COMPILER AND OPERATING SYSTEM REQUIREMENTS
FOR 16-BIT MICROCOMPUTER ARCHITECTURES:
INTEL 8086, ZILOG Z8000 AND MOTOROLA MC68000

by
Mahadevan Ganapathi
and
James R. Goodman

Computer Sciences Technical Report #452

October 1981

””” Com p"i Ter—and 0 p’e’r'a'tﬁ' n'g”‘S’y'S"t’e m-req wirements—for

16-bit Microcomputer Architectures: Intel 8086, Ziloqg 28000 and Motorola MC68000

“Mahadevan Ganapathi
James R. Goodman

University of Wisconsin - Madison

Abstract

The current generation of microprocessors are being programmed, to a much
greater extent than earlier microprocessors, in high level languages. Their
capabilities are such that the functions normally performed by an operating
system require some sophistication. As a result, operating systems and com-
piler requirements are of considerable importance in comparing the various
products available. A number of the needs of operating systems and compilers
are identified and the three most popular 16-bit microprocessors are evaluated
in the 1light of these criteria. It is shown that all processors have
shortcomings that 1imit the generality of their application.

fr—

[17 Introduction

Advances in semiconductdr technology have permitted the introduction of
single-chip processors that have many features which, until recently, were
found only on main-frame computers. While the three most popular, currently
available processors have been compared in numerous places for design and per-
formance considerations, [Toong 81, Grappel 81], little has been said about
the capabilities of these processors to support the environment typical of
larger processors, viz., sophisticated operating systems and application pro-

grams, written in high-level languages.

Such operating systems introduce requirements for a number of features
that have not previously been available on microprocessors. Also, with the
significantly greater computational capability of the new processors comes the
necessity for accessing considerably more memory than in the past. Signifi-
cant progress has been made in recent years in main frames in methods for
managing memory, and this knowledge is quickly being applied to the highly

similar situations of microprocessors,

It is now desirable to support numerous concurrent processes which can be
guaranteed not to interfere with each other. The operating system itself
needs protection from processes which may not be entirely trustworthy. It
also must have special capability for manipulating certain resources, allocat-
ing and deallocating them in an appropriate manner. Thus a method is needed
for the restriction of access to areas of memory and to instructions which are

capable of affecting the allocation of resources.

¢

Support is needed to enable the operating system to control the use of

the processor itself, and for the rapid switch from one process to another,
storing away the former's state, so that it can be continued at a later time.
In addition, some hardware assistance 1is necessary to allow processes to

cooperate in a variety of ways and to synchronize their operations.

The increased capabilities of the new microprocessors has meant, to a
large extent, that increasing proportions of applications are written primari-
1y in high-level languages. Thus the efficiency of compiler-generated code
has become much more critical than on earlier machines, where many applica-
tions were written entirely in assembly language. The ease with which code
can be generated and 1its compactness, as well as the optimization of the
processor's registers, are significantly affected by the regularity of its re-

gisters and the orthogonality of its addressing modes.

The following section gives an overview of the architectures of Intel
8086 [Intel 78], the Motorola MC68000 [Motorola 79, Stritter 79], and the Zi-
log 28000 [Zilog 79, Peuto 79]. Section 3 discusses the features that make
code generation easy for compilers and analyzes the considerable differences
in the processors' architectures that influence this aspect. Producing a code
generator for these architectures poses some problems. Some of them are iden-
tified in the 1ight of attributed grammar descriptions for these target archi-
tectures [Ganapathi 807. Section 4 details the requirements posed by an
operating system, and compares the three processors in their support. Section
5 summarizes the strengths and weaknesses of the processors with respect to

the requirements introduced in sections 3 and 4.

[27 Hardware

This section will describe the features of the +three microprocessors
which are important for the discussion of this paper., It is not intended as a
comprehensive analysis of the three. For such a study, the reader is referred

to [Toong 81].

The 8086 is the descendent of the Intel 4004, 8008, 8080, and 8085 mi-
croprocessors, and strongly reflects that heritage. The bus structure is com-
patible with peripherals that interface with the 8080 or the 8085. The design
of the 8086 is generally upward compatible, which has attracted many app1ica;
tions which were originally implemented on the earlier Intel microprocessors.
Although wupward compatibility enhances software portability, it carries for-
ward the drawbacks and deficiencies of earlier designs. The instruction set
of the 8b86 is not orthogonal. Most instructions apply only to certain regis-
ters, which are therefore not explicitly named. This approach appears to pro-
duce more compact code, and minimizes the problem of allocating registers, but
can make code generation tortuous under less-than-favorable circumstances.
Contrary to this philosophy of upward compatibility, the architectures and in-
struction sets of the Zilog Z8000 and the Motorola MC68000 represent signifi-
cant deviations from their predecessors, the Z80 and MC6800, respectively.
Both the 28000 and MC68900 have adopted relatively regular architectures and

instruction sets typical of minicomputers.

The register set of the 8086 was designed to be upward compatible with
the 1Intel 8080/8085. This compatibility is somewhat achieved by pairing 8080

registers (AH, AL, BH, BL, CH, CL, DH, DL) to define four 8086 16-bit regis-

ters.— Each——half of the four registers is therefore independently accessible

4 TER WUch the same instruction set—asthe 8688 The—pairs—ecan—also—beac=——
cessed to perform 16-bit arithmetic. The architecture has been extended to
include seven new registers: base pointer, source index, destination index,
and four segment pointer registers. The source index (SI) and destination in-
dex (DI) are for data movement (normally within the current data segment).
The base pointer register can be used to access scalars and structured data
objects by containing the base address of the structure. In a block struc-
tured language, the base pointer can serve as the frame pointer for an activa-

tion record.

