ECP -- AN ERROR-CORRECTING-PARSER
GENERATOR USER GUIDE

by

Jon Mauney
Charles N. Fischer

Computer Sciences Technical Report #450

November 1981

ECP -~ an Error-Correcting-Parser Generator
User Guide

Jon Mauney
Charles N. Fischer

ECP accepts a context-free grammar specification and a 1list
of correction costs, and produces tables for parsing and correct-
ing sentences of the language so specified. It will produce
tables for any LALR(l) grammar, and provides a simple conflict
resolution mechanism for grammars which are not LALR(1l). The er-
ror correction technique is described in [1].

ECP was written at the University of Wisconsin by Jon Mau-
ney. The source code is in Pascal, and designed to be readily
transportable.

Research supported in part by National Science Foundation Grant
MCS78-02570

ECP -- an Error-Correcting-Parser Generator

Introduction

This report describes a pair of tools for language transla-
tion =-- specifically, for parsing and for correcting syntax er-
rors encountered during parsing. ECP is a table generator. It

... —accepts—an-LAL _,,R,(,l,),...........g,lga,m,a,y_;,,.,.S,peg,l,f;j_,éd,,,,,,j_,n,,..,,th,eg,gﬁo,];ma,t,_g,j_,ve.n,....,be,]_,ow,r..,,. e

and produces tables which can be used for parsing and correcting.

LRParse 1s a program which uses the tables produced by ECP to
parse, and perhaps correct, programs in the language so speci-
fied. It produces an output listing of the program, showing any
corrections made. Although these programs perform only syntactic
analysis, they provide an interface to (user supplied) semantic
actions through semantic routine numbers. These numbers are
specified in the input to ECP and appear in the resulting tables.
LRParse has a facility for calling a semantic routine when the
associated language construct is recognized.

This package is very similar to the LL(1l) parsing/correction
package, FMQ and LLParse. The difference is in the grammars ac-
cepted (and tables produced) and in the interface with semantic
actions.

The corrector implemented in LRParse performs “locally
least-cost” corrections, based on the correction costs specified
in the input to ECP. Each terminal in the language has an inser-
tion cost and a deletion cost; any time the corrector adds or
deletes a symbol, it incurs the associated cost. When an error
is detected, the corrector chooses the lowest cost modification
to the program which will allow the parser to accept one more
symbol. Note that this model of correction depends on the
language to be parsed and on the costs, not on the parsing method
used. Thus it is not necessary to understand the parsing method
or the details of the corrector in order to anticipate the ac-
tions of the corrector, and to control them via c¢osts. Further-
more, the correction chosen is completely independent of the
parsing method. If a good set of costs is determined for an LALR
grammar, those costs can be used with a corresponding LL grammar,
with exactly the same results.

Correction costs are heuristically determined. There is no
algorithm for selecting the “best” set of costs; there are some
rules of thumb which provide a starting point. Symbols which be-
gin a construct, such as "IF" or "BEGIN", should have relatively
high costs, since inserting or deleting such a symbol could cause
many more subsequent errors. Symbols which close constructs,
such as "END" or ")", may have lower costs. Very low costs may
be given to symbols which appear only in limited contexts, for
example, ".." in Pascal. With some experimentation, costs can be
adjusted to give high quality corrections in almost all situa-
tions. Sample correction costs for Pascal and Algol are given in

[171.

A typical session with ECP and LRParse, for experimentation
with correction costs, might go as follows (see also the appen-
dix):

1. create a file containing the appropriate grammar.

2. run ECP, directing the grammar file to standard input. ECP
will send optional output and error messages, if any, to the
terminal (or whatever the standard output is), and create
two files, “ptableout” and “etableout” (or “ptablebin” and
“etablebin”, see the section on output).

— 3., - If the grammar -is not -acceptable to ECP, repeat l-and 2. — ——— —

4. Run LRParse, typing in a test program, or directing a pro-
gram file to standard input. LRParse will read the files
created by ECP and print a corrected listing of the program.

5. Note the corrections made by LRParse, adjust costs accord-
ingly, and repeat 1 through 4 until the corrections made by
LRParse are acceptable.

