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Abstract

2

on the unit square & := {(x,y) € R" : 0 $x, y 1},

We study the generalized conjugate gradient scheme
based on the k-line block Jacobi splitting A = M-N for
solving model two-dimensional parabolic and elliptic
difference equations AU = F. A represents the matrix
chu-thh. Eigenvalues of M-lN cluster, and the cluster
We discuss com-

putations with k = 4, 8, 16, 32, and ch® = 0, h, 2.

.. o .
radii decrease as ch or k increases.

(*) This work was supported by the U.S. Department of
Energy under Contract W-7405-Eng-36, and by the Office
of Naval Research under Contract N00014-76-C-0341.

1. Introduction

Direct iterative methods for solving the system

AU =F (1.1)

split the matrix A into a difference

A=M-~-N. (1.2)
Convergence of the methods is governed by the eigenval-
ues of the matrix Mle.v While studying block iterative
methods for two-dimensional elliptic and parabolic

problems, Parter and Steuerwaltlo noticed that when the

model problem has a form of strong diagonal dominance,

eigenvalues of the k-line block Jacobi matrix form

clusters. The generalized conjugate gradient method2
based on this splitting therefore should be an effec-
tive way to solve the difference equations, for it is
well known that clustering improves convergence of the
conjugate gradient iterates. Here we present some nu-
merical experiments, together with estimates of the ei-
genvalues, that not only confirm this expectation but

also show that some clusters themselves coalesce.

The model problem

Impose a mesh with uniform spacing

h o= 1/(P + 1) (1.3)

and let (xi,yj) := (ih,jh). The interior mesh points

Qh and the discrete boundary th are the sets Qh =

{(Xi’yj) : 184, j £P} and %Q, := {(xi,yj) :i=0 or

= P+1, or j = 0 or = P+1}. A mesh vector U = (Ui J.) is

- 24

a function defined on the entire mesh Qh 1= Qh U th.
The discrete Laplace operator is defined at points

in Qh by

2

(8015 5 := Uy 5= 2U; o+ Uy /R
)/h2.

+ (U, . . -2U. . +U
( i,j-1 i,]

i,j+1
We suppose that ¢ 2 0 and 0 £ o £ 2 are given constants
and we define an elliptic difference operator Lh by

[LU]. . := cb® 20, . - 801 - (1.4)

h™'i,j i,j
Note that, although the mesh vector U is defined on ﬁh’
the vectors AhU and LhU are defined only at the inte-
rior mesh points. Given a mesh vector F, the model

problem is to find a mesh vector U satisfying

L.U=F in Qh, U=0 on th'

h (1.5)

After choosing an ordering of the mesh points, we
let A be the matrix representing thh, and get a system
(1.1) of order Pz.

the components of hZF. Using a standard ordering, A

F indicates the result of ordering

can be written as the PXP block tridiagonal matrix

A=[-E, T, -El, (1.6)

T is the PxP
tridiagonal matrix T := [-1, 4+chu, -1]P and E denotes
the PXP identity matrix.

whose entries are matrices of order P:

The significance of o

If a =2, L, given by (1.4) is a regular elliptic
difference operator. Some evaluation of different
splittings has been attempted for regular problems when
A is symmetric and positive definite.a’8 Our estimates
show that the k-line Jacobi splitting works well for

the model operator (1.4).



If o < 2, then Lh is a singularly perturbed opera-
tor, A is strongly diagonally dominant, and the eigen-
values of M-lN bunch tightly. The case o = 0 arises in
applying block iterative methods to elliptic problems
in higher dimensions.10 Discrete-time schemes for the
parabolic operator coa/at-A may give at each time level
an elliptic operator c/1-A. Conditions on the ratio
hz/t then lead to singularly perturbed operators (1,4)
with 0 < o < 2.

the-Crank-Nicolson-method-yields-a-=-1.

