A TUTORIAL FOR PASCAL USERS
ON SIMULATION PROGRAMMING WITH SIMPAS

by
R. M. Bryant

Computer Sciences Technical Report #454

October 1081

A Tutorial for PASCAL Users
on Simulation Programming with SIMPAS*

R. M. Bryant*¥*

Department—of-Computer—Science
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, Wisconsin 53706

SIMPAS is a portable, strongly-typed, event-oriented,
discrete system simulation language embedded in PASCAL. It
extends PASCAL by adding statements for event declaration
and scheduling, entity declaration, creation and destruc-
tion, linked list declaration and manipulation, and statis-
tics collection. A library of standard pseudo-random number
generators is also provided. This paper gives a tutorial on
simulation programming wusing SIMPAS. We briefly discuss
event—-oriented simulation language concepts, and then
describe in detail the simulation extensions that SIMPAS
provides.

* A version of this paper is to be presented at the 1981
Winter Simulation Conference, Atlanta, December 9-11, 1981.

** This work was supported in part by the Wisconsin Alumni
Research Foundation and through NSF grant MCS-800-3341.

l. 1Introduction

Over the past two years, we have been developing a

strongly-typed, discrete-system simulation language embedded

in PASCAL. SIMPAS is the result of this development effort.

Previous papers on SIMPAS have discussed the advantages of
»»»»»»»»»»»»»»»»»»»»»»»»»»»»»» using strongly-typed—languages —for——simulation—program————

development [1], and an experimental version of SIMPAS that

executed (slowly!) on an LSI-11 microcomputer system [2].
This paper 1is a tutorial describing the use of the present
version of the SIMPAS system for the creation of a simple
simulation. A detailed description of this version of SIM-
PAS is available in the version 5.0 SIMPAS user manual [3].

Succinctly stated, SIMPAS provides the following exten-
sions to PASCAL:

(1) Event declaration and scheduling statements.

(2) Entity declaration, creation and disposal statements.
(3) Linked list declaration and manipulation statements.
(4) Mechanisms for automatic collection of statistics.

(5) A predeclared library of psuedo-random number genera-
tors.

Furthermore, SIMPAS is a closed system in the sense
that even though it is implemented as a preprocessor for
PASCAL, the user need not be aware of this. The extension
statements can be intermixed with standard PASCAL statements
in a natural way. Also, the preprocessor automatically
builds, inserts, and initializes all data structures neces-
sary for the simulation. This is to be contrasted with PAS-
CAL simulation packages such as PASSIM [7], which although
they are substantially simpler than SIMPAS, require the user
to know many details of the package implementation and to
assist in declaration and initialization of the package
interface variables.

The preprocessor implementation was chosen to make SIM-
PAS highly portable without sacrificing execution effi-
ciency. On most systems where it is installed, the prepro-
cessing and compilation phases can be combined under control
of a single command procedure so that they are essentially
transparent to the user. Careful attention has been paid to
the problems of tracing error messages from the output PAS-
CAL back to the SIMPAS source, as well as reporting run time
errors in terms of the original SIMPAS source line whenever
possible.

From the standpoint of teaching simulation, SIMPAS has
been especially successful. Since more and more students
are being exposed to PASCAL, it has become a relatively sim-
ple matter to state the SIMPAS extensions and then give the
students a simple simulation assignment. Furthermore, since
SIMPAS inherits strong typing from PASCAL, the resulting

R. M. Bryant

simulation programs are reliable and easy to debug. Thus
primary effort can be directed toward understanding the
simulation problem itself, rather than tracing down numerous
storage exception faults and other hardware detected errors.

In the next sections of this paper, we first introduce

the basic concepts of event-oriented, discrete-system simu=
lation, and then discuss the SIMPAS extensions to the pro-

gramming language PASCAL. We then described a sample SIMPAS
program.

2. Simulation Concepts

In this section we briefly discuss the concepts funda-
mental to event-oriented, discrete-system simulation. For
further details the reader is directed to [4].

2.1l. Event-oriented Simulation

SIMPAS is an "event-oriented" discrete-system simula-
tion language. This means that changes in the state of the
simulated system are modelled by the occurrence of "events".
(SIMULA, on the other hand, is "process-oriented." See [5]
for a description of the process view of simulation.) An
event is an idealization of a system state change that is
assumed to occur instantaneously. To represent activities
in the simulation that occur over an extended period of time
(for example, the movement of a box along a conveyor belt)
one uses a pair of events. One of the events represents the
start of the activity (the beginning of the box”s movement)
and one of the events represents the end of the activity
(the arrival of the box at its destination).

In the simulation program, each event is represented by
a procedure that is called when the event occurs; this pro-
cedure is called the "event routine" associated with the
event. Occurrence of an event is modelled by the execution
of the event routine, and changes in the system state are
represented by changes in the values of the variables in the
simulation program. To continue our previous example, the
event routine associated with the start of a box”s journey
down the conveyor belt would remove the box from its previ-
ous location (perhaps merely by decrementing the number of
boxes found there) and set a variable to indicate that the
conveyor was occupied. The event routine representing the
box”“s arrival event would mark the conveyor empty and see
that the box is sent on to its new location. Thus there is
a one to one correspondence between execution of an event
routine in +the simulation program and the occurrence of
events in the simulated system. For this reason it is com-
mon to refer to the execution of an event routine as the
occurrence of an event in spite of the fact that the event
itself 1is part of the simulated system while the event rou-
tine is part of the simulation program.