Input to ECP

The input to ECP has three main sections: options desired
for the run, terminal symbols of the grammar, and production
rules of the grammar. The general form of the input is:

<comments>
*ecp

<options>
*define

<constant definitions>
*terminals

<terminal specifications>
*productions

<production specifications>
*end

<comments>

An example is given in the appendix.

In the following, "symbol" will refer to a symbol in the
grammar for which tables are to be generated, and "token" will
refer to an entity in the input to ECP. Double quotes (") will
denote a literal string, for example, a string as it appears in
the input to ECP. Single quotes (7) will denote a logical enti-
ty, such as an option.

Symbols and tokens

The input to ECP is divided into “tokens” by three simple
rules:

1) All tokens must be separated by one or more blanks, tabs,
or end of line.

2) Tokens may not contain blanks or tabs, unless the token is
surrounded by angle brackets, "<" and ">". Tokens may not
run across line boundaries.

3) If a token begins with a "<", then it must end with a ">".

That is, everything in the input -- option names, reserved words,

-0

grammar symbols -~ must be surrounded by white space. Angle
brackets may be used when a symbol contains white space, but they
are special 1if and only if the first character is "<". Angle
brackets appearing in any other circumstances are legal, but not
special (a warning will be issued in such cases).

Upper and lower case letters are considered distinct; howev-

er, the reserved tokens and the options are recognized in either
case (or a mixture). The following examples illustrate the above
ruless

token comments

ABC OK

abc OK, different from ABC

123 OK

< Expr > OK

<id list> OK

<> OK

&= OK

wem legal, gets a warning

—— legal, gets a warning

<not<>equal> legal, gets a warning

much<<lessthan legal, gets a warning

<LHS>::=<RHS> legal, gets a warning.

this is one token, not three
2<two tokens> legal, two tokens, two warnings
("<" is only special if first)

*ecp reserved

*ECP reserved, same as *ecp

*Ecp reserved, same as *ecp

*ecp*terminals 1legal, one token

<= illegal, no closing bracket

< ditto

<bad>token ditto, (">" must be followed by space)

The following tokens are reserved:
*ecp *define “*terminals *productions *end
1s= E oo - <Goal> S8$

End of line is required as a terminator for specifications
of terminals, productions and constant definitions (see descrip-
tion below). The input to ECP is otherwise free-format.

Comments

Anything before "*ecp" or after "*end" will be considered a
comment, and ignored. However, these comments must not contain
any of the above reserved tokens. Comments may also be placed at

the end of any line; all text between the token "--" and the end
of the line will be ignored.

Options

Following "*ecp" is a list of zero or more options, separat-
ed (as always) by blanks, tabs, or end of line. All options have

-3

the form of switches, and are enabled by including the name in
the option list. An enabled option may be disabled by placing
"no" before the name, without a space; e.g. to prevent construc-
tion of error correction tables, type "noerrortables". All op-
tions are 1initially disabled, except for “errortables”,
“checkreduce”, and “text”. Be warned that most of the output op-
tions will create a large amount of output for a grammar the size
of a real programming language. The figures in parentheses after
each output option give the order of magnitude of the 1lines
printed, and the actual number of lines for a Pascal grammar,
with 69 terminals, 258 productions, and 226 states. Options are

i G R GO G AL Z A LA UPP L QL LOWR LR BT he—ava il able —optioRs —aEe

bnf: Print the grammar rules. (number of productions, Pas-
cal=262)

cfsm: Print the characteristic finite-state machine for the
grammar , with LALR(l) lookahead sets. (number of configura-
tions, Pascal=2893)

links: 1If links and cfsm are both enabled, then for each item
of a state, list the successor items. (number of configqura-
tions, Pascal=5809 + size of cfsm)

first: Print the first sets for all nonterminals. (number of
nonterminals, Pascal=175)

parsetable: Print the parse action table in tabular form. In
the parse table, an unmarked entry signifies a transition,
and gives the number of the succeeding state. An entry

marked "L" means a lookahead reduction by the production
number given, and "R" means a simple reduction. A blank in-
dicates error. (number of states times number of terminals,
Pascal=1855)

checkreduce: Check whether the grammar is reduced; report all
symbols which cannot produce a terminal string, and those
which are not reachable from the start symbol. TIf the gram-
mar is not reduced, and checkreduce is enabled, tables will
not be produced. Checkreduce is normally enabled.