For example, a common choice of T in

In each figure the horizontal axis is the number v
of iterations, and the vertical axis is the log of the
Euclidean norm or A-norm (see (3.6)) of the error E(V)
1= U-U(v), or the Euclidean norm of the residual R(v)

F-AU(V), for various values of k and of ch®.
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When 0 < o £ 2, the spectral radius p of M-lN for
the k-line Jacobi scheme is11 p = 1-kh%const. Conse-
quently O(l/(khal)l/2

overrelaxation method with best w are needed to reduce

) steps of the related successive
any initial error by a fixed factor. In contrast, if
M‘lN has 2/h distinct eigenvalues, then in principle
the conjugate gradient method converges to the solution
from any initial guess in at most 2/h steps. One hopes
for similar behavior, though not finite termination in
so few steps, if the eigenvalues form 2/h clusters.

In section 2 we discuss some numerical experiments
that suggest the eigenvalues of M-lN for the k-line Ja-
cobi splitting cluster strongly. A description of this
splitting for the model problem, a statement of the
generalized conjugate gradient method and the optimal-
ity theorem, and an appraisal of the effect of cluster-
ing appear in section 3. We sketch in section 4 a der-
ivation of bounds on the size and number of clusters.

Our method of analysis seems limited to the model
problem. Nevertheless, we expect that the clustering

results we outline here hold more generally.

2. Numerical experiments

We used the generalized conjugate gradient algo-
rithm and the k-line Jacobi splitting (3.3) to solve
the equation (1.1) that comes from the model problem
(1.5) on a mesh with P = 128. We chose for ch® the
values 0, h, and 2. These typical values correspond,
respectively, to a regular elliptic problem, a singu-
larly perturbed elliptic problem arising from a dis-
crete-time scheme for a parabolic problem, and a singu-
larly perturbed elliptic problem that comes from treat-
ing the model three-dimensional operator by a block
iterative method whose basic'block is a plane.

To minimize the effects of roundoff, we set F= 0;
hence the solution is U = 0, and the error of each it-
(v) We took U(o)

the vector with components all 1. Computations with

erate U is the iterate itself. to be
different ¥ or U(O) showed very similar behavior. The

calculations were done on the Cray-1 at Los Alamos.
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Figure 2. HE(v)ﬂA for various k (chu = 0)
The relation between uE(“)uA, iV, and 10V
Note that uE(“)uA
this is predicted by the Optimality Theorem 3.2.2’5’

is shown in Figure 1. is monotone;

6



In contrast, the residuals bounce around and even in-
crease just before the "cliffs." One has access only
to the residuals in practice, and should be careful not
to terminate the algorithm just before a dramatic im-
provement in the error is obtained.

Figure 2 displays HE(v)HA, and Figure 3 plots
1RO, for ch® = 0 and different k. oOnly IRV is

plotted in the remaining graphs.

Figures 3-5 show the effect of increasing k, for
fixed cha, while Figures 6-7 display the result of in-

creasing ch® for fixed k.
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The "cliffs and plateaus" of these graphs have

been noticed before.3’5’8 Their location with respect
to the number of iterations closely reflects the number

n of distinct clusters of eigenvalues of M-IN. The



analysis of section 4 demonstrates for the k-line block
Jacobi splitting that eigenvalues will cluster, and in~
dicates that cliffs should appear every n steps, where

n is at worst 2P+1. When n is much less than 2P, we

suspect that the clusters themselves are coalescing.

S := [-E, T, -E] R := ’

k’

then A is the block tridiagonal matrix [-R, S, -Rt]Q
whose entries are matrices of order kP.

A direct iterative scheme for solving (1.1) splits
A as in (1.2). Choosing a first guess U 0 , we get a
sequence {U(v)} by solving MU(v+1) = NU(v)+f. When A

is nonsingular the sequence converges to the solution
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Figure 7. "R(v)" for various ch” (k = 16)

The plots show that convergence improves as ch® or
k increases; they also suggest that n is significantly
less than 2P. When ch® is 0 or h, it appears that n %
75, 55, 45, 35 for k = 4, 8, 16, 32, respectively.
Convergence is so rapid that no plateau appears when
ch® = 2.

as big as we now believe;

It is possible that in fact n is about twice
to check this point, compu-
tations in high precision are being done. But even if

n £ 150, about 40% of the clusters have coalesced.