A Tutorial on SIMPAS

Event routines are called in response to scheduling
statements executed by the simulation program. There are
various forms of scheduling statements in SIMPAS, but what
is essential is that the scheduling statement specifies the
simulated time when the event is to occur and the values of

any actual parameters (arguments) that the event routine

should be called with. One can thus think of a scheduling

Statement as a "delayed call™ onm the event routine. Lt is
like a normal procedure call in that values for the actual
parameters are provided, but the routine is called not at
the present simulated time but at a specified time in the
future.

Since the scheduling statement does not actually call
the event routine, the schedule statement code records the
event time and its parameters in an "event notice". The
event notice holds these values until they are needed by the
event routine. A separate event notice is created for each
occurrence of each event in the simulation. After creation,
the event notice is inserted into a list of event notices
called the "event set". This set is ranked by increasing
simulation time and contains event notices for all events
that have been scheduled but that have not yet occurred. We
will say that an event notice is scheduled so long as it is
in the event set.

Event notices are removed from the event set and event
routines are called by a procedure in the simulation called
the "simulation control routine". The heart of the simula-
tion control routine is a loop that consists of the follow-
ing steps:

(1) Remove the next event notice from the event set. If
the event set is empty, the simulation control routine
returns to its caller (normally the main program). This
stops the simulation.

(2) Advance the simulation clock to the simulation time of
the event notice.

(3) Call the appropriate event routine with the arguments
as saved in the event notice.

These steps are repeated over and over throughout the
simulation. So 1long as the event set is non-empty, execu-
tion of this loop causes simulation time to advance in an
orderly fashion and events to occur in their scheduled
order. Events scheduled before the simulation control rou-
tine 1is called do not occur until after the control routine
is called. For this reason, one says that the simulation is
"active" from the time when the simulation control routine
is called until it returns.

R. M. Bryant

2.2. Entities

Just as an event is an idealization of the state change
in a simulated system, an "entity" is a idealization of the
objects which move through the the system (the box in the
conveyor belt example). Entities can represent jobs in a

computer gystem, customers in a bank; or cars ina car—washs
An entity may have distinguishing features such as an

arrival time, a color, or a service requirement. Using the
SIMSCRIPT II.5 [6] terminology, we refer to these quantities
as "attributes" of the entity.

For example, a box on a conveyor belt might have attri-
butes representing the box”s weight and final destination,
and the conveyor belt itself might have a attributes
describing how long it takes to move a box down the belt as
well as the total weight of all boxes presently on the belt.

Entities are normally divided into two classes: tem-
porary and permanent. Temporary entities represent tran-
sient objects that are created, move through the simulation
and are then destroyed. Permanent entities exist throughout
the simulation. Thus while temporary entities could
represent the Jjobs moving through a computer system, per-
manent entities might be wused to represent the system
itself.

A PASCAL record is the normal way to represent an
entity. Record fields can be used to represent entity
attributes. Permanent entities can be declared as instances
of the record type and collections of identical permanent
entities can be declared as an array of records.

As an example, to represent a collection of conveyor
belts, one might use the following declarations:

A Tutorial on SIMPAS

const

[the total number of belts in the shop}
number_ belts = 10;

type
ia conveyor belt id is a number between 1 and number_belts}

cv_belt id = 1..number_ belts;

cv_belt = record
Tis belt 1n use? true or false}
busy : boolean;

{now long does it take to move a box down the belt?}
move time s real;

{counts number of boxes on the belt}
number_ boxes : integer;

{counts number of boxes delivered}
delivered boxes : integer;
end;

var
conveyor belt : array [cv_belt id] of cv_belt;

These declarations declare a set of 10 conveyor belts, each
with a busy flag, a real variable indicating how long it
takes to move a box down the conveyor belt, and two count
fields.

PASCAL pointer variables can be used to represent tem-
porary entities. The predefined procedures "new" and
"dispose" can be used to create and destroy these entities.
However, one normally wants to insert and remove entities
from linked lists representing waiting lines and the like,
and PASCAL does not provide mechanisms for automatically
declaring the extra link fields that would be required for
these operations. SIMPAS simplifies this process through
the use of gueue member declarations and the insert and
remove statements.

3. SIMPAS Extensions to PASCAL

We now discuss the simulation extensions to PASCAL
which have been incorporated into SIMPAS. For simplicity,
this presentation skips some non-essential details. A more
precise description of the language extensions is available
in the latest version of the SIMPAS user manual [3] 1In our

discussion we will underline the SIMPAS and PASCAL reserved
words.

3.1. SIMPAS Program Structure

A SIMPAS program has essentially the same structure as
a PASCAL program. The only differences are that an

R. M. Bryant

"include" statement has been added to allow a portable way
to create a 1library of PASCAL routines and that event
declarations can be mixed with the global procedure and
function declarations.

