EXPERIENCE WITH SIMPAS

by

Raymond M. Bryant
Computer Sciences Technical Report #455

November 1981

Experience with SIMPAS*

R. M. Bryant

Department of Computer Science

University of Wisconsin-Madison
1210 W. Dayton Street
Madison, Wisconsin 53706

SIMPAS is a portable, strongly-typed, event-oriented,
discrete system simulation language embedded in Pascal. It
extends Pascal by adding statements for event declaration
and scheduling, entity declaration, creation and destruc-
tion, linked 1list declaration and manipulation, and statis-
tics collection. A library of standard pseudo-random number
generators is also provided.

SIMPAS has been in use in the University of Wisconsin-
Madison Computer Sciences Department for the past two years.
This paper summarizes our experience with simulation pro-
gramming using SIMPAS. A brief introduction to the simula-
tion extensions SIMPAS provides is also given.

*This work was supported in part by the Wisconsin Alumni
Research Foundation and through NSF grant MCS-800-3341.

Author”s present address: IBM T. J. Watson Research Center,
P. O. Box 218, Yorktown Heights, N. Y. 10598. 1

1. Introduction

Over the past two years, we have been developing a

strongly-typed, discrete-system simulation language embedded

——in Pascal. SIMPAS is the result of this development effort.

Previous papers on SIMPAS have discussed the advantages of
using strongly-typed languages for simulation program
development [2], and an experimental version of SIMPAS that
executed (slowly!) on an LSI-1ll microcomputer system [5].
We have used various versions of SIMPAS for the construction
of numerous simulations during this period and in this paper
we summarize our experience with this type of Pascal based
simulation.

Succinctly stated, SIMPAS provides the following exten-—
sions to Pascal:

(1) Event declaration and scheduling statements.

(2) Entity declaration, creation and disposal statements.

(3) Linked list declaration and manipulation statements.

(4) Statistics collection statements.

(5) A predeclared library of psuedo-random number genera-
tors.

Furthermore, SIMPAS is a closed system in the sense
that even though it 1is implemented as a preprocessor for
Pascal, the user need not be aware of this. The extension
statements can be intermixed with standard Pascal statements
in a natural way. Also, the ©preprocessor automatically
builds, inserts, and initializes all data structures neces-

sary for the simulation. This is to be contrasted with

Experience with SIMPAS

Pascal simulation packages such as PASSIM [14], which
although they are substantially simpler than SIMPAS, require
the user to know many details of the package implementation

and—to—-assist-in declaration—and initialization of the pack—

age interface variables.

The preprocessor implementation was chosen to make SIM-
PAS highly portable without sacrificing execution effi-
ciency. On most systems where it is installed, the prepro-
cessing and compilation phases can be combined under control
of a single command procedure so that they are essentially
transparent to the user. Careful attention has been paid to
the problems of tracing error messages from the output Pas-
cal back to the SIMPAS source, as well as reporting run time
errors in terms of the original SIMPAS source line whenever
possible.

From the standpoint of teaching simulation, SIMPAS has
been especially successful. Since more and more students
are being exposed to Pascal, it has become a relatively sim-
ple matter to state the SIMPAS extensions and then give the
students a simple simulation assignment. Furthermore, since
SIMPAS inherits strong typing from Pascal, the resulting
simulation programs are reliable and easy to debug. Thus
primary effort can be directed toward understanding the
simulation problem itself, rather than tracing down numerous
storage exception faults and other hardware detected errors.

In the next section of this paper, we discuss the SIM-

PAS extensions to the programming language Pascal. We then

R. M. Bryant

discuss some typical SIMPAS programs. Finally, we summarize
the strengths and weaknesses of SIMPAS as seen through the

perspective of two years of use.

2. SIMPAS Extensions to Pascal

This section describes the simulation extensions to
Pascal which have been incorporated into SIMPAS. We assume
that the reader is familiar with both Pascal [10] and the
basic concepts of event-oriented discrete-system simula-
tion [9]. For simplicity, this presentation skips some
non-essential details. A more precise description of the
language extensions is available in the 1latest version of
the SIMPAS user manual [6].

In the discussion that follows, we will underline Pas-
cal and SIMPAS keywords. Portions of statements that are to
be replaced by appropriate user constructs will be enclosed
in angle brackets ("<" and ">"). Optional portions of
statements will be enclosed in square brackets, and ellipses
(" . .") will be used to indicate one or more repetitions

of the preceding construct.