3. The conjugate gradient method with k-line blocks

The k-line block Jacobi splitting

In the horizontal k-line block structure’’!0s!l

each block of U comprises the unknowns Ui j associated

3.
with the points (Xi’yj) on k consecutive horizontal
grid lines. Let k be a divisor of P, so that

P = kQ for some integer Q. (3.1)
The k-line blocks are ﬁs
1£jskl(1<s50Q).

duces a block structure in A.

1= : £i¢€s

: {Ui,k(s-1)+j :151igP,
This decomposition of U in-

If E is the PxP identity

and S and R are the kxk block matrices

Q)
of (1.1) independently of U " if and only if

p := max {|Al : det(AM-N) = 0},
the spectral radius of M-IN, satisfies p < 1. Hence we

are led to study the eigenvalue problem
AMU = NU. (3.2)

In the k-line Jacobi scheme, A splits into the

block matrices

M:=[0,S, 0]., N:=[R, 0, R]

Q (3.3)

Q;
it is evident from (1.6) and (3.3) that A and M are
symmetric and positive definite and N is nonnegative.
Hence p < 1, and we may rewrite (3.2) to get

OAU = NU, o := A/(1 -~ A). (3.4)

. -1 .
Furthermore, nonzero eigenvalues of M "N occur in

signed pairs iA.1’9’11’12’13

The generalized conjugate gradient method

Splittings (1.2) also play a role in the general-
ized conjugate gradient scheme.2 The method assumes A
to be symmetric positive definite. In this section M
is any symmetric positive definite matrix of the same

order £ as A.

Algorithm 3.1.
method. Choose M. Let U(O) be a first guess at the
solution U of (1.1), set v

The generalized conjugate gradient

:= 0, and fix an arbitrary

V(_l). Generate the sequence {U(V)} by the following
steps. Step 1: Obtain Z(v) as the solution of
wz(™ = F - gV, (3.5)
stop if Z(v) = 0. Step 2: Compute
0 ifv=20
By =

™ 2™y, @O0 2Dy if v s o,



V(V) .= Z(V) + ﬁvv(\,“l).
Step 3: Compute

0y = 20z @ ™),
0O 1=y 4 g v,

advance v, and return to step 1. O

~

is not practical. But if the eigenvalues of K cluster
about n distinct values {Rj}, HU(n)-UHA should be
small. Now we quantify this expectation.

By (3.8) the eigenvalues Ai of M"IN and Ky of X
are related according to the equation K = 1-A. We
therefore impose conditions on the eigenvalues of K in
terms of Ai. These conditions are motivated by the
facts regarding the k-line Jacobi splitting (3.3) set

down before. We assume that the spectral radius p of

7 e hY
Note that MZ'V’ = 0 iff U'"/ solves (1.1). The

coefficients av and Bv are chosen so that (Z(i),MZ(j))
=0 if i # j.
property that {

It follows from this M-orthogonality
U(v)} converges to the solution U of
(1.1) in at most £ steps. In practice, roundoff causes
a gradual loss of M-orthogonality and consequent fail-

ure of the finite termination property; hence we view

the method as an iterative scheme.2’3’5

The key result about this scheme is the Optimality
Theorem, which -- neglecting roundoff -- describes the
convergence of {U(v)}. We let P be the set of real
polynomials of degree no greater than v, and recall
that any positive definite matrix B defines a norm by

1/2‘

1Xig = (X,BX) (3.6)

Theorem 3.2. 2,5,6 Denote

by U the solution of (1.1), and by {U(v)} the general-

The optimality theorem.

ized conjugate gradient iterates. Then
USSR )y (3.7)

min (1[I - kp(®)] () - mi2 :pept,

where

-1 -wly o

K =M (3.8)
Let m(k) be the minimal polynomial of K, so that

m(K) = 0.

of K.