Among the Z8000's architectural resources are 24 16-bit registers, six-
teen of which are general purpose, of which all but one can be used as accumu-
lators. With the exception of RO, all registers can be used as index regis-
ters, base registers, and memory pointers for indirect addressing. Except for
the stack pointer, no registers are ever implied by an instruction. More re-
gister flexibility is achieved by the overlapping and pairing of registers.
For byte operations, the first eight 16-bit registers are treated as sixteen
8-bit registers. The sixteen 16-bit registers are grouped 1in pairs to form
32-bit longword registers. Similarly, the register set is grouped into qua-
druples to form 64-bit registers. The quadwords are used by a few instruc-

tions such as multiply, divide and sign extend for greater precision.

The MC68000 contains eight 32-bit data registers, nine 32-bit
address/stéck pointer registers and a 16-bit status register. A1l address re-

gisters can serve as stack pointers. In addition, all data and address regis-

ters may serve as index registers. The register set of the MC68000 exhibits a

high degree of orthogonality. For example, all data registers function ident-
jcally as do all the address registers. However, it is not completely orthog-
onal, and therefore presents some problems for compiler code generation [Gil-
more 807]. There are no instructions for converting binary to or from BCD or
ASCII. There is severe lack of orthogonality in instructions to operate on

address registers (e.g. comparing pointers with zero).

The processor has user and supervisor modes of privilege with a stack
pointer and a status byte provided for each mode. The 32-bit program counter
supports 32-bit calculations, but only the low-order 24 bits are used in con-

junction with the address bus.

A1l three architectures support byte addressing at even or odd addresses.
In addition, the Z8000 and the MC68000 allow accessing of bit data by specifi-
cation of the bit number along with the address of the byte containing the
bit. However, only the 8086 is capable of accessing non-aligned data, i.e.
words in memory can be located at even or odd addresses. For word fetches, it
automatically performs the proper memory access, One access if at an even
boundary, two if at an odd. Except for performance degradation, this access
scheme remains transparent to the programmer. It is recommended that word
operation§ be aligned at even addresses, especially on the stack, since odd
address references to the stack may adversely affect context switching time

for interrupt processing (real time) or task switching.

The 8086 has four segment registers to handle memory management on chip

by segmentation. One segment register exists for each of code, data, stack,

v

andman»ektpaﬂsegmentgfnormaﬂqyuused~asgsecondaﬁyﬂdaia,segmeni)$wﬂsince 1/0 can

be memory mapped, g chip can -

for I1/0 ports. This division of instruction and data space allows re-entrant
code. Physical addresses are determined by adding a sixteen-bit effective ad-
dress to a sixteen-bit segment register, offset by four bité, giving a
twenty-bit address. Thus the 8086 can access up to one megabyte of memory.
Each segment is 64 kilobytes allowing upnto 256 kilobytes to be addressed as

combined instruction, stack, and data.

The segmented memory map is under explicit program control, rather than
hardware control: so the programmer must be careful. If the program's in-
struction space is greater than 64 kilobytes, allowing the instruction pointer
(PC) to increment will cause the program to jump to the beginning of the seg-
ment. To execute the extra (i.e. > 64k) part of the program, the code segment
register (CS) must be correctly updated. This could be accomplished with a
compiler/loader package. A similar situation can occur with the data segment,
stack segment, and extra segment. Note that this makes detection of stack

overflow particularly unpleasant.
The 8086 has no memory protection and no privileged instructions.

Two versions of the Z8000 microprocessor exist: the 78001 segmented MPU
and the ~Z8002 non-segmented MPU. The 78001 can directly address eight mega-
bytes of memory, whereas the 28002 directly addresses only 64 kilobytes. The
78001 provides direct addressing in applications requiring large amounts of
memory. The Z8010 Memory Management Unit provides address translation and

memory protection for up to 8 megabytes of memory. For still Targer memory

"""""""""""""""""""" requirements—a 28001 -and multipleZ8010-units permit —the —use —of —several -8

megabyte address spaces (up to 48 megabytes total Tor code, data, and stack in
system and normal procéssor modes). The 23-bit addresses of the 78001 are
split into two parts, a 7-bit segment number and a 16-bit offset address. The
78001 can operate using this segmentation mode or can operate in a nonsegment-

ed mode.

The segmented mapping is very similar to the method used on the DEC PDP-
11. The 28010 converts the segmented address into the actual physical address
transparent to the user softwdre (unlike the 8086). If a reference occurs 1o
a segment that has been protected, the 78010 can generate a trap signal to the
28001 microprocessor using the segment trap input. This method provides a
simple mechanism for memory protection. In addition, the 78000 provides user

and supervisor modes that restrict the use of certain critical instructions.

The MC68000's 24-bit program counter provides a very large direct memory
addressing range of 16 megabytes. This addressing capability, coupled with a
proposed external memory management unit (MC68451), will allow the development
of Tlarge, modular programs. A proposed memory management controller may be
used when the processor is in user mode to manage up to 64 megabytes for the
programmer. The controller's memory management operations are completely
transparent to a process in user mode. These operations can be changed only
in the supervisor mode. The memory management controller will provide both
management of variable sized segments and dynamic management of multi-user
memory re1bcation and protection (e.g. protection of read-only data or code

segments). ‘

To service devices with real-time requirements, the 8086 provides 256 in-

needs four bytes to indicate the offset and segment address. To service the

255 maskable interrupts, the following procedure is adopted. First, the MPU
issues two interrupt acknowledge signals. The interrupt interface must
respond with an interrupt number on the second signal. Secondly, the 8086
pushes the status flags and performs an indirect transfer through the vector

corresponding to the interrupt number.

