AN INTRODUCTION TO RELEASE 1 OF
EDITOR ALLAN POE

by
C. N. Fischer

G. Johnson
J. Mauney

Computer Sciences Technical Report #451

December 1981

An Introduction to Release 1 of

Editor Allan Poel

C. N. Fischer

G. Jonnson
J. Mauney
University of Wisconsin-Madison

Madison, Wisconsin 53706
USA

lResearch supported in part by National Science Founda-
tion Grant MCS78-02570

Introduction

Editor Allan Poe (Pascal Oriented Editor) is a full-screen

display editor that knows the structure and rules of Pascal.

It is similar in approach to a number of language-based edi-

tors (LBEs), including ([ABL81], [AC81], [DHK75], [TRH81]).
As a program is entered or modified, Poe automatically
structures ("prettyprints") the program and checks it for
correctness. Errors are noted and incorrect constructs are

marked.

Unlike many LBEs, Poe is designed to be used by both novices
and experts. Although a rich set of user commands is avail-
able to the expert, the novice needs to learn only a few,

easily-remembered commands.

At all times, a "window" into the program is displayed.
When development of a new program is begun, the following

program prototype is displavyed:

PROGRAM <ID> (<FILE ID LIST>) ;
LABELS }

CONSTANTS }

TYPES }

VARIABLES }

PROCEDURES }

BEGIN

{sTMT LIST}
END .

-2

Poe displays three kinds of symbols:

(1)

Required prompts

These are delimited by "<" and ">" (e.g., <ID>,

<FILE ID LIST>). Required prompt syvmbols are place-—

(2)

(3)

holders that must be expanded to obtain a valid Pascal
program. The expansion expected by such placeholders
is suggested by their names. Thus <ID> should be
expanded into an identifier and <FILE ID LIST> should

be expanded into a list of file identifiers.
Optional prompts

These are delimited by "{" and "}" (e.g., {VARIABLES},
{STMT LIST}). Optional prompt symbols are placeholders
that may be expanded to produce a Pascal construct. TIf
an optional prompt is not expanded, it is "erased",
indicating that the suggested construct is not needed

in this particular program.

For example, {VARIABLES} marks the place at which pro-
gram variables can be declared. However, since a Pas-
cal program may use no variables, it 1is 1legal to

ignore this symbol in developing a program.
Pascal symbols

These are the ordinary symbols found in Pascal (iden-

tifiers, numbers, reserved words, etc.). For emphasis,

-3

reserved words are shown in upper case. When a com-
plete Pascal program has been created, only Pascal sym-

bols remain.

To create a Pascal program in Poe, vyou need only expand

optional and required prompts. This is very easy to do.
You merely move the cursor to the prompt and type any expan-
sion that agrees with the prompt. Thus if you moved to an
<ID> prompt, you could type abc or xxxx or any other wvalid
identifier2. Similarly, if you moved to a {VARIABLES}
prompt, you could type any legal variable declaration (e.g.,

VAR i:integer).

Cursor movement is controlled using the usual cursor control

keys3:

(1) The space bar moves the cursor one symbol right.

(2) The backspace key moves the cursor one symbol left.

(3) The return key moves the cursor to the leftmost symbol

of the next line.

2Poe will allow an undeclared identifier to be entered,
but will highlight it until it is properly declared.

3"Arrow" keys found on many terminals are not used be-
cause they are not standard and not always available. Par-
ticular implementations of Poe may allow the use of such
keys as an extension.

—4-

(4) The "\" key4 moves the cursor to the leftmost symbol of

the previous line.

As a Pascal symbol is entered, a prompt symbol may be

replaced by new symbols, representing the detailed structure

of a construct. Thus if in the above example, the cursor
were to be moved to the {STMT LIST} prompt, and "if " is

typed5 the following structure results:

PROGRAM <ID> (<FILE ID LIST>) ;
BEGIN
IF <EXPR>
THEN {sTMT}
ELSE CLAUSE} ;
MORE STMTs }
END .

Note that since a THEN is always c¢reated when an IF is
recognized, it is impossible to create ill-formed IF state-
ments. In fact, in Poe syntactically incorrect program

structures (of any kind) can never be created.

But what if the user were to type something that is illegal
at the point at which the cursor is positioned? For exam-
ple, a THEN (which cannot begin a statement) might be

entered at a {STMT} prompt, or BEGIN might be typed at the

4This choice is arbitrary. Any character that cannot be-

gin a Pascal symbol could have been used. The two-character
command !” is a synonym.

5The blank after the "if" is needed so that the editor
can distinguish between the symbol "if" and a pause in the
entry of, e.g., "iff".