resolve: If the grammar given is not LALR(1l), generate the er-
ror tables anyway, and resolve parse conflicts pairwise in
favor of the production which appeared earlier in the input.
This option should be wused with caution; see discussion
under “Error Handling”. If resolve is not enabled, computa-
tion of error-tables will be suppressed in the presence of
parse conflicts.

longline: Control the 1length of printed 1lines in human-
oriented output (vocab, cfsm, parsetable, etc.) Shortline
causes lines to be less than 80 characters (suitable for a
screen), longline is 132 (for ©printer). Shortline 1is
synonymous with nolongline, and vice versa. The default is

-4

shortline.

statistics: Print assorted statistics on the grammar in gory
detail. In any case the number of productions, symbols and
states is reported. If statistics 1is enabled, additional
information such as average number of basis items, length of
paths through the closure graph, and execution times will
also be printed. (constant, 25)

B — vocab:—Print the symbols of the language, along with —the —in=—""""—
sert and delete costs of the terminals. (number of svmbols,
Pascal=124)

text:

binary: The tables created by ECP can be written as text (file
of char) or as binary (file of integer), or both. Text out-
put is written on files “ptableout” and “etableout”; binary
is written on “ptablebin® and “etablebin’. Binary files
tend to be larger, at least on a 32-bit machine (about 30%
larger on the VAX under UNIX(tm)), but are usually faster
to read. LRParse can read either kind. The default is
“text” and “nobinary”.

errortables: Create the tables needed for least-cost error
correction. If errortables are computed, any of the tables
involved may be printed. Notice that individual tables may
be printed only if they have been computed, thus the effect
of the following options depends on “errortables”. All the
tables are large. Printing of each table is controlled by
an individual option:

s: Least cost-string derivable from each nonterminal. (number
of symbols, pascal=149)

e: Least-cost prefix to derive terminal from nonterminal.
(number of nonterminals times number of terminals, pas-

cal=2483)

graph: Least cost paths through the closure graph, and com-
pleters for basis items. (number of items squared, pas-
cal=7631)

Constant definitions

The constant definition section is optional. If present, it
begins with the reserved token "*define", and consists of a list
of definitions, each on a separate line. Each definition has the
form:

<const name> <integer value>
where <const name> is a token as described above, and
<integer value> 1is an unsigned integer (i.e., a token containing
only digits). This constant can then be used whenever an integer
constant is called for: in subsequent constant definitions, in
terminal insert and delete costs, and for semantic routine
numbers. Note that this feature is not as nice as it seems at

-5

first, because the output listing of ECP will wuse the numeric
value, not the constant name.

Terminals

The reserved token "*terminals" begins the list of terminal
symbols and their insert and delete costs. The specification for
one terminal symbol has the form:

<terminal symbol> <insert cost> <delete cost>
where <terminal symbol> is a token as described above, and <in-
sert cost> and <delete cost> are unsigned integers (or defined
- GOR S EARAES Y The —~terminal--seetion-eonsists—ofa-—list0f - sueh

specifications, each on a separate line. The terminal symbols
will be assigned numeric encodings in the order they are listed,
beginning with 1. All terminals must appear in this list.

Productions

The token "*productions" separates the terminals from the
productions. These productions are specified by a list of rules,
each on a separate line. Specification of one production has the
form:

<lhs> ::= <rhs> <semantic routine #>
Any of <lhs>, <rhs>, and <semantic routine #> may be absent.
<lhs> 1is one token representing a nonterminal symbol. TIf it is
absent, the <lhs> of the preceding production is used. <rhs> 1is
a string of tokens (separated by blanks). If <rhs> is absent,
then <lhs> derives the null string. <rhs> may be continued on
subsequent lines by beginning those lines with the reserved token
"..." (only productions may be so continued).
<semantic routine #> has the form:

<number>
and specifies the semantic routine to be called when the produc-
tion 1is recognized. <number> is either an unsigned integer or a
defined constant. If absent, zero will be used.