In order to remain compatible with the 8080/8085, the 8086's interrupts 0
through 31 are reserved for +the manufacturer’'s use. Five interrupts are
reserved for internal conditions: zero divide, single step, overflow, one byte
interrupt dnstruction (trap), and a nonmaskable interrupt. These interrupts
have top priority, followed by the rest of the maskable interrupts. Also,
note that because of the register structure, handling of dinterrupts will usu-
ally mean pushing all registers onto the stack upon entering an interrupt rou-
tine and restoring them upon exit. The 8086 exhibits a serious deficiency in
that all zeros is a legitimate opcode and it does not trap on illegal instruc-
tions. This deficiency poses problems when recovering from certain kinds of

errors.

The ;8000 has seven interrupts and traps, both internal and external.
These 1ntebrupts are arranged into 1levels of priority. Three of them are
external inputs: nonmaskable, vectored, and nonvectored interrupt. The vec-
tored and nonvectored interrupts are maskable. One of the four traps is also

external and is from the 728010 memory management unit. The remaining three

traps—occur—when—certain—privileged—instructions—areattempted—in—normal-modes;—

system call instructions, and ilTegal instructions. The descending order of
priority is as follows: internal traps, nonmaskable interrupts, segment trap,

and vectored and nonvectored interrupts.

When an interrupt occurs, the program status is pushed onto the system
stack along with an additional word that indicates the reason for occurrence.
In the case of internal traps, the first word of the trapped instruction is
the "reason" word. For the segment trap and all interrupts, the reason word
is the vector on the data bus that is read by the MPU during the acknowledge
machine cycle. The new processor state (i.e. address of trap or interrupt
routine) is then fetched from the new program-status table in system memory
that is specified from a new program-status area pointer. After the interrupt
or trap routine completes, the old (saved) processor state is restored and ex-

ecution continues.

Interrupts 1in the MC68000 are given a priority and may be vectored or
nonvectored. The priorities range from zero to seven, with seven being the
highest (nonmaskable). The incoming interrupt request is only recognized if
it is greater in priority than the current processor priority. Level seven is
an exception that will acknowledge another level seven interrupt request im-
mediate1y._ Vector interrupt processing begins after completion of the current
instruction. At this point the processor compares the incoming priority with
the mask in the status register. If the incoming level is of suffipient

priority, it is processed, otherwise the request is postponed.

10°

Exceptions, either internally or externally generated, cause the MC68000

an external fetch in the case of a vectored interrupt and internally for all

other cases.,. Then, the current status is saved on the supervisor stack and
finally, the program counter value is fetched from the exception wvector and
processing of the exception routine proceeds. There are 256 possible excep-
tion vectors and each vector contains four bytes. The upper 192 vectors are
reserved for vectored interrupts and the lower 64 dedicated to traps and non-
vectored interrupts. Several hardware traps are provided to indicate abnormal
internal conditions: bus error, address error, illegal instruction, zero
divide, overflow (TRAPV), privilege violation, and unimplemented instructions.
Since many existing peripheral devices cannot supply a vector number, provi-
sions are made to allow non-vectored interrupts. For such cases, the MC680060
will ook at the priority level and fetch the appropriate auto-vector. Traps
are handled 1ike interrupts except that the vector number is specified inter-

nally.

If the processor is currently processing a level six interrupt and a lev-
el two interrupt request appears, the processor will ignore this request until
the level six interrupt has completed. Afterwards, if the level two interrupt
is still present, the processor will honor the request. However, if the pro-
cessor was operating on a level four interrupt at the time the level six was
honored, then +the processor will ignore the level two request, complete the
level four interrupt routine, and finally do the level two request if it s

still present.

11

[3] Machine-dependent issues 1n compilers

The design of the instruction set of an architecture is crucial to the
efficiency of object programs produced by a compiler. The phases in a com-
piler that depend on the target architecture are storage assignment (packing
and binding), code generation and object code optimization (some of which can
be done machine independently [Aho 777]). Machine deperdent optimization is
concerned with utilizing special instructions (e.g. increment instead of addi-
tion by one), addressing modes (e.g. using auto-increment to subsume addi-

tions) and span-dependent instructions [Szymanski 78, 80].

In some compilers, a separate storage and temporary storage allocation
phase decides which source language variables are to be bound to registers.
Such allocation is based on global flow analysis [Beatty 74, Johnsson 75].
Others allocate registers during code generation. Registers are useful for
short naming as well as high speed access. Storage assignment (e.g. binding
constants, simple and aggregate variables to machine storage Tocations such as
static area in memory, registers, or hardware stack) may thus be based on a
preplanned strategy (global flow analysis) or simply done "on-the-fly". Some
storage allocation and reclamation is done at fixed intervals 1in a program
(e.g. allocatable at block entry and releasable at block exit for simple vari-
ables, ar(ays). Others are done at arbitrary moments (in the case of
pointers, as long as they allow access to heap objects, no deallocation can be
done). To implement block structure and recursion, a stack dnd a disp1ay
mechanism are commonly used. The availability of a display pointer (DP),

frame pointer (FP) or base register and hardware stack (with a stack pointer

12

I SP)_ _simplifies _implementation of the run-time display mechanism._ _Variables _