-5~

very top of a program. Rather than considering these

errors, Poe uses an error-repair algorithm to place all sym-

bols, as they are entered, in their "most reasonable" pro-

gram context. Thus typing a THEN at a {STMT} prompt will

expand the prompt into an IF-THEN construct, with the cursor

immediately following the THEN. Similarly, entering a BEGIN
at the top of a program will move the cursor beyond the

nearest BEGIN.

This approach makes Poe fairly forgiving in the entry of
program text. But what if the repair chosen by Poe is not
what the user wants? Unwanted constructs can be deleted by
using the delete key. Note that some individual symbols
(such as IF) may not be deleted (since an illegal syntactic
structure might result). Thus the effect of hitting delete

is to delete the smallest structure containing the symbol

marked by the cursor and to replace it by the appropriate
prompt. Hitting delete more than once will delete progres-
sively larger constructs. For example, consider the follow-
ing program, with the cursor on "writeln":

PROGRAM <ID> { <PILE ID LIST>)

BEGIN

writeln (1) :
END .

Delete is hit to obtain:

-6

PROGRAM <ID> (<FILE ID LIST>)
BEGIN

<VAR ID> (1) ;
END .

~e

Hitting delete again yields:

PROGRAM <ID> (<FILE ID LIST>)
BEGIN

~e

[sTMT] ;
END .

Repeatedly hitting delete then produces the following

sequence:

PROGRAM <ID> (<PFILE ID LIST>)
BEGIN

’

END .

~o

PROGRAM <ID> (<FILE ID LIST>)
BEGIN

{sTmMT LIsT}
END .

~e

PROGRAM <ID> (<FILE ID LIST>)
BEGIN
END .

~e

<PROGRAM>

At this point no further deletion is possible (or meaning-

ful).

As will be discussed later, Poe has a very dgeneral "undo”
capability that can be used to undo unwanted commands. How-

ever, the novice need not know of this command. In fact,

-

beyond knowledge of how to move the cursor, and how to enter
and delete symbols, only two other points need be known to
the novice Poe user: how to initiate an editing session and

how to terminate it.

The details of invoking Poe are operating system dependent.
Usually only a file name (denoting the file to be edited)
needs to be supplied. If the file exists, it is edited. If
it does not exist, creation of a new program, to be written

into the file, is assumed. In Unix, Poe is invoked as:

poe filename

To terminate an editing session, the user types "Ix". The

symbol “!“6

signals a Poe command. The x represents "exit".
As we shall discover below, a wide variety of Poe commands

(all beginning with !) are available.

Poe allows an editing session to be terminated, even though
a program 1is incomplete or semantically incorrect. In
either case, it prints a warning message prior to termina-
tion. Incomplete programs can aways be recognized by the
fact that required prompts remain unexpanded. Semantically
incorrect programs can be recognized by the fact that por-
tions of the program are highlighted. Moving the cursor to

a highlighted symbol will cause a message detailing the

6Escape is a synonym of !.

-8

error to be printed. If all required prompts are expanded,
and no program components are highlighted, the program being

edited is guaranteed to be a legal Pascal program.

At this point the reader is invited to experiment with the

Poe features discussed so far. While these features are
minimal, they are sufficient to make productive use of the

editor.

Advanced features of Poe

The minimal set of features required to use Poe productively
allows both novices and experts to use the editor with lit-
tle training. WNaturally, however, as a user becomes more
experienced, a richer set of commands is desirable. We now
discuss some of the advanced commands available in Release 1
of Poe. Note that in future releases these commands may be
significantly changed and augmented.

Help facilities

The symbol "2" can always be used to get help or extra
information. Normally, it lists a complete menu of
available commands. When the cursor is placed on an
identifier, ? shows the corresponding definition of the
identifier. In future releases, ? will be used to
obtain information about error diagnostics, language

features and editor commands.

-9

Cursor movement

In addition to the space bar, backspace key, return key

and \ key, a number of other cursor control functions

are available:

(1) b

Go back one screen

(2) If

Go forward one screen

(3) 1ta

Go down one half screen

(4) !g

Go to top of program

(5) G

Go to bottom of program

(6) 't

Go to top of screen

(7) !B

Go to bottom of screen

File manipulation and termination

A number of commands that manipulate files and/or ter-

minate editing are available:

-10-

(1) 'r filename
Read contents of specified file beginning at cursor

position.

(2) lw filename

Write current program into specified file.

(3) !q
Quit editing session. If the program has been
changed since the last write, the user is queried

before editing is terminated.

(4) !'x filename
Exit editing session. Equivalent to a "lw
filename" followed by a "!g" 1If no filename is

given, the file named on the editor call is used.