Because external compilation is not part of "standard"

PASCAL, —and since implementing a Iibrary of pseudo=random—————

number generation routines was necessary for SIMPAS, we

implemented a symbolic library. The include statement indi-
cates which portions of the symbolic library are to be
included in the program. The include statement is found at
the start of the procedure, function, and event declaration
part of the program and has the form:

include <section> [, <section>] . . .:

Each section specifies a portion of the library to be
included. For example, to include the exponential pseudo-
random number generator "expo" in the program, one would use
this include statement:

include expo;

For each section, all global constant, type, and variable
declarations required by that section are also included.
Thus if "expo" required a special global variable to func-
tion properly, the library can be configured to include this
variable in the source program whenever expo is included.

3.2. Event Declaration

An event declaration has exactly the same form as a
PASCAL procedure declaration, except that the reserved word
event replaces the reserved word procedure. Because the
event routine must be accessible from the simulation control
routine, events must be declared at the outermost level of
the program (i. e. local to the main procedure). Addition-
ally, since the event routine is actually called with a copy
of the original arguments saved in the event notice, all
arguments are effectively passed by value. Thus it is ille-
gal to declare a var argument for an event.

To continue our conveyor belt example:

A Tutorial on SIMPAS

event box_moves (belt : cv_belt_id):

{belt tells which of the conveyor belts we are using}

begin

{mark the belt as being busy and move a box onto the belt}

end

’

with conveyor_belt[belt] do
begin

busy := true;
number boxes := number_boxes + 1
end;

{schedule the arrival event }
schedule box moved(belt) delay conveyor_belt[belt].move_time;

event box_moved(belt : cv_belt_id);

begin

{move the current box of off the belt

and mark the belt not busy if it is empty}

with conveyor belt[belt] do

—————

begin

number boxes := number_boxes - 1;

if number boxes = 0 then busy:=false;

delivered boxes:=delivered_boxes+l;

end:;

end

°
14

(Note: The underbar character "_" is not part of the stan-
dard PASCAL character set, although it 1is used in many
implementations to improve readability of variable names.
SIMPAS ican be configured to translate "_" into a standard
character (normally "0") if " " is not part of the legal
character set in the host PASCAL compiler.)

This code declares two events, one to represent the start of
movement of a box down the conveyor belt, and the latter to
represent the arrival of the box at the end of the conveyor
belt. The scheduling statement assures that the arrival
event occurs at the proper time. (We will discuss the
scheduling statements in more detail below).

3.3.

Start Simulation

To activate the simulation (i. e. call the simulation

control routine), one uses the statement:

R. M. Bryant

start simulation(status)

Here status is an integer variable. While the simulation is
active, the global variable "time" gives the current simula-
tion time.

As described in Section 2.0, the simulation control

routine will return if the event set becomes empty. In cer-

taim cases,;, one may want to terminmate the simulatiomr—prema
turely according to some arbitrary stopping criterion. SIM-
PAS provides this capability by predefining the pseudo-event
"main". Event main is predeclared as if it looked like:

event main(status : integer);

As a matter of fact, there is no event routine associated
with event main. When an event notice for event main reaches
the front of the event set, the simulation control routine
terminates the simulation exactly as 1if the event set had
become empty. In this case, the status variable in the
start simulation statement is set to the argument of event
main. By setting this argument to a non-zero number, the
user can return a flag to indicate why the simulation ter-
minated.

Thus, statements after the start simulation statement
will be executed when the event set becomes empty or when
event main occurs. Normally, one places code to print simu-
lation statistics at this point in the program.

3.4. Event Scheduling Statements

Event notices are created and inserted into the event
set by scheduling statements. Typical scheduling statements
are of the form:

schedule box_start(3) at 10.0;
schedule box_moved(4) delay 5.0;
schedule box_start(which_belt) now;

The difference between schedule at and delay is that
the time expression in the first case is an absolute simula-
tion time, while in the second case the time expression
gives how long in the future the event should occur. The
now phrase is used to schedule an event to occur immediately
and 1is equivalent to scheduling the event to occur at the
present time.

An event must be declared before it is scheduled. This
means that any scheduling statement referring to a particu-
lar event must syntactically follow the declaration for that
event. To allow this in general, an event declaration can
be forwarded exactly like a PASCAL procedure.

Each execution of a scheduling statement causes the
generation of an event notice and the insertion of the event
notice into the event set. The event notice contains all of

A Tutorial on SIMPAS

the information necessary to execute an event routine. Thus
to identify a particular event execution, it 1is sufficient
to identify that event notice. The named clause in a
schedule statement can be used to record a pointer to the
event notice generated by a scheduling statement. The form
of the named phrase is, for example:

schedule box moved(3) named a box moved delay 20.0;

Here "a_box moved" must be declared as type '"ptr_event"
(pointer to event notice).

If an event has been scheduled with a named clause so
that you can identify a particular event notice, you can
remove the event notice from the event set by using the can-
cel statement:

cancel <event-pointer>

Here <event-pointer> must be a variable or expression of
type ptr_event. A cancel statement does not destroy the
event notice. One uses the destroy statement to dispose of
a previously canceled event notice:

destroy <event-pointer>

It is an error to try to destroy an event notice which is
still scheduled.

To put an event notice back into the event set, one
uses the reschedule statement. The reschedule statement has
the same form as a schedule statement except that one speci-
fies an ptr_event variable rather than the name of an event.
The actual arguments of the event remain the same as those
on the original schedule statement.