reals, characters and booleans) can be bound to general purpose registers or

addresses with a fixed offset from the DP, FP or a pointer to the static area
in memory. A1l three architectures provide a stack and the above display re-
gisters., However, it would be of great advantage if they also provided
hardware support for up-level addressing“of variables (i.e. addresses of vari-
ables that are neither local nor global). Addresses for dynamic arrays,
strings and pointers are to be calculated at run-time. Therefore, storage as-
signment for suéh variables is done at run-time. Usually, for dynamic arrays,
the dimensions of the array are known at block entry. Since space for arrays
is releasable at block exit, arrays can be assigned areas on the stack and ac-
cessed through a dope vector. Strings and pointers to dynamic aggregates,
however, cannot be stored on the stack. They need a heap with routines for
heap management and garbage collection supplied by the compiler. Procedure
calling conventions and parameter Tlinkage are other issues dependent on

storage assignment.

Code generation 1is the process of mapping some intermediate representa-
tién of the source program into assembly or binary machine-code. It is con-
cerned with the selection of addressing modes and instructions to generate
code for "addressing of variables, expression evaluation and implementation of
control constructs. Addressing modes are used to access variables and con-
stants that are bound to storage locations. Depending on program-counter ad-
dressing, integer constants need not be bound to storage locations (they can

be stored as part of an instruction, e.g. immediate addressing). Addressing

13

modes such as indexing and auto-increment can often be used to subsume code

for explicit addition. The operations (instructions) and data-types of the

target machine determine the language operators that are directly executable
and those that are to be simulated using a sequence of instructions. For ex-
ample, on machines with no floating-point hardware, arithmetic on 'reals' are

to be simulated in software.

Due to mixed mode arithmetic (coercions specified by compiler front ends)
and the possibility of binding a variable to more than one machine data-type
(e.g. an integer may be bound to a byte or word), code generators have to
emit instructions for data-type conversions. e.g.

(i) C {real} :

i

A {integer} + B {real}

conversion: A {integer} to A {real}

(i1) C {word} := A {byte} + B {word)}

conversion: A {byte} to A {word}
Furthermore, for non-orthogonal instruction-sets {(orthogonality is discussed
in a Tlater paragraph), code has to be generated for addressing mode conver-
sions. e.g. no memory-to-memory arithmetic is possible on the Intel 8086 and
28000,

C {memory} := A {memory} + B {memory}

conversion: A {memory} to A {register}

The abstractions of hardware (machine implemented primitives) essential
for code generation are data-types, addressing modes and instructions. Data
types are groups of bits that can participate as operands to instructions

(e.g. byte, word, 1longword). The interpretation of these groups of bits by

14

the central processing unit depends_on their representation (e.g. sign magni-

tude;2s—comptement)y—Bata—types—of—theprocessors—under—comparison—are:
78000 bit, byte, word, longword, quadword, BCD
Intel 8086 byte, word, BCD
MC68000 bit, byte, word, longword, BCD

These architectures do not fully support data types for business oriented ap-

plications and string operations.

Addressing modes are access paths to retrieve operands (which are data
types residing in storage locations such as memory, stack, or register). The
time taken to access an operand depends on the access path and the storage lo-
cation 1in which the operand resides (e.g. it is faster to retrieve an operand
from a registe; than from memory or the stack). The size (space occupied) of
a machine instruction is also determined by the addressing mode. The address-

ing modes available for the 3 processors are summarized below:

8086 78000 MC68000

immediate immediate immediate

reg direct reg direct reg direct

reg indirect reg indirect reg indirect

reg indirect indexed reg indirect indexed reg indirect indexed

reg indirect w/ offset reg indirect w/ offset reg indirect w/ offset

reg indirect indexed reg indirect indexed reg indirect indexed

with offset with offset with offset

- reg indirect with reg indirect
post-decrement pre-decrement

- reg indirect with reg indirect with
post-increment post-increment

absolute absolute absolute

- absolute indexed -

- relative relative

- - relative indexed
with offset

The MC68000 has a more complete set of addressing modes. On the 78000,

15

only 10% of the instructions can have all addressing modes. Thus, it has a

version to the non-segmented version, a change in the addressing modes is re-

quired and three more instructions are to be generated. The 8086 has a very
dirregular register structure. The stack pointer cannot be used as an index
register. When multiplying two variables, the AX and DX registers must be
used. The MC68000 has asymmetric addres; and data registers. Due to pin 1im-

itations, only 24 bit addresses are supported.

The 8086 has a segmented (non-uniform) address space. Intra-segment sub-
routine calls do not place the segment address on the stack. Therefore, there
are two separate return instructions: an inter-segment return and an intra-
segment return. Also, subroutines must always be called either via inter-
segment calls or via intra-segment calls. This choice is left to the compiler

writer.

The operations of machines can broadly be classifijed (with respect to
mapping source-language operators to machine op-codes) under the following

categories:

(1) Data-transfer (move) instructions are used in implementing source language
assignments to variables. Some assignments can be subsumed as part of
other operations (e.g. a := a + b can be implemented as add b, a). As-
signments of aggregates may not be implementable in a single data-transfer
instruction; often a series of "move"s or a loop is required to implement
them. The Intel 8086 and Z8000 have block transfer instructions that can

be used to implement such aggregate assignments. Data-transfer instruc-

16 °

tions are also used by code generators for among other things, assignment

of temporaries and altering addressing modes of operands.