Undoing editor commands

It is essential (particularly to novices) that errors
not be irredeemable. To this end, Poe makes available a
very general "undo" capability. At any time, the most
recent Poe command can be undone by typing !u. Entering
!u n times causes the most recent n commands to be

undone7. The undo command can”t undo other undo”s (else

7The number of commands that can be undone is limited by
the depth of an internal "history stack". At present, the
maximum depth of this stack is 10. The history stack may be
displayed by entering !h.

-11-

multiple undos wouldn”t work as expected). An undo can

be undone by entering !U.

For example, assume that at a {STMT LIST} prompt we

enter "writeln(l,2 " followed by "backspace delete". We

then have the following line:
writeln (1 , <PARAMETER EXPR> {, PARAMETER LIST}) ;

If we now enter a sequence of !u commands, the following

lines are produced:

writeln (1 , 2 {MORE ExPR} {, PARAMETER LIST}) ;

writeln (1 , <PARAMETER EXPR> {, PARAMETER LIST})

writeln (1 {, PARAMETER LIST}) ;

writeln (<PARAMETER LIST>)

writeln {:= EXPR or other stmt} ?

[sTMT LIST}

If we now enter a sequence of !U commands, the sequence

of lines is reversed to obtain

writeln {:= EXPR or other stmt} :

-12-

writeln (<PARAMETER LIST>) g

In general almost any command can be undone, so when in

doubt it is safe to try a command and see what happens.

Prompting commands

The use of prompt symbols is central to the design of
Poe. At any point, a prompt symbol reminds the program-
mer what sort of input is expected. But what if a user
doesn”“t know what a given prompt symbol can be expanded
to? Poe provides an automatic means of "exploring" the
possible expansions of a symbol. If !p is entered while
the cursor is on a prompt symbol, a possible expansion
of that symbol is shown. If !p 1is entered again,
another expansion is shown, until all possibilities are
explored, Thus if the cursor is at a {STMT} prompt and
lp is entered, we are shown:

[sTMT} --> (nothing)

This shows that a statement is optional at this point.

Hitting !p again produces:
{sTMT} --> {1ABEL} {UNLABELED STMT}

This shows that an optional label followed by an

-13-

optional wunlabelled statement is another possibility.
Hitting !p again returns to the first expansion since

there are only two possibilities.

When the programmer sees the expansion he desires, an le

may be entered to expand the prompt symbol according to
the expansion currently illustrated. The user may then
enter Ip again to explore further choices. Thus a lot
about the structure of Pascal can be learned by merely

exploring via the !p and !e commands.

The handling of optional prompts requires special care.
If all optional prompts were displayed at all times, the
screen would quickly be cluttered. Therefore Poe
suppresses the display of optional prompts once the cur-
sor has moved past them. Note that it is still possible
to expand these symbols; they are merely "made invisi-
ble" to make the display more succinct. For example
when editing of a new program is begun, the cursor is at
the PROGRAM symbol, and a number of option prompts are
displayed:
PROGRAM <ID> (<FILE ID LIST>) ;
LABELS}
CONSTANTS }
TYPES }
VARIABLES }
PROCEDURES }
BEGIN

[sTMT LIST}
END .

If the cursor is moved to the END symbol, most of the

-] 4
optional prompts are suppressed:8

PROGRAM <ID> (<FILE ID LIST>) ;
BEGIN

{sTMT LIsT}
END .

Moving the cursor back to the PROGRAM symbol does not

redisplay the suppressed promptsg.

Sometimes it is convenient to force nearby prompts to be
redisplayed. This can be done by entering !a. The !a
command is especially handy when a number of adjacent
optional prompts have been suppressed, and the program—
mer wishes to move the cursor to one of these. Optional
prompts that have been explicitly deleted are not
redisplayed by the !a command. However, such prompts
can be retrieved by the !A command. The !A command does
everything the !a command does as well as redisplaying

deleted prompts.

For novices, who are unsure of what symbols are
appropriate at a given point, an automatic redisplay of
optional prompts can be obtained. This is done by

entering !P (entering !P again returns to the original

8The [sTMT LIST} prompt isn”t suppressed because the cur-
sor hasn”“t moved a full line past the prompt.

9In earlier versions of Poe this was done. This led to
rapid redisplay and suppression of symbols as the cursor was
moved. Users found it very annoying.

-_]15-

mode). In the redisplay mode all optional prompts near
the cursor are shown. Thus if a programmer is unsure
what 1is expected at a given point, he can move the cur-

sor to that point and see what prompts appear. As noted

above, the price of this automatic redisplay is a signi-

ficant amount of screen repainting as the cursor is

moved.