End

The productions are terminated by "*end". After all of the
productions have been processed, the augmenting production is ad-
ded. Two symbols, <Goal> and $$$, and one production

<Goal> ::= <85> $8$$
are added to the grammar, where <S> is the left—hand side of the
first production specified, <Goal> is the start symbol, and $$$
the end-marker. $$$ is a terminal symbol, and is assigned very
high insert and delete costs, “infinity”. The augmenting produc-
tion is given a semantic routine number of -1.

Output from ECP

The output controlled by the above options is written to the
standard Pascal file “output”. In addition, files of tables are
created. The tables for parsing are written to “ptableout”
(text) and/or “ptablebin” (binary), and the error-correction
tables are written to “etableout” (text) and/or “etablebin”

-6

(binary). These files may be assigned or redirected, depending
on the operating system. A driver routine provided for using the
tables is described in the next section. Only those who wish to
use the tables starting from scratch need study the table file
formats, which are detailed in the appendix.

Using the Tables

LRParse is a complete program which will parse a program,

correcting —if necessary; using tables generated by ECP+— It pro
duces a formated source listing showing any corrections made.

The parsing and correction tables are read from the same files
written by ECP, and can be used immediately by LRParse. LRParse
will read either binary (ptablebin, etablebin) or text (pta-
bleout, etableout) under compile~time control. LRParse may be
used “as is” for experimentation with ECP and tuning of correc-
tion costs, but with the addition of a better lexical scanner and
file access, it can be used as the “front-end” of a useful sys-
tem.

LRParse has a very simple lexical scanner which uses the
symbol table provided by BCP. Thus, all symbols must be typed
exactly as seen by ECP. One simple-minded exception to this is
provided. An alphanumeric string which is not recognized will be
considered to be token number 1; a string of digits (integer con-
stant) will be returned as token number 2. For best results, the
first two terminals in the list given to ECP should be “identif-
ier” and “constant”. The scanner divides characters into three
classes: alphanumeric, spaces, and other. It looks for the long-
est meaningful string of characters in one class. This is fine
for most languages, but symbols consisting of a mixture of these,
such as ".LE." in FORTRAN, cannot be recognized. Note that angle
brackets are not special characters to this scanner.

A specialized scanner can be installed by replacing one pro-
cedure, "scan". In order to use the line formatting routines
provided, "scan" should get characters from the input by "read-
char". Character 1lookahead can be accomplished by returning
“peeked at” characters through "unreadchar". If all the input
routines are replaced, several procedures must be provided for
interface with the error corrector: “peek” looks ahead at input
symbols without consuming them, “deletetokens” deletes a number
of symbols from the input, “inserttokens” adds a string of sym-
bols to the input. For more details, see the code.

The error-correction tables are typically very large, over
100K bytes for Pascal. Since only a small portion of the tables
are in use at any time, we wish to leave the tables in the file,
and only read the portion required. Unfortunately, there is no
standard way to quickly position the file pointer to a random
place in the file. LRParse simulates this capability by reading
from the beginning of the file up to the proper point. This 1is
slow, but acceptable for experimentation, especially if “binary”
files are used. Genuine random file access, installed in pro-
cedures “seekBE” and “seekState”, should increase the speed of the
corrector. Makeindex is a program which creates an index file

-7

(called “index”) for the correction tables, for use by LRParse
with random file access. Makeindex works only with “binary”
files.

Semantic routines may be installed by added the appropriate
calls to procedure "callsemantics". After a production is recog-
nized, the parser calls "callsemantics", passing the associated
semantic routine number, as specified in the input to ECP.
LRParse insures that no actions need ever be undone.

Error Handling within ECP

Syntax errors in the input to ECP will be handled by a lo-
cally least-cost recovery routine. Table generation will be
suppressed if errors are present in the input.

An attempt to use the symbols "<Goal>" and "$$$" (the start
symbol and the end-marker) will be treated as a syntax error.

If error tables are to be generated, and the insert and
delete costs for a terminal are omitted, the value 1 will be sup-
plied for both.

All terminals must be listed in the *terminals section. If
any terminal is not listed, or if a nonterminal does not appear
on the left of any production, the symbol will be flagged, and no
tables will be generated. Similarly, a symbol declared as a ter-
minal may not appear on the left of a production.

