J. P. C., "," in Statistical Techniques in
Simulation, Marcel Dekker, New York (1974/75). 1in two
parts

Knuth, D. E., The Art of Computer Programming Volume 2:

54

Appendix E -- Differences Between version 3.5 and 5.0

Seminumerical Algorithms, Addison-Wesley Publishing

Company, Reading, Massachusetts (1971) .

[14] Lavenberg, S. S. and D. R. Slutz, "Introduction

Regenerative Simulation," IBM Journal of Research and

Development, pp. 458-462 (September 1975) .

[15] MacDougal, M. H. and J. S. MacAlpine, "Computer System
Simulation with Aspol," Proceedings Symposium on the

Simulation of Computer Systems, PpPp. 92-103 (June 19-20,

1973).

[16] Mauney, J., "FMQ User’s Guide," Computer Sciences
Department Technical Report, University of Wisconsin-

-Madison (in preparation, 1981).

[L7] West, D. H. D., "Updating the Mean and Variance Esti-
mates: An Improved Method," Communications of the ACM

22, 9, pp. 532-535 (1979).

55