(2)

(3)

(4)

(5)

Arithmetic 1nStruétions are used to implement arithmetic-expression
evaluation and address calculations. Non-commutative operations must be
provided with both varieties of operands (e.g. A := A -~ B, A :=B - A).
A11 the three architectures lack this requirement.

Boolean instructions are used to implement Boolean-expression evaluation
under two contexts: (a) as RHS of assignment statements and (b) as predi-
cates to control constructs. Therefore, there should be instructions that
(a) provide an explicit boolean result and (b) allow a branch to a loca-
tion depending on the boolean condition. None of these processors provide
both these varieties.

Control instructions (compare and branches) are used to implement rela-
tional operators (sometimes an implicit comparison with zero) where the
result decides the control flow of the user program (usually the result of
comparison is a condition-code setting).

Procedure call and return instructions are wused to implement procedure
(subroutine) <calls and returns. The 8086 provides very minimal support
for subroutine entry and exit. It does not have a multiple register save
and restore instruction. Thus, procedure calls and returns generate addi-
tional instructions for each register saved and restored. The 28000 has a
multiple 1load instruction. It has a return-and-add to the stack pointer

instruction that pops the callee's arguments from the stack. The MC68000

~allows a variable number of registers to be saved during a context switch,

thus minimizing the overhead during a procedure call.

17

(6) Special instructions are not essential to code generation per se but their

(a) combination of arithmetic and control operations implementable in a

single instruction (e.g. Toop, loope, loopne and repeat prefixes for
instructions on the 8086).
(b) shift operations on integers (often used to replace multipiication by
a power of two). The 8086 hardwgre does not provide multiple shifts.
(7) Instructions for parallel processing and operating system functions (e.g.
traps and interrupt instructions). The 8086 and the MC68000 provide in-
struction support for traps and exceptions.. Some more support is needed

for unimplemented instruction traps on the 8086.

By design, the 8086 is very space efficient. It has both byte and word
offsets, 8-bit operands, signed short immediates and byte encoded instruc-
tions. The Z8000 and the MC68000 have 16-bit offsets only. Furthermore, on
the 78000, the instructions must be multiple word lengths. Byte efficiency is

lost if dinstructions are to be word aligned.

The orthogonality of an instruction set is the regularity with which any
op-code (without data-size encoding within the opcode itself) can be used with
any machine-primitive data-type and addressing mode. The orthogonatlity of the
instructiop set makes the architecture easy to learn and program. It reduces
the time required to write programs but may result in lower code density. Ipr-
regularities adversely affect code-generation efficiency. A1l three architec-
tures have some degree of non-orthogonality. For example, on the Intel 8086,

the definition of many instructions implies the use of specific registers as

18 °

well as certain addressing modes. The 8086 hardware does not allow push, mul-

8086, no memory~to~mem6ry arithmetic is possible. If both operands are in

memory locations then one of them must be moved to a register before an opera-
tion is performed. The 8086 does not have any instruction to test the con-
tents of a memory location (the location has to be explicitly compared with
zero). On the 8086 and the MC68000, when loading part of a register, extra
code must be generated to sign extend or zero fill the upper byte. On all
three processors, condition ches are not defined for some instructions. The
MC68000 is intended to be a 32-bit architecture (it has 32-bit address and
data registers) but it does not support 32-bit division and multiplication.
Furthermore, there are no bit manipulation instructions. It is hard to per-
form mixed data width operations on the MC68000 as there are no instructions
for conversion between certain data types. Although it provides an auto-

increment addressing mode, no auto-increment can be done in memory. These ex-
amples are some of the pains that the compiler writer must go through when

generating code for the 8086, Z8000 or the MC68000.

Addressing-mode and data-type conversions are used by code genérators to
implement source-language operations with incompatible machine data-types.
These architectures differ in the type of special instructions they provide
and 1in the degree of orthogonality of the instruction set. If a sufficient
set of conversion possibilities is not provided by the architecture or if they
cannot be synthesized by the compiler writer, the code generator may be unsuc-

cessful when trying to generate code for valid input.

.

19 °

————[47] Operatingsystemsupport

The purpose of an operating syétem is to control the resourées of a sys-
tem and assist in the execution of application programs. Resources are those
facilities, hardware and software (e.g. central processors, memories, I/0 dev-
ices, compilers) that are needed to do the work required of the system by its
users. Most systems facilitate the sharing of their resources. Primary
memory, disk files, and the central processor can all be shared by different
programs. This sharing must be controlled by the operating system to prevent
unintentional and/or unauthorized use and/or destruction. In order to share
resources more efficiently, most systems provide a lTarge amount of concurrent
activity at a number of different levels: terminal handling for many simul-
taneous users; transfer of information to and from I/0 devices may take place
at the same time the program is being executed by the central processor; a
number of different user jobs may be partially completed; and multiple central
processors may be in operation. These examples are just a few that are typi-

cal of concurrent activity in modern operating systems.

A large part of an operating sysiem is generally dedicated to causing
direct actions in the hardware (e.g. I/0 transfers). Most operating systems
have the responsibility to control the communication with the external world

through a potentially large number of different devices.

There are a number of services provided by a modern operating system that
assist 1in the execution of user programs. These services include I/0, error
recbvery, interrupt coordination, and memory allocation. The main functions

¢

that an operating system does in a multiprogrammed environment include

20

scheduting of the central processing unit for servicing different tasks, load-

ing information into memory and providing protection so that multiple jobs can

share memory, control access to shared I/0 devices, and many other bookkeeping

details necessary to keep track of multiple jobs and control shared resources.