For example, if one wished to change the time of the
event "a_box_moved", one could use the following code:

cancel a_box _moved;
reschedule a box_moved at new_time;

Thus to change the time of an event, first cancel the event,
and then reschedule the event.

When an event routine is called, a pointer to the event
notice 1is placed in the global variable "current". Thus if
the user wishes to reschedule the current event at a later
time he can say

reschedule current at <time-expression>;

If "current" is not rescheduled by the event routine, the
event notice is automatically destroyed.

3.5. Queue Handling Statements

SIMPAS also provides SIMSCRIPT II.5 like "sets". Since
PASCAL already includes "sets" of a different kind, we use
the terminology "queue" to describe the SIMPAS structures.

10

R. M. Bryant

A queue consists of a particular type of entity. Only enti-
ties of that type can be placed in the queue.

3.5.1. Entity and Queue Declarations One declares an
entity type in the global type declaration part of the pro-
gram; the declaration looks like a special record declara-
tion. The preprocessor inserts additional field names to
e GO R ER - AR 8- EO—0Ehe r-membe 5o f - the--gueue —and—EO - E-QEOE G
which queue (if any) this entity is a member of. Continuing
our conveyor belt example, one could change our previous
declaration of box to the following:

box = gqueue member
arrival time

real;

20 o9

destination destination_id;
weight : integer;
end;

This declaration results in box being a pointer type, since
this is the natural declaration for a temporary entity. The
trailing """ may be omitted; it is included merely to remind
you that a queue member is a pointer type.

After the type declaration, one declares a particular
instance of an entity as follows:

var
this box : box;
that_box : box;

Then "this_box" and "that box" represent two different
box”s. Attributes of each distinct box are referred to as
follows:

this box”.arrival time
this box”.weight

Entities by themselves are not very useful unless they
can be stored and accessed easily. In SIMPAS, a collection
of entities can be placed in a queue and retrieved in order
for later processing. To declare a queue one first declares

a queue type:

type

<queue-type> = queue of <entity-type>;
where <entity-type> must have been previously declared.
This declaration may only appear in the global type part of
the program. In any var part of the program (or procedure)
one can declare a particular queue with a declaration like:

var

<gueue> : <gqueue-type>;

For example, to declare a gueue of boxes called
box_queue one could proceed as follows:

11

A Tutorial on SIMPAS

{must be in global type part of program}

type
box = gqueue member
. . T {as before}
end;

{declare the box queue type)

boyx o = cagueue of hosxe
ct Jueu DOX.-3

var

{declare the box queue itself}
box_queue : box _qg;

3.5.2. Entity Creation and Disposal Since a variable of
type "box" is a pointer variable, one can use the standard
PASCAL procedure "new" to create new boxes. However, there
is no guarantee that all the fields of an entity created in
this way will be consistent, since PASCAL does not require
the initialization of variables allocated by "new" (or of
variables in general for that matter). To overcome this
problem, SIMPAS provides the create and destroy statements:

create this box;
destroy that box;

Create will insure that all preprocessor defined attributes
of this box will be properly initialized. Similarly, des-
troy will insure that that box 1is not presently in any

queue, since this could result in dangling pointer errors.

3.5.3. Queue Initialization Queues in SIMPAS are
represented as doubly linked lists with head nodes. Before
any entity may be inserted in a queue, it must be initial-
ized so that that the head node can be allocated and the
queue attributes properly set. Attempting to place an
entity in an uninitialized queue will result in unpredict-
able behavior. To simplify queue initialization, SIMPAS
provides the initialize statement:

initialize box gueue;

3.5.4. Queue and Entity Standard Attributes The prepro-
cessor 1inserts additional attributes into each queue member
declaration to allow the entity to be inserted in queues, to
make it easy to determine if an entity is in a queue and so
forth. The most useful of these are:

next- This attribute points to the next member of the
queue or to the queue head if this is the last
member of the queue.

12

R. M. Bryant

prev- This attribute points to the previous member of
the queue or to the queue head if this is the
first member of the queue.

Similarly the preprocessor defines several standard
— gu eue—attributes, some of which-ares o _

empty- This boolean attribute is true if the queue is
empty.

size- This attribute records the number of members in
the queue. Size is effectively declared as a
"watched" integer. This means that statistics

about the queue size are updated whenever size is
changed. For example, the current gueue size can
be obtained as "size". The maximum queue size is
"size.max" and the average queue size to date is
"size.mean".

head- This attribute is of type <entity> and points to
the gqgueue head node. The first element of the
queue is head”.next and the last element of the
queue is head”.prev. If the queue is empty both
of these pointers point at the queue head node.

3.5.5. Queue Manipulation Statements To insert or remove
entities from a queue, SIMPAS provides insert and remove
statements. To insert an entity last in a queue one can say
either:

insert this box last in box_queue;
or
insert this box in box_queue;

Similarly, one can place the entity at the front of the
qgueue by

insert that box first in box_queue;

To remove a particular entity from a queue one uses the
statement:
remove this box from box_queue;

Corresponding to insert first and insert last statements are
the statements:

remove the first new_box from box_queue;
remove the last new _box from box_dgueue;

These statements differ from the first example of the remove
statement in that the variable "new_box" is set to point at
the specified entity while in the £first case, "this_box"
already points at a particular entity and the execution of

13

A Tutorial on SIMPAS

the statement merely removes it from the queue.