2.1. SIMPAS Program Structure

A SIMPAS program has essentially the same structure as
a Pascal program. The only differences are that an
"include" statement has been added to allow transportable
way to create a library of Pascal routines. Since imple-
menting a library of pseudo-random number generation rou-

tines was necessary for SIMPAS, we implemented a symbolic

Experience with SIMPAS

library. The include statement indicates which portions of
the symbolic library are to be included in the program. The
include statement is found at the start of the procedure,

———function; —and-event declaration—partof the programand has *“

the form:

include <section> [, <section>] . . .:

Each section specifies a portion of the library to be
included. For example, to include the exponential pseudo-
random number generator "expo" in the program, one would use

this include statement:
include expo;

For each section, all global constant, type, and variable
declarations required by that section are also included.
Thus if "expo" required a special global variable to func-
tion properly, the library can be configured to include this

variable in the source program whenever expo is included.

2.2. Event Declaration

An event declaration has exactly the same form as a
Pascal procedure declaration, except that the reserved word
event replaces the reserved word procedure. Events cannot
be declared local to an event or procedure, nor can they be
declared with var arguments. The first restriction is
necessary so that the event routine can be called from the
simulation control routine, and the latter is enforced

because the event routine is called with a copy of the

R. M. Bryant

actual parameters stored in an event notice. Hence all

parameters are effectively passed by value.

2.3. Start Simulation

To activate the simulation (i. e. call the simulation

control routine), one uses the statement:

start simulation(status)

Here status is an integer variable. While the simulation is
active, the global variable "time" gives the current simula-
tion time.

The simulation control routine will return if the event
set Dbecomes empty. In certain cases, one may want to ter-
minate the simulation prematurely according to some arbi-
trary stopping criterion. SIMPAS provides this capability
through the pseudo-event "main". Event main is predeclared

as if it looked like:
event main(status : integer);

As a matter of fact, there is no event routine associated
with event main. When an event notice for event main reaches
the front of the event set, the simulation control routine
terminates the simulation exactly as if the event set had
become empty. In this case, the status variable in the

start simulation statement is set to the argument of event

main. By setting this argument to a non-zero number, the
user can return a flag to indicate why the simulation ter-

minated.

Experience with SIMPAS

Thus, statements after the start simulation statement

will be executed when the event set becomes empty or when
event main occurs. Normally, one places code to print simu-

T T T T T T 1 ‘a’t*i‘ on— S’twa’t*i’S’t*j: C'S*a’tit’h‘jfsfpO’i‘n’tgi’ n*t'h'e*p rograwm. B

2.4. Event Scheduling Statements

Event notices are created and inserted into the event
set by scheduling statements. Typical scheduling statements

are of the form:

schedule arrival(3) at 10.0;
schedule arrival (4) delay 5.0;
schedule arrival (where) now;

The difference between schedule at and delay is that
the time expression in the first case is an absolute simula-
tion time, while in the second case the time expression
gives how 1long in the future the event should occur. The
now phrase is used to schedule an event to occur immediately
and is equivalent to scheduling the event to occur at the
present time.

An event must be declared before it is scheduled. This
means that any scheduling statement referring to a particu-
lar event must syntactically follow the declaration for that
event., To allow this in general, an event declaration can
be forwarded exactly like a Pascal procedure.

Each execution of a scheduling statement causes the
generation of an event notice and the insertion of the event
notice into the event set. The event notice contains all of

the information necessary to execute an event routine. To

R. M. Bryant

identify a particular event execution, it is sufficient to
identify that event notice. The named clause in a schedule
statement can be used to record a pointer to the event

—— notice—generated by a scheduling—statement:—The form of the ————

named phrase is, for example:

schedule <event> named <this event>
delay <time expression>;

Here <this_event> must be declared as type "ptr event"
(pointer to event notice).

If an event has been scheduled with a named clause so
that you can identify a particular event notice, you can
remove the event notice from the event set by using the can-

cel statement:
cancel <event-pointer>

Here <event-pointer> must be a variable or expression of
type ptr_ event. A cancel statement does not destroy the
event notice. One uses the destroy statement to dispose of

a previously canceled event notice:
destroy <event-pointer>

It is an error to try to destroy an event notice which is
still scheduled.
To put an event notice back into the event set, one

uses the reschedule statement. The reschedule statement has

the same form as a schedule statement except that one speci-
fies an ptr_event variable rather than the name of an event.

The actual argquments of the event remain the same as those

Experience with SIMPAS

on the original schedule statement.
For example, if one wished to change the time of the

event <this_event>, one could use the following code:

cancel <this event>;

e vl P} e | I 4 A o dast
rCSTIIeduLT CIrlsTEvelTo dlL IIew L LINey

Thus if to change the time of an event, first cancel the
event, and then reschedule the event.