Single Processor Operating System Support

Previous generations of microprocesgors were 1limited by the available
technology at that time. Such microprocessors, in particular the Intel 8080
and the Motorola 6800, were limited by the number of registers, width of the
data-paths, sizé of the address space, and capabilities of the instruction set
because technology could not support more features on a single chip. These
microprocessors are mainly used in process control applications (e.g. intel-
ligent device controllers) and small, single-user stand-alone systems. The
8086, MC68000, and 78000 microprocessors with their extended capabilities,
have many attributes that belong to minicomputers of the 1970s. Therefore,
they can be considered for more applications including modern time-sharing and
multiprogramming environments. To faciltitate «c¢lassical single processor
operating systems it is important to support multiprogramming with good
hardware support for task switching, flexible interrupt and trap structure,
memory management, flexible I/0 capabilities, and at least two execution modes

of privilege.

In order to design reliable and efficient operating systems with clean
user interfaces, the existence of both user and supervisor modes of execution
privilege is crucial. An operating system, when executing in supervisor mode,

can execute privileged instructions, access all resources, and perform the

v

21°

overhead tasks for user-mode (application) programs, Programs executing in

the system is Timited. Thus, the supervisor mode is a mechanism for providing

protection and security in a computer system. The 8086 does not have two such
modes of execution privilege - a major drawback for its wuse 1in time-sharing
systems. However, most of its deficiencies in protection needs are remedied
by Intel's follow-on product: the iAPX-286 [Childs 80a, 80b]. The 78000 and
MC68000 have both user and supervisor modes of execution privilege. For both
processors, the supervisor mer is entered during all trap, interrupt, and
reset operations where the operating system can handle them appropriately.
Each mode has its own stack and stack pointer. Having two sets of stack
pointers facilitates task switching when interrupts or traps occur. The user
stack is kept clean of system‘information, since the information saved on the
occurrence of dinterrupts or traps is always saved on the system (supervisor)
stack before the appropriate program status is loaded. This technique can al-
low the development of a cleaner system in that the user stack is kept clear

of system information.

User processes usually communicate via special instructions with operat-
ing systems that provide I/0 or other shared functions. The trap instruction
is used on the MC68000 and the SC (system call) instruction 1is wused on the

28000.

Of the three microprocessors, the MC68000 seems to have the most exten-
sive internal error detection trap mechanism. Hardware traps and interrupts

are provided to detect ahnormal internal and external conditions that are of

22

major importance in an operating system in order to provide error recovery and

(TRAPV and INTO resﬁective]y) to cause a trap on an overflow condition. The

ability to support a large number of interrupts favors the development of
large multi-user operating systems because more peripherals can be supported.
The interrupt and trap structure described in the hardware section of this pa-

per shows that the MC68000 is best suited for larger systems.

The extent of the I/0 capabilities of a microprocessor is important when
considering the machine for multi-user operating systems. Since computer sys-
tems may have many different types of peripherals, it is important +that mi-
croprocessors have flexible I/0 capabilities. The MC68000's asynchronous bus
can hand1é peripherals of different speeds. The local busses of the 8086 and
the 78000 are synchronous and consequently faster. Compatibility with peri-
pherals of different speeds is achieved via the system bus (Intel's Multibus).-

A1l three processors are expected to have interfaces to the Multibus.

The 8086 and 78000 can have their I1/0 devices either memory or port
mapped. The MC68000 only supports memory mapped I/0. A disadvantage of port
mapped I1/0 is that it uses more opcodes and adds to the complexity of the mi-
croprocessor, The advantage of memory mapped I/0 is that one can use the
Targe repertoire of instructions and addressing modes that operate in the
memory space instead of just a few I/0 instructions. The disadvantages of
memory mapped I/0 are:

(1) there are Tewer addresses available in memory space,

(2) a number of memory locations are reserved, and
(3) memory mapped I/0 complicates cache management.

23

Certain instructions found in the 8086 and Z8000 are useful for handling

blocks of data. For example, The 78000 has block input and output dinstruc-

tions. These instructions reduce kernel code size and speed up block 1I/0
transfers by eliminating an explicit loop. Often a user program requests a
block of data from the operating system. The system commonly transfers the
data from the input device into its own data space. The system must then do a
memory to memory block transfer to de1ivér the data to the user program. In
the 8086 and Z8000, this function can be implemented with a block transfer or

string instruction,

The Intel 8086, Zilog 28000, and Motorola MC68000 all have extended ad-
dressing capabilities. Memory addressing does not limit the usefulness of any
of these three microprocessors. Since few current microprocessor based sys-
tems address as much as 64 kilobytes, address capabilities should not be much
of a factor when considering small dedicated systems. Few single-user mi-
croprocessor application programs, except compilers and interpreters use more
than 16 kilobytes. The extended addressing capabilities should be a factor in
a system competing with high-end minicomputers. In multiprogramming environ-
ments one must consider the memory management capabilities in terms of overall
syétem security. The 8086 is probably less useful here. Among other reasons,

its address space is inadequate.

A desirable memory protection scheme allows a kernel to easily assign, to
data and code segments, attributes such as read only, read-write, and system
use. The relocation and memory protection mechanisms for the 78000 and

MC68000 are provided by an external memory management unit. These devices

24"

»»»»»»»»»»»»»»» seem;sufficieniJygcapablefoifmanagjngkfmemoxy¥4£oL4,muJiijngLammedggnpeﬁatjng;ﬂﬁ¥_¥ﬁ4,
————systems Since the —address space Ts segmented:—The use—of-segmentation—pro———
vides a good solution to the problem of dynamic user memory expansion, reloca-
tion, and protection, as well as virtual memory implementation. However, the
loss is speed. It appears that in both, the 78000 and the MC68000, =zero

wait-state operation with memory management is essentially impossible.