In all cases, the inserted (removed) entity must be of
the same type as the queue into which it is to be inserted
(removed from). Attempts to insert or remove entities in
queues of the wrong type are detected either at preprocess-
... ing or compile time. Other errors, such as attempting to
insert an entity into a queue when it is already in a queue,

attempting to remove an entity from a queue 1t 1§ Tnot im,
and so forth are detected at run time.

3.5.6. Forall Loops To simplify searching queues, SIMPAS
provides the loop statements:

forall <e_ptr> in <queue> do S;
forall <e ptr> in <queue> in reverse do S;

If <queue> is empty then S is not executed.

The statement S must not include a remove <e ptr> from

<queue> statement. Otherwise the 1link structure used to
implement the loop could be destroyed while the loop is exe-
cuting.

3.6. Pseudo-random Number Generation

A standard collection of pseudo-random number genera-
tors are provided in the SIMPAS library and can be incor-
porated in the user program through the include statement.
These routines all depend on a single uniform random number
generator which is a portable version of LLRANDOM [4] suit-
able for use on all machines with a word size of 32 bits or
larger. A 16 bit version of this generator is also avail-
able, but is much less efficient. Given the existence of
the basic uniform random number generator, random number
generators for the following distributions are provided:

exponential poisson

binomial discrete uniform
general discrete normal

lognormal gamma

erlang continuous uniform
beta hyperexponential

The generation algorithms were taken from [4]. See the SIM-
PAS 5.0 User Manual for calling sequences for these genera-
tors.

SIMPAS provides 10 random number generation streams
(numbered 1 to 10). Each random number generator takes as

input one of these stream id”“s. Distinct streams represent
different portions of the LLRANDOM base random number gen-

eration sequence. Initially, each stream is separated from
its neighbors by at least 100,000 calls.

Distinct streams can be used to reduce the possibility
of any dependence between successively generated random

14

R. M. Bryant
variables, or to keep a sequence of random variables in the
simulation fixed while varying another.

3.7. Statistics Collection

SIMPAS provides automatic statistics collection
features similar to those of SIMSCRIPT II.5. Statistics

collection is enabled for a particular variable by declaring

tt—to—be—a —special —type, which —we will refer to as a
"watched type". For example, to calculate time averaged
statistics for a real variable, one declares the variable as
a "a_real" (for accumulated real). A variable of type
a_real can be used in expressions exactly as a normal real
variable can. However, whenever the variable is updated,
statistics maintained about the variable are also updated.
These statistics are available as predefined attributes of
the watched variable:

mean the mean value of the variable”s observed wvalues.

variance the variance of the variable”s observed wvalues.

max the maximum value this variable has had since it
was last cleared.

min the minimum value this variable has had since it
was last cleared.

nobs the number of observations made for this wvariable
to date.

For example, if x is declared as an a real, then x.mean
is its average, x.max is its maximum and so forth. The size
attribute of a queue may be used as if it were an a_integer,

The clear statement is used to 1initialize a watched
variable so that it can be used. The clear statement has
the format:

clear <watched_variable> [, <watched variable>]

In order to obtain meaningful statistics, a watched variable
must be cleared before it is used.

The example simulation given below illustrates the use
of a_real type variables.

4. An Example Simulation

In this section we combine the examples from the previ-
ous sections to illustrate their use in a simple simulation.
The system we are going to simulate can be described as fol-
lows:

Trucks arrive a loading dock every 10 to 20 minutes
(uniformly distributed) and deliver from 1 to 20 boxes
(again, let us say, uniformly distributed). When a
truck arrives, a worker unloads the boxes and places

15

A Tutorial on SIMPAS

them on one of 5 conveyor belts to be delivered to
various parts of the plant. It takes 1 minute to
unload each box and place it on the conveyor. Ten per-
cent of all boxes go onto conveyor belt 1, 20% go on
belt 2, 30% go onto 3 and 4, and 10% go onto 5. It
takes 5 minutes for a box to traverse each of the con-
—————Vveyor beltss—On the average, how many boxes are on
each conveyor belt, and how many are waiting at the

loading dock to be placed on a conveyor? Finally, what
is the average transit time from the loading dock to
the box“s final destination?

4.1. Entity Declarations

To model this system, we need a queue of boxes to
represent the collection of boxes at the loading dock. For
simplicity, we are also going to use a queue of boxes to
hold the boxes present on each conveyor belt in the factory.
Boxes will be declared as queue members with attributes
defining the box”s destination (for convenience we will
number the destinations the same way we number the conveyor
belts) and the box”s arrival time (to allow us to compute
its time from arrival at the loading dock until it is
delivered at its final destination). The following SIMPAS
declarations allow us to do this:

const
the total number of conveyor belts};
number belts = 5

type

{a conveyor belt id is a number between 1 and number“belts}
cv_belt_id = l..number belts;

box = gqueue member
destination : c¢cv belt id;
arrival_time: real;
end;

{ box_g is the type which represents a queue of boxes }
box_g = queue of box;