When an event routine is called, a pointer to the event
notice is placed in the global variable "current". Thus if
the user wishes to reschedule the current event at a later

time he can say

reschedule current at <time-expression>;

If "current" is not rescheduled by the event routine, the

event notice is automatically destroyed.

2.5. Queue Handling Statements

SIMPAS also provides SIMSCRIPT II.5 like "sets". Since
Pascal already includes "sets" of a different kind, we use
the terminology "queue" to describe the SIMPAS structures.
A gueue consists of a particular type of entity. Only enti-

ties of that type can be placed in the queue.

2.5.1. Entity and Queue Declarations One declares an

entity type in the global type declaration part of the pro-
gram; the declaration looks like a special record declara-

tion:

<entity> = queue member

R. M. Bryant

<attribute 1>
<attribute 2>

. ° L]

<type_l1>;
<type 2>;

end;

Unlike a record declaration, this declaration results in

yyde 3 4o vy
P Lo

being—a—pointer—type; since—this—is—the naturat

et Ty
declaration for a temporary entity [7]. The trailing """ is
optional and is included to remind the user that <entity> is
a pointer type.

After the type declaration, one declares a particular

instance of an entity as follows:

var
<an_entity> : <entity>;
<another entity> : <entity>;

Then <an_entity> and <another entity> represent two dif-
ferent <entity>“s. Attributes of each distinct entity are

referred to as follows:

<an_entity>".<attribute 1>
<another_entity>".<attribute 2>

Entities by themselves are not very useful unless they
can be stored and accessed easily. In SIMPAS, a collection
of entities can be placed in a gueue and retrieved in order
for later processing. To declare a queue one first declares

a dueue type:

type
<queue-type> = gqueue of <entity>;

where <entity> must be a previously declared queue member.

This declaration may only appear in the global type part of

10

Experience with SIMPAS
the program. In any var part of the program one can declare
a particular queue with a declaration like:

var
<queue> : <gueue-type>;

For example, to declare a dqueue of boxes called

box queue one could proceed as follows:

{must be in global type part of program}

type
box = queue member

end;

{declare the box queue type}
box g = queue of box;

var
{declare the box queue itself}
box queue : box qg;

2.5.2. Entity Creation and Disposal Since a variable of

type "box" 1is a pointer variable, one can use the standard
Pascal procedure "new" to create new boxes. However, there
is no guarantee that all the fields of an entity created in
this way will be consistent, since Pascal does not require
the initialization of variables allocated by "new" (or of
variables in general for that matter). To overcome this

problem, SIMPAS provides the create and destroy statements:

create <an entity>;
destroy <an_entity>;

Create will insure that all preprocessor defined attributes
are properly initialized. Similarly, destroy will insure

that the entity is not presently in any queue, since this

11

R. M. Bryant

could result in dangling pointer errors.

2.5.3. Queue Initialization Queues in SIMPAS are

represented as doubly linked lists with head nodes. Before

any entity may be inserted in a queue, it must be initial-

ized so that that the head node can be allocated and the
gueue attributes properly set. Attempting to place an
entity 1in an uninitialized queue will result in unpredict-
able behavior. To simplify queue initialization, SIMPAS

provides the initialize statement:

initialize <queue>;

2.5.4. Queue and Entity Standard Attributes The prepro-

cessor inserts additional attributes into each queue member
declaration to allow the entity to be inserted in queues, to
make it easy to determine if an entity is in a queue and so

forth. The standard queue member attributes are:

next~- This attribute points to the next member of the
queue or to the queue head if this is the last
member of the queue.

prev- This attribute points to the previous member of
the queue or to the gueue head if this is the
first member of the queue.

Similarly the preprocessor defines several standard

queue attributes:

empty- This boolean attribute is true if the queue 1is
empty.

size~ This attribute is of type "a_ integer"™ and records
the number of members in the queue. For example,
the current queue size is "size". The maximum

queue size 1is ‘“"size.max" and the average queue
size to date is "size.mean". See Section 2.8 for

12

Experience with SIMPAS

details about the type "a_integer".

2.5.5. Queue Manipulation Statements To insert or remove

entities from a queue, SIMPAS provides insert and remove

statements. To insert an entity last in a queue one can say

either:
insert <an_entity> last in <queue>;
or

insert <an_entity> in <queue>;

Similarly, one can place the entity at the front of the

queue by
insert <an_entity> first in <queue>;

To remove a particular entity from a queue one uses the

statement:
remove <an_entity> from <queue>;

Corresponding to insert first and insert last statements are

the statements:

remove the first <new entity> from <queue>;
remove the last <new_entity> from <queue>;

In all cases, the inserted (removed) entity must be of
the same type as the queue into which it is to be inserted
(removed from). Attempts to insert or remove entities in
queues of the wrong type are detected during preprocessing.
Other errors, such as attempting to insert an entity into a

gueue when it is already in a queue, attempting to remove an

13

R. M. Bryvant

entity from a queue it is not in, and so forth are detected

at run time.