If the grammar specified is not LALR(1l), all conflicts will
be reported. If the option “resolve” is enabled, productions
will be given precedence in the order of appearance (first pro-
duction specified is highest). Thus the "dangling else" of Pas-
cal and other languages can be parsed by:

<if stmt> ::= IF <expr> THEN <stmt> ELSE <stmt>

::= IF <expr> THEN <stmt>
The conflict will be resolved in favor of the first form of the
statement, matching the ELSE with the most recent IF. A conflict
between two configurations with the same underlying production
will be resolved in favor of the reduction. This ambiguous gram-
mar , then:

E E + B
id
will parse expressions involving + and id, enforcing left associ-
ation, since reduction will always be chosen over shifting.

®0 oo

This resolution mechanism should be used with caution. Con-
flicts should be examined carefully to insure that the action
taken by the parser is the action desired. In the above IF
statement grammar, for example, a reversal of the two productions
would be acceptable to the generator, causing a precedence of
reduction over shifting. This would have a disastrous effect on
parsing, as the ELSE would never be accepted. Furthermore, since
the error corrector uses the original grammar, and not the LALR
parse tables, it finds the ELSE acceptable and it would not pro-

-8 -

vide a correction. Neither ECP nor LRParse is capable of detect-
ing such a situation, so it is the responsibility of the user to
insure correctness.

Size Limits

If the grammar specified proves too large for the limits of
ECP, the program will print a message describing the limit which
was exceeded, and terminate. ECP must then be recompiled with

increased limits. Normally, exceeding one limit suggests that
others will also be exceeded, and increasing them all at once
: D b PR

in order terminals, productions, parse table, error tables.
Therefore, if the number of states in the CFSM is exceeded, the
number of terminals and productions must be within limits, as
they have been completely processed already. Some of the dimen-
sions of a particular grammar are easy to discover; others must
be tackled by rule of thumb and trial. Easily determined are the
number of terminals, number of symbols (terminals + nonterminals)
and number of productions. Less simple, but not difficult to es-
timate are the total number of symbols in the productions, the
number of paths through the closure graph, and the total number
of characters in all the distinct symbols. Candidates for rule
of thumb are number of states (approx. number of productions),
number of items (for pascal, 12 times number of states (=2500)),
number of 1links (for pascal, 2 times number of items (=5000)).
The size of the insert table is about 300 for Pascal.

LRParse has similar limits. The actual requirements for
these limits are included in the “statistics” printed by ECP.

Using ECP
In order to run, ECP requires two files: “ptablein” and
“etablein”. These files provide the tables to parse and correct

the input to ECP. “Etablein” is only used if there is a syntax
error in the input. The grammar specification is read from the
standard “input” file, and human-oriented output is written to
“output”. Parse tables produced are written to “ptableout” (or
“ptablebin”); error correction tables (if computed) are written
to “etableout” (or “etablebin”). The above names are the inter-
nal names as declared in the program header, and may be modified
by the system environment in which the program is run.

LRParse gets its tables from “ptableout” and “etableout” (or
“ptablebin and “etablebin”, determined at compile time); tables
written by ECP can be immediately read by LRParse. LRParse reads
a program from standard “input” and produces a formated listing
on “output”.

Sample ECP input

grammar for DCL, Desk Calculator Language
*acp

vocab bnf

binary notext ~-- only gen. binary files
*define

one 1 -=- CcOosts

two 2

b Y e 2
CITE ST

<do assn> 2 -- semantic actions
add 5
subtract 6
*terminals
id two two
constant one 1
end two

% | 4 00~

/
write
read

14

HWWN NN W N
= B NN NN S W

*productions

<prog> ::= <gt list> end
<st list> ::= <st list> ; <st>
:= <st>

<st> ::= id := <expr> ## <do assn>
s:= <read> (<id list>) ## 3
te= <write> (<expr list>) ## 4

<expr> ::= <expr> + <term> ## add
1:= <exXpr> - <term>

... ## subtract

= <term> ## 7

<term> ::= <term> * <primary> ## 8
s:= <term> / <primary> ## 9
::= <primary> ## 10