Important functions that an operating system provides in a multipro-
grammed environment are scheduling of the central processing unit and control-
1ing accesses to shared resources. In a multiprogrammed system, task switches
occur frequently and necessitate the saving of the current process state and
loading of another process's state. Task switching requires saving all regis-
ters in hemory so that they can be restored when the process is restarted.
Both the 28000 and the MC68000 contain a single instruction to move multiple
registers to memory and vice-versa. This facility provides an increase in’
overall system performance since task switching is a frequent operation in a

multiprogrammed operating system.

Since many computer resources cannot be reasonably shared simultaneously,
some method for mutual exclusion must be enforced. Al11 three microprocessors
have test-and-set instructions that can be used to develop semaphores to pro-
vide the necessary ' mutual exclusion. These semaphores can also be used to

synchronize cooperating processes.

25

Multiprocessor Operating System Support

The same reasons .that make tﬁese 16-bit microcomputers attractive or
unattractive for single processor operating systems also apply to multiproces-
sor systems. A result of the availability of powerful but inexpensive
hardware is the current development of multiprocessor operating systems. The
underlying idea is to build a multiprocessor system of many inexpensive mi-
croprocessors that can equal or exceed the capabilities of a large single pro-
cessor system at reduced cost, increased reliability, and increased speed
through parallelism. A rapid drop in hardware prices coupled with the advance
in hardware capabilities makes it no longer necessary to share a central pro-
cesser and memories to the utmost to achieve an acceptable price/performance
ratio. Therefore, inexpensive processors can he dedicated to certain func-
tions and still maintain cost effectiveness. The multiple processor arrange-
ment considered here is the multiple-instruction multiple-data stream (MIMD)
computer [Flynn 667]. This computer comprises a number of processors that are
connected together by time-shared busses, cross-point switches or multi-port
memory modu]es. Interconnection may be tightly coupled through a shared

memory or loosely coupled via communication lines.

There seem to be three basic approaches to multiple processor operating
systems. The first approach is a loosely coupled network of general purpose
processors. FEach processor runs its own unique kernel or the same kernel as
the other processors in the network (e.g. Arpanet, Ethernet). However, no
operating system functions are divided among two processors. Each processor

has the ability to perform all operating system functions. In the second ap-

26

proach, the operating system is executed on a dedicated processor with appli-

. S . com . l |]

processors. In the third approach, the operating system might be distributed

across the set of all processors in the system. Recently, the distributed ap-
proach has become more popular for the following reasons: (1) it offers higher
processing power and throughput, (2) processors are treated as identical sys-
tem resources by the operating system soﬂthat if any single processor fails,
the system will continue to operate at a possibly reduced rate (i.e. the sys-
tem exhibits a fail-soft behavior), (3) distribution tends to make more effec-
tive use of thé processor resource than when one processor is dedicated to an
operating system (i.e. dynamic load balancing is more efficient). Such an ap-
proach tends to distribute intelligence towards peripherals resulting in in-
creased modularization. Included in the second class would be intelligent
device controllers (e.g. disk controller) where most of the scheduling and
resource management duties of the operating system could be off-loaded into
the device rather than the main-frame. Screen editors could also fit into
this second category. A front-end processor (probably inside the terminal it-
self) could contain the software for editing as well as have the communication
software to talk to the back-end residing in the main-frame computer. The
main-frame would need to only handle the file system management of the text
file beinq edited, thus, reducing the load on the main-frame and distributing

the work.

With the possibility of off-loading operating system functions and/or
system programs into specialized slave processors, tightly couplied multiple

processor arrangements seem to be a rather attractive alternative to single

iy

27

processor operating systems. Processors in such a configuration would need

hardware and/or software locking (semaphore) operators in order to mutually

exclude other prdceséors from critical resources or communicate via shared
memory in a producer-consumer arrangement. A1l three microcomputers have
these hardware capabilities, although each processor provides this capability
differently. For example, the MC68000 provides both hardware and software in-
terlocks for multiprocessor systems. The CPU chip contains bus arbitration
logic for a shared bus and shared memory environment. Multiprocessor systems
are also supported with software instructions (e.g. test-and-set). The TAS
(test-and-set) instruction allows a processor to interrogate a test byte in
some shared memory, set the condition codes accordingly, and then place a '1'
in the most significant bit of‘the byte. If memory (or another resource) is
busy, the processor 1is denied access until the test byte is cleared. Note
that the TAS instruction is an indivisible read-modify-write instruction. In

this manner processors can be mutually excluded from a given resource. It
should be noted that on the Multibus it is impossible to tell when the bus is

locked (the Multibus is used as a system bus by all three processors).

The presence of a large segmented address space is important in shared
memory configurations in order to provide greater flexibility and protection.
Both the Z8000 and the MC68000 with their external memory management units
provide this capability, whereas, the 8086 seems to be deficient in this

respect.

Unfortunately, the problems with distributed systems today are mostly

software and not hardware. Thus, one should not expect detailed solutions in

28 °

the hardware architecture to a software problem that has not yet been solved,

Large segmented address spaces and hardware exclusion mechanisms in conjunc-

tion with software provide mutual exclusion and control of shared critical

resources.