2.5.6. Forall Loops To simplify searching queues, SIMPAS

provides the loop statements:

forall <e ptr> in <queue> do S;
forall <e_ptr> in <queue> in reverse do S;

If <queue> is empty then S is not executed.

The statement S must not include a remove <e ptr> from
<queue> statement. Otherwise the 1link structure used to
implement the loop could be destroyed while the loop is exe-

cuting.

2.6. Pseudo-random Number Generation

A standard collection of pseudo-random number genera-
tors are provided in the SIMPAS library and can be incor-
porated in the user program through the include statement.
These routines all depend on a single uniform random number
generator which is a portable version of LLRANDOM [9] use on
all machines with a word size of 32 bits or larger. A 16
bit version of this generator is also available, but is much
less efficient. Given the existence of the basic uniform
random number dgenerator, random number generators for the

following distributions are provided:

exponential poisson

binomial discrete uniform
general discrete normal

lognormal gamma

erlang continuous uniform
beta hyperexponential

14

Experience with SIMPAS

The generation algorithms were taken from [9].
SIMPAS provides 10 random number generation streams

(numbered 1 to 10). Each random number generator takes as

— input one of these stream id’s., Distinct streams—represent———

different portions of the LLRANDOM generation sequence.
Initially, each stream is separated from its neighbors by at
least 100,000 calls.

Distinct streams can be used to reduce the possibility
of any dependence between successively generated random
variables, or to keep a sequence of random variables in the

simulation fixed while varying another.

2.7. Statistics Collection

SIMPAS provides automatic statistics collection
features similar to those of SIMSCRIPT II.5 [12]. Statis-
tics collection is enabled for a particular variable by
declaring it to be a special type, which we will refer to as
a "watched type". For example, to calculate time averaged
statistics for a real variable, one declares the variable as
an "a_real" (accumulated real). A variable of type a real
can be used in expressions exactly as a normal real variable
can. However, whenever the variable is updated, statistics
maintained about the variable are also updated. These
statistics are available as predefined attributes of the
watched variable:
mean the mean value of the variable”s observed values.

variance the variance of the variable’s observed values.

15

R. M. Bryant

max the maximum value this wvariable has had since it
was last cleared or reset.

min the minimum value this variable has had since it
was last cleared or reset.

nobs the number of observations made for this wvariable
to_date.

For example, 1f X 1s declared as an a real, then x.mean
is its average, x.max is its maximum and so forth. The size
attribute of a queue may be used as if it were an a_integer.

The clear statement is used to initialize a watched
variable so that it can be used. The clear statement has

the format:
clear <watched variable>

In order to obtain meaningful statistics, a watched variable
must be cleared before it is used.

The clear statement sets the value of the watched vari-
able to =zero. During a simulation, it is sometimes useful
to clear only the statistics portion of a watched variable
without changing the variable”s current value. (e. g. at
the end of the transient interval in a steady state simula-

tion). The reset statement can be used to do this:
reset <watched variable>

The display statement is provided to simplify printing

the contents of a watched variable. The format is:
display <watched variable>
It is intended to be used as shown below:

write (“Number of Jobs:”); display jobs stat;

16

Experience with SIMPAS

and produces the output:
Number of Jobs:nobs=10 max=7.55e+00 mean=2.36e+00 var=5.15e+00

By including the section name "regen" on the include

statement of the SIMPAS program, watched variables can be

used to generate approximate confidence intervals through

regenerative simulation. See [6] for details.

3. Experience with SIMPAS

As discussed in the introduction, SIMPAS has been used
in the Computer Sciences department at the University of
Wisconsin-Madison from Spring 1980 until the present (Fall
1981). During that period of time, it has been used for
teaching simulation and used as a tool for computer system
simulation by several researchers in the department. To
evaluate the use of the SIMPAS extension statements, we
selected five example simulations from those available on
our VAX-11/780 system during the fall of 1981. These simu-

lations were:

DISTCC a model of concurrency control in a distributed
database system using a shared bus architec-
ture [15]

PROTOC a model of the low level communications facility

in a distributed operating system being developed
at the University of Wisconsin

NETPAC a general network of queues simulator with many of
the features of the simulation portion of
RESQ [13]

P5 a simulation of distributed scheduling on a multi-

computer system organized as a rectangular grid of
processors [3]

17

R. M. Bryant

MM1SIM a simulation of an M/M/1l queueing system [2]

TRIVIAL the trivial simulation:

program trivial (output);

event foo:

begin
end;

begin
end.