{ cv_belt describes one conveyor belt }
cv_belt = record
{is belt in use? true or false}
busy : boolean:

{how long does it take to move a box down the belt?}
move_time : real;

{queue of boxes}
boxes : box_g;

16

R. M. Bryant

{counts the number of boxes delivered}
delivered_boxes : integer;

-

end;
r

va

Py

{
t

hh
1Y

the—set of conveyor belts is an array of records of
type cv_belt indexed by belt id }

conveyor_belt : array [cv_belt id] of cv_belt;

{ loading_queue contains the set of boxes delivered but
not yet placed on a conveyor belt
loading_queue : box g;

Note that conveyor belt[i].boxes is the queue of boxes on
conveyor belt "i",

To represent the worker we will use the following
record declaration:

worker : record
idle : boolean;
boxes moved : integer;
end;

Here "idle" will be used to represent the worker”s status
and "boxesﬂmoved" will be used to count the number of boxes
the worker has moved.

4.2. Event Declarations

We also need three events in the simulation; one event
to model arrivals of trucks at the loading dock, one to
model movement of boxes to the conveyor belt, and one to
model the arrival of a box at its final destination. 1In
this simulation, the names we have chosen for these three
events are "truck_arrives", "box moves" and "box_delivered"
respectively.

Let”s first consider what event "truck_arrives" must
do. Every time a truck arrives, we must generate a number
of boxes for that particular truck to deliver. To do this
we use the SIMPAS library function "udisc". This function
is called as

udisc(a, b, k);

and returns an integer uniformly chosen between a and b
(inclusive) according to random number stream k. This
number of boxes are then generated and placed in the
loading_queue. For each box, we must chose a destination
according to the percentages given above. To do this we use
the SIMPAS 1library function "i gdisc" which returns an
integer valued random variable with a general distribution.
An associated routine, "i gdsetup" is used to establish the
values and associated probabilities for the random variable,
Next, 1if the worker is idle, we then start the movement of

17

A Tutorial on SIMPAS

boxes to the conveyor belt. The event "box moves" will only
mark the worker as idle when all boxes have been loaded onto
the appropriate conveyor belt. Hence if the worker is
presently busy, we need not awaken him when new boxes
arrive. Finally, we must arrange for the next truck _arrives
event to occur. The SIMPAS code for this event is:

event truck_arrives;

var
new_box : box;
number_ boxes : integer;
i - : integer;
begin

number_boxes := udisc(min_boxes,max_boxes,box stream) ;

for i := 1 to number_boxes do

begin
create new_box;

with new_box”™ do
begin
arrival time := time;
set the destination of the box }
destination := i gdisc(dest_rv, dest stream);
end;

insert new_box in loading_ queue;

end

-e

{ if the worker is idle, then start moving boxes }
if worker.idle then worker moves box;

{ finally, schedule the next truck arrival }
reschedule current delay
unif (min_ia_time,max_ia time, arrival stream);

end; {event truck_arrives}

Recall that the variable "current" points to the event
notice of the currently executing event routine. Thus the
reschedule current statement above causes a "truck arrives”
event to occur after a delay of between "min_ia time" and
"max_ia_time" minutes.

The procedure "worker moves_box" marks the worker as
"not idle", removes the nexXt box from the loading_queue, and
schedules a box_moves event for one minute later. Event
"box_moves" increments the number of boxes the worker has
moved, places the box in the queue of boxes representing the
conveyor belt and schedules a "box delivered" event to

18

R. M. Bryant

remove the box from the conveyor belt. If a sufficient
number of boxes have been moved, "box moves" will terminate
the 51mulatlon by scheduling an occurrence of event "main".
Procedure "worker_moves_box" and event "box moves" are
declared as:

procedure worker moves box;

var

, L) 1
Carried—pPoOX T DoOX7

begin

{ mark the worker as being busy}
worker.idle := false;

{get the first box from the loading queue}
remove the first carried box
from loading queue;

{schedule the delivery of the box to the conveyor}
schedule box_moves (carried_box)
delay box_move_ time;

end; {procedure worker_movesubox}

event box_moves (b : box);
var
belt : cv_belt id;

begin
with worker do

begi
ilncrement the number of boxes the worker has moved}
boxes_moved := boxes moved + 1;

{stop the simulation if more than max _boxes moved }
if boxes_moved > max_boxes _moved then
schedule main(2) now;

end;

{go back and move another box unless no more boxes to move}
if loading_gueue.empty then
worker.idle := true
else
worker moves box;

{place the box in the appropriate conveyor belt queue}
belt := b".destination;
insert b in conveyor belt[belt].boxes;

[schedule the box delivery event}

schedule box_delivered(belt)
delay conveyor belt[belt].move time;

19

A Tutorial on SIMPAS

end; {event box_moves}

Finally, the event "box_delivered" handles delivery of
a box to its final destination. The box is removed from the
conveyor belt queue, the number of delivered boxes on that
conveyor belt 1is incremented and the transit time for the