[6] Conclusions

A microprocessor would gain easy acceptance if it could fit immediately
into applications of current 8 and 16-bit microprocessors and at the same time
have an advanced architecture that could be expandable to ensure long product
lifetime. A1l three microprocessors meet the first goal easily. They do so
with an order of magnitude more throughput than that of other single chip mi-
Croprocessors. To meet the second goal, the MC68000 and Z8000 designers have
departed from the traditional byte oriented microprocessor design and have-

adopted the more regular architecture of minicomputers.

Of the three microprocessors considered, the Motorola MC68000 seems to be
the best suited for multiprogramming and time-sharing applications. It pro-
vides good support for addressing and protection needs of software systems.
The 28000 is comparable but its architecture is not as flexible. The 8086 is
less sophisticated than the other two, but the primary design goal was to be
upward compatible with the 808078085 microprocessors. It appeared two years
earlier than the other processors. Its successor has appeared earlier than

those of the 78000 and the MC68000.

‘

29

A _normal way of comparing microcomputers is by making some performance —
———evatuations—Attempting—to—account—for—differences—imperformance due toar=—"""""

chitectural differences between microprocessors is very difficult since most

measurement techniques rely on instruction mixes or particular algorithms
(e.g. the Gibson Mix). Instruction mixes are based on the frequedcies of use
of each instruction in a processor. They are usually developéd on a base pro-
cessor and then applied to other target ﬁachines. Many different dinstruction
mixes can be developed that characterize different applications. However,
evaluations using these mixes that involve different architectures are usually
neither very éccurate nor representative. The other methods of evaluation
(kernels, synthetic jobs, and benchmarks) require that each processor must be
programmed. Unfortunately, this observation implies that the results are
dependent on the programmer's skills, choice of algorithms for each processor,
and the programmer's expertise with the processors in question. Also, if the
programs are written in a high level language, then the code generating facil-

ities of the compiler is tested in addition to the processor capabilities.

These products are different in terms of the silicon technology that is
being used (the 1980 version of the 8086 can run at a clock rate of 10 Mhz).
Pefformance can be increased by (a) increasing the clock speed and (b) archi-
tectural improvements such as microcode support for string operations in the
MC68000. 'People generally select microprocessors for two main reasons. The
first is to build hardware products from them. The other use is for develop-
ing software for these architectures. Therefore, making a choice among these

architectures is really difficult.

30°

Selection of microprocessors also depends on other issues such as support

component availability, software and hardware compatibility with existing sys-

tems, second sourcing and end-user prices. Probably, these issues far

outweigh the differences among the processors as shown in this paper.

Acknowledgements

The help provided by Bob Kasten, Ed Desautels, Charlie Fischer and Don
Neuhengen together with the entertainment provided by the staff of the Comput-
er Systems Lab is gratefully appreciated. We also wish to thank Bob Childs,

Dick Hodgman and Glen Myers for some of their comments.

References

[Aho 77] A.V. Aho and J.D. Ullman, "Principles of Compiler Design",
Addison-Wesley publishing Co., 1977,

[Beatty 74] J.C. Beatty, "Register Assignment Algorithm for Generation of

Highly Optimized Object Code", 1IBM Journal of Research and
Development 18(1): 20-39, January 1974,

[Childs 80a] R. Childs and J. Klebanoff, "iAPX-286 Microprocessor Architec-
ture ' Overview", Intel International Invitational Technical
Symposium, October 1980,

[Childs 80b] R. Childs, "The iAPX-286 Architecture: Memory Management and
Protection Model", Intel International Invitational Technical
Symposium, October 1980.

[Génapathi 80] M. Ganapathi, "Retargetable Code Generation and Optimization
using Attribute Grammars", PhD dissertation, Technical Report
#406, University of Wisconsin - Madison, 1980,

[Gilmore 807

31

J. Gilmore, ACM Computer Architecture News, Vol. 8 No. 7, 15

December 1980.

[Flynn 66]
[Grappel 81]
[Intel 78]
[Johnsson 75]
[Motorola 79]

[Stritter 79]

[Szymanski 78]
[Szymanski 80]
[Toong 81]

[Zilog 79]

[Péuto 797

M.J. Flynn, "Very High-Speed Computing Systems", Proceedings
of the IEEE, December 1966.

R.D. Grappel and J.E. Hemenway, "A tale of four microproces-
sors: Benchmarks quantity performance", EDN, April 1 1981.

MCS-86 User's Manual. Intel Corporation, Pub. No. 9800722A,
July 1978. ‘

R.K. Johnsson, "An Approach to Global Register Allocation",
PhD dissertation, Carnegie-Mellon University, 1975.

MC68000 16-Bit Microprocessor User's Manual. Motorola Inc
September 1979,

E. Stritter and T. Gunter, "A microprocessor architecture for
a changing world: The Motorola 68000." IEEE Computer, February
1979, pp. 18-27.

T.G. Szymanski, "Assembling Code for Machines with Span-
Dependent Instructions", CACM, Vol. 21 No. 4 pp. 300-308,
April 1978.

T.G. Szymanski and B. Leverett, "Chaining Span-Dependent Jump
Instructions”, ACM Transactions on Programming Languages and
Systems, Vol. 2 No. 3, 1980.

H.D. Toong and A. Gupta, "An Architectural Comparison of Con-
temporary 16-bit Microprocessors"”", IEEE Micro, Vol. 1 No. 2,
pp. 26 - 37, May 1981.

28001/728002 CPU Product Specification. Zilog Inc., Pub. No.
03-8002-01, Preliminary ed., March 1979.

Peuto, B.L. "Architecture of a new microprocessor." IEEE Com-
puter, pp. 10 - 21, February 1979,