To give an estimate of program size and complexity, the
sizes of these programs and the number of events declared in
each are given in Table I. DISTCC and PROTOC were actually
constructed as several separate compilation units, but for
purposes of comparison here they have been recombined into
single compilation units.

As can be seen, none of these simulations are 1in the
10-15,000 1line range sometimes encountered in industrial
applications. In an academic environment, however, DISTCC
would be regarded as a large simulation program and each of

the next three would be considered typical of simulations

Program Lines Events Declared
DISTCC 2989 11
PROTOC 1555 9
NETPAC 1609 1
P5 1309 8
MM1SIM 159 2
TRIVIAL 8 1

Table I: Sizes of Sample SIMPAS
Simulations

18

Experience with SIMPAS

designed to explore computer architecture or operating sys-

tems performance questions.

3.1. BSIMPAS Statement Usage

Table II gives counts of the number of extension state-

ments used by the example programs.
Clearly, the most commonly used statements are event,

schedule, insert, remove, create, and destroy. The count of

<command> statements is high because a statement like:
clear x, vy, z;

gets counted as three statements. Thus the large number of

Statement DISTCC PROTOC NETPAC P5 MM1SIM
event 22 18 2 8 3
schedule 13 23 11 8 4
reschedule 0 5 0 4 1
cancel 0 0 0 3 0
create 4 8 3 3 1
destroy 3 4 1 3 1
insert 6 11 4 6 2
remove 5 8 6 3 1
forall 3 0 33 6 0
initialize 2 6 16 3 1
<command> 42 0 11 15 6

Table II: SIMPAS Statement Usage

NOTES ¢

(1) The number of event statements may be more than
the number of events declared due to the presence
of forwarded events.

(2) A <command> is a statement of the form <identif-
ier> <watched-variable>. Examples are clear or
display.

(3) We will skip consideration of the TRIVIAL simula-

tion until Section 3.4.

19

R. M. Bryant

<command> statments in DISTCC merely reflects the large
number of watched variables declared in that program.

Note that most programs that use reschedule statements

do not use cancel statements. A reschedule statement can be

ol LA A 1 L. e | 3 1.1 % 3 I
USTUevellmwithiodT UdliIcel, Lol eadiiivie dados [T UIe S TadteneTrcs

reschedule current delay . . .

As seen from the table, this is apparently the most common
use of reschedule.

The cancel statement is used only by the P5 simulation.
P5 wuses cancel as part of its simulation of a processor
sharing scheduler [8]. We would expect cancel to be
required in any simulation that involves preemption, asyn-
chronous interrupts or the like. Thus in spite of the fact
that only one of the five simulations uses cancel, we regard
it as a necessary feature of SIMPAS.

In general the use of forall is 1limited by the fact
that one may not remove the loop variable from its queue.
Since this is the most common case (i. e. search until find-
ing a queue member with particular characteristics and then
remove it from the queue), the forall statement is used only
for the search operation. For example, NETPAC uses queue”s
and forall statements to maintain 1lists of customers and
passive tokens [13] in the gueueing network simulation.
This limitation is reflected in the relatively infrequent

use of this statement in the other example simulations.

20

Experience with SIMPAS

A correct implementation of forall would require that a
local variable be declared for each forall statement. The

preprocessor implementation makes this very difficult, since

the—Tlocal variables must be declared im the var part of the

current procedure, and the forall statement is encountered
after this point.

PROTOC is an unusual simulation in that it was written
primarily to test a protocol implementation and not to study
its performance. This is why there are no <command>“s in
PROTOC; there are no watched variables declared in the pro-

gram.

3.2. Schedule and Queue Mode Usage

SIMPAS supports several variations of the schedule
statement. An event can be scheduled according to now, at,

delay, before, or after clauses. These scheduling "modes"

were used with the frequencies shown in Table III. As

expected, the delay mode is the most common event scheduling

mode.

Schedule DISTCC PROTOC NETPAC P5 MM1SIM
Mode

now 1 1o 2 1 2

at 0 1 0 2 0

delay 12 11 9 9 3

Table III: Counts of Scheduling Modes

21

R. M. Bryant

Examination of the source code shows that the at mode
is most commonly used to schedule a simulation end of run

event. Such events are normally used to force the simula-

tion to terminate after running for a specific simulation

interval. —Similarly, the now mode 15 most commonly used to
schedule event main (i. e. cause the simulation to ter-
minate), or to initialize the simulation by scheduling some

events before the start simulation statement is executed.

The before and after clauses of the schedule statement
were not wused in any of the example simulations and thus
could probably be discarded.