””””””” ~%“ﬁ““@*wmgboxgisgcaicuiated.‘“Transit:time is declared as a watched

variable of type t real so that statistics for transit time

are automatically maintained. The box entity is then des-
troyed:

event box_delivered(belt : cv_belt id);
{belt gives the belt upon which the box will be delivered}

var
moved_box : box;

begin

remove the first moved box
from conveyor belt[belt].boxes;

with conveyor_belt[belt] do
delivered_boxes:=delivered boxes+l;

transit_time := time - moved box".arrival time;
destroy moved box;

end; {event boxmdelivered}

4.3. Initialization, Execution, and Statistics Reporting

All that is left is to initialize everything, properly
start the simulation, and print the statistics. Three
things must be initialized: the gqueues, watched variables,
and the general discrete random variable used to choose a
box“s destination. The queues are easy to initialize:

for belt := 1 to number_belts do
with conveyor_belt[belt] do
begin
initialize the conveyor belt queue!l
initialize boxes;

{initialize other conveyor belt attributes}
move time := 5;
delivered_boxes := 0;

end;

{initialize the loading dock queue}
initialize loading queue;

20

R. M. Bryant

The only explicit watched variable we need is for the
box transit time. The other statistics of interest (mean
number of boxes at the loading dock and on each conveyor
belt) are automatically maintained in the "size" attribute
of each queue. To declare and initialize the box transit
time statistics variable we use the following code:

var

transit time : t real;

° ° °

begin {main procedure}

° ° °

clear transit time;

° ° °

Finally, to initialize the general discrete random
variable used to assign box destinations, we need the pro-
cedure i _gdsetup (integer general discrete setup routine).
This procedure takes as its arguments a pointer to a list of
probability and value pairs, a flag indicating whether or
not this 1is the first time that i_gdsetup has been called
for this list, and the probability and value associated with
this call. FEach new probability and value pair is appended
to the end of the list of pairs. The 1list of pairs is
passed to 1i_gdisc in order to generate a random integer.
The declarations and code to do this are:

var

{this type brought in from library file by "include gdisc;" 1
dest_rv : gdiscvar;

begin {main procedure}
{initialize dest_rv}
i_gdsetup(dest_rv, true, 0.10,
i_gdsetup(dest_rv, false,0.20,
i gdsetup (dest_rv, false,0.30,
i_gdsetup(dest rv, false,0.30,
i_gdsetup(dest_rv, false,0.10,

A call of the form

dest := i_gdisc(dest_rv, dest stream);

Ul W N
Nt N N Nt spa?
™G WO WO WO ™o

will then assign to dest an integer chosen according to the
specified distribution.

After initializing the "worker" record so that the
worker starts out idle and having moved zero boxes, the
first events are scheduled and the simulation control

21

A Tutorial on SIMPAS

routine is called:

schedule truck_arrives now;

schedule main(l) at sim_run_time;

start simulation(status);

The second schedule statement is used to guarantee termina-
tion of the simulation at a specified maximum run time.

Statements after the start simulation statement can be
used to print simulation statistics, since they will be exe-
cuted only after the end of the simulation. For example,
"time" will be the time that the simulation stopped. The
status variable can be printed to determine which of the
schedule main statements caused the simulation to terminate
(status=1 or 2) or if the simulation terminated because the
event set became empty (status=0). Similarly, the mean
loading queue size is available as

loading queue.size.mean

and the maximum number of boxes on conveyor number 3 1is
given by

conveyor_belt[3].boxes.size.max;

4.4. The Conveyor Belt Simulation

To give a concise summary of the conveyor belt simula-
tion, here is a skeleton of the entire simulation, with the
event declarations we have already discussed removed. The
primary additions here are forward declarations necessary
since events and procedures must be declared prior to their
being scheduled or called.

program conveyor (output) ;

const
[the total number of belts in the shop}
number belts = 5;

}parameters to control the number
of boxes each truck delivers

min_boxes 1
max_boxes 2

9
r
0;

{minimum truck inter-arrival time}
min_la_time = 10.0;

{maximum truck inter-arrival time}
max_ia_time = 20.0;

22

R. M. Bryant

{how long it takes the worker to move a box from the truck
to the conveyor belt it belongs to
box_move_time = 1.0;

{constants to control simulation run length}
sim_run_time = 200.0;

max boxes moved= 5007

lconstants that define which streams are used to
generate the truck inter-arrival times, the number of
boxes delivered per truck and the box destination
random variables

arrival stream = 1;
box_stream = 2;
dest_stream = 3.

type

[a conveyor belt id is a number between 1 and number_belts}
cv_belt_id = 1l..number belts;

box = queue member
destination : cv_belt id;
arrival time : real;

end;
box_g = queue of box;

cv_belt = record

busy : boolean;

move_time : real;

boxes : box_g;

delivered boxes : integer;
end;

var
conveyor_belt : array [cv_belt_ id] of cv_belt;

loading_queue : box_g;
worker : record
idle : boolean;
boxes moved : 1nteger;
end;
dest_rv : gdiscvar;
transit_time : t real;

belt : cv_belt id;

include udisc, unif, gdisc;