<primary> ::= - <primary> ## 11
t1= (<expr>)
= id ## 1
::= constant ## 12

<write> ::= write ## 20

<read> ::= read ## 21
<id list> ::= <id list> , id ## 23
ce= id ## 24

-10-

<expr list> ::=
ees § <EexXpr>
t:= <eXpr>

<expr list>

*end

Sample ECP Output (from above input)

ECP vergsion 1.1 (Nov 14 1980), date: 18 May 81
Options for this run:
vocab—bnf
errortables
binary output files
Vocabulary:
terminals costs nonterminals
1: id 2 2 16: <prog>
2: constant 1 1 17: <st list>
3: end 2 2 18: <st>
4: 1 1 19: <expr>
5: = 1 3 20: <read>
6: (3 4 21l: <id list>
7:) 1 1 22: <write>
8: + 1 2 23: <expr list>
9: - 2 2 24: <term>
10: * 2 2 25: <primary>
11: / 2 2 26: <Goal>
12: write 3 4
13: read 3 4
14: , 1 1
15: $$% Inf Inf
[semanticg] Productions:
l: <prog> 2= <st list> end
2: <st list> ce= <st list> ; <st>
3: ts= <st>
I 2] 4: <st> t:= 1id 1= <expr>
[3] 5: s:= <read> (<id list>)
[4] 6: s:= <write> (<expr list>
7: 1=
[5] 8: <expr> 1= <expr> + <term>
[6] 9: 1= <expr> - <term>
i 71 10: 13= <term>
[8] 11: <term> ::= <term> * <primary>
[91 12: :3= <term> / <primary>
[10] 13: ::= <primary>
[111 14: <primary> 3= — <primary>
15: 2= (<expr>)
i 11 16: s:= id
[1217 17: 3= constant
[20] 18: <write> s:= write
[211 19: <read> ::= read
[231 20: <id list> 2= <id list> , id
[241 21: s:= 1id
22: <expr list> ::= <expr list> , <expr>

-11-

23:

H] expr>
I =11 24: <Goal> s

prog> $$$

it
A A

The grammar is LALR(1l).

statistics for this grammar:
15 terminals in grammar
26 symbols in all
24 productions
27 states in CFSM, with 130 configurations

whole thing took 5.94 seconds

Sample Input to LRParse (for DCL tables)

end

Output of LRParse on above program
Insertions are underlined with “*”, deletions are enclosed in “{” and “}~.

LR Parse, using binary tables
version 1.1, (Oct 7 1980)

1: =14+ x /v ;
*% 2% i ¢s= x + y + constant / z + (constant) ;
error * khkkxhdkd * kikkkkkkk
k3% weite (i, 3) ;5 D}
error
Kk 4% a:= (i{,} +3);
error *% *
*¥% 5% read (x , v , id) :
error * * %k
k% g% write {:=} (n) ;
error * *
7: end
accepted

7 lines in program
12 errors (calls to corrector)
11 tokens inserted: 3 tokens deleted.

-12-

Appendix B -- table formats

Parsing Tables

The file “ptableout” (or “ptablebin”) contains the following
tables: the encoded parse action table, the lengths of the
right-hand sides of the productions, the left-hand side symbols
of the productions, the semantic routine numbers associated with
the productions, a symbol table giving the character representa-

tions of the symbols of the grammar, and the entry symbol for
each state of the cfsm. The symbols of the grammar are encoded
asintegers. The terminals are numbered, starting with one, in

the order they are listed in the terminal specification section.

The end marker, "$$$", is the highest numbered terminal. The
nonterminals are assigned numbers in the order they are encoun-

tered in the grammar, beginning one higher than the end marker.

The goal symbol, "<Goal>", is the highest numbered nonterminal.