Corresponding to the schedule modes are the "queue"
modes used in insert and remove statements. The possible

queue modes are: first (as in insert first), last, before,

after, and <specific> (as in remove this job from queue).
These queue modes were used with the frequencies shown in
Table IV. Comparing these frequencies with the counts of

insert and remove statements in each program indicates that

Queue DISTCC PROTOC NETPAC P5 MM1SIM
Mode

first 3 8 4 2 1
last 4 7 3 4 2
before 1 0 0 0 0
after 1 0 0 1 0
<specific> 2 4 3 2 0

Table IV: Insert/Remove Mode Use

22

Experience with SIMPAS

the most common form if insert is an insert 1last (the

default mode) and the most common form of remove is remove

first (once again the default mode). The after mode in PS5

is used to implement_a SIMSCRIPT II.5 like "insert ranked®

and could be eliminated 1if SIMPAS supported an "insert
ranked". However, the before and after modes used in DISTCC
appear to be necessary, so even with the inclusion of the
"insert ranked" statement in SIMPAS, one would still need

insert before and after.

3.3. Statistics, Queue and Queue Member Declarations

The last set of extensions whose use we examined were
those associated with new types defined by SIMPAS. Table V
shows how many member and queue types, how many variables

were declared in terms of a member or gqueue type, how many

watched variables were declared, and how many assignments to
watched variables there were in each program.
These counts do not include variables declared as

pointers to objects that contain queue or watched variables

DISTCC PROTOC NETPAC P5 MM1SIM

member types 3 1 2 2 1
gueue types 3 1 2 2 1
member vars 34 16 35 14 2
gueue vars 4 5 1 0 1
watched vars 21 0 0 11 2
assign to

watched var 26 0 10 16 3

Table V: SIMPAS Extension Type Usage

23

R. M. Bryant

since these are static counts and the only reasonable way to
count variables declared as pointers to objects would be
dynamically (i. e. at run time). This explains why the

count of watched variables declared in NETPAC is zero but .

thereare stili 10 assignments to watched variables. Addi-
tionally, the count of assignments to watched variables does
not count those assignments done by SIMPAS routines. For

example, every time an insert or remove statement is exe-

cuted, the watched integer "queue.size" is wupdated by the
queue insertion routines. This means that the number of
watched variables declared and used in the simulations is
actually higher than the counts indicate since there is one
watched integer associated with each queue variable
declared.

It is clear from the table that having two distinct

types associated with a queue and queue member is unecces-

sary, since these types always occur in pairs. It might be
more reasonable for SIMPAS to automatically declare a queue

whenever the user declares a queue member.

Finally, the counts of watched variables and assign-
ments to watched variables indicates that these features are
heavily used throughout the simulations (except for PROTOC,
which is a special case). We would argue that any reason-
able simulation language should implement some type of
automatic or semi-automatic statistics collection features

in order to reduce the user”s statistics collection burden.

24

Experience with SIMPAS

One statistics collection tool that SIMPAS does not
support (and should) is a histogram or table facility simi-
lar to that provided by GPSS and SIMSCRIPT II.5. In order

to write a reasonable histogram facility, one needs to be

able—todeclare a single toutine and pass 1t different
length arrays when processing different histograms. This
cannot be done in Pascal, since all parameters must be
declared as instances of the same type name, and differences
in the array lengths of actual parameters are not allowed.
(The alternative of having all histograms in the simulation
be the same length seems unreasonable.) The ability to pass
generic array parameters as in MODULA [16] or Ada* [1] is

necessary to support the histogram feature.

3.4. Output Pascal Program Size

The lack of external compilation in Pascal does mean
that PASCAL programs output by SIMPAS can be quite long.
Table VI gives the sizes of the Pascal programs generated
for the simulations we have been discussing.

The 611 lines of output generated from TRIVIAL consist
of about 250 lines of event set declaration and maintenance
routines, about 240 lines of watched type declaration and
associated routines, 80 lines of event tracing and event set
dump routines, and 30 lines of error handling routines.
Much of this code is unchanged from simulation to simulation

and if the host Pascal compiler supports external

*Ada is a trademark of the Department of Defense. 1]

25

R. M. Bryant

Program Input Length Output Length
DISTCC 2989 (77328) 4310 (11.8248)
PROTOC 1555 (47338) 2868 (79356)
NETPAC 1609 (38204) 3453 (97397)
P5 I309(34469) 2545 (7702471)
MM1SIM 159 (3976) 970 (24082)
TRIVIAL 8 (75) 611 (15067)
Table VI

Sizes of Input and Output programs for SIMPAS
In Lines (and Characters)

compilation, can be removed from the source output and
placed in an object library file. The VAX version of SIMPAS
can output code for either case, using the external compila-
tion conventions of the UW UNIX* Pascal compiler (these con-
ventions are essentially the same as those of C [1l1]).