(hence diagonalizable), m(K) = ”9=1(K'K-)- No Kj is

Let Kis oees Ko be the distinct eigenvalues

Because K is similar to a real symmetric matrix

zero, so m(K) = [l—Kp(K)]ﬂj(-Kj) for some particular
pepP ..
~n-1

Corollary 3.3.

values, then U B = U and so the generalized conjugate

These remarks proveE
If K has exactly n distinct eigen-
gradient method converges in at most n steps. O

The effect of clustering

b et M =1.

Corollary 3.3 says to pick M so that K has as few dis-

The original conjugate gradient method

tinct eigenvalues as possible, subject to the condition

that (3.5) be "easy" to solve. Hence the choice M = A

M-IN is less than 1, the nonzero eigenvalues of M-IN
occur in signed pairs *A,, and all the eigenvalues of
M-IN cluster. Preci§ely3 we suppose there are nonnega-
tive numbers Gr and Ar, 1 £r £s, so that for any non-
zero Ai there is an r for which

A, - Arl £6 (3.9)

or A, + A | £6_ .
i i r r

r
Without loss of generality we may take each Ar <1. To
determine the behavior of {U(V)}, we appraise the right
hand side of (3.7). Clearly

~

(k - [1+Aj])(K - [l'kj])

mk) := (1 - ) n;=1 ”
1 - Aj)

has the required form 1-kp(K).
of K. Evidently Kk, =1 iff A; =0, and then ﬁ(Ki) = 0.
If Ky # 1, then Xi # 0, and by (3.9) for some r

Fix any eigenvalue Ky

IAiIIAi - Arilhi + Ari

A

LICRY - QA 1)

r

1 -A

A

2
286 Q(A;, 1)/ (1 = AD),
where ~
A% - A%
QA,r) :=

V- R (3.10)

i
, =

It follows that in some norm (e.g., the Euclidean norm
of the diagonal matrix to which K is similar) m(K) is
of order maxr{dr} in magnitude, and therefore small if
the clusters are small. By the Optimality Theorem 3.2,
then, HU(25+1)-UH§ = O(max {5r : 1S g s}).

Thus we need to determine whether the eigenvalues
of K, or equivalently the eigenvalues of M-IN, cluster
for the k-line block Jacobi splitting (3.3).

4. Estimates of the eigenvalues

Because the spectral radius of M-IN is less than
1, we can convert the eigenvalue problem (3.2) for A

into the eigenvalue problem (3.4) for 0. We restrict



attention to the case k 2 3. The test vectors Uirg =
b

wjr sin nirh show that each 0 is an eigenvalue of

oB(B(r)1yt™) = Fiy(™)

(4.1)
for some r, 1 £ r £ P. Here w(r) € BP and
B(r) := 2(2 - cos nrh) + cha; (4.2)

Lemma 4.2.

associated eigenvector of (4.1), and set

Let 0 # 0 be an eigenvalue and | the

y =1+ 1/0’, (4.5)

€rs-1 = Uiy Bpg T Uy (1 E s £0°D).

Then £ must satisfy the homogeneous system Af = 0,
where A := K(B,y) is the block tridiagonal matrix

B[B] is the tridiagonal matrix [~1, B, -1] of order P.
N is also a tridiagonal matrix of order P, whose action

on vectors ¢ := (¢1, ¢2, ..,¢P)t is given by

N ¢k +1 1$ss5Q1,0=0
[N¢]ks+0 = °

¢ks 1<£s5Q-1,0=1,
[ﬁ¢]j = 0 for any other subscript j.

B is positive definite and N is symmetric, so for
each r there are P linearly independent eigenvectors Y
and P (counting multiplicities) associated eigenvalues
o of (4.1).

bles procedure provides all the eigenvectors of (3.4).

It follows that this separation of varia-

Before proceeding, we recall some properties of

the Gaussian algorithm for tridiagonal systems.7’12

Lemma 4.1. Let k 2 3. Consider the linear system

A

sy B0 - 0,y =0 (1555 k2),

where B 2 2, ¢o> and ¢, , are given. Define {Ej} by

EO =0, Ej = 1/(B - Ej-l) (153 sk-2) (4.3)
and set

a = EIEZ"'Ek-Z’ bk = Ek-Z' (4.4)
Then

01 = a0y F Dbgr By T Byl g t oAty
Furthermore, {Ej} is a monotone increasing sequence in
the interval [0',1], and as k > @

1/2

b * by = (B - (B - &)

K - /2, a, + 0.