The format of the file is:

header line: The first line gives the sizes of the various
tables. It contains: number of states of the cfsm (num-
states), number of symbols in the grammar (numsymbols),
number of productions (numprods), size of the character
string for the symbol table (stringsize), number of non-
error parse table entries, and a flag (errortables) indicat-
ing whether error-correction tables were created for this
grammar . The flag is one character, a "T" if correction
tables were created and "F" if not.

parse actions: The parse are given as lists of symbol/action
pairs for each state. Each 1list 1is headed by a pair
zero/state-number; the action table is terminated by a pair
of zeroes. If a symbol does not appear in the list for some
state, then the parse action for that state and symbol is
error. The actions are encoded as follows:
n > 2000: lookahead reduction by production p=n-2000
pop rhslength(p) states from the stack
and do not consume the current input symbol.
2000 > n > 1000: simple reduction by production p=n-1000.
the current symbol completes production p.
pop rhslength(p)-1 states and consume the symbol.
1000 > n > 0: transition to state n.
push n onto the stack. Consume the symbol.

rhs lengths: Following the action matrix are numprods in-
tegers, indicating the number of symbols on the right-hand
side of the corresponding productions.

lhs: Next are numprods integers giving the symbols on the
left-hand side of each production.

semantic numbers: Numprods integers, giving the semantic rou-

-13-

tine numbers associated with each production.

string table: The symbol table information is in two parts.
First 1s an index, consisting of numsymbols pairs of in-
tegers. The first integer of each pair is the starting
point of the symbol in the character string, the second is
the length of the symbol. Following the index are string-
size characters, 80 per 1line. In the binary format, the
characters are written one per word, using “ord”.

entry symbols: Finally, there are numstates integers, giving

the symbol which was shifted on entry to each state.

Error-Correction Tables

The file “etableout” (or “etablebin”), if created, contains
the additional information necessary to find the locally least-
cost correction to any error.

The error tables have the following form:

header line: one line containing 6 integers: the number of
terminals in the language, the number of gymbols (terminals
+ nonterminals), the number of states in the cfsm, the max-
imum number of items in any one state, the maximum number of
basis items in any one state, and the integer which
represents an "infinite" cost.

correction costs: The insertion and deletion costs of the ter-
minal symbols

S table: The least cost strings derivable from the nontermi-
nals

E table: The least cost prefix to derive a terminal from a
nonterminal.

state information: For each state: the number of items and
number of basis items in the state; for each basis item in
the state, the state and item number of the “successor”, the
item reached by shifting the next symbol, and the “com-
pleter”, the symbols which follow the dot in the configura-
tion; for each closure item in the state, the state and item
number of the “successor”, the number of “path 1labels”
through the closure graph, followed by strings of symbols
representing those paths.

The closure graph or labeled path information is written as
a series of strings of symbols. Each such string represents
a least—-cost path from a closure item to some other item 1in
the state; the symbols correspond to the labels along the
path. A set of several strings is needed to represent all
the distinct paths from one item. The first n paths, where
n is the number of basis items in the state, represent paths
to a basis item. If a basis item is unreachable, a -1 ap-
pears in place of the string. Since each path is least-

-14-~

cost, 1if a derivation of the error symbol is found, no
cheaper derivation can be found on this path; if the path
leads to a basis item, then it represents the least-cost
path to that basis item.

The format of the error table file is summarized in the following
chart. In the <chart, a name corresponds to an integer in the
file. (string)*<name> means that the contents of the
parentheses (string) are repeated <name> times. (string)*
means that string is repeated an unknown number of times (the
list is terminated by -1). "name:" labels a logical division of

the file, and does not appear physically in the file. Comments
to the chart (don”t appear in the file) are enclosed in “{” and
“}*. "-1" represents -1.

header : Numterminals numsymbols numstates
maxnumbasis maxnumitems infinity

costs : (insertcost deletecost)*numterminals
S table: (cost length (insertsymbol)*length
or -1 {if same as previous

) *numsymbols—-numterminals { number of nonterminals }
E table: (0 terminal 0
(nonterminal cost length
(insertsymbol)*length
)*
) *numterminals
000
states : (numbasis numitems
(succstate succitem length
(string)*length
) *numbasis
(succstate succitem numpaths
or numpaths = -1
if all paths same as previous item
(length (string)*length
or -2 if unreachable item
) *numpaths {if numpaths <> -1}
) *numitems-numbasis
y*numstates

References

[1] Pischer, Charles N., Bernard A. Dion, and Jon Mauney, "A Lo-
cally Least-Cost LR Error-Corrector," Tech. Report 363, to
appear in ACM TOPLAS, University of Wisconsin-Madison (Au-
gust 1979).

revised Sep 24, 1981 -15- printed Nov 12, 1981