Using the external compilation feature reduces the sizes of
the output Pascal to the lengths shown in Table VITI. Even
in this case, however, it is clear that the output programs
can be significantly longer than the SIMPAS source. The
result is that the process of expanding and compiling a SIM-
PAS program can be a lengthy task. Typical times for
expanding the simulations considered in this section are
given in Table VIII. The expansion time is the expense that

one must pay for making SIMPAS portable.

* UNIX is a trademark of Bell Laboratories. 1]

26

Experience with SIMPAS

Program Output Length Output Length
without External with External
Compilation Compilation
DISTCC 4319 (118248) 3847 (107152)
PROTOC 2868 (79356) 2399 ¢ 68118)
NETPAC 3452 (97397) 2661 (77620)
P5 2545 (70241) 1992 (56942)
MM1SIM 970 (24082) 544 (13954)
TRIVIAL 611 (15067) 246 (6436)
Table VII

Sizes of Input and Output programs for SIMPAS
In Lines (and Characters)
Using External Compilation

Program Expansion Time Compilation Time
DISTCC 96.1 609.3s
PROTOC 55.2 219.7s
NETPAC 66.2 155.8s
P5 48 .0 112.9s
MM1SIM 9.6 43.0s
TRIVIAL 5.5 40.0s

Table VIII: Expansion and Compilation Times

Note: Times are for a DEC VAX 11/780 running UNIX
and using the UW Pascal Compiler.

3.5. Portability of SIMPAS

We have routinely maintained two versions of the SIMPAS
preprocessor: one for VAX UNIX, and one for a UNIVAC 1100
system. Simulations written for one version can be moved to
the other version with no significant changes. (Tabs must

be removed when going from UNIX to the 1100 system.)

27

R. M. Bryant

The majority of the preprocessor in the two versions is
exactly the same, but there are enough minute differences

between the versions to make transporting the SIMPAS prepro-

cessor an irritating task. On the one hand, all non

standard—Pascal can be Temoved From SIMPAS, but the result-
ing preprocessor is not completely usable. For example,
correspondence between the internal and external files of
SIMPAS must be established. This is necessary not only to
allow the source program to be read from a file, but also
for the preprocessor to find its external files (e. g. files
containing the parse table and the symbolic source library).
Conventions for doing this vary from system to system.

A second problem deals with inefficiency of Pascal I/0.
On both the VAX UNIX implementations and the LSI-11 imple-
mentation of SIMPAS [5] it was necessary to replace the Pas-
cal input routines with system routines that read input an
entire disk block at a time. This change almost halved the
execution time of the VAX UNIX version.

While these changes are irritating, they can be over-
come through the prudent use of conditional compilation
flags supported by a suitable preprocessor. The source of
all versions of SIMPAS can then be kept on one machine and
appropriate UNIX or 1100 OS versions can be generated as
necessary. A portable (non UNIX or 1100 0OS) version of SIM-
PAS is also derivable from this source. While the portable
version lacks some of the niceties of the other versions, it

is usable on essentially any system that supports "standard"

28

Experience with SIMPAS

Pascal.
The primary problem with transporting the present ver-
sion of SIMPAS is its size. The preprocessor is about 7,200

lines of Pascal.

This means that SIMPAS will simply not

functionon very small machines (e. g. PDP=I1"s). whis lim-
its the overall success of SIMPAS, since small machines
often have a reasonable Pascal compiler, but lack a large
scale simulation language such as SIMULA or GPSS. In
retrospect it might have been more reasonable to aim for a
less pleasant language description in order to obtain wider

applicability.

4. Concluding Remarks

SIMPAS can be thought of as a strongly-typed implemen-
tation of SIMSCRIPT II.5 [12]. As such, we have found SIM-
PAS superior to SIMSCRIPT for the rapid and reliable con-
struction of discrete-system simulation programs [2]. The
implementation of SIMPAS as a preprocessor has resulted in a
portable simulation system and has allowed us to explore
alternate simulation language features relatively easily.
But as a practical matter, SIMPAS is most usable with PASCAL
compilers that support external compilation. Modification
of the preprocessor to allow external compilation and to
improve on the efficiency of standard PASCAL I/0 is normally
required. These factors greatly increase the complexity of
the SIMPAS installation task. Finally, the size of the

preprocessor itself (more than 7,000 lines of PASCAL) means

29

R. M. Bryant

that it will only run on a medium to large CPU and is not in
general suitable for small machines.