When B > 2, this convergence is exponentially fast, and
when B = 2 we have ay = 1/(k-1), bk = (k-2)/(k~1). O

Now fix r and define B by (4.2).

to eliminate those equations and corresponding unknowns

We use Lemma 4.1

in (4.1) for which the right hand side is zero.

R :=[c, D,, ¢l (1sicgD
with 2X2 blocks
Bbyyy 7Y PP Y
Dl 1= y Di = y
-y B-by =Y B-by
| Bb -y o ey
DQ"l 1= s C := .o
-y B-bk+1 0 0

Nonzero eigenvalues 0 of (4.1) thus correspond to
values of y for which X is singular. We bound y by a
Gerschgorin argument, and so estimate nonzero eigenval-

ues A of (3.2) -~ for y = 1/A from (4.5) and (3.4).

Theorem 4.3.

any nonzero eigenvalue A of M

If the matrix A is singular, then

1N satisfies

AL = AL S 8(B,0/(B(x) = b)) S 6(8,K),  (4.6)

where

6(B,k) := a + (b, = by,,), (4.7)

A= 2/[B(0) + (B2 - w12 o

We see then that nonzero eigenvalues A of (3.2)
cluster about the 2P values iAr, 1£rsP. The situa-
tion described after Corollary 3.3 now holds, and the
numbers Gr of that discussion are the values 6(B(r),k)
defined by (4.7), (4.3), and (4.4) with B = B(r). So
even in the worst case, in which ¢ = 0 and minr{B(r)}
= 4=2cos 1th 2+(nh)2, we have no more than 2s+l clus-

ters with s = P and 6r = 0(h).

R

InAfact, the eigenvalues bunch in another way as
well. Ar is a continuous function of rh, and IAr - Aql
= O(hz) when r and q are near P. So the clusters them-
selves coalesce, for their centers have only O(hz) sep-
aration for large r. The plots in section 2 indicate
that many of the clusters coalesce. In Figure 8 r is
the horizontal and Ar the vertical axis. For large r
these curves are flat: Ar changes by less than 0.1 if

r > 62 [33 if ch® = 2], less than 0.01 if r > 105 [97].
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If 8 > 2, the dominant term of the cluster radius
5(B,k) is ap, for the term dk = b - bk+1 converges to 0
rapidly; this is shown in Table 1 below. When B = 2
dk = AP 6(B,k) decreases as B or k increase.

k ay d, S8(B,k)
4 .333-0 .226-0 .560-0 B =4 ~ 2cos nh
.142-0 .102-0 .244-0 bm = .9759419-0

16 .652-1 .413-1 .106-0

24 L413~1 .220-1 .632-1

32 .294-1 .130-1 L424-1

.330-0 .172-0 .502-0 B=2+h
.134-0 .571-1 .191-0 b, = .9157456-0

16 .507-1 .112-1 .619-1 h = 1/129

24 .237-1 .262~2 .263-1

32 .116~1 .633-3 .122-1

4 .667-1 .920-4 .668~1 B =4
.344-3 .245-8 .344-3 b, = .2679492-0

16 .913-8 .173-17  .913-8

24 .243-12 .122-26 .243-12

32 .644-17 .0 64417

Table 1. Cluster radii 6(B,k) for different k and B.

The jth factor IA A I/11- A | of Q(A r) deflned by
(3.10) is no greater than 1 whenever ZA 1+A It is
clear from (4.7) that 2A $ 1 whenever B(j) 2 3/42
2.12132. Table 2 gives very pe351mlst1c bounds on Q in
terms of Q(r) =1 {1/(1 -2 ) : >1, j# r} Q is

much smaller than Q because of the factors IA -A |.

iR

(5]

[6]

[10]

[11]

[12]

[13]

ch® Q(r)

0 .3287627+9
.5976592+7
1

jud

Table 2. Bounds Q(r) on the product Q(A,r).
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