23

A Tutorial on SIMPAS

procedure worker_moves box; forward;

event truck_arrives;

yar
new_box : box;
number_boxes : integer;
i : _.":L_i‘itt:gt:L ;
begin

end; {event truck_arrives}
event box_moves (which box :

procedure worker moves box;
yar

carried box : box;
begin

box) ;

end; [procedure worker_moves box}

event box_delivered (belt :

event box moves;
var

which _belt : cv_belt id;
begin

end; {évent box_moves }

event box delivered;
var
moved_box : box;

begin

end; [event box_delivered}

begin {----- > main procedure <
----- > initialize <-----}

cv_belt id); forward;

forward:

for belt := 1 to number belts do
with conveyor belt[belt] do

begin
initialize boxes;
move time := 5;

delivered boxes := 0;

end;

initialize loading_gueue;

clear transit_time;

i_gdsetup(dest_rv, true, 0.10,
i_gdsetup(dest_rv, false,0.20,
i_gdsetup(dest rv, false,0.30,

24

1);
2);
3);

R. M. Bryant

i gdsetup(dest rv, false,0.30, 4);
i gdsetup(dest _rv, false,0.10, 5);

with worker do

begin

idle := true;

e — bOXES:mOVEdﬁT- 0
end:

T—— > schedule initial events <——-—- }

schedule truck arrives now;
schedule main (1) at 51m run time;

[-———- > run the simulation <-—=---- }
start simulation(status);

{-—=--> print statistics <=---- }
writeln(“simulation terminated at ~, time:10);
writeln;

writeln(” status=",status:2);

writeln;

writeln(“mean boxes at loading dock: ~,
loading_queue.size.mean:7) ;
writeln(“max boxes at loading dock: ~,
loading_queue.size.max:7) ;
writeln;

for belt := 1 to number_belts do

with conveyor_belt[belt].boxes

do

T writeln(“belt: “,belt:1, ° contains ~,
size.mean:10, “ boxes (average)’);

writeln;

writeln(“average box transit time: ~,
transit_time.mean:10) ;
writeln;

writeln(“worker moved ~, worker .boxes moved:3,” boxes”);
writeln;

for belt := 1 to number belts do
~ with conveyor r_belt[belt] do
begin
writeln(“belt: “,belt:l, “ delivered ,
delivered boxes:3, “ boxes”);
writeln(” “, 7 currently contains -,
boxes.size:3,” boxes”);
writeln;
end;

end.

25

A Tutorial on SIMPAS

The output produced by this simulation is:
simulation terminated at 1.99E+02

status= 1

mean boxes at loading dock: 2.59E+00

max boxes at loading dock: 1.50E+01

belt: 1 contains 7.97E-02 boxes (average)

belt: 2 contains b5.15E-01 boxes (average)

belt: 3 contains 1.0lE+00 boxes (average)

belt: 4 contains 6.84E-01 boxes (average)

belt: 5 contains 3.28E-01 boxes (average)

average box transit time: 1.08E+01

worker moved 106 boxes

belt: 1 delivered 3 boxes
currently contains 0 boxes

belt: 2 delivered 20 boxes
currently contains 2 boxes

belt: 3 delivered 40 boxes
currently contains 1 boxes

belt: 4 delivered 27 boxes
currently contains 0 boxes

belt: 5 delivered 13 boxes
currently contains 0 boxes

5. CONCLUDING REMARKS

SIMPAS has been in use in the Computer Sciences Depart-
ment at the University of Wisconsin since Spring 1980. Ver-
sions of SIMPAS tailored for execution under VAX VMS, VAX
UNIX, and Univac 1100 OS, as well as a portable version
designed to run under standard PASCAL are available from the
Madison Academic Computing Center for a standard distribu-
tion fee. It is presently installed at several different
sites across the country. For further information, contact
the Program Librarian, Madison Academic Computing Center,
1210 West Dayton Street, Madison, Wisconsin, 53706, or phone
608-262~-2105, or 262-3771.

6. Acknowledgements

Mark Abbott, John Bugarin, and Bryan Rosenburg have
worked on various phases of the SIMPAS implementation and
without their assistance the project would never have been
completed. This project was supported in part by the

26

R. M. Bryant

Wisconsin Alumni Research Foundation and by NSF Grant MCS-
800-3341. I also would like to acknowledge the support of
the Madison Academic Computing Center, and in particular the
assistance provided by its director, Dr. Tad B. Pinkerton.

REFERENCES

1

[2]

[31]

[4]

[51]

[6]

[7]

on PASCAL," Proceedings of the 1980 Winter Simulation
Conference, pp. 25-40 (December 3-5, 1980).

Bryant, R. M., "Micro~SIMPAS: A Microprocessor Based
Simulation Language," Proceedings of the Fourteenth
Annual Simulation Symposium, pp. 35-55 (March 17-20,
1981).

Bryant, R. M., "SIMPAS 5.0 User Manual," Technical
Report, University of Wisconsin-Madison Computer Sci-
ences Department (in preparation, 1981).

Fishman, G., Principles of Discrete Event Simulation,,
John Wiley and Sons, New York (1978).

Franta, W. R., The Process View of Simulation, Elsevier
North-Holland, Inc., New York (1977) .

Kiviat, P. J., R. Villanueva, and H. M. Markowitz,

SIMSCRIPT II.5 Programming Language, C. A. C. I., Inc.,

12011 San Vicente Boulevard, Los Angeles, California
(1974).

Uyeno, D. H. and W. Vaessen, "PASSIM: A Discrete-event

Simulation Package for PASCAL," Simulation 35, 6, pp.
183-190 (December 1980).

27