While strong-typing is useful from the standpoint of

. reliable program construction, it complicates the output

PASCAL generated from a STIMPAS program. The result is that
the output PASCAL can be quite lengthy (presently, a 200
line SIMPAS simulation produces an output PASCAL program of
over 1,000 1lines). This also makes SIMPAS less usable on
smaller machines, since PASCAL compilers for such machines
can be quite slow themselves.

Many of the problems with SIMPAS can be traced directly
or indirectly back to deficiencies in PASCAL (e. g. no
external compilation, inability to pass arbitrary length
arrays to a PASCAL routine). The primary advantage of SIM-
PAS is the strong typing it inherits from PASCAL. As new
languages are developed that improve on PASCAL, it should be
possible to create modern simulation systems or packages
that have the program reliability and maintainability
features of SIMPAS. We are presently considering the prob-

lems of developing such a system for Ada [4].

5. Acknowledgements

Mark Abbott, John Bugarin, and Bryan Rosenburg have
worked on various phases of the SIMPAS implementation and
without their assistance the project would never have been
completed. I also would like to acknowledge the support of

the Madison Academic Computing Center, and in particular the

30

Experience with SIMPAS

assistance provided by its director, Dr. Tad B. Pinkerton.

I would also like to thank Kevin Wilkinson, Raphael Finkel,

and

Bryan Rosenburg for providing the simulations used in

Section 3.

REFERENCES

[1]

12]

[3]

4]

[5]

[6]

[71]

[8]

[9]

[101]

Barnes, J. G. P., "An Overview of Ada," Software--—
Practice and Experience 10, pp. 851-887 (1980).

Bryant, R. M., "SIMPAS -- A Simulation Language Based
on PASCAL," Proceedings of the 1980 Winter Simulation
Conference, pp. 25-40 (December 3-5, 1980).

Bryant, R. M. and R. A. Finkel, "A Stable Distributed
Scheduling Algorithm," Proceedings of the 2nd Interna-
tional Conference on Distributed Computing Systems,
(April 8-10, 1981).

Bryant, R. M., "Discrete System Simulation with Ada,"
Computer Sciences Department Technical Report, Univer-
sity of Wisconsin--Madison (In preparation, 1981).

Bryant, R. M., "Micro-SIMPAS: A Microprocessor Based
Simulation Language," Proceedings of the Fourteenth
Annual Simulation Symposium, pp. 35-55 (March 17-20,
1981).

Bryant, R. M., "SIMPAS 5.0 User Manual," Computer Sci-
ences Department Technical Report, University of
Wisconsin--Madison (in preparation, 1981).

Bryvant, R. M., "A Tutorial for PASCAL Users on Simula-
tion Programming with SIMPAS," Computer Sciences Techn-
ical Report #454, University of Wisconsin--Madison
(October 1981). Also Proceedings of the 1981 Winter
Simulation Conference, Atlanta, Georgia, December 9-11,
1981.

Coffman, E. G. and P. J. Denning, Operating Systems
Theory, Prentice-Hall (1973).

Fishman, G., Principles of Discrete Event Simulation,,
John Wiley and Sons, New York (1978).

Jensen, K. and N. Wirth, "Pascal: User Manual and
Report,” Lecture Notes in Computer Science 18,
Springer-Verlag Berlin, New York, (1974).

31

[11]

[12]

R. M. Bryant

Kernighan, B. W. and D. M. Ritchie, The C Programming
Language, Prentice-Hall (1978).

Kiviat, P. J., R. Villanueva, and H. M. Markowitz,
SIMSCRIPT II.5 Programming Language, C. A. C. I., Inc.,
12011 San Vicente Boulevard, Los Angeles, California
(1974).

1ty
‘_J
W
e

[14]

[15]

[16]

Reiser, M. and C. H. Sauer, "Queueing Network Models:
Methods of Solution and Their Program Implementation,"
Pp. 115-167 in Current Trends in Programming Methodol-
o9y Volume III: Software Modeling, ed. K. Mani Chandy
and Raymond T. Yeh,Prentice-Hall, Inc. (1978).

Uyeno, D. H. and W. Vaessen, "PASSIM: A Discrete-event
Simulation Package for PASCAL," Simulation 35, 6, pp.
183-190 (December 1980).

Wilkinson, W. K., "Database Concurrency Control and
Recovery in Local Broadcast Networks," Computer Sci-
ences Technical Report #448, University of Wisconsin-
-Madison, Madison, Wisconsin (September 1981). Ph. D.
Thesis.

Wirth, N., "Modula: A language for Modular Multipro-
gramming," Software Practice and Experience 7, 1, pp.
3-35 (1977).

32