Elision of program structure

One of the great problems in developing large programs
at a display terminal is that the screen rapidly becomes
filled with minor detail. Poe allows users to elide
program structure to enhance readability. Consider the

following partially completed program:

PROGRAM <ID> (<FILE ID LIST>)
PROCEDURE p {(i : integer) ;
BEGIN
IF NOT eof
THEN BEGIN
writeln (“aaaa”) ;
END
END
BEGIN
{sTMT LIST}
END .

Structure can be elided by moving the cursor to a symbol
and entering "!>". Typing !> at the BEGIN within the IF

statement would vyield:

-16-

PROGRAM <ID> (<FILE ID LIST>)
PROCEDURE p (i : integer) ;
BEGIN
IF NOT eof
THEN <BEGIN - END...>
END
BEGIN

{sTMT LIST}

BND .,

The symbol <BEGIN - END...> represents an elided BEGIN-
END block. Entering !> at the IF will elide the entire
IF statement:
PROGRAM <ID> (<FILE ID LIST>) ;
PROCEDURE p (i ¢ integer) :
BEGIN
<IF-THEN-{ELSE}...> ;
END ;
BEGIN
[sT™MT LIST}
END .
Similarly, entering !> at the PROCEDURE will elide the
entire procedure:
PROGRAM <ID> (<FILE ID LIST>) ;
<PROC OR FUNC...> ;
BEGIN
{sTMT LIST}
END .

Elided structure can be "unelided" (i.e., expanded) by

entering !<.

The problem of elision in language based editors is
currently receiving much attention [Mik81]. Future
releases of Poe will undoubtedly provide enhanced eli-

sion capabilities including automatic elision, elision

-17-

by comment (in which a comment is "tagged" to a struc-
ture) [TRHS81] and "first 1line elision" (in which the

first line of a structure elides the entire structure).

£ v

Mowving-structures

Like all editors, Poe provides the ability to move text
within a program. However in Poe only complete, syntac-
tically valid structures can be moved. Thus a pro-
cedure, or a statement, or even an identifier can be
moved, but an IF symbol, or a single " (" cannot. To
copy a structure, the Poe user moves the cursor to a
symbol in the structure to be copied. The command !c
will copy the smallest legal structure containing the
symbol marked by the cursor into an unnamed tree. Simi-
larly, "!c name" will do a copy into tree with the given
name. If a copy of a larger containing structure is
desired, additional !c commands will copy progressively
larger structures, up to the entire program. Thus given
"3 := b 4+ 1", with the cursor on the b, !c would copy
just the b, then the right hand side expression, then
the entire statement (depending on the length of the lc

sequence) .

It is also possible to delete a structure into a sub-

tree. This is done by !deletelo or !delete name. As in

lODelete represents the delete key.

-18-

the case of !¢, additional !delete entries with delete

progressively larger structures.

The subtrees created by !c¢ and !delete can be examined

e et o et et e a nd,ge ven— ,ed,i,-t,e d.T.. - ,...,..,I,n,,;f,ac,tT. e a_.t¥., — an;y,,pe,j:n:ti,th e,.,;P o e,._.u,s,e,ri.&h, T -

access to a forest of Pascal structures. The command !)
moves the user to a directory representing all the sub-
trees currently extant. To examine (or edit) one of
these trees, the user moves the cursor to the desired
tree. The ! (command then takes him into that tree,
where it can be examined or edited. To return to the
main program, !m may be used. Similarly, !s moves to

the most recently visited or created subtree.

To insert the structure represented by a subtree, the
cursor 1s moved to a suitable prototype and the !i com-
mand is used. If a name is given (e.g., !'i name), the
appropriately named subtree is inserted. If no name is
given, the most recently created or edited subtree 1is
used. Note that for an insertion to be allowed, the
subtree to be inserted must agree in structure with the
prompt the cursor is at. Thus at a {STMT} prompt an IF
statement structure could be inserted, but an expression

or procedure body structure could not.

-19-

Miscellaneous commands

Although Poe is primarily an editor, it has the capabil-

ity to execute a Pascal program. This makes easy the

'LiS‘\ial \:d*i*t*/‘te‘S’t*/’ed‘i*t e CYC’]:QT"""’""’T’he* I — comm-an'd*"i”n*i*tfi*a’t'e's .. -

execution of a Pascal program. Execution is only
allowed if a program is complete (all required prompts
are expanded) and semantically correct (no symbols are
highlighted). Program input is accepted from the key-
board, and program output appears at the bottom of the
screen. After execution, the program is redisplayed and
editing can be performed. If execution terminated
abnormally, the cursor is placed on the line deemed in

error, and the error message is displayed.

Because Poe is an experimental system, it is inevitable
that wusers will discover bugs and have ideas and com-
ments they wish to contribute. To facilitate this, a
"complaint to the management" feature is provided. 1If
!C is entered, you are turned over to the system mail
facility to enter a message to be shipped to the Poe
implementation group. A copy of the program being
edited may also be sent. You are then returned to the

editor.

As new features are implemented, a "message of the day"
(the beginning of which is displayed at the start of an

editing session) notes information of interest. This

-20-

message may be viewed at any time by entering IM.

It is often handy to suspend editing and return (tem-

porarily) to the system command interpreter. This can

be done by entering !%. After the command interpreter

is exitedll editing can be resumed.

Poe is designed to support a variety of display termi-
nalslz° To inform Poe of the type of terminal being
used, the command "!T termtype" can be used. This com-
mand also displays the kind of terminal it currently
believes 1is being used. Terminal type can also be con-
trolled when Poe is called; e.g9. typing "poe -Tmime

filename" invokes Poe on a file, and immediately sets

the terminal type to "mime".

To force the display to be repainted, "control L" may be

usedl3.

Poe commands may take a repeat count: !nn<cmd> will per-
form <cmd> nn times. Repeats apply to the cursor move-

ment commands as well: !5\ move the cursor back five

llIn the Unix implementation of Poe this is done by
entering "control 4".

let present, the HP2621A, Visual 200, H19, and Mime-T
terminals are supported.

13This command is a vestige of similar usage on earlier,
less advanced editors. A synonym of I!L will be added for
uniformity of command syntax.

-21~

lines; it is important that no space come between the
count and the command, unless space (move cursor right)
is the command you wish to repeat. It is not possible

to repeat backspace; instead, backspace is used to

correct errors in the repeat count.

Implementation notes and current research

Poe is written in Pascal (to ease transport to new systems).
Parsing 1is done via an extended LL(1l) technique that pro-
vides direct support for lists of symbols (this is essential
to allow insertion and deletion anywhere within a list).
Error repair is done via the FMQ [FMQ80] technique. Seman-
tic information is represented as attributes on an abstract
syntax tree. Special linkages (e.g, of all uses of an iden-
tifier) are employed to ease semantic checking. Algorithms
that percolate attribute values within a tree are used to

transmit information within a programl4°

Current work on Poe centers on both enhancing user features
and improving implementation size and speed. Work on struc-
ture elision, semantic error repair and implementation-
dependent langquage features (e.g, separate compilation) are
receiving careful study. Future releases of Poe will

reflect advances in these areas. Ways of reducing the size

14These algorithms are similar to those presented in

[DRT81] and [Rep8l].

-22-

of internal data structures and speeding program analysis
(especially attribute analysis) are under study. A non-

symbolic external representation of programs (to be stored

in files) will speed editing of existing programs. Back-——

ground—processing of attribute information will allow idie
time to be effectively employed, while providing excellent
response time. Problems in transporting Poe to stand-alone
personal computers will be studied. Retargeting Poe to

languages other than Pascal will also be investigated.

-23-

References

[ABL81] Alberga, C.N., A.L. Brown, G.B. Leeman Jr., M. Mik-
elsons and M.N. Wegman, A program development tool.
8th POPI. Conference, 92-104, 1981

(AC8IT—A&rcher;—JF 7 and R Conway; COPET a Tooperative —pro=——""""""
gramming environment. Cornell U., TR 81-459, 1981.

[DHK75] Donzeau-Gouge, V., G. Huet, G. Kahn, B. Lang and J.
Levy, A structure oriented program editor: a first
step towards computer assisted programming. IRIA
Laboratories, Technical Report 114, 1975.

[DRT81] Demers, A., T. Reps, and T. Teitelbaum, Incremental
evaluation for attribute grammars with application
to syntax-directed editors. 8th POPL Conference,
105-116, 1981

[FMQ80] Fischer, C., D. Milton and S. Quiring, Efficient
LL (1) Error Correction and Recovery Using Only
Insertions. Acta Informatica, 13, 2, 141-154, 1980.

[Mik81] Mikelsons, M, Prettyprinting in an interactive pro-
gramming environment. Sigplan Notices 16, 6, 108-
116, 1981.

[Rep81l] Reps, T., Optimal-time incremental semantic analysis
for syntax~directed editors. Cornell U., TR 81-453,
1981.

[TRH81] Teitelbaum, T., T. Reps and S. Horwitz, The why and
wherefore of the Cornell Program Synthesizer, Sig-
plan Notices 16, 6, 8-16, 1981.

